
Self-healing Multi-Cloud Application Modelling

Erkuden Rios Tecnalia

Research & Innovation C/

Geldo, 700

Derio, Spain 48160

erkuden.rios@tecnalia.com

Eider Iturbe
Tecnalia Research & Innovation

C/ Geldo, 700

Derio, Spain 48160

eider.iturbe@tecnalia.com

Maria Carmen Palacios
Tecnalia Research & Innovation

C/ Geldo, 700

Derio, Spain 48160

maricarmen.palacios@tecnalia.com

ABSTRACT

Cloud computing market forecasts and technology trends confirm

that Cloud is an IT disrupting phenomena and that the number

of companies with multi-cloud strategy is continuously growing.

Cost optimization and increased competitiveness of companies that

exploit multi-cloud will only be possible when they are able to lever-

age multiple cloud offerings, while mastering both the complexity

of multiple cloud provider management and the protection against

the higher exposure to attacks that multi-cloud brings.

This paper presents the MUSA Security modelling language for

multi-cloud applications which is based on the Cloud Application

Modelling and Execution Language (CAMEL) to overcome the lack

of expressiveness of state-of-the-art modelling languages towards

easing: a) the automation of distributed deployment, b) the compu-

tation of composite Service Level Agreements (SLAs) that include

security and privacy aspects, and c) the risk analysis and service

match-making taking into account not only functionality and busi-

ness aspects of the cloud services, but also security aspects. The

paper includes the description of the MUSA Modeller as the Web

tool supporting the modelling with the MUSA modelling language.

The paper introduces also the MUSA SecDevOps framework in

which the MUSA Modeller is integrated and with which the MUSA

Modeller will be validated.

KEYWORDS

Cloud, Multi-cloud, security, modelling, deployment.

Cross-Reference:

Rios, Erkuden, Eider Iturbe, and Maria Carmen Palacios. “Self-Healing Multi-

Cloud Application Modelling.” Proceedings of the 12th International Conference

on Availability, Reliability and Security - ARES ’17 (2017).

DOI:10.1145/3098954.3104059

© Erkuden Rios, Eider Iturbe and Maria Carmen Palacios | ACM 2017.This is the
author's version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Proceedings of the 12th
International Conference on Availability, Reliability and Security - ARES, Reggio
Calabria, Italy, (2017), http://dx.doi.org/10.1145/3098954.3104059.

1 INTRODUCTION

Cloud computing forecasts and market estimates of the last years

confirm that Cloud is an IT disrupting phenomena with a tremen-

dous growth potential [5]. According to Gartner [7], by 2020 the

’Cloud Shift’ (shifting from traditional IT offerings to cloud services)

will impact more than $1 Trillion in IT spending.

In the last years the percentage of companies that have a strategy

to use multiple clouds for running applications or for experimen-

tation is continuously growing [25]. In such landscape, cost opti-

mization and increased competitiveness of companies that exploit

multi-cloud will only be possible when they are able to leverage

multiple cloud providers offerings, while mastering both the com-

plexity of multiple cloud provider management and the protection

against the higher exposure to attacks that multi-cloud brings.

Multi-cloud applications are those that take most out of the cloud

by combining multiple cloud offerings, i.e. those which components

use or are distributed in heterogeneous cloud resources, thus facing

highly complex challenges with regards to both distributed deploy-

ment automation as well as component and overall application

security assurance.

As opposite to cloud federations, in multi-cloud paradigm the

cloud service providers which services are combined by the user do

not need necessarily to have previously reached to an agreement

about the way or model in which the services will be offered.

Therefore, a number of problems arise on how to model and

decide application components distribution in the clouds, as well

as issues on how to specify security properties offered and required

(from the cloud providers) by the multi-cloud application individual

components and the overall application.

In order to solve these problems, we present a novel approach

for addressing security in the modelling of multi-cloud applica-

tions. The formalisms and supporting tool presented herein have

been developed in the context of the EU-funded MUSA project

[18]. The solution relies in the extension of the Cloud Application

Modelling and Execution Language (CAMEL) [20] to address richer

deployment requirements specification as well as fully-fledged se-

curity behaviour specification addressing cases when application

components require and provide security capabilities.

The current state-of-the-art modelling languages lack expressive-

ness that eases: a) the automation of distributed deployment, b) the

computation of composite Service Level Agreements (SLAs) that

include security and privacy aspects, and c) the risk analysis and

service match-making taking into account not only functionality

and business aspects of the cloud services, but also security aspects,

and this paper addresses such gaps.

The rest of the paper is organized as follows: Section 2 explains

state-of-the-art and challenges of multi-cloud application security

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by TECNALIA Publications

https://core.ac.uk/display/132492131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:erkuden.rios@tecnalia.com
mailto:eider.iturbe@tecnalia.com
mailto:maricarmen.palacios@tecnalia.com

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy E.Rios et al.

modelling. In Section 3, we introduce the MUSA SecDevOps frame-

work and workflow for multi-cloud applications, which gives the

context of the work developed. Section 4 details the MUSA Security

Domain Specific Language and in Section 5 we describe its support-

ing tool, named MUSA Modeller, included in the MUSA framework.

Section 6 describes the validation scenarios of the work presented.

