

Global Journal of Computer Science and Technology: B
Cloud and Distributed
Volume 14 Issue 1 Version 1.0 Year 2014
Type: Double Blind Peer Reviewed International Research Journal
Publisher: Global Journals Inc. (USA)
Online ISSN: 0975-4172 & Print ISSN: 0975-4350

A Review on Dynamically Changing the Quality of Service
Requirements for SOA based Applications in Cloud

 By L. Venkateswara Reddy & C. Rajeev
 Sree Vidyanikethan Engineering College, India

Abstract- Service Oriented Applications have the ability to change their constituent services
dynamically. This implies that they have the ability to change both, their functionality and their Quality
of Service attributes dynamically. We present a Cloud-based-Multi-Agent System (Clobmas) that
uses multiple double auctions, to enable applications to self-adapt, based on their Quality of Service
requirements and cost restraints. Quality of Service attributes needed to provided, maintained,
monitored at run time. A double auction is a two-sided auction, i.e., both the buyers and the sellers
indicate the price that they’re willing to pay and accept, respectively. If any application uses self
adaptation mechanism then it exhibits a high Quality of Service. Here we design a market
mechanism that allows applications to select services, in a decentralized manner.

Keywords: self-adaptation, cloud-based-multi-agent system double-auction, decentralized.

GJCST-B Classification: C.1.4

AReviewonDynamicallyChangingtheQualityofServiceRequirementsforSOAbasedApplicationsinCloud

© 2014. L. Venkateswara Reddy & C.Rajeev. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 3.0 Unported License http://creativecommons.org/licenses/by-nc/3.0/), permitting all non-commercial use,
distribution, and reproduction inany medium, provided the original work is properly cited.

Strictly as per the compliance and regulations of:

A Review on Dynamically Changing the Quality
of Service Requirements for SOA based

Applications in Cloud
L. Venkateswara Reddy α & C.Rajeev σ

Abstract- Service Oriented Applications have the ability to
change their constituent services dynamically. This implies that
they have the ability to change both, their functionality and
their Quality of Service attributes dynamically. We present a
Cloud-based-Multi-Agent System (Clobmas) that uses multiple
double auctions, to enable applications to self-adapt, based
on their Quality of Service requirements and cost restraints.
Quality of Service attributes needed to provided, maintained,
monitored at run time. A double auction is a two-sided auction,
i.e., both the buyers and the sellers indicate the price that
they’re willing to pay and accept, respectively. If any
application uses self adaptation mechanism then it exhibits a
high Quality of Service. Here we design a market mechanism
that allows applications to select services, in a decentralized
manner.
Keywords: self-adaptation, cloud-based-multi-agent
system double-auction, decentralized.

I. Introduction

ver the past several years, interest has grown
considerably in new techniques and technology
for improving the task of creating and

maintaining high-quality software. These efforts have
arisen in response to a growing sense among
application developers that traditional approaches are
inadequate. Such new methods for improving software
efficiency and predictability include intentional
programming, evolutionary programming, model-based
programming, and self-adaptive software. Some
traditional approaches have not been worth-full in
improving our ability to produce better code more
affordably. Rather, the problem has been that one’s
reach always exceeds the grasp. As hardware
capabilities improve and our understanding of how to
apply computation to problems improves, we continually
try to solve more difficult problems, driving up the
complexity of solutions and overrunning the ability of our
tools to manage the complexity.

Self-adaptive software [3] having its own
behavior and changes behavior when the evaluation

Author α: Department of Information Technology, Sree Vidyanikethan
Engineering College, Tirupati, Andhra Pradesh, India.
e-mail: lakkireddy.v@gmail.com.
Author σ: Department of Information Technology, Sree Vidyanikethan
Engineering College, Tirupati, Andhra Pradesh, India.
e-mail: cheeryjeeva@gmail.com

indicates that it is not accomplishing what the software
is intended to do, or when better functionality or
performance is possible. This implies that the software
has multiple ways of accomplishing its purpose and has
enough knowledge of its construction to make effective
changes dynamically. Such software should include
functionality for evaluating its behavior and performance,
as well as the ability to preplan and reconfigure its
operations to improve its operation. Self-adaptive
software should also include a set of components for
each major function, along with descriptions of the
components, so that system components can be
selected and scheduled dynamically [2], in response to
the evaluators. .

Service-based applications will operate in a
highly-dynamic world [4]. Systems will need to operate
correctly despite of unexpected changes in factors such
as environmental conditions, user requirements,
technology, legal regulations, and market opportunities.
They will have to operate in a constantly evolving
environment that includes people, content, electronic
devices, and legacy systems. They will thus need the
ability to continuously adapt themselves in an
automated manner to react to those changes.
Adaptation must be achieved in an automatic fashion.

