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Abstract 
Chaos theory has several applications in science and engineering. In this work, we announce a 

new two-scroll chaotic system with two nonlinearities. The dynamical properties of the system such as 
dissipativity, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension and bifurcation diagram are 
explored in detail. The presence of coexisting chaotic attractors, coexisting chaotic and periodic attractors 
in the system is also investigated. In addition, the offset boosting of a variable in the new chaotic system is 
achieved by adding a single controlled constant. It is shown that the new chaotic system has rotation 
symmetry about the z-axis. An electronic circuit simulation of the new two-scroll chaotic system is built 
using Multisim to check the feasibility of the theoretical model. 
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1. Introduction 

In the last few decades, many advances applications of chaotic systems have been 
actively carried out in the literature [1-4]. Classical examples of 3-D chaotic systems include  
the Lorenz system [5], Rössler system [6], Chen system [7], Lü system [8], Liu system [9], Tigan 
system [10], Sprott systems [11], Arneodo system [12], etc. Chaotic systems arise in many 
applications of nonlinear oscillators [13-18]. Vaidyanathan [13] used active control method for  
the global chaos synchronization of the forced Van der Pol chaotic oscillators. Ghosh et al. [14] 
discussed the generation and control of chaos in a single loop optoelectronic oscillator with  
the variation of feedback loop delay. Vaidyanathan and Rasappan [15] applied nonlinear control 
for achieving hybrid synchronization of hyperchaotic Qi and Lü oscillators. Jin [16] presented a 
digitally programmable multi-direction fully integrated chaotic oscillator. Vaidyanathan [17] derived 
new results for the adaptive controller and synchronizer design for the Qi-Chen chaotic oscillator. 
Vaidyanathan [18] discussed the qualitative analysis, control and synchronization of a ten-term  
4-D hyperchaotic system with an exponential nonlinearity and three quadratic nonlinearities. 

Chaotic systems have applications in artificial and cellular neural networks [19, 20]. 
Akhmet and Fen [19] discussed the generation of cyclic and toroidal chaos by Hopfield neural 
networks. Vaidyanathan [20] derived new results for the synchronization of 3-cells cellular 
neural network (CNN) attractors via adaptive control method. Chaotic systems have applications 
in biology and medicine [21-24]. Akaishi et al. [21] presented a new theoretical model from a 
viewpoint of complex system with chaos model to reproduce and explain the non-linear clinical 
and pathological manifestations in multiple sclerosis. Vaidyanathan [22] presented new results 
for the adaptive control of the FitzHugh-Nagumo chaotic neuron model. Vaidyanathan [23] used 
backstepping control for the control and synchronization of a novel jerk system with two 
quadratic nonlinearities. Shepelev et al. [24] discussed the bifurcations of spatiotemporal 
structures in a medium of FitzHugh–Nagumo neurons with diffusive coupling. 
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Multi-scroll chaotic systems have generated a lot of interest in chaos literature. Many 
works have been done on several types of multi-scroll chaotic systems such as two-scroll 
systems [25, 26], three-scroll systems [27, 28], four-scroll systems [29, 30], etc. Lien et al. [25] 
discussed the finding of a new two-scroll chaotic system with three quadratic nonlinearities. 
Vaidyanathan et al. [26] reported a new two-scroll chaotic system and gave a dynamic analysis. 
Vaidyanathan [27] announced a new ten-term three-scroll chaotic system with four quadratic 
nonlinearities. Pakiriswamy and Vaidyanathan [28] discussed the generalized projective 
synchronization of three-scroll chaotic systems via active feedback control. Zhang et al. [29] 
reported the finding of one to four-wing chaotic attractors coined from a novel 3-D  
fractional-order chaotic system with complex dynamics. Akgul et al. [30] derived a new  
four-scroll chaotic attractor and discussed its engineering applications. 

For practical implementation of chaotic systems, it is important to design suitable 
electronic circuit design of chaotic systems [31-35]. Sambas et al. [31] discussed the circuit 
design of a six-term novel chaotic system with hidden attractor. Sambas et al. [32] derived a 
circuit design for a new 4-D chaotic system with hidden attractor. Sambas et al. [33] discussed 
the numerical simulation and circuit implementation for a Sprott chaotic system with one 
hyperbolic sinusoidal nonlinearity. Vaidyanathan et al. [34] presented a new 4-D chaotic 
hyperjerk system, and discussed its synchronization, circuit design and applications in RNG, 
image encryption and chaos-based steganography. Vaidyanathan et al. [35] reported a new 
chaotic attractor with two quadratic nonlinearities and discussed its synchronization via adaptive 
control and circuit implementation.  