Finally, Section 7 presents the conclusions and future work.

2 MULTI-CLOUD APPLICATION SECURITY
MODELLING

In the last years the cloud based infrastructure and platform services

offering has increased notably as well as the number of providers.

One of the main problems when architecting and operating (multi-

)cloud applications is that cloud providers support different inter-

faces for different sets of services. Furthermore, in order to exploit

multi-cloud potential, different architectural models can be adopted

to enlarge security [1]:

• replication of applications, deploying the same system in
more than one provider so as malicious attacks can be

easily discovered comparing operation results;

• partition of application system into tiers, which allows
separating logic from data, and thus minimizing risks of

attacks or incidents in both parts at a time;

• partition of application logic into fragments in order to
obfuscate the overall application logic to providers;

• partition of application data into fragments to prevent a
single provider reconstructing data, safeguarding confiden-

tiality.

Exploiting multi-cloud for higher availability and security means

that DevOps teams in charge of developing and operating (multi-

)cloud applications need to learn, systematise and automate the

process behind the provisioning of services when deploying the

application components. Among other tasks, they need to learn

how to create Virtual Machines (VMs) and how to choose the right

VM sizes for each application service or component.

To address these challenges, current research stakeholders pro-

pose to take advantage of the well-known Model Driven Engi-

neering (MDE) techniques to configure the deployment of cloud

applications. According to the work in [22], application models can

be specified using general-purpose languages like the Unified Mod-

elling Language (UML) [8]. However, to fully unfold the potential

of MDE, models are frequently specified using domain-specific lan-

guages (DSLs), which are tailored to a specific domain of concern.

The MDE techniques become really interesting for multi-cloud

application specification when the model captures multi-concern

information, expressed at high level first and detailed at low level

application platform afterwards, and when the model is enacted at

runtime. This allows for a seamless alignment of design decisions

with actual deployment and application execution. In this line

work CloudML [28] and CAMEL [22] (which includes CloudML as

Deployment model for expressing deployment needs) languages.

CAMEL was developed as part of the research work in PaaSage

[19] and CloudSocket [17] EU-funded projects.

Another great exponent in the literature on cloud-based applica-

tions modelling is the Topology and Orchestration Specification for

Cloud Applications (TOSCA) language developed by OASIS [15]

which provides a language for specifying the components com-

prising the topology of cloud-based applications along with the

processes for their orchestration. Another example is the Cloud

Application Modelling Language (CAML) defined in the ARTIST

project [16] which realised CloudML as a UML internal DSL based

on extensions to the deployment meta-model in terms of a library

and profiles capturing domain knowledge.

Following a similar approach of that of PaaSage Security DSL

[14], in MUSA project [4] that contextualises the work presented

in this paper, CAMEL has been adopted in order to cope with the

modelling of multi-cloud applications.

CAMEL includes two main security-oriented meta-models [22]:

the Security meta-model to support the specification of security

requirements posed by users and capabilities of cloud providers (in

form of security controls and service level objectives) and the Or-

ganisation meta-model that captures security-oriented information

about organisations including organisation security policies, users

and roles.

The application requirements in CAMEL are mainly captured

by the Requirements meta-model. Thus, both the Security and the

Requirements meta-models can complementarily capture security

requirements. CAMEL offers support to the following tasks [22]:

(i) matching in deployment phase security capabilities and require-

ments of the application to the security controls offered by the

cloud providers; (ii) monitoring and assessing security service level

objectives (SLOs) which can be mapped to adaptation rules in order

to adapt the structure or behaviour of an application to exhibit the

security level required.

Although both PaaSage and MUSA projects offer support to both

tasks, they differ in the modelling aspects, mainly because PaaSage

relies on CAMEL model enactment and MUSA follows a different

approach as explained in Section 3. The rationale for selecting

CAMEL in our approach on top of other versions of CloudML and

TOSCA is described in Section 4.1.

3 THE MUSA SECDEVOPS FRAMEWORK FOR

MULTI-CLOUD APPLICATIONS

3.1 The MUSA framework

Multi-cloud solutions pose new challenges when trying to add value

to overall cloud client experience [29].

The MUSA framework [26] introduced in this paper aims at

ensuring that the desired security and privacy levels are reached in

all types of multi-cloud environments, including those that combine

multiple architectural scenarios as described in Section 2.

To this aim, the MUSA framework combines preventive security

with reactive security. For prevention, the MUSA framework sup-

ports Security by Design practices in the development as well as

embedding in the application the required security mechanisms,

the so called MUSA Enforcement Agents, which will enable the self-

healing of the application in operation. For reaction, the MUSA

framework includes monitoring of the application at runtime to

detect, notify and early mitigate security incidents, so multi-cloud

application providers can be informed and promptly react to secu-

rity problems or attacks.

In order to ensure the preventive security mechanisms to be

embedded in the application components and aligned with reactive

Self-healing Multi-Cloud Application Modelling ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

Figure 1: MUSA approach and framework tools.

security measures, MUSA holistic framework offers a number of

mechanisms and supporting tools that seamlessly work together

along all phases of the application lifecycle, as shown in Fig 1.

