4,009 research outputs found

    Software-Defined Cloud Computing: Architectural Elements and Open Challenges

    Full text link
    The variety of existing cloud services creates a challenge for service providers to enforce reasonable Software Level Agreements (SLA) stating the Quality of Service (QoS) and penalties in case QoS is not achieved. To avoid such penalties at the same time that the infrastructure operates with minimum energy and resource wastage, constant monitoring and adaptation of the infrastructure is needed. We refer to Software-Defined Cloud Computing, or simply Software-Defined Clouds (SDC), as an approach for automating the process of optimal cloud configuration by extending virtualization concept to all resources in a data center. An SDC enables easy reconfiguration and adaptation of physical resources in a cloud infrastructure, to better accommodate the demand on QoS through a software that can describe and manage various aspects comprising the cloud environment. In this paper, we present an architecture for SDCs on data centers with emphasis on mobile cloud applications. We present an evaluation, showcasing the potential of SDC in two use cases-QoS-aware bandwidth allocation and bandwidth-aware, energy-efficient VM placement-and discuss the research challenges and opportunities in this emerging area.Comment: Keynote Paper, 3rd International Conference on Advances in Computing, Communications and Informatics (ICACCI 2014), September 24-27, 2014, Delhi, Indi

    A Review on Dynamically Changing the Quality of Service Requirements for SOA based Applications in Cloud

    Get PDF
    Service Oriented Applications have the ability to change their constituent services dynamically This implies that they have the ability to change both their functionality and their Quality of Service attributes dynamically We present a Cloud-based-Multi-Agent System Clobmas that uses multiple double auctions to enable applications to self-adapt based on their Quality of Service requirements and cost restraints Quality of Service attributes needed to provided maintained monitored at run time A double auction is a two-sided auction i e both the buyers and the sellers indicate the price that they re willing to pay and accept respectively If any application uses self adaptation mechanism then it exhibits a high Quality of Service Here we design a market mechanism that allows applications to select services in a decentralized manne

    An Autonomic Cross-Platform Operating Environment for On-Demand Internet Computing

    Get PDF
    The Internet has evolved into a global and ubiquitous communication medium interconnecting powerful application servers, diverse desktop computers and mobile notebooks. Along with recent developments in computer technology, such as the convergence of computing and communication devices, the way how people use computers and the Internet has changed people´s working habits and has led to new application scenarios. On the one hand, pervasive computing, ubiquitous computing and nomadic computing become more and more important since different computing devices like PDAs and notebooks may be used concurrently and alternately, e.g. while the user is on the move. On the other hand, the ubiquitous availability and pervasive interconnection of computing systems have fostered various trends towards the dynamic utilization and spontaneous collaboration of available remote computing resources, which are addressed by approaches like utility computing, grid computing, cloud computing and public computing. From a general point of view, the common objective of this development is the use of Internet applications on demand, i.e. applications that are not installed in advance by a platform administrator but are dynamically deployed and run as they are requested by the application user. The heterogeneous and unmanaged nature of the Internet represents a major challenge for the on demand use of custom Internet applications across heterogeneous hardware platforms, operating systems and network environments. Promising remedies are autonomic computing systems that are supposed to maintain themselves without particular user or application intervention. In this thesis, an Autonomic Cross-Platform Operating Environment (ACOE) is presented that supports On Demand Internet Computing (ODIC), such as dynamic application composition and ad hoc execution migration. The approach is based on an integration middleware called crossware that does not replace existing middleware but operates as a self-managing mediator between diverse application requirements and heterogeneous platform configurations. A Java implementation of the Crossware Development Kit (XDK) is presented, followed by the description of the On Demand Internet Computing System (ODIX). The feasibility of the approach is shown by the implementation of an Internet Application Workbench, an Internet Application Factory and an Internet Peer Federation. They illustrate the use of ODIX to support local, remote and distributed ODIC, respectively. Finally, the suitability of the approach is discussed with respect to the support of ODIC

