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Zusammenfassung

In dieser Arbeit wird eine dynamische Logik für die objektorientierte Programmiersprache
Java Card um eine Modalität zur effizienten Informationsflussanalyse erweitert. Die In-
formationsflussanalyse zieht Objekte, Kontrollfluss und Aufrufkontext in Betracht, kann
aber nur Aussagen für stets terminierende Programme treffen.

Die dynamische Logik JavaDL ist eine Obermenge von Prädikatenlogik, deren Formeln
auch Modalitäten für Java-Programme enthalten können. Die Semantik für die Modal-
itäten schreibt vor, dass eine dahinter geschriebene JavaDL-Formel in jedem möglichen
Endzustand des Programms gelten muss. Ein Programmzustand umfasst auch den Heap
und wird durch sogenannte Updates modelliert.

Eine notwendige Bedingung für die Sicherheit von Computersystemen ist, dass einem An-
greifer die Inhalte bestimmter Speicherstellen niemals zugänglich sind. Informationsflus-
sanalyse soll verifizieren, ob ein Programm solche Regelungen einhält. Eine Formalisierung
solcher Regelungen ist das Noninterference-Sicherheitsmodell, welches für einen Angreifer
beobachtbare Auswirkungen von Geheimnissen auf öffentliche Ausgaben, die Rückschlüsse
auf Geheimnisse zulassen, ausschließt.

Das Noninterference-Sicherheitsmodell kann in JavaDL formuliert werden und der JavaDL-
Kalkül kann die Modellinstanz für eine gültige Programmspezifikation auch beweisen. Die
direkte Übersetzung von Noninterference in eine JavaDL-Formel hat aber zufolge, dass
das spezifizierte Programm während eines Beweises durch den Kalkül zweimal ausgeführt
wird. Dieser teilweise unnötige Zusatzaufwand soll durch die in dieser Arbeit definierte
Modalität und die dafür verfügbaren Kalkülregeln verringert werden.

Die Regeln des erweiterten Sequenzenkalküls für JavaDL und die neue Modalität nutzen
aus, dass in manchen Fällen die beiden Ausführungen des spezifizierten Programms syn-
chron ausgewertet werden können.
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Abstract

In this thesis, the JavaDL logic is amended by a new modality for the verification of
termination-insensitive, object-sensitive, flow-sensitive noninterference of memory loca-
tions in object-oriented programs, that is local variables and heap object fields. Noninter-
ference is a security model applied in information flow analysis and the amended JavaDL
logic improves the information flow analysis of Java Card programs using the JavaDL
sequent calculus.

JavaDL formulae are a superset of first-order logic formulae and the logic additionally
contains dynamic logic modalities as well as a concept called updates for the transition
and evaluation of Java Card program states. Noninterference of memory locations is a
property of programs and the respective pairs of start and end states of their executions.
The satisfaction of the property implies that a particular set of memory locations does not
interfere with the memory locations not included in this set. A set of memory locations
does not interfere with another set if the evaluations of the included memory locations in
the end state of any execution are independent of the evaluations of the memory locations
included in the other set.

Noninterference in Java Card programs has already been formulated and verified in JavaDL
by a concept called self-composition which compares the end states of two independent
executions of the same program with respect to a particular set of memory locations. This
investigation is realisable with the means provided by JavaDL, in particular the dynamic
logic modalities. However, in many cases the double execution poses unnecessary proof
overhead and the new modality defined in this thesis aims at reducing this overhead. The
new calculus reaches this goal by partially interpreting the verified program on a single
execution path. As soon as this execution path branches the calculus must return to
self-composition or the analysis loses precision.
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1. Introduction