3.2 The MUSA workflow

The MUSA framework is intended to provide integrated support to

addressing security aspects of multi-cloud applications in all the

steps of the engineering lifecycle, as illustrated in the process of

Fig 2.

During the design phase, the DevOps team first models the Cloud

Provider Independent Model (CPIM) of the multi-cloud application

using the MUSA Modeller. The CPIM is a MUSA extended CAMEL

model specification of the multi-cloud application in a level of

abstraction independent from specific information about the Cloud

Service Providers (CSP) the application components will use or be

deployed in.

Once the application CPIM is specified, the DevOps team obtains

the security requirements in the risk assessment step. In this step,

together with the security requirements, the DevOps team can

analyse other criteria as well, such as business criteria, and can

search for the cloud services that best match all the criteria, by

relying on the use of the MUSA Decision Support Tool (DST) [4].

Modelling, risk analysis and cloud services selection are made

following an iterative process that allows identifying which security

requirements (if any) were not possible to address with security

controls offered by the cloud services under study, and therefore

the DevOps team can update the CPIM at modelling step to specify

the use of MUSA security agents that offer the pending security

controls (if available).

Having selected the combination of cloud services that best

match the requirements of the multi-cloud application and having

previously defined the security requirements, the DevOps team

can generate the Security SLA templates for the components of

the multi-cloud application. These Security SLA templates will be

stored in the SLA Repository and will be retrieved by the MUSA

Deployer, so it can generate the Implementation plan for the multi-

cloud application. Once the Implementation plan is generated, the

MUSA Deployer shares it with the SLA Generator [2], so this tool

Figure 2: MUSA overall process.

can generate the Composite Security SLA for the whole multi-cloud

application.

Afterwards, at deployment phase, the MUSA Deployer is invoked

by the DevOps team in order to deploy (by following the Imple-

mentation plan) both the multi-cloud application components and

the corresponding MUSA agents declared in the CPIM.

Finally, at runtime or operation phase, the MUSA Security Assur-

ance platform [27] starts monitoring the multi-cloud application

based on the final SLAs and the Implementation plan.

If the MUSA Security Assurance Platform detects any alert event

or violation of the SLAs in place, it notifies to the DevOps team

and the appropriate reactive measure is triggered. The reaction to

security incidents in MUSA relies on different mechanisms depend-

ing on the cause of the incident. Reactive measures include the

re-deployment of multi-cloud application component(s) or even the

application re-design. In the re-design phase the need of including

MUSA Enforcement Agents can be evaluated again in order to try

to address the security incident detected. Adaptation of multi-cloud

applications at execution is supported in MUSA by the enforcement

services in the MUSA Security Assurance Platform, that remotely

control the configuration, activation and deactivation of some of

the MUSA Enforcement Agents. We refer to future publications of

MUSA for detailed explanation of the enforcement services offered.

4 MUSA SECURITY DSL

The MUSA Security Domain Specific Language (DSL) builds on top

of the CAMEL language and the main contributions are related to

its expressiveness to define and configure multi-cloud applications

at design-time. Such a powerful definition can be used later on by

other MUSA tools to perform the risk analysis and to generate the

individual components’ security SLAs and the Composite Security

SLA. Furthermore, this allows deploying and monitoring the secu-

rity properties of multi-cloud applications and its components at

run-time. In brief, the main innovations achieved in MUSA are the

improvements to the CAMEL language, the accompanying model

syntax and semantics verification rules, and the development of a

Web-based modelling tool (named MUSA Modeller) as explained in

the following. The MUSA Security DSL is shown in Fig 3.

4.1 Rationale for CAMEL language selection

The main reasons for selecting CAMEL language as the basis of the

MUSA security DSL are explained in the following.

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy E.Rios et al.

Figure 3: MUSA Security DSL.

First, the enactment of the multi-cloud application model at

runtime is not needed in MUSA. This is because in MUSA we do

not rely on a single model of the multi-cloud application to capture

all the aspects, but on a number of models. In MUSA we use the

CAMEL model of the application to express its architecture, security

and deployment requirements, but in addition we use: Security

SLA templates of the components to capture the required security

features over the cloud providers, and the Composite Security SLA

to express the guarantees of the overall application. The Composite

Security SLA serves in MUSA to control the application behaviour

at runtime. Multi-cloud applications re-designs will be driven by

actual measurements taken of the Service Level Objectives and

metrics stated in the Composite Security SLA. In MUSA we also use

the Decision Support Tool data model for expressing business and

security requirements over the cloud providers, and the deployment

Implementation plan as the cloud platform dependent deployment

model.

Second, CAMEL includes CloudML as Deployment meta-model,

therefore, adopting it implies adopting CloudML too. Besides,

CAMEL includes also other meta-models such as Security and Re-

quirements meta-models that are valuable when placing the focus

on security. CAMEL follows the same approach that CloudML in re-

lation to the provision of a single set of abstractions and APIs so that

developers can define declaratively: (i) the application architecture

made of components, (ii) their use/host relationships so that they

can be properly configured and deployment orders automatically

derived, (iii) constraints on the characteristics of the required types

of VMs and (iv) the execution commands to provision application

components.

