
Applications and Applied Mathematics: An International Applications and Applied Mathematics: An International 

Journal (AAM) Journal (AAM) 

Volume 16 Issue 1 Article 7 

6-2021 

Adaptive Hybrid Projective Synchronization Of Hyper-chaotic Adaptive Hybrid Projective Synchronization Of Hyper-chaotic 

Systems Systems 

Ayub Khan 
Jamia Millia Islamia 

Harindri Chaudhary 
Jamia Millia Islamia 

Follow this and additional works at: https://digitalcommons.pvamu.edu/aam 

 Part of the Ordinary Differential Equations and Applied Dynamics Commons 

Recommended Citation Recommended Citation 
Khan, Ayub and Chaudhary, Harindri (2021). Adaptive Hybrid Projective Synchronization Of Hyper-chaotic 
Systems, Applications and Applied Mathematics: An International Journal (AAM), Vol. 16, Iss. 1, Article 7. 
Available at: https://digitalcommons.pvamu.edu/aam/vol16/iss1/7 

This Article is brought to you for free and open access by Digital Commons @PVAMU. It has been accepted for 
inclusion in Applications and Applied Mathematics: An International Journal (AAM) by an authorized editor of 
Digital Commons @PVAMU. For more information, please contact hvkoshy@pvamu.edu. 

https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam
https://digitalcommons.pvamu.edu/aam/vol16
https://digitalcommons.pvamu.edu/aam/vol16/iss1
https://digitalcommons.pvamu.edu/aam/vol16/iss1/7
https://digitalcommons.pvamu.edu/aam?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol16%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/121?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol16%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.pvamu.edu/aam/vol16/iss1/7?utm_source=digitalcommons.pvamu.edu%2Faam%2Fvol16%2Fiss1%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:hvkoshy@pvamu.edu


Available at
http://pvamu.edu/aam

Appl. Appl. Math.
ISSN: 1932-9466

Applications and Applied

Mathematics:

An International Journal
(AAM)

Vol. 16, Issue 1 (June 2021), pp. 117 – 138

Adaptive Hybrid Projective Synchronization
Of Hyper-chaotic Systems

1Ayub Khan and 2Harindri Chaudhary

Department of Mathematics
Jamia Millia Islamia

New Delhi, India
1akhan12@jmi.ac.in; 2harindri20dbc@gmail.com

Received: November 20, 2020; Accepted: March 31, 2021

Abstract

In this paper, we design a procedure to investigate the hybrid projective synchronization (HPS)
technique among two identical hyper-chaotic systems. An adaptive control method (ACM) is pro-
posed which is based on Lyapunov stability theory (LST). The considered technique globally de-
termines the asymptotical stability and establishes identification of parameter simultaneously via
HPS approach. Additionally, numerical simulations are carried out for visualizing the effectiveness
and feasibility of discussed scheme by using MATLAB.

Keywords: Adaptive control; hybrid projective synchronization; hyper-chaotic system; Lya-
punov stability theory; MATLAB
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1. Introduction

Undoubtedly, chaos theory has now become one of the most influential field of applicable mathe-
matics having a broad ranging of applications in numerous areas of applied sciences, engineering
and technology such as secure communication (Naderi and Kheiri (2016)), robotics (Patle et al.
(2018)), finance models (Tong et al. (2015)), neural networks (Bouallegue (2017)), weather mod-
els (Russell et al. (2017)), ecological models (Sahoo and Poria (2014)), jerk systems (Wang et al.
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118 A. Khan and H. Chaudhary

(2017)), encryption (Wu et al. (2016)), oscillations (Ghosh et al. (2018)), etc. As a result, chaos
theory has acquired a vital consideration in several research fields.

