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Abstract. This paper introduces a method to build dynamic logics with
a graded semantics. The construction is parametrized by a structure to
support both the spaces of truth and of the domain of computations.
Possible instantiations of the method range from classical (assertional)
dynamic logic to less common graded logics suitable to deal with pro-
grams whose transitional semantics exhibits fuzzy or weighted behaviour.
This leads to the systematic derivation of program logics tailored to spe-
cific program classes

1 Introduction

Propositions, capturing static properties of program states, and events, or ac-
tions, which are responsible for transitions from a state to another, are the key
ingredients in modelling and reasoning about state-based software systems. The
latter are typically combined through a Kleene algebra to express sequential,
non deterministic, iterative behaviour of systems, while the former brings to the
scene a logical structure.

Dynamic logic [6], a generalisation of the logic of Floyd-Hoare, is a well known
and particularly powerful way of combining these two dimensions into a formal
framework to reason about computational systems. Its potential stems from
blending together classical logic, enriched with a modal dimension to express
system’s dynamics, and a (Kleene) algebra of actions to structure programs.

Over time dynamic logic grew to an entire family of logics increasingly pop-
ular in the verification of computational systems, and able to evolve and adapt
to new, and complex validation challenges. One could mention its role in model
validation (as in e.g. [10]), or the whole family of variants tailored to specific
programming languages (as in e.g. [11,1]), or its important extensions to new
computing domains, namely probabilistic [8] or continuous [13,14].

The latter is particularly relevant from an Engineering point of view: Actu-
ally, Platzer’s hybrid dynamic logic, and its associated tool, KeYmaera, com-
bining an algebra of actions based on real numbers assignments, the standard
Kleene operators and differential equations to specify continuous transitions from
the “real” (physical) world, provides a powerful framework for the design and
validation of cyber-physical systems with increased industrial relevance [16].
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If cyber-physical systems gives rise to the need for ways of dealing with
continuous state spaces, in a number of other cases dealing with some form of
“quantitative” transitions (weighted, probabilistic, etc) is also a must. Hence the
quest for dynamic logics able to capture smoothly these kind of phenomena is
becoming more and more important.

This paper intends to contribute in this path. In particular, our attention
is focussed on graded logics [4,17], in the broad sense of attaching partially
ordered grades to logical formulas to express, in one way or another, uncertain
information. In this broad sense, fuzzy [5], probabilistic [12] or weighted logics
[2] may be brought into the picture.

In this context, the purpose of this work is the development of a generic
method to construct graded dynamic logics. Technically, the definition of these
logics is parametrized by a (specific kind of) an action lattice [7] which combines
a (slight generalisation of a) Kleene algebra with a residuated lattice structure.
The latter captures the graded logic dimension and fits nicely with our objectives.
Moreover, the extension of Kleene algebras with residuation operators, providing
weak right and left inverses to sequential composition as in [15], as well as with
a lattice structure leads to a finitely-based equational variety which, as plain
Kleene algebras, is closed under the formation of square matrices [9].

The relevance of this closure property lies in the fact that several problems
modelled as (weighted) transition systems can be formulated as matrices over a
Kleene algebra or a related structure. Following such a trend, we represent pro-
grams as matrices supporting the information about their effects when executed
from each state in the state space. The interested reader is referred to [3] for a
detailed discussion on the relationship between Kleene algebras, action algebras
and action lattices.

The remaining of this paper is organised as follows. Section 2 recalls from [7]
the definition of an action lattice and introduces a method, parametric on such a
lattice, to generate graded dynamic logics. The construction put forward is illus-
trated with several examples. Then, in section 3, it is shown that the resulting
logic is a dynamic logic indeed, in the sense that all the rules of propositional dy-
namic logic restricted to positive-existential formulas still hold. Finally, section
4 concludes and suggests points for future research.

2 The method

This section introduces a generic method to generate graded dynamic logics para-
metric on a complete action lattice which captures both the structure of the
computational domain and that of the (logical) truth space.