At this point, it is important to note that MUSA project was

born with the objective of supporting cloud adoption by addressing

current security open issues, since companies are reluctant to adopt

cloud computing because of the difficulty in evaluating the trade-

off between cloud benefits and the additional security risks and

privacy issues it may bring. They have to deal with the security of

the individual components as well as with the overall application

security including the communications and the data flow between

the components. Therefore, it is required to adopt a language that

allows end-users to friendly and easily create and deploy security-

aware components balancing security with performance properties.

As opposite to PaaSage approach, where the low level security in-

formation is captured in the CAMEL based Cloud Provider Specific

Model (CPSM), in MUSA it is captured and managed by two other

specialised languages, respectively, the MUSA Security SLA model

(extended from that of SPECS project [23] to address multi-cloud

scenarios) and the MUSA Decision Support Tool’s Cloud Service

Provider data model that allows defining full flavoured business

and security requirements and capabilities for multi-factor service

match-making.

Third, opposite to TOSCA, MUSA end-users had already experi-

enced with CAMEL and liked the language expressiveness because

it was the only language that already provided rich Security model

and Requirements model (for deployment). CAMEL and TOSCA

Self-healing Multi-Cloud Application Modelling ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

basically share the same purpose, but CAMEL results in being less

complex and easy to use.

Furthermore, TOSCA community did not offer advanced tool

support at the time when MUSA solution was defined.

Last but not least, the feedback received from the MUSA project

end-users about previous experiences with multi-cloud modelling

languages and tools was considered as fundamental. One of the

end-user teams had experienced with CAMEL and liked the ex-

pressiveness of the language for multi-cloud application descrip-

tion, although security aspects were not considered by them previ-

ously. About the modelling tools, they had previously used PaaSage

CAMEL Textual Editor [21] and other graphical editors (such as

Modelio [3]) and preferred the non-graphical editor that included

friendly functionality such as identification of required vs. optional

attributes, auto completion capabilities and model validation among

others. Thus, these are exactly the features we aim to maintain in

the MUSA Modeller. As conceptually both graphical and textual

editors allow for the same degree of detail and completeness, we

decided to develop our MUSA Modeller as a text editor.

4.2 Innovations for security behaviour

specifications

The MUSA innovations to CAMEL language include the enhanced

component security behaviour characterization, which addresses

concepts required to support both composition of components’

security SLAs and risk analysis.

4.2.1 Classification of components by their nature which allows

describing what the component does. This information is required

by the MUSA SLA Generator to create the Composite Security SLA

of the multi-cloud application from individual components’ SLAs

and by the MUSA Risk Analysis tool in order to identify the secu-

rity threats and risks at component level. Our CAMEL extension

allows specifying the type of the component; in fact, the compo-

nent can be classified by two features: WHAT and HOW. While

WHAT indicates the type of the functionality delivered by the com-

ponent, HOW indicates the way the component is delivering such

functionality. Currently, three types of HOW have been defined:

• COTS, which refers to Commercial off-the-shelf software
that the application uses.

• SERVICE, meaning that the component is not a commercial
package but developed by the DevOps team responsible

for the multi-cloud application engineering.

• AGENT, i.e. a MUSA Agent component provided by the
MUSA framework and available in the MUSA Security

Agent Catalogue.

The types of WHAT include:

• in case the component is COTS or SERVICE, the possible
WHAT values are: Web, Storage, IDM or Firewall. Web

refers to any functionality provided through a Web inter-

face, Storage refers to data storage solutions (e.g. MySQL),

IDM stays for Identity Management and Firewall for any

software solution that protects resources from unautho-

rised access.

• in case the component is AGENT, the possible values of
WHAT come from the list of the agents in the MUSA Secu-

rity Agent Catalogue.

4.2.2 Security Controls information that properly supports Se-

curity Control Framework families. For example, name attribute has

been updated to <Family>-<Number>(Number) format. In addi-

tion, the subdomain attribute in the Security Control entity now is

optional instead of compulsory.

The CAMEL extension developed in MUSA allows specifying

which security capabilities are required and provided by each multi-

cloud application component. The security capabilities are defined

in the model by selecting and grouping the security controls part

of the capability. The security controls of a Security Control Fam-

ily are predefined and the list is offered to the user by the MUSA

Modeller to ease the selection of the ones included in the capability;

currently, the security controls from the NIST SP 800-53 rev.4 [6]

are supported. In the following example two security capabilities

CAP1 and CAP2 are defined, the first with three security controls

and the second with only two.

security model SEC {

security capability CAP1 {

controls [MUSASEC.AC-11(1), MUSASEC.AU-13(2),

MUSASEC.AC-17(6)]

}

security capability CAP2 {

controls [MUSASEC.AC-11(1), MUSASEC.AC-17(6)]

}

}

Once the security capabilities are defined in the CAMEL (in

the security model part of the model), the user can specify what

security capabilities the components require and/or provide. In

the following example, Comp1Cap is a provided capability and

Comp1CapReq a requested one.

provided security capability Comp1Cap {

security capability SEC.CAP2

}

required security capability Comp1CapReq

When a component requires a specific security capability from

another component (in the example, Comp1CapReq) then the match-

ing of the capability needs to be modelled as follows.

capability match Comp1ToComp2 {

from Comp1.Comp1CapReq to Comp2.Comp2Cap

}

4.3 Innovations for multi-cloud deployment
Other MUSA innovations to CAMEL language address improve-

ments for enhancing the expressiveness of the deployment require-

ments, as follows:

4.3.1 Explicit characterization of the nature of the IP address

associated with virtual machines ponents will be deployed. At de-

ployment phase, when acquiring new cloud resources such as VMs,

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy E.Rios et al.

the system operator needs to indicate whether a public IP address is

required. The CAMEL extension allows specifying whether the IP

address required for a VM should be public or not by the IP public

attribute on each component. The possible values for this attribute

are: true or false.