One attribute of computer security is confidentiality, which excludes one party from the
knowledge of some other party’s information. Computer systems are designed with the
requirement to be secure while providing a public user interface and working with con-
fidential information at the same time. For example, consider a messaging system that
offers functionality like editing, sending and receiving messages and keeps the conversa-
tions private within a closed circuit of users. So we may specify for the correctness of the
system that users outside such a closed circuit must not be able learn information like the
contents of the circuit’s conversations or not even who is communicating. Furthermore,
we certainly specify that answering a message never reveals the communication partner’s
complete identity or access tokens to the system, although the messaging system itself
may have access to all of this information. Also, a service provider may place terminals
in public areas which implement additional mechanisms so that any user can access the
messaging service from there. The difference between the home computer scenario and the
public terminals scenario is that in the former the interface is a network protocol and in
the latter it is a graphical and hardware user interface. Moreover, a public terminal has
access to potentially more identities and messages than a home computer.

Confidentiality manifests itself in security policies which define the aforementioned infor-
mation and included parties. These manifestations can be formalised using the nonin-
terference security model [GM82]. In this model an attacker of the computer system is
challenged to find out about confidential data just by interacting with the software, that
is no direct memory manipulation and no program code manipulation is allowed.

The subject of this thesis is now the formal verification of security policies which are
formalised using the noninterference security model for computer systems which are written
in the object-oriented programming language Java Card [GJJ96][Sun03].

There are a few approaches to the verification of noninterference on the programming
language level, which we will shortly discuss in the remainder of this thesis and com-
pare to the logic-based approach this thesis is based on. Firstly, there are security-type
systems. Using programming languages information is stored to and read from memory
locations, which divide computer memory. On the level of memory locations information
is usually typed and type system-based approaches take a similar path and assign secu-
rity levels to memory locations. Since information in programs flows by assigning values
from and to memory locations, the type system-based verification checks that all assign-
ments happen only to less classified locations [SM03]. This is overapproximated as we will
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2 1. Introduction

see. Secondly, there are program dependency graph-based approaches, which pair iden-
tifier occurrences with identifier definitions in a graph data structure. The information
flow analysis checks that no final evaluation of public memory locations depends on secret
memory locations [HKN06], which is achieved by calculating so called program slices for
the public memory locations based on the program dependency graph. In contrast to the
security-type systems this approach is flow-sensitive and thus less approximating while
being carried out equally automated and fast. However, none of these approaches is as
precise as the logic-based approaches, which make up the last group of information flow
analysis tools for programs. Besides the JavaDL-based approach discussed in this thesis,
there is a Hoare-like logic for information flow analysis in object-oriented programs defined
by Amtoft et al. [ABB06]. Because of the Hoare calculus similarities, their approach is
compositional like the type system-based approaches but also object- and flow-sensitive.

The goal of this thesis is to improve the efficiency of the JavaDL [Bec00] logic approach
to noninterference verification by adding a new modality to it that specifically handles the
verification of noninterference security policies for Java Card programs. Noninterference
can be expressed as a proof obligation in JavaDL without further syntax or semantics
changes [SS11] but proofs require two independent program executions of the verified
program. Without the new modality the JavaDL approach exploits that its calculus can
evaluate final execution states even when the initial states were not completely specified.
Adding the assertions that on both executions the same user input was received and
that no confidential information leaked produces a first-order logic formula that implies
noninterference. This formalisation of noninterference is called self-composition []. The
improved JavaDL approach calculates statement by statement which information can leak
to the user and compares it in the final state to the information that is allowed to leak to
the user.

Consider the Java Card program in Listing 1.1. The noninterference formalisation in
JavaDL of the security policy that the program variables high and low do not interfere
during an execution of method m contains two diamond modalities and a proof must execute
both program occurrences symbolically in order to establish and compare the end states
with respect to low. This is unnecessary for this example and a proof could consider both
conditional branches separately since the initial states assign the same value to low and
thus execute the same branch for a fixed low assignment. An attacker can only compare
executions that execute the same conditional branch and the proof complexity can be
reduced from comparing four execution paths to only two.