Let us start by recalling from [7] the following definition:

Definition 1. An action lattice is a tuple

A = (A,+, ; , 0, 1, ∗,←,→, ·)



where, for A a set, 0 and 1 are constants and +, ; , ∗,←,→ and · are binary
operations in A satisfying the axioms in Figure 1, where the relation ≤ is the
one induced by + as a ≤ b iff a+ b = b.

a+ (b+ c) = (a+ b) + c (1)

a+ b = b+ a (2)

a+ a = a (3)

a+ 0 = 0 + a = a (4)

a; (b; c) = (a; b); c (5)

a; 1 = 1; a = a (6)

a; (b+ c) = a; b+ a; c (7)

(a+ b); c = a; c+ b; c (8)

a; 0 = 0; a = 0 (9)

1 + a+ a∗; a∗ ≤ a∗ (10)

a;x ≤ x ⇒ a∗;x ≤ x (11)

x; a ≤ x ⇒ x; a∗ ≤ x (12)

a;x ≤ b ⇔ x ≤ a→ b (13)

x; a ≤ b ⇔ x ≤ a← b (14)

(x→ x)∗ = x→ x (15)

(x← x)∗ = x← x (16)

a · (b · c) = (a · b) · c (17)

a · b = b · a (18)

a · a = a (19)

a+ (a · b) = a (20)

a · (a+ b) = a (21)

Fig. 1. Axiomatisation of action lattices (from [7])

An action lattice is said to be complete when there are both a supremum and
an infimum of all subsets of A. Therefore, complete action lattices have biggest
and smallest elements denoted in the sequel by > and ⊥, respectively. Note that
in any action lattice ⊥ = 0, since for any a ∈ A, a + 0 = a, i.e., 0 ≤ a. In this
paper we resort to notation

∑
for the iterated version of the (join) operator +,

and to notation
∏

for the iterated version of the (meet) operator ·.
The starting point for the method proposed here is thus the choice of an

appropriate action lattice

A = (A,+, ; , 0, 1, ∗,←,→, ·)



Additionally, we require A to satisfy the following distributive law:

a; (b · c) = a; b · a; c (22)

As mentioned above, this structure supports both the computational paradigm
(to distinguish between e.g. imperative, deterministic or non deterministic com-
putations, or between plain or weighted transitions) and the truth space (to
capture e.g. the standard Boolean reasoning or more complex truth spaces). Be-
fore proceeding let us exemplify this structure with a couple of action lattices
typically found in Computer Science applications. In the examples, the logic
generated by an action lattice A will be denoted by GDL(A).

Example 1 (GDL(2) — the standard propositional dynamic logic). Standard
propositional dynamic logic is generated from the following structure

2 = ({>,⊥},∨,∧,⊥,>, ∗,←,→,∧)

with the standard boolean connectives:

∨ ⊥ >
⊥ ⊥ >
> > >

∧ ⊥ >
⊥ ⊥ ⊥
> ⊥ >

→ ⊥ >
⊥ > >
> ⊥ >

∗
⊥ >
> >

and taking a ← b = b → a. It is not difficult to see that 2 is an action algebra.
Moreover, the lattice is obviously complete and it satisfy the condition (22) (note
that both composition and the meet operator are realized by ∧).

Example 2 (GDL(3) — a dynamic logic to deal with unknown data). This is
a three-valued logic, with an explicit representative for unknown, or uncertain
information. Note that the three elements linear lattice induces an action lattice

3 = ({>, u,⊥},∨,∧,⊥,>, ∗,←, ,→,∧)

where

∨ ⊥ u >
⊥ ⊥ u >
u u u >
> > > >

∧ ⊥ u >
⊥ ⊥ ⊥ ⊥
u ⊥ u u
> ⊥ u >

→ ⊥ u >
⊥ > > >
u u > >
> ⊥ u >

∗
⊥ >
u >
> >

and taking a ← b = b → a. It is easy to see all the conditions in Definition
1 hold. Moreover, the lattice is complete and satisfies condition (22). The refer
should note that both composition and meet are realized by ∧).

Example 3 (GDL( L) — a dynamic logic to deal with continuous levels of fuzzi-
ness.).