4.3.2 Specification of the deployment order of the application

components. Dealing with multi-cloud environments, it is critical

to identify the order in which each component should be deployed

and configured, since there are inter-dependencies among the com-

ponents that are part of the same application. For example, the start

up of a component may require that previously another component

is already up and running. The CAMEL extension allows specifying

the order in which the components are required to be deployed.

This can be done by using the order attribute for each component.

The expected value for the order attribute is an integer number.

4.3.3 Explicit definition of data exchange protocols. In the MUSA

extended CAMEL, users can model the communications between

the components (e.g. by setting the IP addresses and ports in the

configuration of the components) and specify the need to use a

specific data exchange protocol (e.g. MySQL, OAuth, Other).

4.3.4 Modelling of dynamic configurations of communications

between components. In CAMEL, users model the communications

between the components in a static way (i.e. through specific port

numbers and operating system configuration variables). However,

in MUSA, dynamic characteristics have been introduced such as

context paths (instead of IP addresses) and dynamic port ranges.

Such new capabilities are useful, for instance, to configure explicitly

inbound traffic when users deploy components in Docker contain-

ers.

4.3.5 Modelling of deployment handlers. In CAMEL the user

can model components and associate deployment instructions for

installing, configuring, starting, and stopping the components on

virtual machines. However, such deployment instructions are re-

stricted to scripted commands and CAMEL lacks support to the

specification of configuration management tools such as Cloudify

[12], Puppet [24], or Chef [9]. Therefore, in MUSA this gap between

multi-cloud application models and these advanced frameworks

has been faced via the new Configuration entity and its associated

concepts (e.g. cookbooks and recipes in case of Chef).

4.3.6 Modelling of PaaS layer elements. CAMEL lacks support

to the description of architectures where the application compo-

nents are not directly deployed in Virtual Machines (VMs) but in

containers. Our extension allows specifying the container type that

will be used in deployment and defining the component allocation

strategy it should follow, even in cases when the container uses

VM pools. The new elements in our extension include:

• pool: is a cluster of VMs. This cluster can be used by
a container or directly by a component, for example, a

database solution that is capable of managing a cluster.

• manager : the VM in a pool that will act as the manager vs.
the rest which will be workers.

• container :
– type: the container solution to use, for example, Docker

Swarm [10].

– allocationStrategy: defines the allocation strategy of

the containers on top of the acquired VMs for resource

optimization (e.g. automatically scheduling container

workloads). It supports the following four values:

∗ spread: balance containers across the VMs in a
pool based on the available CPU and RAM of

the VMs.

∗ binpak: schedule containers to fully use each
VM capacity. Once the full VM capacity has

been used, the container moves on to the next

one in the pool.

∗ random: choose a VM randomly.
∗ custom: the user defines the specific VMs in

which the containers should run.

4.3.7 Refinement of security aspects in Organisation, User, Cre-

dentials and Role entities. A number of enhancements to CAMEL

have been made in order to manage the authorisation of different

roles in the DevOps team to multi-cloud application deployment

execution. For instance, in MUSA the types of credentials available

to authenticate a user have been extended. Among other changes,

it has been added expiration date to Credentials and additional

parameter properties to User entity.

4.4 Innovations for self-healing capability of

multi-cloud applications

Considering self-healing as the capability of a multi-cloud applica-

tion of being able to self-control or modify its security behaviour

at runtime so as security incidents or attacks are corrected or miti-

gated, the self-healing is enabled in MUSA by the MUSA Enforce-

ment Agents.

As their name suggests, the MUSA Enforcement Agents enforce

multi-cloud application security properties at runtime such as ac-

cess control, security vulnerability scanning or Denial of service

mitigation mechanisms. For these mechanisms to work, they need

to be deployed at the same time as the application components

are deployed. Some of these mechanisms require to be deployed

together with (in the same VM) the component they will enforce

the property on. Therefore, the MUSA extended CAMEL allows

the definition of MUSA Security Enforcement Agents as Internal

Components of the application, similarly to application compo-

nents themselves, so as they can be included in the deployment

plan. Such agents are already pre-defined in the MUSA Security

Agent Catalogue so users are able to re-use and configure them in a

friendly way. Some of these agents are always on and some will be

managed through the enforcement services in the MUSA Security

Assurance Platform.