In this paper, we report the finding of a new two-scroll chaotic system with two 
nonlinearities. We study the dynamical properties of the system such as dissipativity, equilibrium 
points, Lyapunov exponents, Kaplan-Yorke dimension, etc. We show that the new chaotic 
system has rotation symmetry about the z-axis. Thus, this paper makes a valuable addition to 
existing multi-scroll chaotic systems. We also discuss an electronic circuit simulation of the new 
two-scroll chaotic system using Multisim to validate the feasibility of the theoretical model.  
 
 
2. A New Two-scroll Chaotic System 

In this paper, we report a new 3-D chaotic system given by: 
 

{

�̇� = 𝑎(𝑦 − 𝑥)
�̇� = 𝑥𝑧           

�̇� = 𝑐 − 𝑏𝑦4
 (1) 

 
in the system (1), 𝑥, 𝑦, 𝑧 are the states and 𝑎, 𝑏, 𝑐 are positive parameters. In this work, we show 
that the system (1) exhibits a two-scroll chaotic attractor when we take the parameter values as: 

 
𝑎 = 6, 𝑏 = 1, 𝑐 = 50 (2) 
 

for numerical simulations, we take the initial values as 
 
𝑥(0) = 0.2, 𝑦(0) = 0.2, 𝑧(0) = 0.2 (3) 
 
The Lyapunov exponents of the system (1) are obtained using MATLAB as: 
 
𝐿1 = 1.2312, 𝐿2 = 0, 𝐿3 = −7.2312 (4) 
 

since 𝐿1 > 0 and 𝐿1 + 𝐿2 + 𝐿3 < 0, we conclude that the new 3-D system (1) is chaotic and 
dissipative. Thus, the system orbits of the new two-scroll chaotic system (1) are ultimately 
confined into a specific limit set of zero volume and the asymptotic motion settles onto a chaotic 
attractor. The Kaplan-Yorke dimension of the new two-scroll chaotic system (1) is obtained as: 

 

𝐷𝐾𝑌 = 2 +
𝐿1+𝐿2

|𝐿3|
= 2.1703 (5) 

 
this shows the high complexity of the new two-scroll system (1). 
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The equilibrium points of the new chaotic system (1) are obtained by solving  
the following system: 

 
𝑎(𝑦 − 𝑥) = 0 (6a) 
 
𝑥𝑧 = 0 (6b) 
 
𝑐 − 𝑏𝑦4 = 0 (6c) 
 

From (6a), we see that x=y. From (6b), either x=0 or z=0. If x=0, then y=0, which contradicts 
(6c). Thus, x ≠0. From (6b), z=0. From (6c), since b=1 and c=50, we find that: 

 

𝑦 = ±(50)0.25 = ±2.6591 (7) 
 
This calculation shows that the new chaotic system (1) has two equilibrium points: 
 

𝐸1 = [
2.6591
2.6591
0

] and 𝐸2 = [
−2.6591
−2.6591

0
] (8) 

 
We find that the new chaotic system (1) is invariant under the coordinates 

transformation 
 
(𝑥, 𝑦, 𝑧) ⟼ (−𝑥,−𝑦, 𝑧) (9) 
 

for all values of the parameters a, b, c. This shows that the new chaotic system (1) has rotation 
symmetry about z-axis. The Lyapunov exponents of the two-scroll chaotic system (1) are 
displayed in Figure 1. The phase portraits of the new two-scroll chaotic system (1) are displayed 
in Figure 2.  