Fundamentally, chaotic system acquires the unique characteristic of exhibiting extreme high sen-
sitivity for initial conditions and parameter data. Remarkably, Pecora and Carroll (1990) inves-
tigated chaos synchronization phenomenon in chaotic systems using a master-slave framework,
which was unprecedented for more than two decades. Furthermore, Shinbrot et al. (1990) initi-
ated a technique known as OGY methodology for controlling chaotic systems. Until now, dif-
ferent kinds of synchronization schemes and control techniques in chaotic systems have been
proposed (Zhou and Zhu (2011); Ma et al. (2017); Singh et al. (2017); Li and Liao (2004);
Khan and Chaudhary (2020b); Sudheer and Sabir (2009); Li (2007); Khan and Chaudhary
(2020a); Khan and Chaudhary (2019); Ding and Shen (2016); Khan and Chaudhary (2019);
Delavari and Mohadeszadeh (2018); Rasappan and Vaidyanathan (2012); Chen and Han (2003);
Li and Zhang (2016); Jahanzaib et al. (2020); Sanjay et al. (2020)), etc.

In the available literature, a hyper-chaotic system has been identified as a chaotic system that has
more than one +ve Lyapunov exponents. Most importantly, (Rossler (1979)) proposed the first
classic hyper-chaotic system. Since then, many classic hyper-chaotic systems are emerged such as
Lorenz system, Chen model, Nikolov system, Liu system, Vaidyanathan system, Pehlvian system
and many more. Some hyper-chaotic systems may be generated directly by adding one or more
variables to the original 3D-chaotic systems such as Lorenz system, Qi system, Chen model, Lu
model and so on. The investigation for hyper-chaoticity of nonlinear models is still in its inception
and dynamics of hyper-chaotic systems is not completely understood by the researchers. Conse-
quently, hyper-chaos has drawn the attention from various engineering and scientific communities.

Synchronization phenomenon between chaotic systems via adaptive control method (ACM) was
firstly initiated by Hubler (1989). Mainieri and Rehacek (1999) proposed the concept of projective
synchronization while synchronizing the chaotic models. In Liao and Tsai (2000), synchronization
of two chaotic systems has been studied separately via adaptive control method and also it is
exhibited through numerical results that it has applications in secured communications. In Yassen
et al. (2003), synchronization of a modified Chua’s circuit system using adaptive control method
has been discussed. Furthermore, projective synchronization and chaos in secure communication
are studied in Li and Xu (2004). Additionally, in Li et al. (2012), adaptive backstepping scheme
in synchronizing chaotic systems is discussed. Moreover, by Wu et al. (2012), complex projective
synchronized technique is studied in complex chaotic systems. In Vaidyanathan (2015), ACM is
discussed to synchronize the generalized three-species Lotka-Volterra biological systems. In Khan
and Chaudhary (2020b), Khan and Chaudhary (2020a), Khan and Tyagi (2017c), and Khan and
Tyagi (2017a), enormous control approaches have been analyzed in depth for newly formulated
hyper-chaotic systems.

Keeping in view the aforesaid discussions, this manuscript focuses on proposing hybrid projec-
tive synchronization (HPS) among two identical hyper-chaotic systems by ACM. ACM is very
significant in estimating the parameters used in master and slave systems. Thus, by applying this
approach, a smaller amount of information is needed to synchronize the considered master and
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slave systems. Further, we discuss in much detail a desired adaptive control law and an estimating
parameter update law, which is based on LST.

The present paper is described as follows. Section 2 deals with the essential preliminaries compris-
ing of some notations and terminology that are used within this article. In Section 3, a methodology
of ACM has been described comprehensively. Section 4 consists of basic structured features of the
discussed systems. In addition, this section investigates the proposed ACM along with a parame-
ter estimation update laws to stabilize asymptotically the given hyper-chaotic systems. Moreover,
numerical simulations demonstrating the effectiveness as well as the feasibility of considered HPS
approach are performed using MATLAB software. Section 5 deals with a comparative study. Fi-
nally, Section 6 concludes the paper with a precise list of references given at the end of the paper.