5 MUSA MODELLER

5.1 MUSA Modeller Architecture

The MUSA Modeller is a web editor tool that allows the creation

and maintenance of (MUSA extended) CAMEL models. Through

these models it is possible to define a complete specification of the

requirements needed by an application to be deployed in a secure

multi-cloud environment. MUSA Modeller has leveraged one of

the new capabilities of the Xtext technology [11]: the Xtext Web

Self-healing Multi-Cloud Application Modelling ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

editor support. Therefore, multi-cloud application models can be

edited and updated remotely by end-users while they are stored

in shared repositories. All in all, without any program installation

and using any web browser since its JavaScript-based API allows

adding language-specific features such as auto completion and live

validation.

As the initial step of the design phase, the DevOps team creates

the Cloud Provider Independent Model (CPIM) of the multi-cloud

application using the MUSA Modeller tool. The generated CPIM

will be used as input to the risk assessment, the SLA generation

and the multi-cloud application deployment processes.

At high level, the MUSA Modeller is structured as follows:

• A Web component, the GUI from which the end-users ac-
cess the MUSA Modeller tool and exploit all the internal

web-services offered. It also includes the web Xtext li-

braries that offer syntactic and sematic services for remote

management of syntax validation and auto completion.

• A Server component, which is the core of the MUSA Mod-
eller since it implements all the business functionality.

Moreover, it offers a series of web services that are con-

sumed by the Web component.

• A Database component, which manages all the data stored
in the central database. It uses the Hibernate framework

[13] that allows the abstraction of relational database en-

gines.

5.2 MUSA Modeller API

As explained in the previous chapter, the Server component of the

MUSA Modeller offers a series of REST API interfaces that support

the following functionality:

• Creation of a new multi-cloud application model in (MUSA
extended) CAMEL language. End-users can instantiate pre-

viously defined templates for particular component types

or applications.

• Definition and storage of multi-cloud application compo-
nent templates for reusing CAMEL models of the compo-

nents.

• Edition and storage of multi-cloud application models,
where application models can be defined by multiple end-

users.

• Model checking for syntax and semantic correctness and
integrity of the created models. The tool provides mes-

sages of warnings and errors whenever a non-conformity

is identified in the model.

• the selection of Security Controls previously identified
and stored in the MUSA Security Service Level Agreement

Catalogue.

• the selection of MUSA Security Enforcement Agents pre-
viously identified and stored in the MUSA Security Agent

Catalogue. See Fig 4.

6 VALIDATION IN USE CASES

During the first period of the MUSA project, the evaluation of the

MUSA solution has been performed using generic usage scenarios

along with two specific use cases, one led by Lufthansa Systems

(LHS) and the other by Tampere University of Technology (TUT),

Figure 4: MUSA Modeller support for Security Agent selec-

tion.

both partners of the project. These case studies have been designed

to ensure that MUSA framework evaluation takes place in different

contexts of multi-cloud deployment as well as diverse security and

privacy requirements.

The first use case is related to the flight scheduling application

prototype by Lufthansa Systems that is intended to be used by

multiple airlines around the world to plan airplane flight sched-

ules. Today’s airlines need to permanently revise their schedule

plans in response to competitor actions or to follow updated sales

and marketing plans, while constantly maintaining operational in-

tegrity. This makes schedule management a very complex process.

The MUSA Modeller enabled LHS to specify the breakdown of the

multi-cloud application into its components as well as components’

security capabilities. This includes also the integration of the MUSA

security agents into the application and the design of the provi-

sioning and deployment. LHS has validated the MUSA Modeller to

help architects and developers of the multi-cloud application com-

ponents in the security design to gain more focus on the complex

field of security requirements analysis and enforcing the security

by design principles even for the less experienced colleagues.

In the second use case, the Smart Mobility application developed

by Tampere University of Technology provides Tampere citizens

context-aware energy efficient smart mobility services and recom-

mendations for transportation means. This case study represents

the scenario of SMEs which create applications that exploit services

hosted in a number of clouds. As many SMEs, the workgroup that

develops this case study does not have a specialized division for

cyber security. Because of this, the use of MUSA framework and

its tools has allowed easily addressing security aspects at different

stages of the application engineering project: design, deployment

and runtime.

Specifically, in this case study the MUSA Modeller tool has been

evaluated to model the multi-cloud application components and

MUSA Enforcement Agents to integrate security controls for high

availability, confidentiality and integrity.

The added value of the MUSA modelling language and tool has

been already identified in the initial evaluation performed in both

case studies. The usefulness and acceptance of the approach was

ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy E.Rios et al.

confirmed not only in the usage of the MUSA Modeller as a stand-

alone tool, but more significantly in its integration with the rest of

the tools in the MUSA Security DevOps (SecDevOps) framework,

particularly in collaboration with Risk Analysis, SLA Generator

and Deployer tools. It is expected that the final evaluation of the

MUSA solution will enable the validation of all the enhancements

defined in the MUSA Security DSL.

7 CONCLUSIONS AND FUTURE WORK

As the number of cloud offerings grows and cloud environments

become more and more complex, cloud consumers will need to face

multi-cloud challenges related to multiple cloud service combina-

tion and holistic protection of application components deployed in

distributed heterogeneous clouds.

This paper presents a novel modelling language and support-

ing tool that address the special needs of multi-cloud applications

modelling. The solution overcomes the lack of expressiveness of

state-of-the-art modelling by easing both: a) the computation of

Composite Security SLAs that include security and privacy aspects,

and b) the risk analysis and service match-making taking into ac-

count not only functionality and business aspects of the cloud

services, but also security aspects.