 
 

 
 

Figure 1. Lyapunov chaos exponents (LCE) of the new two-scroll chaotic system (1) 
for (x(0), y(0), z(0))=(0.2, 0.2, 0.2) and (a, b, c)=(6, 1, 50) 

 
 

3.    Dynamical Analysis 
3.1. Route to Chaos 

We study the dynamics of the new two-scroll chaotic system (1) by varying the value of 
the parameter b. Bifurcation diagram and Lyapunov exponents of the new two scroll chaotic 
system (1) are presented in Figures 3 (a) and 3 (b), respectively. The new two scroll chaotic 
system (1) displays a reverse period-doubling route to chaos. For example, period-1 state is 
derived for a=20 (Figure 4 (a)), period-2 state is derived for a=16.5 (Figure 4 (b)) and chaotic 
behavior is noted for a=15 (Figure 4 (c)). In addition, the bifurcation diagram and Lyapunov 
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exponents of the system with respect to parameter b are shown in Figures 5 (a) and 5 (b). Here 
the maximum value of b can be very large. The system shows constant Lyapunov exponent 
behavior [36-38]. Figures 6 (a) and 6 (b) show the Lyapunov spectrum and bifurcation diagram, 
respectively, of the system with variation of parameter 𝑐 in the range 𝑐=[4, 50]. It is seen from 
Figures 6 (a) and 6 (b) that system (1) has periodic, quasiperiodic and chaotic behaviors for  
the different values of parameter c. 

 
 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 
Figure 2. Numerical simulations of phase portraits of the new two-scroll chaotic system (1)  

for (x(0), y(0), z(0))=(0.2, 0.2, 0.2) and (a, b, c)=(6, 1, 50) (a) x-y plane, (b) y-z plane,  
(c) x-z plane, and (d) R3 

 
 

 
(a) 

 
(b) 

 
Figure 3. (a) Bifurcation diagram of system (1) versus the parameter a for b=1, c=50 and initial 
conditions (x(0), y(0), z(0))=(0.2, 0.2, 0.2); (b) Lyapunov spectrum of system (1) when varying 

the parameter a for b=1, c=50 and initial conditions (x(0), y(0), z(0))=(0.2, 0.2, 0.2) 
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(a) 

 
(b) 

 
(c) 

 
Figure 4. Phase portraits of system (1) displayed in the x–z plane when changing the value of 
parameter a: (a) a=20 (period-1 state), (b) a=16.5 (period-2 state) (c) a=15 (chaotic behavior) 

while keeping b=1, c=50 and initial conditions (x(0), y(0), z(0))=(0.2, 0.2, 0.2) 
 
 

 
(a) 

 
(b) 

 
Figure 5. (a) Bifurcation diagram of system (1) versus the parameter b for a=6, c=50 and initial 
conditions (x(0), y(0), z(0))=(0.2, 0.2, 0.2); (b) Lyapunov spectrum of system (1) when varying 

the parameter b for a=6, c=50 and initial conditions (x(0), y(0), z(0))=(0.2, 0.2, 0.2) 
 
 

 
(a) 

 
(b) 

 
Figure 6. (a) Bifurcation diagram of system (1) versus the parameter c for a=6, b=1 and initial 
conditions (x(0), y(0), z(0))=(0.2, 0.2, 0.2); (b) Lyapunov spectrum of system (1) when varying 

the parameter c for a=6, b=1 and initial conditions (x(0), y(0), z(0))=(0.2, 0.2, 0.2) 
 
 

3.2. Coexistence of Attractors 
In this study, the coexisting chaotic attractors, coexisting chaotic and periodic attractors 

of two scroll system (1) are theoretically and numerically investigated. If a=6.5, system (1) 
shows coexisting periodic attractors with respect to initial values (x (0), y (0), z (0))=(0.2, 0.2, 
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0.2) (blue color) and the initial conditions (x (0), y (0), z (0))=(-0.2, -0.2, 0.2) (red color) as shown 
in Figure 7 (a). If a=7.5, system (1) exhibits coexisting chaotic and periodic attractors 
corresponding to initial values (x (0), y (0), z (0))=(0.2, 0.2, 0.2) (blue color) and the initial 
conditions (x (0), y (0), z (0))=(-0.2, -0.2, 0.2) (red color) as shown in Figure 7 (b). Next, we fix 
a=6, b=1, and select c as a controlled parameter for over the range 
 4 ≤ c ≤ 10. The coexisting bifurcation diagrams of the state variable y is illustrated in Figure 8, 
in which the orbit colored in blue starts from the initial values of (0.2, 0.2, 0.2) and the orbit 
colored in red starts from the initial values of (-0.2, −0.2, 0.2). 