2. Preliminaries

In this section, we recall essential terminology and few notations and state some elementary re-
sults that are used throughout the article. Consider the master/drive system and the corresponding
slave/response system as:

ẋ1 = f(x1), (1)
ẏ1 = g(y1) + u, (2)

where x1 = (x11, x12, . . . , x1n)
T , y1 = (y11, y12, . . . , y1n)

T are the state vectors of (1) and
(2) respectively, f, g : Rn → Rn are two nonlinear continuous vector functions and u =
(u11, u12, . . . , u1n) ∈ Rn is the suitable controller to be constructed.

Definition 2.1.

The master system (1) and the slave system (2) are said to be in hybrid projective synchronization
(HPS) if

lim
t→∞
‖e(t)‖ = lim

t→∞
‖y1(t)− αx1(t)‖ = 0, (3)

for some α = diag(α1, α2, . . . , αn) and ‖ · ‖ represents vector norm.

Remark 2.1.

Complete synchronized state of (1) and (2) is achieved if α1 = α2 = . . . = αn = 1.

Remark 2.2.

Anti-synchronized state of (1) and (2) is attained if α1 = α2 = . . . = αn = −1.

3. Synchronization Phenomena

Despite several available synchronization techniques, in this paper, we study the adaptive control
method as it is applicable in case of entirely unknown parameters.

3
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Suppose the chaotic (or hyper-chaotic) master system and corresponding chaotic (hyper-chaotic)
slave system are considered as:

ẋ = f(x) + g(x)η, (4)
ẏ = f(y) + g(y)η + u, (5)

where x = (x1, x2, . . . , xn)
T , y = (y1, y2, . . . , yn)

T are state vectors, u = (ui, i = 1, 2, . . . , n) ∈
Rn is the required controller, f : Rn → Rn, g : Rn → Rn×p are two nonlinear continuous vector
functions. η = (ηi; i = 1, 2, . . . , p)T is the known parameter vector and (·)T describes transpose.

Error is defined by

e(t) = y(t)− x(t).

The systems (4) and (5) are in a synchronized state if

lim
t→∞
‖e(t)‖ = 0,

where e(t) = (ei; i = 1, 2, . . . , n)T denotes error function and ‖ · ‖ represents vector norm.

From (4) and (5), the error dynamics becomes:

ė(t) = f(y) + g(y)η + u− f(x)− g(x)η.

We next design the control function u appropriately and parameter updating law to ensure that
systems (4) and (5) get synchronized with unknown parameters.

Let us define the controller

u = −f(y)− g(y)η̂ + f(x) + g(x)η̂ −Ke,

where η̂(t) = (η̂i; i = 1, 2, . . . , p) is uncertain parameter and K is any positive number chosen
arbitrarily known as gain constant.

Define parameter update law by

˙̂η = −[g(x)]T +Kηη̃,

where K = diag(Ki; i = 1, 2, . . . , n), Kη = diag(Ki; i = 1, 2, . . . , p) and η̃ = η − η̂.

Choose the classic Lyapunov function as

V (t) =
1

2
(eT e+ η̃T η̃),

which guarantees that V is positive definite.

Differentiability of Lyapunov function implies that

V̇ (t) = eT ė+ η̃T (− ˙̂η)

= eT [−g(x)η̃ −Ke]− η̃T [−[g(x)]T e+Kηη̃]

= −eTg(x)η̃ − eTKe+ η̃T [g(x)]T e− η̃TKηη̃

= −[η̃T [g(x)]T e]T + η̃T [g(x)]T e− eTKe− η̃TKηη̃

4
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= −eTKe− η̃TKηη̃

< 0,

which exhibits that V̇ is negative definite.

In view of Lyapunov stability theory (Shevitz and Paden (1914); Perko (2013)), the error dynamics
acquires global asymptotic stability in neighbourhood of considered equilibrium points.

The next section presents the HPS technique to control hyper-chaos of (6) using adaptive control
method.