The language and tool presented were developed in the context

of the MUSA EU-funded project on the basis of enhancements to

the CAMEL language which already provided rich Requirements,

Deployment, Scalability, and Security meta-models that cover many

of the requirements for multi-cloud applications specification. Nev-

ertheless, additional requirements were identified in MUSA in order

to address richer deployment and security specification, risk analy-

sis and Security SLA composition, for which extensions to CAMEL

have been developed. The modelling tool supporting this extended

CAMEL meta-model, the MUSA Modeller, is already integrated

with the MUSA framework and available in the MUSA website at

www.musa-project.eu

Consequently, the contributions of this paper pave the way to

develop security and privacy-aware multi-cloud applications by

mastering the expressiveness of security aspects in the CPIM so as

they enable integrated SecDevOps support.

In the future, we have identified the need to research on how to

leverage the Scalability meta-model of CAMEL to define scalability

rules as pre-defined configuration of high availability enforcement

agents aimed at scaling up (and down) internal components of

multi-cloud applications when needed (similar to HA Proxy [30]).

Another important aspect is the research on how to support

composability of CAMEL models required to easily combine and

refer to CAMEL models of individual components in the creation of

multi-cloud applications’ models. Furthermore, this would largely

increase the models readability and dramatically improve the tool

usability.

ACKNOWLEDGMENTS

The MUSA project leading to this paper has received funding from

the European Union’s Horizon 2020 research and innovation pro-

gramme under grant agreement No 644429. We would also like to

acknowledge all the members of the MUSA Consortium for their

valuable help.

REFERENCES
[1] Jens-Matthias Bohli, Nils Gruschka, Meiko Jensen, Luigi Lo Iacono, and Ninja

Marnau. 2013. Security and privacy-enhancing multicloud architectures. IEEE
Transactions on Dependable and Secure Computing 10, 4 (2013), 212–224.

[2] Valentina Casola, Alessandra De Benedictis, Massimiliano Rak, and Erkuden
Rios. 2016. Security-by-design in clouds: a security-SLA driven methodology to
build secure cloud applications. Procedia Computer Science 97 (2016), 53–62.

[3] Inc. Eclipse Foundation. 2011. Modelio, The open source modelling environment.
(2011). Retrieved June 26, 2017 from https://www.modelio.org/

[4] Jaume Ferrarons, Smrati Gupta, Victor Muntés-Mulero, Josep-Lluis Larriba-Pey,
and Peter Matthews. 2016. Scoring cloud services through digital ecosystem
community analysis. In International Conference on Electronic Commerce and Web
Technologies. Springer, 142–153.

[5] Forbes. 2016. Roundup Of Cloud Computing Forecasts
And Market Estimates. (2016). Retrieved June 26, 2017
from https://www.forbes.com/sites/louiscolumbus/2016/03/13/
roundup- of- cloud- computing- forecasts- and- market- estimates- 2016/
#7971c3de2187

[6] JOINT TASK FORCE and TRANSFORMATION INITIATIVE. 2013. Security and
privacy controls for federal information systems and organizations. NIST Special
Publication 800, 53 (2013), 8–13.

[7] Gartner. 2016. Gartner Says by 2020 ”Cloud Shift” Will Affect More Than $1
Trillion in IT Spending. (2016). Retrieved June 26, 2017 from http://www.gartner.
com/newsroom/id/3384720

[8] Object Management Group. 2015. Unified Modeling Language Specification v2.5.
(2015). Retrieved June 26, 2017 from http://www.omg.org/spec/UML/2.5/

[9] Chef Software Inc. 2017. Chef technology. (2017). Retrieved June 26, 2017 from
https://www.chef.io/chef/

[10] Docker Inc. 2017. Docker Swarm. (2017). Retrieved June 26, 2017 from https:
//docs.docker.com/swarm/

[11] Eclipse Foundation Inc. 2017. Xtext framework. (2017). Retrieved June 26, 2017
from http://www.eclipse.org/Xtext/documentation/330 web support.html

[12] GigaSpaces Technologies Inc. 2017. Cloudify. (2017). Retrieved June 26, 2017
from http://cloudify.co/

[13] Red Hat Inc. 2017. Hibernate framework. (2017). Retrieved June 26, 2017 from
http://hibernate.org/

[14] Kyriakos Kritikos and Philippe Massonet. 2016. An integrated meta-model for
cloud application security modelling. Procedia Computer Science 97 (2016), 84–93.