This is based on the well-known  Lukasiewicz arithmetic lattice

 L = ([0, 1],max,min, 0, 1, ∗, → , ← , min)

where



– x→ y = min{1, 1− x+ y},
– x← y = 1−max{0, x+ y − 1)} and
– ∗ maps each point of [0, 1] to 1.

Again, this defines a complete action lattice which additionally satisfies condition
(22). Note that both composition and the meet operator are now represented by
function min.

Example 4 (GDL(FW) – a dynamic logic to deal with resource consuming sys-
tems.). +++ rever tendo por base a defn do artigo original +++ This
example explores the so called Floyd-Warshall algebra which consists of a tuple

N+
⊥> = ({⊥, 0, 1, . . . ,>},max,+,⊥, 0, ∗, ^ , ^ , min)

where ^ is the truncated subtraction

a ^ b =

{
a− b, if a ≥ b

⊥ otherwise

and, for any i > 0,

∗
⊥ 0
0 0
i >

The induced order ≤ corresponds to ≤ in N (a ≤ b iff max{a, b} = b). The
lattice is also complete and it satisfies condition (22) because a + min{b, c} =
min{a+ b, a+ c}.

Illustrated the notion of an action lattice, we are now prepared to introduce
the general construction of graded dynamic logics. We consider now its signa-
tures, formulæ, semantics and satisfaction. Thus,

Signatures. Signatures of GDL(A) are pairs (Π,Prop) corresponding to the
denotations of atomic computations and of propositions, respectively.

Formulæ. A core ingredient of any dynamic logic is its set of programs. There-
fore, let us denote the set of atomic programs by Π. The set of Π-programs,
denoted by Prog(Π), consists of all expressions generated by

π 3 π0 |π;π |π + π |π∗

for π0 ∈ Π. Given a signature (Π,Prop), we define the GDL(A)-formulas for

(Π,Prop), denoted by FmGDL(A)(Π,Prop), by the grammar

ρ 3 > |⊥ | p | ρ ∨ ρ | ρ ∧ ρ | ρ→ ρ | 〈π〉ρ

for p ∈ Prop and π ∈ Prog(Π). Note that this corresponds to the positive
existential fragment of the propositional dynamic logic.



Semantics. The first step is to introduce the space where the computations of
GDL(A) are to be interpreted. As usual, this corresponds to a Kleene algebra.
Therefore, we consider the structure

Mn(A) = (Mn(A),+, ;,0,1,*)

defined as follows:

1. Mn(A) is the space of (n× n)-matrices over A
2. for any A,B ∈Mn(A), define M = A+B by Mi,j = Ai,j +Bi,j , i, j ≤ n.
3. for any A,B ∈Mn(A), define M = A ; B by taking Mi,j =

∑n
k=1(Ai,k;Bk,j)

for any i, j ≤ n.
4. 1 and 0 are the (n × n)-matrices defined by 1i,j = 1 and 0i,j = 0, for any
i, j ≤ n.

5. for any M =

[
A B
C D

]
∈Mn(A), where A and D are square matrices, we take

M* =

[
F * F * ;B ;D*

C D*+D* ;C ;F * ;B ;D*

]
where F = A+B ;D* ;C. Note that this construction is recursively defined
from the base case (where n = 2) where the operations of the base action
lattice A are used.

Finally, we have to show that,

Theorem 1. The structure Mn(A) = (Mn(A),+, ;,0,1,*) defined as above is
a Kleene algebra.

Proof. The structure, and the respective operations, corresponds to the algebra
of matrices over (A,+, ; , 0, 1, ∗), i.e., the Kleene algebra underlying action lattice
A. A canonical result establishes that Kleene algebras are closed under formation
of matrices (e.g. [9]). Therefore, Mn(A) constitutes a Kleene algebra. 2

GDL(A)-models for a set of propositions Prop, denoted by ModGDL(A)(Prop),
consists of tuples

A = (W,V, (Aπ)π∈Π)

where

– W is a finite set (of states),
– V : Prop×W → A is a function,
– and Aπ ∈Mn(A), with n standing for the cardinality of W .