4. Illustrative Example 1

Introduced by Dong et al. (2016), the considered hyper-chaotic system is described as:
ẋ11 = a1x11 − b1y11z11,
ẏ11 = −c1y11 + x11z11,

ż11 = k1x11 − d1z11 + x11y11,

ẇ11 = h1w11 + x11y11,

(6)

where (x11, y11, z11, w11)
T ∈ R4 is state vector and a1,b1,c1,d1,k1 and h1 are positive parameters.

When a1 = 4.55, b1 = 1.532, c1 = 10.1, d1 = 5.5, k1 = 3.5 and h1 = 0.04, the system (6) ex-
hibits hyper-chaos. Furthermore, Figure 1(a-f) depict phase diagrams of (6). In addition, Lyapunov
exponents of system (6) are determined as L1 = 1.5278, L2 = 0.041041, L3 = 0.0023108 and
L4 = −12.5454 which show the hyper-chaotic behaviour of (6). However, the detailed analytical
study and numerical results for the system (6) can be found in Khan and Tyagi (2017a).
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Figure 1. Phase diagrams of hyper-chaotic system in (a) x11 − y11 plane, (b) y11 − z11 plane, (c) x11 − y11 − z11
space, (d) y11 − z11 − w11 space, (e) x11 − z11 − w11 space, (f) x11 − y11 − w11 space

The next section presents the HPS technique to control hyper-chaos of (6) using adaptive control
method.

For convenience, the system (6) is considered as the master system and the slave system can be
defined by the following expression:

ẋ21 = a1x21 − b1y21z21 + u11,

ẏ21 = −c1y21 + x21z21 + u12,

ż21 = k1x21 − d1z21 + x21y21 + u13,

ẇ21 = h1w21 + x21y21 + u14,

(7)

where u11, u12, u13 and u14 are adaptive controllers to be designed in such a manner that HPS
between two identical hyper-chaotic models will be achieved.

Define the state errors by 
e11 = x21 − α1x11,

e12 = y21 − α2y11,

e13 = z21 − α3z11,

e14 = w21 − α4w11.

(8)
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The main objective in this paper is the introduction of appropriate controllers u1i, (i = 1, 2, 3, 4)
so that the considered state errors must satisfy

lim
t→∞

e1i(t) = 0 for (i = 1, 2, 3, 4).

Subsequent error dynamics is simplified as:
˙e11 = a1e11 − b1(y21z21 − α1y11z11) + u11,

˙e12 = −c1e12 + x21z21 − α2x11z11 + u12,

˙e13 = k1e11 + k1(α1 − α3)x11 − d1e13 + x21y21 − α3x11y11 + u13,

˙e14 = h1e14 + x21y21 − α4x11y11 + u14.

(9)

Now, we define the adaptive controllers as:
u11 = −â1e11 + b̂1(y21z21 − α1y11z11)−K1e11,

u12 = ĉ1e12 − x21z21 + α2x11z11 −K2e12,

u13 = −k̂1e11 − k̂1x11(α1 − α3) + d̂1e13 − (x21y21 − α3x11y11)−K3e13,

u14 = −ĥ1e14 − x21y21 + α4x11y11 −K4e14,

(10)

where Ki > 0, i = 1, 2, 3, 4 and are called gain constants.

By substituting the controllers (10) in the error dynamics (9), we obtain
ė11 = (a1 − â1)e11 − (b1 − b̂1)(y21z21 − α1y11z11)−K1e11,

ė12 = −(c1 − ĉ1)e12 −K2e12,

ė13 = (k1 − k̂1)e11 + (k1 − k̂1)x11(α1 − α3)− (d1 − d̂1)e13 −K3e13,

ė14 = (h1 − ĥ1)e14 −K4e14,

(11)

where â1, b̂1, ĉ1, d̂1, ĥ1, k̂1 are estimated values for unknown parameters a1, b1, c1, d1, h1, k1,
respectively.