Service-based applications should exhibit self-
healing, self-optimizing, and self-protecting capabilities.
In addition, they should be able to predict problems,
such as potential degradation scenarios, future faulty
behavior, and deviations from expected behavior, and
move towards resolving those issues before they occur.
This means that future service-based applications will
need to become truly proactive.

Self-adaptive software uses a closed-loop
mechanism. This loop, called the adaptation loop, [6]
consists of several processes, as well as sensors and
effectors. This loop is called the MAPE-K loop in the
context of autonomic computing, and includes the
Monitoring, Analyzing, planning and Executing
functions.

We evaluate Cloud-based-Multi-Agent System
(Clobmas) [5] in two stages. The first stage of evaluation
is functional evaluation. This is to ensure that Clobmas
meets the core objectives that it was set up to fulfill. The
second stage of evaluation is to judge whether Clobmas

o

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

17

(
DDDD DDDD

)
Y
e
a
r

B
20

14

possesses desirable non-functional properties. Clobmas
satisfies the functional, and scalability goals, and not
that it optimizes.

Figure 1 : Four adaptation processes in self-adaptive
software

Control theory-based paradigm gives a
framework [1] for specifying and designing software that
controls itself as it operates. Based on this paradigm,
their self-controlling software model supports three
levels of control: Feedback, Adaptation, and
Reconfiguration. All the software subsystems interact
with an environment that could be the external physical
world or another layer of the computer system. Such
environments can be characterized as dynamic
systems. The essence of a dynamic system is that its
output depends on the system’s state. So, the system
does not shift dramatically from one output to another
(in response to changes in the input) but exhibits some
form of inertia (because of the dependence on state).

Adaptation is possible in such a manner that
the architected should be able to:

• Dynamically identify changed requirements, which
will necessitate runtime adaptation.

• Initiate the search for new services, which better
address the changed requirements.

• Substitute old web-services for new web-services.
Service-Oriented Architecture has brought

about a paradigm shift in the way we think about
creating an application. Instead of linking programs and
libraries at statically, we are now able to specify the
functionality that the component parts should have, and
the application can be dynamically composed using
web-services. A web-service is a self-describing
computational entity that can be used to perform various
kinds of functions. These can be composed together, in
a specific order, to deliver some functionality.

A web service is so-called because it uses web-
based standards like XML, SOAP, etc to achieve its

communication and data exchange, thus allowing the
application location and platform independence. This
allows an application to search a service repository for
service that it wants, and then bind to it. This dynamic
binding allows for the notion of an application changing
the QoS properties that it exhibits, at runtime.
Depending on the task at hand, or the budgetary
resources or any other Quality of Service restraints that
the architect imposes, the application can potentially
pick an appropriate service and achieve its functional
and non-functional targets.

a) Buyer Agent
A trading agent that is responsible for fulfilling

one Abstract Service. The Buyer Agent bids for, and
buys a Concrete Service. The amount that the Buyer-
Agent is prepared to pay is called the bid price and this
is necessarily less than or equal to its budget. The
combination of bid price and the QoS attributes
demanded is called the Bid.

Figure 2 :

Architecture for changing the Quality of
Service requirements in cloud.

b)

Seller Agen

A trading agent that sells a Concrete Service. A
Seller Agent is responsible for only one Concrete-
Service. Based on demand and supply, the Seller Agent
adjusts the price at which it is willing to sell the Concrete
Service. The amount that a Seller Agent is preparedto
accept, is called the ask price. This is necessarily
greater than or equal to its cost. The combination of ask
price and the Qo

S attributes offered, is called the Ask.

c)

Market Agent
A trading agent that implements trading rounds

for a market. It accepts Bids from Buyer Agents, and
Asks from Seller Agents. It performs matching of Bids
and Asks.

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

18

(
DDDD

)
Y
e
a
r

B
20

14
A Review on Dynamically Changing the Quality of Service Requirements for SOA Based Applications in

Cloud

II.