[15] OASIS. 2013. TOSCA 1.0 (Topology and Orchestration Specification for Cloud
Applications), Version 1.0. (2013). Retrieved June 26, 2017 from http://docs.
oasis- open.org/tosca/TOSCA/v1.0/os/TOSCA- v1.0- os.html

[16] ARTIST EU project consortium. 2013. Advanced software-based service provi-
sioning and migration of legacy software. (2013). Retrieved June 26, 2017 from
http://www.artist- project.eu

[17] CloudSocket EU project consortium. 2015. Business and IT-Cloud Alignment
using a Smart Socket. (2015). Retrieved June 26, 2017 from https://site.cloudsocket.
eu

[18] MUSA EU project consortium. 2015. Multi-cloud Secure Applications. (2015).
Retrieved June 26, 2017 from http://www.musa- project.eu

[19] PaaSage EU project consortium. 2013. A Model-based Cross-Cloud development
and deployment platform. (2013). Retrieved June 26, 2017 from http://www.
paasage.eu

[20] PaaSage EU project consortium. 2014. Deliverable D2.1.2 CloudML Implementa-
tion Documentation. (2014). Retrieved June 26, 2017 from http://www.paasage.
eu/images/documents/paasage d2.1.2 final.pdf

[21] PaaSage EU project consortium. 2015. Deliverable D2.1.3 CAMEL Documentation.
(2015). Retrieved June 26, 2017 from https://www.paasage.eu/images/documents/
docs/D2.1.3 CAMEL Documentation.pdf

[22] PaaSage EU project consortium. 2016. CAMEL Documentation v2015.9. (2016).
Retrieved June 26, 2017 from http://camel- dsl.org/documentation/

[23] SPECS EU project consortium. 2015. Secure Provisioning of Cloud Services
based on SLA Management. (2015). Retrieved June 26, 2017 from http://www.
specs- project.eu/

[24] Puppet. 2017. Puppet documentation. (2017). Retrieved June 26, 2017 from
https://docs.puppet.com/puppet/

[25] Rightscale. 2017. Cloud Computing Trends: 2017 State of the Cloud
Survey. (2017). http://www.rightscale.com/blog/cloud- industry- insights/
cloud- computing- trends- 2017- state- cloud- survey

[26] Erkuden Rios, Eider Iturbe, Leire Orue-Echevarria, Massimiliano Rak, Valentina
Casola, and others. 2015. Towards Self-Protective Multi-Cloud Applications:
MUSA–a Holistic Framework to Support the Security-Intelligent Lifecycle Man-
agement of Multi-Cloud Applications. (2015).

[27] Erkuden Rios, Wissam Mallouli, Massimiliano Rak, Valentina Casola, and Anto-
nio M Ortiz. 2016. SLA-driven monitoring of multi-cloud application components
using the MUSA framework. In Distributed Computing Systems Workshops (ICD-
CSW), 2016 IEEE 36th International Conference on. IEEE, 55–60.

http://www.musa-project.eu/
https://www.modelio.org/
https://www.forbes.com/sites/louiscolumbus/2016/03/13/roundup-of-cloud-computing-forecasts-and-market-estimates-2016/#%237971c3de2187
https://www.forbes.com/sites/louiscolumbus/2016/03/13/roundup-of-cloud-computing-forecasts-and-market-estimates-2016/#%237971c3de2187
https://www.forbes.com/sites/louiscolumbus/2016/03/13/roundup-of-cloud-computing-forecasts-and-market-estimates-2016/#%237971c3de2187
https://www.forbes.com/sites/louiscolumbus/2016/03/13/roundup-of-cloud-computing-forecasts-and-market-estimates-2016/#%237971c3de2187
http://www.gartner.com/newsroom/id/3384720
http://www.gartner.com/newsroom/id/3384720
http://www.gartner.com/newsroom/id/3384720
http://www.omg.org/spec/UML/2.5/
https://www.chef.io/chef/
https://docs.docker.com/swarm/
https://docs.docker.com/swarm/
http://www.eclipse.org/Xtext/documentation/330_web_support.html
http://cloudify.co/
http://hibernate.org/
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html
http://www.artist-project.eu/
https://site.cloudsocket.eu/
https://site.cloudsocket.eu/
https://site.cloudsocket.eu/
http://www.musa-project.eu/
http://www.paasage.eu/
http://www.paasage.eu/
http://www.paasage.eu/
http://www.paasage.eu/images/documents/paasage_d2.1.2_final.pdf
http://www.paasage.eu/images/documents/paasage_d2.1.2_final.pdf
http://www.paasage.eu/images/documents/paasage_d2.1.2_final.pdf
https://www.paasage.eu/images/documents/docs/D2.1.3_CAMEL_Documentation.pdf
https://www.paasage.eu/images/documents/docs/D2.1.3_CAMEL_Documentation.pdf
https://www.paasage.eu/images/documents/docs/D2.1.3_CAMEL_Documentation.pdf
http://camel-dsl.org/documentation/
http://www.specs-project.eu/
http://www.specs-project.eu/
http://www.specs-project.eu/
https://docs.puppet.com/puppet/
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey
http://www.rightscale.com/blog/cloud-industry-insights/cloud-computing-trends-2017-state-cloud-survey

Self-healing Multi-Cloud Application Modelling ARES ’17, August 29-September 01, 2017, Reggio Calabria, Italy

[28] SINTEF. 2013. Model-based provisioning and deployment of cloud-based systems.

(2013). Retrieved June 26, 2017 from http://cloudml.org
[29] Marko Vukolić. 2010. The Byzantine empire in the intercloud. ACM SIGACT

News 41, 3 (2010), 105–111.
[30] Q HAProxy Wu. 2017. The Reliable, High Performance TCP/HTTP Load Balancer.

(2017). Retrieved June 26, 2017 from http://www.haproxy.org/

http://cloudml.org/
http://www.haproxy.org/