    Self-healing Multi-Cloud Application Modelling

    Get PDF
    Cloud computing market forecasts and technology trends confirm that Cloud is an IT disrupting phenomena and that the number of companies with multi-cloud strategy is continuously growing. Cost optimization and increased competitiveness of companies that exploit multi-cloud will only be possible when they are able to leverage multiple cloud offerings, while mastering both the complexity of multiple cloud provider management and the protection against the higher exposure to attacks that multi-cloud brings. This paper presents the MUSA Security modelling language for multi-cloud applications which is based on the Cloud Application Modelling and Execution Language (CAMEL) to overcome the lack of expressiveness of state-of-the-art modelling languages towards easing: a) the automation of distributed deployment, b) the computation of composite Service Level Agreements (SLAs) that include security and privacy aspects, and c) the risk analysis and service match-making taking into account not only functionality and business aspects of the cloud services, but also security aspects. The paper includes the description of the MUSA Modeller as the Web tool supporting the modelling with the MUSA modelling language. The paper introduces also the MUSA SecDevOps framework in which the MUSA Modeller is integrated and with which the MUSA Modeller will be validated.The MUSA project leading to this paper has received funding from the European Union’s Horizon 2020 research and innovation pro- gramme under grant agreement No 644429

    Developing self-adaptive microservices

    Get PDF
    The modern development approaches are establishing microservices and cloud computing as major trends to benefit the technological community. However, these technologies are often prone to multiple issues regarding parallel development by numerous parties, delivery strategies and resource allocation. This paper proposes a novel architecture for developing self-adaptive microservices, using Kubernetes through the Azure Container Apps, including a strategy that will complement the architecture to enhance the development of microservices and aiming to achieve a solution that allows the readers to deliver software faster, with more resilience, more scalable, and more cost-effective, depending as low as possible from human intervention to maintain and scale. The author will apply the acquired knowledge to propose and test an architecture for a real use case scenario, building a notifications service integrated with a complex cloud-based web application system.As abordagens de desenvolvimento mais recentes estão a estabelecer os microsserviços e a computação em nuvem como tendências importantes para benefício da comunidade tecnológica. No entanto, estas tecnologias são frequentemente propensas a vários problemas relacionados com o desenvolvimento paralelo por várias partes, estratégias de entrega de software desenvolvido e afetação de recursos. Este artigo propõe uma nova arquitetura para o desenvolvimento de microsserviços autoadaptativos, utilizando Kubernetes através do Azure Container Apps, incluindo uma estratégia que complementará a arquitetura para melhorar o seu desenvolvimento, visando alcançar uma solução que permita aos leitores entregar software mais rapidamente, com mais resiliência, mais escalável e mais económico, dependendo o menos possível da intervenção humana para manter e escalar. O autor irá aplicar os conhecimentos adquiridos para propor e testar uma arquitetura para um caso de uso real, construindo um serviço de notificações integrado com um sistema complexo de aplicações web hospedado na nuvem

    Modern software cybernetics: new trends

    Get PDF
    Software cybernetics research is to apply a variety of techniques from cybernetics research to software engineering research. For more than fifteen years since 2001, there has been a dramatic increase in work relating to software cybernetics. From cybernetics viewpoint, the work is mainly on the first-order level, namely, the software under observation and control. Beyond the first-order cybernetics, the software, developers/users, and running environments influence each other and thus create feedback to form more complicated systems. We classify software cybernetics as Software Cybernetics I based on the first-order cybernetics, and as Software Cybernetics II based on the higher order cybernetics. This paper provides a review of the literature on software cybernetics, particularly focusing on the transition from Software Cybernetics I to Software Cybernetics II. The results of the survey indicate that some new research areas such as Internet of Things, big data, cloud computing, cyber-physical systems, and even creative computing are related to Software Cybernetics II. The paper identifies the relationships between the techniques of Software Cybernetics II applied and the new research areas to which they have been applied, formulates research problems and challenges of software cybernetics with the application of principles of Phase II of software cybernetics; identifies and highlights new research trends of software cybernetic for further research