We define parameter estimation error as follows:

ã1 = a1 − â1, b̃1 = b1 − b̂1, c̃1 = c1 − ĉ1, d̃1 = d1 − d̂1, h̃1 = h1 − ĥ1, k̃1 = k1 − k̂1. (12)

Using (12), the error dynamics (11) is written as:
ė11 = ã1e11 − b̃1(y21z21 − α1y11z11)−K1e11,

ė12 = −c̃1e12 −K2e12,

ė13 = k̃1e11 + k̃1(α1 − α3)x11 − d̃1e13 −K3e13,

ė14 = h̃1e14 −K4e14.

(13)

By differentiating the parameter estimation error (12), we obtain

˙̃a1 = − ˙̂a1,
˙̃b1 = − ˙̂

b1, ˙̃c1 = − ˙̂c1,
˙̃d1 = − ˙̂

d1,
˙̃h1 = − ˙̂

h1,
˙̃k1 = − ˙̂

k1. (14)
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Considering the Lyapunov function as

V =
1

2
[e211 + e212 + e213 + e214 + ã1

2 + b̃1
2
+ c̃1

2 + d̃1
2
+ h̃1

2
+ k̃1

2
], (15)

which implies that V is positive definite.

Derivative of Lyapunov function V , using (14), is given by

V̇ = e11ė11 + e12ė12 + e13ė13 + e14ė14 − ã1 ˙̂a1 − b̃1 ˙̂b1 − c̃1 ˙̂c1 − d̃1 ˙̂
d1 − h̃1 ˙̂

h1 − k̃1 ˙̂
k1. (16)

In view of (16), parameter estimates law is defined as:

˙̂a1 = (x21 − α1x11)e11 +K5(a1 − â1),
˙̂
b1 = −(y21z21 − α1y11z11)e11 +K6(b1 − b̂1),
˙̂c1 = −(y21 − α2y11)e12 +K7(c1 − ĉ1),
˙̂
d1 = −(z21 − α3z11)e13 +K8(d1 − d̂1),
˙̂
h1 = (w21 − α4w11)e14 +K9(h1 − ĥ1),
˙̂
k1 = (x21 − α1x11)e13 + x11(α1 − α3)e13 +K10(k1 − k̂1),

(17)

where K5, K6, K7, K8, K9 and K10 are positive gaining constants.

Theorem 4.1.

The hyper-chaotic system (6)-(7) are asymptotically hybrid projective synchronized globally for
all initial states (x11(0), y11(0), z11(0), w11(0)) ∈ R4 by appropriately designed adaptive controller
(10) and the parameter updating law (17).

Proof:

The Lyapunov function V as mentioned in (15) is positive definite function. On simplifying Equa-
tions (16) and (17), we have

V̇ = −K1e
2
11 −K2e

2
12 −K3e

2
13 −K4e

2
14 −K5ã1

2 −K6b̃1
2 −K7c̃1

2 −K8d̃1
2 −K9h̃1

2 −K10k̃1
2

< 0,

which implies that V̇ is negative definite. Thus, by using Lyapunov stability theory (Shevitz and
Paden (1914); Perko (2013)), we deduce that HPS error e(t) → 0 exponentially for t → ∞ for
every initial conditions e(0) ∈ R4. This completes the proof. �

