27 research outputs found

    A dynamic logic for every season

    Get PDF
    This paper introduces a method to build dynamic logics with a graded semantics. The construction is parametrized by a structure to support both the spaces of truth and of the domain of computations. Possible instantiations of the method range from classical assertional) dynamic logic to less common graded logics suitable to deal with programs whose transitional semantics exhibits fuzzy or weighted behaviour.This leads to the systematic derivation of program logics tailored to specific program classes

    A unified approach for static and runtime verification : framework and applications

    Get PDF
    Static verification of software is becoming ever more effective and efficient. Still, static techniques either have high precision, in which case powerful judgements are hard to achieve automatically, or they use abstractions supporting increased automation, but possibly losing important aspects of the concrete system in the process. Runtime verification has complementary strengths and weaknesses. It combines full precision of the model (including the real deployment environment) with full automation, but cannot judge future and alternative runs. Another drawback of runtime verification can be the computational overhead of monitoring the running system which, although typically not very high, can still be prohibitive in certain settings. In this paper we propose a framework to combine static analysis techniques and runtime verification with the aim of getting the best of both techniques. In particular, we discuss an instantiation of our framework for the deductive theorem prover KeY, and the runtime verification tool Larva. Apart from combining static and dynamic verification, this approach also combines the data centric analysis of KeY with the control centric analysis of Larva. An advantage of the approach is that, through the use of a single specification which can be used by both analysis techniques, expensive parts of the analysis could be moved to the static phase, allowing the runtime monitor to make significant assumptions, dropping parts of expensive checks at runtime. We also discuss specific applications of our approach.peer-reviewe

    A Unified Approach for Static and Runtime Verification: Framework and Applications

    Full text link
    Static verification of software is becoming ever more effective and efficient. Still, static techniques either have high precision, in which case powerful judgements are hard to achieve automatically, or they use abstractions supporting increased automation, but possibly losing important aspects of the concrete system in the process. Runtime verification has complementary strengths and weaknesses. It combines full precision of the model (including the real deployment environment) with full automation, but cannot judge future and alternative runs. Another drawback of runtime verification can be the computational overhead of monitoring the running system which, although typically not very high, can still be prohibitive in certain settings. In this paper, we propose a framework to combine static analysis techniques and runtime verification with the aim of getting the best of both techniques. In particular, we discuss an instantiation of our framework for the deductive theorem prover KeY, and the runtime verification tool LARVA. Apart from combining static and dynamic verification, this approach also combines the data centric analysis of KeY with the control centric analysis of LARVA. An advantage of the approach is that, through the use of a single specification which can be used by both analysis techniques, expensive parts of the analysis could be moved to the static phase, allowing the runtime monitor to make significant assumptions, dropping parts of expensive checks at runtime. We also discuss specific applications of our approach

    Deductive Verification of Concurrent Programs

    Get PDF
    Verification of concurrent programs still poses one of the major challenges in computer science. Several techniques to tackle this problem have been proposed. However, they often do not scale. We present an adaptation of the rely/guarantee methodology in dynamic logic. Rely/guarantee uses functional specification to symbolically describe the behavior of concurrently running threads: while each thread guarantees adherence to a specified property at any point in time, all other threads can rely on this property being established. This allows to regard threads largely in isolation--only w.r.t. an environment constrained by these specifications. While rely/guarantee based approaches often suffer from a considerable specification overhead, we complement functional thread specifications with frame conditions. We will explain our approach using a simple, but concurrent programing language. Besides the usual constructs for sequential programs, it caters for dynamic thread creation. We define semantics of concurrent programs w.r.t. an underspecified deterministic scheduling function. To formally reason about programs of this language, we introduce a novel multi-modal logic, Concurrent Dynamic Trace Logic (CDTL). It combines the strengthes of dynamic logic with those of linear temporal logic and allows to express temporal properties about symbolic program traces. We first develop a sound and complete sequent calculus for the logic subset that uses the sequential part of the language, based on symbolic execution. In a second step, we extend this to a calculus for the complete logic by adding symbolic execution rules for concurrent interleavings and dynamic thread creation based on the rely/guarantee methodology. Again, this calculus is proven sound and complete

    Efficient Logic-Based Information Flow Analysis of Object-Oriented Programs

    Get PDF
    In this thesis, the JavaDL logic is amended by a new modality for the verification of termination-insensitive, object-sensitive, flow-sensitive noninterference of memory locations in object-oriented programs, that is local variables and heap object fields. Noninterference is a security model applied in information flow analysis and the amended JavaDL logic improves the information flow analysis of Java Card programs using the JavaDL sequent calculus. JavaDL formulae are a superset of first-order logic formulae and the logic additionally contains dynamic logic modalities as well as a concept called updates for the transition and evaluation of Java Card program states. Noninterference of memory locations is a property of programs and the respective pairs of start and end states of their executions. The satisfaction of the property implies that a particular set of memory locations does not interfere with the memory locations not included in this set. A set of memory locations does not interfere with another set if the evaluations of the included memory locations in the end state of any execution are independent of the evaluations of the memory locations included in the other set. Noninterference in Java Card programs has already been formulated and verified in JavaDL by a concept called self-composition which compares the end states of two independent executions of the same program with respect to a particular set of memory locations. This investigation is realisable with the means provided by JavaDL, in particular the dynamic logic modalities. However, in many cases the double execution poses unnecessary proof overhead and the new modality defined in this thesis aims at reducing this overhead. The new calculus reaches this goal by partially interpreting the verified program on a single execution path. As soon as this execution path branches the calculus must return to self-composition or the analysis loses precision

    A program logic for resources

    Get PDF
    AbstractWe introduce a reasoning infrastructure for proving statements about resource consumption in a fragment of the Java Virtual Machine Language (JVML). The infrastructure is based on a small hierarchy of program logics, with increasing levels of abstraction: at the top there is a type system for a high-level language that encodes resource consumption. The infrastructure is designed to be used in a proof-carrying code (PCC) scenario, where mobile programs can be equipped with formal evidence that they have predictable resource behaviour.This article focuses on the core logic in our infrastructure, a VDM-style program logic for partial correctness, which can make statements about resource consumption alongside functional behaviour. We establish some important results for this logic, including soundness and completeness with respect to a resource-aware operational semantics for the JVML. We also present a second logic built on top of the core logic, which is used to express termination; it too is shown to be sound and complete. We then outline how high-level language type systems may be connected to these logics.The entire infrastructure has been formalized in Isabelle/HOL, both to enhance the confidence in our meta-theoretical results, and to provide a prototype implementation for PCC. We give examples to show the usefulness of this approach, including proofs of resource bounds on code resulting from compiling high-level functional programs

    Formal Verification of Recursive Predicates

    Get PDF
    corecore