    Unified Management of Applications on Heterogeneous Clouds

    Get PDF
    La diversidad con la que los proveedores cloud ofrecen sus servicios, definiendo sus propias interfaces y acuerdos de calidad y de uso, dificulta la portabilidad y la interoperabilidad entre proveedores, lo que incurre en el problema conocido como el bloqueo del vendedor. Dada la heterogeneidad que existe entre los distintos niveles de abstracción del cloud, como IaaS y PaaS, hace que desarrollar aplicaciones agnósticas que sean independientes de los proveedores y los servicios en los que se van a desplegar sea aún un desafío. Esto también limita la posibilidad de migrar los componentes de aplicaciones cloud en ejecución a nuevos proveedores. Esta falta de homogeneidad también dificulta el desarrollo de procesos para operar las aplicaciones que sean robustos ante los errores que pueden ocurrir en los distintos proveedores y niveles de abstracción. Como resultado, las aplicaciones pueden quedar ligadas a los proveedores para las que fueron diseñadas, limitando la capacidad de los desarrolladores para reaccionar ante cambios en los proveedores o en las propias aplicaciones. En esta tesis se define trans-cloud como una nueva dimensión que unifica la gestión de distintos proveedores y niveles de servicios, IaaS y PaaS, bajo una misma API y hace uso del estándar TOSCA para describir aplicaciones agnósticas y portables, teniendo procesos automatizados, por ejemplo para el despliegue. Por otro lado, haciendo uso de las topologías estructuradas de TOSCA, trans-cloud propone un algoritmo genérico para la migración de componentes de aplicaciones en ejecución. Además, trans-cloud unifica la gestión de los errores, permitiendo tener procesos robustos y agnósticos para gestionar el ciclo de vida de las aplicaciones, independientemente de los proveedores y niveles de servicio donde se estén ejecutando. Por último, se presentan los casos de uso y los resultados de los experimentos usados para validar cada una de estas propuestas

    An Autonomous Engine for Services Configuration and Deployment.

    Full text link
    The runtime management of the infrastructure providing service-based systems is a complex task, up to the point where manual operation struggles to be cost effective. As the functionality is provided by a set of dynamically composed distributed services, in order to achieve a management objective multiple operations have to be applied over the distributed elements of the managed infrastructure. Moreover, the manager must cope with the highly heterogeneous characteristics and management interfaces of the runtime resources. With this in mind, this paper proposes to support the configuration and deployment of services with an automated closed control loop. The automation is enabled by the definition of a generic information model, which captures all the information relevant to the management of the services with the same abstractions, describing the runtime elements, service dependencies, and business objectives. On top of that, a technique based on satisfiability is described which automatically diagnoses the state of the managed environment and obtains the required changes for correcting it (e.g., installation, service binding, update, or configuration). The results from a set of case studies extracted from the banking domain are provided to validate the feasibility of this propos

    On Autonomic HPC Clouds

    Get PDF
    Proceedings of: Second International Workshop on Sustainable Ultrascale Computing Systems (NESUS 2015). Krakow (Poland), September 10-11, 2015.The long tail of science using HPC facilities is looking nowadays to instant available HPC Clouds as a viable alternative to the long waiting queues of supercomputing centers. While the name of HPC Cloud is suggesting a Cloud service, the current HPC-as-a-Service is mainly an offer of bar metal, better named cluster-on-demand. The elasticity and virtualization benefits of the Clouds are not exploited by HPC-as-a-Service. In this paper we discuss how the HPC Cloud offer can be improved from a particular point of view, of automation. After a reminder of the characteristics of the Autonomic Cloud, we project the requirements and expectations to what we name Autonomic HPC Clouds. Finally, we point towards the expected results of the latest research and development activities related to the topics that were identified.The work related to Autonomic HPC Clouds is supported by the European Commission under grant agreement H2020-6643946 (CloudLightning). The CLoudLightning project proposal was prepared by eight partner institutions, three of them as earlier partners in the COST Action IC1305 NESUS, benefiting from its inputs for the proposal. The section related to Autonomic Clouds is supported by the Romanian UEFISCDI under grant agreement PN-II-ID-PCE-2011- 3-0260 (AMICAS)
    corecore