The Market Mechanism

We can view applications as either a buyer of
web-services with certain quality-attributes, or a seller
that is capable of delivering those quality attributes at a
certain cost. The resource allocation problem can be set
up as a optimization problem, where

the buyers need to

maximize their Quality Attribute, given that they have a
limited budget while sellers have a limited capacity to
sell. We treat the universe of web-services as an
economy, consisting of several marketplaces, several
buyers, Several sellers. All their actions are rational and
will result in a non-negative utility for them. The
marketplace operates a continuous double auction
(CDA) [7] which brings buyers and sellers together, and
decides when a transaction should take place and at
what price.

a)

The Buyer

 This is the application that we are primarily
concerned about. This is the application that re-
configures its architecture through the process of buying
web-services. The application receives a relative
weighting amongst the Quality Attributes that it is
concerned about.

b)

The Seller

 This is the application that sells web services to
the highest bidder. This application has a minimum ‘ask’
price, below which it is not economical for the seller to
sell. This is so due to the fact that computation, storage
and data transfer all have a cost in the cloud. These are
all paid by the seller’s web service.

c)

The Marketplace

 This is an application that resides in the cloud, and acts
as the meeting point for buyers and sellers. Our
condition of Individual

Rationality (IR) means that this

application does not exist for selfless purposes. That is,
it gains some amount of money by virtue of bringing
buyers and sellers together. The more the number of
transactions that occur, the more it earns.

 There are various challenges in ensuring Quality
Attributes (QA) of applications hosted in the cloud and
hence the perceived quality of service of the cloud as a
whole. We advocate a self- management/optimization
architecture driven approach to ensure that Quality
Attributes are met. The approach uses Service Level
Agreements (SLA) and Utility Theory to direct the self-
optimization. We will propose more accurate application
of multi-attribute utility theory to SLA negotiation. This
would enable simulations of a cloud with

negotiating

web-services, thus allowing us to test our idea of low-
level self-optimization leading to an emergent higher
level optimized application state in the cloud. If
successful, this would lead to long-lived applications in
the cloud being more bouncily to change, and
successfully adapting to changing Quality attribute
optimization needs.

III.

Conclusions

Cloud-based service-oriented applications have
the potential to self-adapt their Qo

S, depending on
demand. Using a market-based mechanism maps
nicely to the real-world situation of unpredictable change
of Quality of Service requirements, costs involved in
adaptation and adaptation by competing applications.
Service-based applications will thus have to
continuously adapt themselves to react to changes in
their context and to address changing user
requirements. Adaptation must be achieved in an
automatic fashion. Service-based applications should
exhibit self-healing, self-optimizing, and self-protecting
capabilities. Services in the cloud a are moving from

a
fixed-price package to a more flexible, auction-based
approach.

References Références Referencias

1.

MM Kokar and K Baclawski, Control theory-based
foundations of self-controlling software, Self-
Adaptive Software and their Applications, IEEE
Intelligent Systems, 1999.

2.

P. Oreizy, N. Medvidovic, and R.N. Taylor.
Architecture-based runtime software evolution,

Proceedings of the 20th International Conference on
Software Engineering, pages 177–186, 1998.

3.

Robert Laddaga. Creating robust software through
self-adaptation. IEEE Intelligent Systems, 14:26–29,
May 1999.

4.

Elisabetta

Di

Nitto, Carlo Ghezzi, Andreas Metzger,
Mike Papazoglou, and Klaus Pohl. A journey to
highly dynamic, self-adaptive service based
applications. Automated Software Engineering,
15(3-4):313–341, September 2008.

5.

VivekNallur, Rami Bahsoon, A Decentralized Self-
Adaptation Mechanism for Service-Based
Applications in the Cloud, IEEE Transactions on
Software Engineering Vol:

39 P.No:1-25 No;

5 Year
2013.

6.

Mazeiar

Salehie and Ladan

Tahvildari. Self-adaptive
software. ACM Transactions on Autonomous and
Adaptive Systems, 4(2):1–42, May 2009.

7.

Vivek

Nallur and Rami Bahsoon. Design of a Market-
Based Mechanism for Quality Attribute Tradeoff of
Services in the Cloud. In Proceedings of the 25th
Symposium of Applied Computing (ACM SAC).
ACM, 2010.

© 2014 Global Journals Inc. (US)

G
lo
ba

l
Jo

ur
na

l
of
 C

om
pu

te
r
Sc

ie
nc

e
an

d
Te

ch
no

lo
gy

 V

ol
um

e
X
IV

Is
su

e
I
 V

er
sio

n
I

19

(
DDDD DDDD

)
Y
e
a
r

B
20

14

A Review on Dynamically Changing the Quality of Service Requirements for SOA Based Applications in
Cloud

Global Journals Inc. (US)

Guidelines Handbook 2014

www.GlobalJournals.org

	A Review on Dynamically Changing the Quality of Service Requirements for SOA based Applications in Cloud
	Authors
	Keywords
	I. Introduction
	a) Buyer Agent
	b) Seller Agen
	c) Market Agent

	II. The Market Mechanism
	a) The Buyer
	b) The Seller
	c) The Marketplace

	III. Conclusions
	References Références Referencias

