52 research outputs found

    Simulation of spectrum-correspondent accelerogram by using artificial neural networks

    Get PDF
    Regarding the scarcity of appropriate recorded earthquakes, and the ever-increasing use of dynamic time history analyses for more accurate calculation of structures response, the simulation of artificially produced records necessary. In this study, accelerograms are simulated from the response or design spectrum by using generalized regression neural networks. In the training phase the response spectrum is used as the input for the simulating network, and the corresponding accelerogram as the output. Accelerograms achieved from some recorded earthquakes of Iran are used for training the neural network. The appropriate accuracy, and high speed of training are the properties of the network. After training the network, accelerogram corresponding to the design spectrum of Iranian code of practice for seismic resistance design of buildings is generated. Similar procedures can be carried out for design spectrum of other cods to achieve the corresponding records

    Survey on Neuro-Fuzzy systems and their applications in technical diagnostics and measurement

    Get PDF
    Both fuzzy logic, as the basis of many inference systems, and Neural Networks, as a powerful computational model for classification and estimation, have been used in many application fields since their birth. These two techniques are somewhat supplementary to each other in a way that what one is lacking of the other can provide. This led to the creation of Neuro-Fuzzy systems which utilize fuzzy logic to construct a complex model by extending the capabilities of Artificial Neural Networks. Generally speaking all type of systems that integrate these two techniques can be called Neuro-Fuzzy systems. Key feature of these systems is that they use input-output patterns to adjust the fuzzy sets and rules inside the model. The paper reviews the principles of a Neuro-Fuzzy system and the key methods presented in this field, furthermore provides survey on their applications for technical diagnostics and measurement. © 2015 Elsevier Ltd

    Generative adversarial networks review in earthquake-related engineering fields

    Get PDF
    Within seismology, geology, civil and structural engineering, deep learning (DL), especially via generative adversarial networks (GANs), represents an innovative, engaging, and advantageous way to generate reliable synthetic data that represent actual samples' characteristics, providing a handy data augmentation tool. Indeed, in many practical applications, obtaining a significant number of high-quality information is demanding. Data augmentation is generally based on artificial intelligence (AI) and machine learning data-driven models. The DL GAN-based data augmentation approach for generating synthetic seismic signals revolutionized the current data augmentation paradigm. This study delivers a critical state-of-art review, explaining recent research into AI-based GAN synthetic generation of ground motion signals or seismic events, and also with a comprehensive insight into seismic-related geophysical studies. This study may be relevant, especially for the earth and planetary science, geology and seismology, oil and gas exploration, and on the other hand for assessing the seismic response of buildings and infrastructures, seismic detection tasks, and general structural and civil engineering applications. Furthermore, highlighting the strengths and limitations of the current studies on adversarial learning applied to seismology may help to guide research efforts in the next future toward the most promising directions

    Kriging metamodeling-based Monte Carlo Simulation for improved seismic fragility analysis of structures

    Get PDF
    The polynomial response surface method (RSM) is mostly adopted to overcome computational challenge of Monte Carlo Simulation (MCS)-based seismic fragility analysis (SFA) of structure. However, such SFA approach is primarily based on dual RSM involving lognormal assumption which lacks desired accuracy. The present study explores the advantage of adaptive nature of Kriging approach for improved SFA by random selection of metamodel to implicitly consider record to record variations of earthquakes. Without additional computational burden, the approach avoids a prior distribution assumption unlike dual RSM. The effectiveness of the approach over the usual polynomial RSM for SFA is elucidated numerically

    Reliability problems in eartquake engineering

    Get PDF
    This monograph deals with the problem of reliability analysis in the field of Earthquake Engineering. Chapter 1 is devoted to a summary of the most widely used reliability methods, with emphasis on Monte Carlo and solver surrogate techniques used in the subsequent chapters. Chapter 2 presents a discussion of the Monte Carlo from the viewpoint of Information Theory. Then, a discussion is made in Chapter 3 on the selection of random variables in Earthquake Engineering. Next, some practical methods for computing failure probabilities under seismic loads are reported in Chapter 4. Finally, a method for reliability-based design optimization under seismic loads is presented in Chapter 5

    Acoustic Emission and Artificial Intelligence Procedure for Crack Source Localization

    Get PDF
    The acoustic emission (AE) technique is one of the most widely used in the field of structural monitoring. Its popularity mainly stems from the fact that it belongs to the category of non-destructive techniques (NDT) and allows the passive monitoring of structures. The technique employs piezoelectric sensors to measure the elastic ultrasonic wave that propagates in the material as a result of the crack formation's abrupt release of energy. The recorded signal can be investigated to obtain information about the source crack, its position, and its typology (Mode I, Mode II). Over the years, many techniques have been developed for the localization, characterization, and quantification of damage from the study of acoustic emission. The onset time of the signal is an essential information item to be derived from waveform analysis. This information combined with the use of the triangulation technique allows for the identification of the crack location. In the literature, it is possible to find many methods to identify, with increasing accuracy, the onset time of the P-wave. Indeed, the precision of the onset time detection affects the accuracy of identifying the location of the crack. In this paper, two techniques for the definition of the onset time of acoustic emission signals are presented. The first method is based on the Akaike Information Criterion (AIC) while the second one relies on the use of artificial intelligence (AI). A recurrent convolutional neural network (R-CNN) designed for sound event detection (SED) is trained on three different datasets composed of seismic signals and acoustic emission signals to be tested on a real-world acoustic emission dataset. The new method allows taking advantage of the similarities between acoustic emissions, seismic signals, and sound signals, enhancing the accuracy in determining the onset time

    Application of adaptive wavelet networks for vibration control of base isolated structures

    Get PDF
    Accepted version of an article from the journal: International Journal of Wavelets, Multiresolution & Information Processing. Official version article published as International Journal of Wavelets, Multiresolution & Information Processing, 2010 8(5), 773-791. doi: 10.1142/s0219691310003778 © World Scientific Publishing Company http:// http://www.worldscinet.com/ijwmip/This paper presents an application of wavelet networks (WNs) in identification and control design for a class of structures equipped with a type of semiactive actuators, which are called magnetorheological (MR) dampers. The nonlinear model is identified based on a WN framework. Based on the technique of feedback linearization, supervisory control and H∞ control, an adaptive control strategy is developed to compensate for the nonlinearity in the structure so as to enhance the response of the system to earthquake type inputs. Furthermore, the parameter adaptive laws of the WN are developed. In particular, it is shown that the proposed control strategy offers a reasonably effective approach to semiactive control of structures. The applicability of the proposed method is illustrated on a building structure by computer simulation
    corecore