The interpretation of programs in these models is made by matrices over the
Kleene algebra of A. Each matrix represents the effect of a program executing
from any point of the model. Formally, the interpretation of a program π ∈
Prog(Π) in a model A ∈ ModGDL(A)(Π,Prop) is recursively defined, from the
atomic programs (Aπ)π∈Π , as follows:



– Aπ;π′ = Aπ ;Aπ′
– Aπ+π′ = Aπ +Aπ′
– Aπ∗ = A*

π

Observe that the set of states W supports the index system of the programs
(adjacency) matrices. In this context, it is important to note, that, for example,

((Mπ;π′)ij =

n∑
k=1

{(Mπ)ik; (Mπ′)kj}

corresponds to

((Mπ;π′(w,w
′)) =

∑
w′′∈W

{(Mπ)(w,w′′); (Mπ′(w
′′, w′)}

where i and j stands for the adjacency index of w and w′, respectively. Actually,
the latter characterisation is often used in the sequel.

Example 5 (Computations spaces).
Let us fix an action lattice A = (A,+, ; , 0, 1, ∗,←,→, ·) and a signature

({π, π′}, {p}). Then, consider a model A = (W,V, (Aπ)π∈Π), with W = {s1, s2}
and the following atomic programs

Aπ =

[
⊥ q12
⊥ q22

]
Aπ′ =

[
⊥ q′12
⊥ ⊥

]
which can be represented by the following labelled transition system:

s1 q12
// s2

q22

��
s1

q′12

// s2

Let us suppose that A is realized by

2 = ({>,⊥},∨,∧,⊥,>, ∗,←,→,∧)

Making q12 = q22 = q′1,2 = > we get the standard adjacency matrices of the
graph underlying the transition system. In this case, we interpret choice π + π′

and composition π;π′ by

Aπ+π′ = Aπ+Aπ′ =

[
⊥ >
⊥ >

]
+

[
⊥ >
⊥ ⊥

]
=

[
⊥ ∨⊥ > ∨>
⊥ ∨⊥ > ∨⊥

]
=

[
⊥ >
⊥ >

]
The interpretation of the composition π;π′ is computed as follows,

Aπ;π′ =

[
⊥ >
⊥ >

]
;

[
⊥ >
⊥ ⊥

]
=

[
(⊥ ∧⊥) ∨ (> ∧⊥) (⊥ ∧>) ∨ (> ∧⊥)
(⊥ ∧⊥) ∨ (> ∧⊥) (⊥ ∧>) ∨ (> ∧⊥)

]
=

[
⊥ ⊥
⊥ ⊥

]



The interested reader can easily verify that, as expected,

Aπ′;π =

[
⊥ >
⊥ ⊥

]
For the interpretation of the π closure, we have

Aπ* = (Aπ)*
[
⊥ >
⊥ >

]*
=

[
f∗ f∗ ∧ > ∧ >∗
⊥ >∗ ∨ (>∗ ∧ ⊥ ∧ > ∧ >)

]
where f = ⊥ ∨ (> ∧>∗ ∧ ⊥) = ⊥, hence

Aπ∗ =

[
> >
⊥ >

]
as expected.

The reader is now invited to a small exercise. Taking the same matrix in the
context of

3 = ({>, u,⊥},∨,∧,⊥,>, ∗,←,→,∧)

and considering q12 = q22 = > and q′12 = u, let us compute composition

Aπ′;π =

[
⊥ u
⊥ ⊥

]
;

[
⊥ >
⊥ >

]
=

[
(⊥ ∧⊥) ∨ (u ∧ ⊥) (⊥ ∧>) ∨ (u ∧ >)
(⊥ ∧⊥) ∨ (⊥ ∧>) (⊥ ∧>) ∨ (⊥ ∧>)

]
=

[
⊥ u
⊥ ⊥

]
As expected, the unknown factor affecting transition s1 → s2 inA′π is propagated
to transition s2 → s2 in Aπ′;π.