4.1. Numerical Simulation

This section presents essential simulation results for the illustration of the effectiveness of proposed
HPS scheme via ACM. Parameters of the given system are chosen as a1 = 4.55, b1 = 1.532,
c1 = 10.1, d1 = 5.5, k1 = 3.5 and h1 = 0.04 to ensure that the system behaves chaotically
without control inputs. The initial states of master (6) and slave system (7) are (−2, 4, 2,−3) and
(−3, 5, 3,−4), respectively. We achieve HPS scheme between master system (6) and slave system
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(7) by choosing the scaling matrix α with α1 = 2, α2 = −2, α3 = 3, α4 = −3. Here, control gains
are taken asKi = 4 for i = 1, 2, . . . , 10. Numerical simulations are depicted in Figure 2(a-d) which
exhibit the state trajectories of systems (6) and (7). The synchronization errors (e11, e12, e13, e14) =
(1, 13,−3,−13) as shown in Figure 2(e) tend to zero as t tends to infinity. Moreover, Figure 2(f)
displays that estimated values (â1, b̂1, ĉ1, d̂1, ĥ1, k̂1) of unknown parameter converge to their real
values asymptotically as t tends to infinity. Hence, the proposed HPS technique between master
and slave system is verified computationally. Furthermore, Figure 6(a-e) and Figure 7(a-e) exhibit
some particular cases of HPS scheme, namely, complete synchronization and anti-synchronization
among the systems (6) and (7) respectively and both are displayed in Appendix.
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Figure 2. Hybrid projective synchronization for 4-D hyper-chaotic system (a) between x11(t) − x21(t), (b) between
y11(t)− y21(t), (c) between z11(t)− z21(t), (d) between w11(t)−w21(t), (e) synchronization errors of the
system, (f) parameter estimation
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4.2. Illustrative example 2

Proposed by Wei et al. (2014), the discussed hyper-chaotic system is defined as:
ẋ11 = l1(y11 − x11),
ẏ11 = −x11z11 − l3y11 + l4w11,

ż11 = −l2 + x11y11,

ẇ11 = −l5y11,

(18)

where (x11, y11, z11, w11)
T ∈ R4 is state vector and l1,l2,l3,l4,k1 and l5 are positive parameters.

When l1 = 10, l2 = 25, l3 = −2.5, l4 = 1 and l5 = 1, the system (18) exhibits hyperchaos.
Furthermore, Figure 3(a-f) depicts phase diagrams of (18) which show the hyperchaotic behaviour
of (18). However, a thorough analytic study and numerical results for the system (18) may be found
in Wei et al. (2014).
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Figure 3. Phase diagrams of hyper-chaotic system in (a) x11 − y11 plane, (b)y11 − z11 plane, (c) x11 − y11 − z11
space, (d) y11 − z11 − w11 space, (e) x11 − z11 − w11 space, (f) x11 − y11 − w11 space

The system (18) is considered as the master system and the corresponding slave system can be
described by the following expression:

ẋ21 = l1(y21 − x21) + v11,

ẏ21 = −x21z21 − l3y21 + l4w21 + v12,

ż21 = −l2 + x21y21 + v13,

ẇ21 = −l5y21 + v14,

(19)

where v11, v12, v13 and v14 are adaptive controllers to be constructed in such a way that HPS among
two identical hyper-chaotic models will be achieved.

Define the state errors by 
e11 = x21 − β1x11,
e12 = y21 − β2y11,
e13 = z21 − β3z11,
e14 = w21 − β4w11.

(20)

The main goal here is to introduce the appropriate controllers v1i, (i = 1, 2, 3, 4) so that the con-
sidered state errors must satisfy

lim
t→∞

e1i(t) = 0 for (i = 1, 2, 3, 4).

Subsequent error dynamics turns out to be
˙e11 = −l1e11 + l1(y21 − β1y11) + v11,

˙e12 = −l3e12 − (x21z21 − β2x11z11) + l4(w21 − β1w11) + v12,

˙e13 = −l2(1− β3) + x21y21 − β3x11y11 + v13,

˙e14 = −l5(y21 − β4y11) + v14.

(21)
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We now describe the adaptive controllers by the rule:
v11 = l̂1e11 − l̂1(y21 − β1y11)−K1e11,

v12 = l̂3e12 + (x21z21 − β2x11z11)− l̂4(w21 − β1w11)−K2e12,

v13 = (̂l2)(1− β3)− (x21y21 − β3x11y11)−K3e13,

v14 = (̂l5)(y21 − β4y11)−K4e14,

(22)

where Ki > 0, i = 1, 2, 3, 4 and are called gain constants.