 
 

 
(a) 

 
(b) 

 
Figure 7. Phase portraits of various coexisting attractors in the x−z plane: (a) the coexisting 

periodic attractors for a=6.5, (b) the coexisting chaotic and periodic attractors for a=7.5 
 
 

3.3. Offset Boosting Control  
Clearly, the state variable z appears only once in the second equation of the system. 

Therefore, we can control the state variable z conveniently. The state variable z is offset-boosted 
by replacing z with z + n, in which n is a constant. The system can be rewritten as: 

 

{

�̇� = 𝑎(𝑦 − 𝑥)

�̇� = 𝑥(𝑧 + 𝑛)

�̇� = 𝑐 − 𝑏𝑦4  

 (10) 

 
consequently, the chaotic signal z can be transformed from a bipolar signal to a unipolar signal 
when varying the control parameter n. Figure 9 shows that with the variation of the offset 
boosting controller n, the signal z is effectively boosted from a bipolar signal to a unipolar signal. 
Interestingly, different locations of the phase portraits of chaotic attractors in the x–z and y-z 
plane are adjusted depending on different values of the offset boosting controller n, which are 
plotted in Figures 10 (a) and 10 (b), respectively. 
 
 
4. Circuit Implementation of the New Chaotic System 

In this section, the three state variables (x, y, z) of the system (1) have been rescaled 

as 𝑋 =
1

2
𝑥, 𝑌 =

1

2
𝑦, 𝑍 =

1

2
𝑧. The rescaled system reads: 

 

{

�̇� = 𝑎(𝑦 − 𝑥)
�̇� = 4𝑥𝑧         

�̇� =
𝑐

4
− 4𝑏𝑦4

 (11) 

 
by applying Kirchhoff’s circuit laws into the designed circuit, we can be derived: 
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{
 
 

 
 �̇� =

1

𝐶1𝑅1
𝑦 −

1

𝐶1𝑅2
𝑥

�̇� =
1

𝐶2𝑅3
𝑥𝑧              

�̇� =
𝑉1

𝐶3𝑅4
−

1

𝐶3𝑅5
𝑦2

 (12) 

 
In (12), the voltages of capacitors are denoted as X, Y, Z. the power supplies of all 

active devices are ±15 volt. We choose the values of the circuital elements as: R1=R2=66.67 kΩ, 
R4=32 kΩ, R3=R5=R6=R7=R8=R9=100 kΩ, C1=C2=C3=1nF. The designed circuit diagram of 
system (1) is shown in Figure 11 and Multisim results of the proposed system can be seen in 
Figure 12. It is easy to see that the oscilloscope results as shown in Figure 12 are consistent 
with the MATLAB simulations as shown in Figure 2.  
 
 

 
 

Figure 8. Continuations of system (1) when 
increasing the value of the parameter c from 4 to 

10 for a=6 and b=1 starting with the initial 
condition; x (0), y (0), z (0))=(0.2, 0.2, 0.2)  

(blue color), (x (0), y (0), z (0))=(-0.2, -0.2, 0.2)  
(red color) 

 
 

Figure 9. The signal z with different values of 
the offset boosting controller n: 

n=0 (blue color); n=40 (red color);  
n=-40 (green color) 

 
 

 
(a) 

 
(b) 

 
Figure 10. Phase portraits in different planes and different values of the offset boosting 

controller n: (a) x-z plane, (b) y-z plane n=0 (blue color),  
n=40 (red color), n=-40 (green color) 
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Figure 11. The electronic circuit schematic of the new two-scroll chaotic system (1) 
 
 

 
(a) 

 
(b) 

 
(c) 

 
Figure 12. Multisim outputs of the scaled new two-scroll chaotic system (12) in 

(a) x-y plane, (b) y–z plane, (c) x–z plane 
 
 
5. Conclusion 
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This paper reported a new two-scroll chaotic system with two nonlinearities (a quadratic 
nonlinearity and a quartic nonlinearity). We studied the properties of the new chaotic system 
such as dissipativity, symmetry, equilibrium points, Lyapunov exponents and Kaplan-Yorke 
dimension. In addition, we also studied the dynamic analysis of the new chaotic system and 
found multistability and coexisting chaotic attractors for the new chaotic system. An electronic 
circuit simulation of the new two-scroll chaotic system was designed using Multisim to check  
the feasibility of the theoretical chaotic model. As we have verified that the circuit simulations 
obtained using Multisim match with the numerical simulations obtained using MATLAB, the new 
chaotic system can be used for many engineering applications such as image encryption, 
speech encryption, steganography, etc. 
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