If a continuous space is required to define the “unknown metric”, one may
resort to the  Lukasiewicz arithmetic lattice

 L = ([0, 1],max,min, 0, 1, ∗, → , ← , min)

Consider, for instance, q12 = a, q22 = b and q′12 = c for some a, b, c ∈ [0, 1]. In
this case we may, for example, compute choice π + π′, making

Aπ+π′ =

[
0 a
0 b

]
+

[
0 c
0 0

]
=

[
max{0, 0} max{a, c}
max{0, 0} max{b, 0}

]
=

[
0 max{a, c}
0 b

]
The reader may check that

Aπ∗ =

[
1 a
0 1

]
Note that the certainty value 1 in the diagonal of the matrix stands for the
reflexive dimension of the reflexive-transitive closure ∗.

Let us now consider the action lattice

N+
⊥> = ({⊥, 0, 1, . . . ,>},max,+,⊥, 0, ∗, ^ , ^ , min)

As stated above, the structure N+
⊥> is suitable to reason about resource con-

suming systems. The value of a transition is > when it costs an infinite amount



of resources; it is ⊥ when undefined. The composition of actions reflects the
accumulation of sequential costs. For instance Aπ′;π =[
⊥ c
⊥ ⊥

]
;

[
⊥ a
⊥ b

]
=

[
max{⊥+⊥, c+⊥} max{⊥+ a, c+ b}
max{⊥+⊥,⊥+⊥} max{⊥+ a,⊥+ b}

]
=

[
⊥ c+ b
⊥ ⊥

]
Moreover, the interpretation of a program π + π′ reflects, in each transition the
most expensive choice:

Aπ′+π =

[
⊥ c
⊥ ⊥

]
+

[
⊥ a
⊥ b

]
=

[
max{⊥,⊥}

¯
max{c, a}

max{⊥,⊥} max{⊥, b}

]
=

[
⊥ max{c, a}
⊥ b

]
Finally, observe the interpretation of the closure of π

Aπ∗ =

[
⊥ a
⊥ b

]
=

[
f∗ f∗ + a+ b∗

⊥ max{b∗, b∗ +⊥+⊥∗ + a+ b∗}

]
=

[
0 a+ b∗

⊥ b∗

]
where f = max{⊥, a+ b∗ +⊥}. Note that for any b > 0, the matrix assumes[

0 >
⊥ >

]
which reflects the cost of an undetermined repetition of transition s2 → s2.
Naturally, when the cost of the action is 0, we have[

0 a
⊥ 0

]
Satisfaction. Finally, let us characterise the (graded) satisfaction relation. As
mentioned above, the carrier of A corresponds to the space of truth degrees for
GDL(A). Hence, the graded satisfaction relation for a modelA ∈ ModGDL(A)(Π,Prop)
consists of a function

|=: FmGDL(A)(Π,Prop)×W → A

recursively defined as follows:

– (w |= >) = >
– (w |= ⊥) = ⊥
– (w |= p) = V (p, w), for any p ∈ Prop
– (w |= ρ ∧ ρ′) = (w |= ρ) · (w |= ρ′)
– (w |= ρ ∨ ρ′) = (w |= ρ) + (w |= ρ′)
– (w |= ρ→ ρ′) = (w |= ρ)→ (w |= ρ′)
– (w |= 〈π〉ρ) =

∑
w′∈W {Aπ(w,w′); (w′ |= ρ)}

Example 6. In order to make a case for the versatility and generality of this
method, let us consider the evaluation of the very simple sentence 〈π∗〉p in three



of the dynamic logics constructed in the examples above. Concretely, let us
evaluate 〈π∗〉p in state s1. For this we calculate

(s1 |= 〈π∗〉p) =
∑
w′∈W

{Aπ∗(s1, w′); (w′ |= p)}

Starting with GDL(2), let us assume V (p, s1) = ⊥ and V (p, s2) = >. In this
case, as expected

(s1 |= 〈π∗〉p) =
∑
w′∈W {Aπ∗(s1, w′); (w′ |= p)}

=
(
Aπ∗(s1, s1) ∧ (s1 |= p)

)
∨
(
Aπ∗(s1, s2) ∧ (s2 |= p)