By putting the controllers (22) in the error dynamics (21), we get
ė11 = −(l1 − l̂1)e11 + (l1 − l̂1)(y21 − β1y11)−K1e11,

ė12 = −(l3 − l̂3)e12 + (l4 − l̂4)(w21 − β2w11)−K2e12,

ė13 = −(l2 − l̂2)(1− β3)−K3e13,

ė14 = −(l5 − l̂5)(y21 − β4y11)−K4e14,

(23)

where l̂1, l̂2, l̂3, l̂4, l̂5 are estimated values for unknown system parameters l1, l2, l3, l4, l5, respec-
tively.

We represent parameter estimation error as follows:

l̃1 = l1 − l̂1, l̃2 = l2 − l̂2, l̃3 = l3 − l̂3, l̃4 = l4 − l̂4, l̃5 = l5 − l̂5. (24)

Using (24), the error dynamics (23) is written as:
ė11 = −l̃1e11 + l̃1(y21 − β1y11)−K1e11,

ė12 = −l̃3e12 + l̃4(w21 − β2w11)−K2e12,

ė13 = −l̃2(1− β3)−K3e13,

ė14 = −l̃5)(y21 − β4y11)−K4e14.

(25)

On differentiation, the parameter estimation error (24) becomes

˙̃l1 = − ˙̂
l1,

˙̃l2 = − ˙̂
l2,

˙̃l3 = − ˙̂
l3,

˙̃l4 = − ˙̂
l4,

˙̃l5 = − ˙̂
l5. (26)

Define the Lyapunov function by

V =
1

2
[e211 + e212 + e213 + e214 + l̃1

2
+ l̃2

2
+ l̃3

2
+ l̃4

2
+ l̃5

2
, (27)

which shows that V is positive definite.

The derivative of Lyapunov function V , using (26), is given by

V̇ = e11ė11 + e12ė12 + e13ė13 + e14ė14 − l̃1 ˙̂l1 − l̃2 ˙̂l2 − l̃3 ˙̂l3 − l̃4 ˙̂l4 − l̃5 ˙̂l5. (28)
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Keeping (28) in view, the parameter estimates law is defined as:

˙̂
l1 = (y21 − β1y11)e11 − e112 +K5(l1 − l̂1),
˙̂
l2 = (1− β3)e13z +K6(l2 − l̂2),
˙̂
l3 = −e212 +K7(l3 − l̂3),
˙̂
l4 = (w21 − β2w11)e12 +K8(l4 − l̂4),
˙̂
l5 = −(y21 − β4y11)e14 +K9(l5 − l̂5),

(29)

where K5, K6, K7, K8 and K9 are positive gaining constants.

Theorem 4.2.

The hyper-chaotic system (18)-(19) are asymptotically hybrid projective synchronized globally for
all initial states (x11(0), y11(0), z11(0), w11(0)) ∈ R4 by properly designed adaptive controller (22)
and the parameter updating law (29).

Proof:

The Lyapunov function V as defined in (27) is positive definite function. On solving Equations (28)
and (29), we obtain

V̇ = −K1e
2
11 −K2e

2
12 −K3e

2
13 −K4e

2
14 −K5l̃1

2 −K62̃1
2 −K7l̃3

2 −K8l̃4
2 −K9l̃5

2

< 0,

which depicts that V̇ is negative definite. Thus, using Lyapunov stability theory (Shevitz and Paden
(1914); Perko (2013)), we conclude that HPS error e(t) → 0 exponentially for t → ∞ for every
initial conditions e(0) ∈ R4. The proof is completed. �

