4,139 research outputs found

    Automatic emotional state detection using facial expression dynamic in videos

    Get PDF
    In this paper, an automatic emotion detection system is built for a computer or machine to detect the emotional state from facial expressions in human computer communication. Firstly, dynamic motion features are extracted from facial expression videos and then advanced machine learning methods for classification and regression are used to predict the emotional states. The system is evaluated on two publicly available datasets, i.e. GEMEP_FERA and AVEC2013, and satisfied performances are achieved in comparison with the baseline results provided. With this emotional state detection capability, a machine can read the facial expression of its user automatically. This technique can be integrated into applications such as smart robots, interactive games and smart surveillance systems

    Higher order feature extraction and selection for robust human gesture recognition using CSI of COTS Wi-Fi devices

    Get PDF
    Device-free human gesture recognition (HGR) using commercial o the shelf (COTS) Wi-Fi devices has gained attention with recent advances in wireless technology. HGR recognizes the human activity performed, by capturing the reflections ofWi-Fi signals from moving humans and storing them as raw channel state information (CSI) traces. Existing work on HGR applies noise reduction and transformation to pre-process the raw CSI traces. However, these methods fail to capture the non-Gaussian information in the raw CSI data due to its limitation to deal with linear signal representation alone. The proposed higher order statistics-based recognition (HOS-Re) model extracts higher order statistical (HOS) features from raw CSI traces and selects a robust feature subset for the recognition task. HOS-Re addresses the limitations in the existing methods, by extracting third order cumulant features that maximizes the recognition accuracy. Subsequently, feature selection methods derived from information theory construct a robust and highly informative feature subset, fed as input to the multilevel support vector machine (SVM) classifier in order to measure the performance. The proposed methodology is validated using a public database SignFi, consisting of 276 gestures with 8280 gesture instances, out of which 5520 are from the laboratory and 2760 from the home environment using a 10 5 cross-validation. HOS-Re achieved an average recognition accuracy of 97.84%, 98.26% and 96.34% for the lab, home and lab + home environment respectively. The average recognition accuracy for 150 sign gestures with 7500 instances, collected from five di erent users was 96.23% in the laboratory environment.Taylor's University through its TAYLOR'S PhD SCHOLARSHIP Programmeinfo:eu-repo/semantics/publishedVersio

    Real-Time Inference of Mental States from Facial Expressions and Upper Body Gestures

    Get PDF
    We present a real-time system for detecting facial action units and inferring emotional states from head and shoulder gestures and facial expressions. The dynamic system uses three levels of inference on progressively longer time scales. Firstly, facial action units and head orientation are identified from 22 feature points and Gabor filters. Secondly, Hidden Markov Models are used to classify sequences of actions into head and shoulder gestures. Finally, a multi level Dynamic Bayesian Network is used to model the unfolding emotional state based on probabilities of different gestures. The most probable state over a given video clip is chosen as the label for that clip. The average F1 score for 12 action units (AUs 1, 2, 4, 6, 7, 10, 12, 15, 17, 18, 25, 26), labelled on a frame by frame basis, was 0.461. The average classification rate for five emotional states (anger, fear, joy, relief, sadness) was 0.440. Sadness had the greatest rate, 0.64, anger the smallest, 0.11.Thales Research and Technology (UK)Bradlow Foundation TrustProcter & Gamble Compan

    Single-picture reconstruction and rendering of trees for plausible vegetation synthesis

    Get PDF
    State-of-the-art approaches for tree reconstruction either put limiting constraints on the input side (requiring multiple photographs, a scanned point cloud or intensive user input) or provide a representation only suitable for front views of the tree. In this paper we present a complete pipeline for synthesizing and rendering detailed trees from a single photograph with minimal user effort. Since the overall shape and appearance of each tree is recovered from a single photograph of the tree crown, artists can benefit from georeferenced images to populate landscapes with native tree species. A key element of our approach is a compact representation of dense tree crowns through a radial distance map. Our first contribution is an automatic algorithm for generating such representations from a single exemplar image of a tree. We create a rough estimate of the crown shape by solving a thin-plate energy minimization problem, and then add detail through a simplified shape-from-shading approach. The use of seamless texture synthesis results in an image-based representation that can be rendered from arbitrary view directions at different levels of detail. Distant trees benefit from an output-sensitive algorithm inspired on relief mapping. For close-up trees we use a billboard cloud where leaflets are distributed inside the crown shape through a space colonization algorithm. In both cases our representation ensures efficient preservation of the crown shape. Major benefits of our approach include: it recovers the overall shape from a single tree image, involves no tree modeling knowledge and minimal authoring effort, and the associated image-based representation is easy to compress and thus suitable for network streaming.Peer ReviewedPostprint (author's final draft

    Fully Automatic Expression-Invariant Face Correspondence

    Full text link
    We consider the problem of computing accurate point-to-point correspondences among a set of human face scans with varying expressions. Our fully automatic approach does not require any manually placed markers on the scan. Instead, the approach learns the locations of a set of landmarks present in a database and uses this knowledge to automatically predict the locations of these landmarks on a newly available scan. The predicted landmarks are then used to compute point-to-point correspondences between a template model and the newly available scan. To accurately fit the expression of the template to the expression of the scan, we use as template a blendshape model. Our algorithm was tested on a database of human faces of different ethnic groups with strongly varying expressions. Experimental results show that the obtained point-to-point correspondence is both highly accurate and consistent for most of the tested 3D face models

    Spatio-Temporal Facial Expression Recognition Using Convolutional Neural Networks and Conditional Random Fields

    Full text link
    Automated Facial Expression Recognition (FER) has been a challenging task for decades. Many of the existing works use hand-crafted features such as LBP, HOG, LPQ, and Histogram of Optical Flow (HOF) combined with classifiers such as Support Vector Machines for expression recognition. These methods often require rigorous hyperparameter tuning to achieve good results. Recently Deep Neural Networks (DNN) have shown to outperform traditional methods in visual object recognition. In this paper, we propose a two-part network consisting of a DNN-based architecture followed by a Conditional Random Field (CRF) module for facial expression recognition in videos. The first part captures the spatial relation within facial images using convolutional layers followed by three Inception-ResNet modules and two fully-connected layers. To capture the temporal relation between the image frames, we use linear chain CRF in the second part of our network. We evaluate our proposed network on three publicly available databases, viz. CK+, MMI, and FERA. Experiments are performed in subject-independent and cross-database manners. Our experimental results show that cascading the deep network architecture with the CRF module considerably increases the recognition of facial expressions in videos and in particular it outperforms the state-of-the-art methods in the cross-database experiments and yields comparable results in the subject-independent experiments.Comment: To appear in 12th IEEE Conference on Automatic Face and Gesture Recognition Worksho
    • …
    corecore