)
= (> ∧ V (p, s1)) ∨ (> ∧ V (p, s2))
= (> ∧⊥) ∨ (> ∧>)
= >

This means that we can achieve p from s1 through π∗. Considering the GDL( L)
and assuming V (s1, p) = 0 and V (s2, p) = 1, we may calculate

(s1 |= 〈π∗〉p) =
∑
w′∈W {Aπ∗(s1, w′); (w′ |= p)

}
= max

{
min{Aπ∗(s1, s1), (s1 |= p)},min{Aπ∗(s1, s2), (s2 |= p)}

}
= max

{
min{1, 0},min{a, 1}

}
= max{0, a}
= a

Therefore, we can assure, with a degree of certainty a, that we can achieve p
from s1 through π∗.

Interpreting now the same sentence in logic GDL(N+
⊥>), assuming that V (s1, p) =

⊥ and V (s2, p) = 0, we get

(s1 |= 〈π∗〉p) =
∑
w′∈W {Aπ∗(s1, w′); (w′ |= p)

}
= max

{
Aπ∗(s1, s1) + (s1 |= p),Aπ∗(s1, s2) + (s2 |= p)

}
= max{0 +⊥, a+ b∗ + 0}
= a+ b∗

Hence, we can say that p can be accessed from s1 through π∗ consuming a+ b∗

resources unities.

3 “Dynamisations” are dynamic

Having introduced a generic method for generating dynamic logics, this sec-
tion establishes that the resulting logics behave, in fact, as dynamic logics. In
particular, all the axioms of the propositional dynamic logic involving positive-
existential formulas (see [6]) remain sound in this generic construction.

In the context of graded satisfaction, the verification that a property ρ is valid
corresponds to the verification that, for any state w of any model A, (w |= ρ) =
>. Hence, by (13) and (14), we have that asserting (ρ↔ ρ′) = > is equivalent to
prove that, for any w ∈W , that (w |= ρ) = (w |= ρ′); and to proof (ρ→ ρ′) = >
is equivalent to proof that (w |= ρ) ≤ (w |= ρ′).

Lemma 1. The following are valid formulas in any GDL(A):



(1.1) 〈π〉(ρ ∨ ρ′)↔ 〈π〉(ρ) ∨ 〈π〉ρ′
(1.2) 〈π〉(ρ ∧ ρ′)→ 〈π〉(ρ) ∧ 〈π〉ρ′

Proof. Axiom (1.1)

(w |= 〈π〉(ρ ∨ ρ′))
= { defn of |=}∑
w′∈W

{Aπ(w,w′); (w′ |= ρ ∨ ρ′)}

= { defn. of |=}∑
w′∈W

{(Aπ(w,w′);
(
(w′ |= ρ) + (w′ |= ρ′)

)
}

= { (7)}∑
w′∈W

{(Aπ(w,w′); (w′ |= ρ) + (Aπ(w,w′); (w′ |= ρ′))}

= { supremum properties}∑
w′∈W

{(Aπ(w,w′); (w′ |= ρ)}+
∑
w′∈W

{Aπ(w,w′); (w′ |= ρ′))}

= { defn of |=}

(w |= 〈π〉ρ) + (w |= 〈π〉ρ)

= { defn of |=}

(w |= 〈π〉ρ ∨ 〈π〉ρ)

Therefore 〈π〉(ρ ∨ ρ′)↔ 〈π〉ρ ∨ 〈π〉ρ.

Axiom (1.2)

(w |= 〈π〉(ρ ∧ ρ′))
= { defn of |=}∑
w′∈W

{Aπ(w,w′); (w′ |= ρ ∧ ρ′)}

= { defn. of |=}∑
w′∈W

{(Aπ(w,w′);
(
(w′ |= ρ) · (w′ |= ρ′)

)
}

= { (22)}∑
w′∈W

{(Aπ(w,w′); (w′ |= ρ) · (Aπ(w,w′); (w′ |= ρ′))}



≤ { infimum properties}∑
w′∈W

{(Aπ(w,w′); (w′ |= ρ)} ·
∑
w′∈W

{Aπ(w,w′); (w′ |= ρ′))}

= { defn of |=}

(w |= 〈π〉ρ) · (w |= 〈π〉ρ)

= { defn of |=}

(w |= 〈π〉ρ ∧ 〈π〉ρ)

Therefore, 〈π〉(ρ ∧ ρ′)→ 〈π〉ρ ∧ 〈π〉ρ.