4.3. Numerical Simulation

In this section, we present few simulation results for illustrating the effectiveness of proposed
HPS scheme via ACM. Parameters of the given hyper-chaotic system (18) are chosen as l1 = 10,
l2 = 25, l3 = −2.5, l4 = 1 and l5 = 1 to make sure that the system behaves chaotic without
control inputs. The initial states of master (18) and slave system (19) are (0.2, 0.1, 0.75,−2) and
(0.35, 0.4, 0.6,−3), respectively. We attain HPS scheme among master system (18) and slave sys-
tem (19) by selecting the scaling matrix β with β1 = 4, β2 = −3, β3 = 2, β4 = −5. Here,
control gains are taken as Ki = 4 for i = 1, 2, . . . , 9. Numerical simulations are shown in Fig-
ure 4(a-d) which depict the state trajectories of systems (18) and (19). The synchronization errors
(e11, e12, e13, e14) = (−0.45, 0.7,−0.9,−13) as displayed in Figure 4(e) tend to zero as t tends to
infinity. Moreover, Figure 4(f) displays that estimated values (l̂1, l̂2, l̂3, l̂4, l̂5) of unknown parameter
converge to their real values asymptotically as t tends to infinity. Thus, the proposed HPS technique
between master and slave system is verified computationally. In addition, Figure 8(a-e) and Fig-
ure 9(a-e) display some particular cases of HPS scheme, for example, complete synchronization
and anti-synchronization among the systems (18) and (19), respectively, and both are shown in the
Appendix.
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Figure 4. Hybrid projective synchronization for 4-D hyper-chaotic system (a) between x11(t) − x21(t), (b) between
y11(t)− y21(t), (c) between z11(t)− z21(t), (d) between w11(t)−w21(t), (e) synchronization errors of the
system, (f) parameter estimation

5. A Comparative Study

The HPS scheme is attained in Khan and Tyagi (2017c) via active control method while performing
on the same hyper-chaotic system with similar parameters. It is noticed here that synchronization
error converges to zero at t = 5.1 (approx) as shown in Khan and Tyagi (2017c), whereas in our
study, HPS scheme is achieved via adaptive control method, in which it is observed that synchro-
nization error is convergent with limit to zero at t = 0.9 (approx) as depicted in Figure 5(a). Also,
the synchronization error of systems (18)-(19) converges to zero at t = 0.5 (approx) as shown in
Figure 5(b). It shows that the proposed HPS approach via adaptive control method is more prefer-
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able over other published work.
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Figure 5. Hybrid projective synchronization for 4-D hyper-chaotic system using (a) active control method, (b) adaptive
control method

6. Conclusion

In this paper, we have investigated our proposed HPS scheme between identical hyper-chaotic
systems via adaptive control technique. By designing suitable controllers based on Lyapunov
stability theory, the considered HPS technique has been achieved. The particular cases of anti-
synchronization and complete synchronization are also discussed. The effectivity and feasibility of
the theoretical results are verified in simulations by using MATLAB. Exceptionally, the theoretical
analysis and numerical results both agree completely. In fact, the discussed HPS technique is very
efficient as it has various applications in encryption, control theory and secure communication. In
this research, time taken by the synchronization errors converging to zero is very less in contrast-
ing with prior published work. Furthermore, we believe that the proposed HPS approach would be
generalized by applying many more control techniques.
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Figure 6. Complete synchronization of 4-D hyper-chaotic system (a) between x11(t) − x21(t), (b) between y11(t) −
y21(t), (c) between z11(t)− z21(t), (d) between w11(t)− w21(t), (e) synchronization errors of the system,
(f) parameter estimation
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Figure 7. Anti-synchronization of 4-D hyper-chaotic system (a) between x11(t)−x21(t), (b) between y11(t)−y21(t),
(c) between z11(t) − z21(t), (d) between w11(t) − w21(t), (e) synchronization errors of the system, (f)
parameter estimation
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Figure 8. Complete synchronization of 4-D hyper-chaotic system (a) between x11(t) − x21(t), (b) between y11(t) −
y21(t), (c) between z11(t)− z21(t), (d) between w11(t)− w21(t), (e) synchronization errors of the system,
(f) parameter estimation
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Figure 9. Anti-synchronization of 4-D hyper-chaotic system (a) between x11(t)−x21(t), (b) between y11(t)−y21(t),
(c) between z11(t) − z21(t), (d) between w11(t) − w21(t), (e) synchronization errors of the system, (f)
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