Lemma 2. The following are valid formulas in any GDL(A):

(2.1) 〈π + π′〉ρ↔ 〈π〉ρ ∨ 〈π〉ρ
(2.2) 〈π;π′〉ρ↔ 〈π〉〈π′〉ρ
(2.3) 〈π〉⊥ ↔ ⊥

Proof. Axiom (2.1)

(w |= 〈π + π′〉ρ)

= { defn of |=}∑
w′∈W

{Aπ+π′(w,w′); (w′ |= ρ)}

= { defn of programs interpretation}∑
w′∈W

{(Aπ(w,w′) +Aπ′(w,w′)); (w′ |= ρ)}

= { (7)}∑
w′∈W

{(Aπ(w,w′); (w′ |= ρ) +Aπ′(w,w′); (w′ |= ρ))}

= { distributivity of supremum}∑
w′∈W

{(Aπ(w,w′); (w′ |= ρ)}+
∑
w′∈W

{Aπ′(w,w′); (w′ |= ρ))}

= { defn of |=}

(w |= 〈π〉ρ) + (w |= 〈π′〉ρ)

= { defn of |=}

(w |= 〈π〉ρ ∨ 〈π′〉ρ)

Therefore 〈π + π′〉ρ↔ 〈π〉ρ ∨ 〈π′〉ρ.



Axiom (2.2)

(w |= 〈π〉〈π′〉ρ)

= { defn of |=}∑
w′∈W

{Aπ(w,w′); (w |= 〈π′〉ρ)}

= { defn of |=}∑
w′∈W

{
Aπ(w,w′);

∑
w′′∈W

{Aπ′(w′, w′′); (w′′ |= ρ)}
}

= { (7)}∑
w′∈W

{ ∑
w′′∈W

{Aπ(w,w′);Aπ′(w′, w′′); (w′′ |= ρ)}
}

= { commutativity}∑
w′′∈W

{ ∑
w′∈W

{Aπ(w,w′);Aπ′(w′, w′′); (w′′ |= ρ)}
}

= { since (w′′ |= ρ) is independent of w′}∑
w′′∈W

{ ∑
w′∈W

{Aπ(w,w′);Aπ′(w′, w′′)}; (w′′ |= ρ)
}

= { defn. of composition}∑
w′′∈W

{
Aπ;π′(w,w′′); (w′′ |= ρ)

}
= { defn. of |=}

(w |= 〈π;π′〉ρ)

Therefore 〈π〉〈π′〉ρ↔ 〈π;π′〉ρ.
Axiom (2.3)

(w |= 〈π〉⊥)

= { defn. of |=}∑
w′∈W

{Aπ(w,w′); (w |= ⊥)}

= { defn. of satisfaction}∑
w′∈W

{Aπ(w,w′);⊥}

= { (9) and ⊥ = 0}∑
w′∈W

{⊥}



= { (4)}

⊥

Therefore 〈π〉0↔ 0.

Lemma 3. The following are valid formulas in any GDL(A):

(3.1) 〈π〉ρ→ 〈π∗〉ρ
(3.2) 〈π∗〉ρ↔ 〈π∗;π∗〉ρ
(3.3) 〈π∗〉ρ↔ 〈π∗∗〉ρ
(3.4) 〈π∗〉ρ↔ ρ ∨ 〈π〉〈π∗〉ρ

Proof. Axiom (3.1) In order to proof this axiom we have first to observe that
for any a, b, c ∈ A, a ≤ b implies a; c ≤ b; c. Supposing a ≤ b, i.e., a+ b = b,
we have that

a; c+ b; c ={(8)} (a+ b); c ={by hypothesis a+ b = b} b; c

i.e., a; c ≤ b; c. Moreover, we have also to check that a ≤ a∗ which comes
directly from (10) by monotonicity of the supremum and transitivity. Hence
(and since Mn(A) is an action lattice), we have for any w,w′ ∈W ,

Aπ(w,w′) ≤ Aπ∗(w,w′)
≡ { a ≤ b implies a; c ≤ b; c}

Aπ(w,w′); (w′ |= ρ) ≤ Aπ∗(w,w′); (w′ |= ρ)

≡ { monotonicity of the supremum}∑
w′∈W

{Aπ(w,w′); (w′ |= ρ)} ≤
∑
w′∈W

{Aπ∗(w,w′); (w′ |= ρ)}

≡ { defn of |=}

(w |= 〈π〉ρ) ≤ (w |= 〈π∗〉ρ)

≡ { defn of |=}

(w |= 〈π〉ρ→ 〈π∗〉ρ)

Therefore 〈π〉ρ→ 〈π∗〉ρ.
Axioms (3.2),(3.3) and (3.4) We start recalling the following well known

Kleene algebra properties: a∗ = a∗∗, a∗ = a∗; a∗ and 1 + a; a∗ = a∗ (see
[9]). By Theorem 1, we have that

Aπ∗(w,w′) = Aπ∗∗(w,w′) (23)

Aπ∗(w,w′) = Aπ∗;π∗(w,w′) (24)

A1+π;π∗(w,w
′) = Aπ∗(w,w′) (25)

The remaining of the first two proofs follows exactly the same steps of the
one for Axiom (3.1). For the third case,



A1+π;π∗(w,w
′) = Aπ∗(w,w′)

≡ { program interpretation}

A1(w,w′) +Aπ;π∗(w,w′) = Aπ∗(w,w′)
≡ { a ≤ b implies a; c ≤ b; c in both directions}(
A1(w,w′) +Aπ;π∗(w,w′)

)
; (w′ |= ρ) = Aπ∗(w,w′); (w′ |= ρ)

≡ { (7)}

A1(w,w′); (w′ |= ρ) +Aπ;π∗(w,w′); (w′ |= ρ) = Aπ∗(w,w′); (w′ |= ρ)

≡ { monotonicity of the supremum}∑
w′∈W

{A1(w,w′); (w′ |= ρ) +Aπ;π∗(w,w′); (w′ |= ρ)} =
∑
w′∈W

{Aπ∗(w,w′); (w′ |= ρ)}

≡ { distributivity}∑
w′∈W

{A1(w,w′); (w′ |= ρ)}+
∑
w′∈W

{Aπ;π∗(w,w′); (w′ |= ρ)} =
∑
w′∈W

{Aπ∗(w,w′); (w′ |= ρ)}

≡ { ∑w′∈W {A1(w,w′); (w′ |= ρ) = (w |= ρ)} + program interpretation}

(w |= ρ) + (w |= 〈π;π∗〉ρ) = (w |= 〈π∗〉ρ)

≡ { (2.2)}

(w |= ρ) + (w |= 〈π〉〈π∗〉ρ) = (w |= 〈π∗〉ρ)

≡ { defn of |=}

(w |= ρ ∨ 〈π〉〈π∗〉ρ) = (w |= 〈π∗〉ρ)

Therefore, 〈π∗〉ρ↔ ρ ∨ 〈π〉〈π∗〉ρ.

4 Conclusions

The method introduced in this paper is able to generate several dynamic log-
ics useful for the working Software Engineer. Some of them are documented in
the literature, others freshly new. For instance, for verification of imperative
programs, we may consider a logic whose states are valuations of program vari-
ables. Hence, and as usual, atomic programs become assignments of variables.
In this context, a transition w →x:=a w′ means that the state w′ differs from w
just in the value of variable x, i.e., that w′(x) = a and for any variable y 6= x,
w(y) = w′(y).

A very natural direction for future work is to enrich this framework with
tests, i.e., programs ?cond interpretated as A?cond = {(w,w)|w |= cond}. As
usual, this provides a way to express if-then-else statements in dynamic logics.
Another topic deserving attention is the characterisation of program refinement



in this setting, witnessed by some class of action lattice morphisms.
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