1 class C {

2 static int high , low;

3 static void m() {

4 if (low == 0) {

5 low = high + 0;

6 } else {

7 low = high + 23;

8 }

9 low -= high;

10 }

11 }

Listing 1.1: Secure program where the branch decision does not depend on secret
information

The novelty in this thesis is that the new JavaDL modality mentions the verified program
only once. The logic proposed by Amtoft et al. already provides these features but outside
the JavaDL context of modelling states and the heap. Moreover, Amtoft et al. enforces
a different state equivalence relation that cannot take into consideration which references
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3

are actually visible to an attacker. Essentially, this means that our assumed attacker is not
able to observe object creations directly but only the references assigned to local program
variables and heap object fields it has access to.

The structure of this thesis is as follows. In the first part we define the new calculus and
in the second part we describe how to apply it to information flow analysis. The first part
begins with the definition of state equivalence, which is the formal basis for noninterference,
in Section 4.1. After that, we define the new modality syntax and semantics in Section 4.2,
and Section 4.3 continues with the definition of rules that are added to the JavaDL sequent
calculus for the handling of the modality. Combined, the flow modality formulae and rules
constitute the JavaDL* as an extension of JavaDL. The second part of the thesis consists
of the application of JavaDL* in information flow analysis (Section 5.1) and some example
proofs of information flow properties (Section 5.2).
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2. Related Work

In this chapter, we map out the research field of programming language level approaches to
information flow analysis in computer systems. All approaches discussed here imply a non-
interference property for secure programs. The particular noninterference properties differ
in the definitions of the indistinguishability relation according to which the approaches
compare states, this includes the kinds of evaluations that are public and manipulatable
by an attacker. We begin in Section 2.1 with the description of security-type systems
and continue in Section 2.2 with program dependency graph-based approaches. Both ap-
proaches are approximate and we end this chapter in Section 2.3 with the description of a
Hoare-like calculus that poses a logic-based information flow analysis very similar to the
JavaDL extension proposed in this thesis.
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6 2. Related Work

1 class C /*@ low @*/ {

2 private /*@ high @*/ int secret;

3 public /*@ low @*/ void m(/*@low@*/ int input) {

4 /*@ high @*/ int tmp = this.secret;

5 input = tmp;

6 input = 0;

7 return input;

8 }

9 }

Listing 2.1: A secure program that is considered insecure by flow-insensitive analyses be-
cause of direct information flow

2.1. Security-Type Systems

Security-type systems are a well studied approach to information flow analysis that ensures
noninterference between public and secret memory locations for programs that are typed
according to the security-typing rules [SM03]. The noninterference property of typed pro-
grams results from the fact that a type proof rules out the possibility of an assignment
leaking information explicitly or implicitly. Explicit information flows are caused by as-
signments and implicit flows are caused by statements that decide the program control
flow, like conditional statements. It may be impossible to type a program due to an as-
signment of a public memory location whose execution is determined by the evaluation of
a secret condition or which assigns a value that is determined by the evaluation of a secret
memory location.

Type system-based approaches annotate the programming language types using security
levels. There are usually two security levels called “high” and “low”, but arbitrarily many
security classifications in between are in principle possible. Every variable, field, method
and class must be declared using both the usual data type and a security level.

As it is the case with the language type system itself, the security-type of a program is
supposed to be checked statically. Moreover, the typing rules for the annotated types
are still compositional and can efficiently be implemented because only the types of the
sub-expressions and sub-programs are needed in order to decide whether an expression or
a program is well-typed.

However, there is a fundamental deficit of security-type systems. Assignments that ref-
erence memory locations classified by a higher security level than the assigned memory
location can never be typed and always rejected by a security-type system analysis. The
same applies to assignments that occur in a branch of a conditional statement that eval-
uates an expression that was assigned a higher security level than the one assigned to
the assignment. The strict and local rejection of such statements is not exact since the
information leakage can be reverted by successive statements.

The flow-insensitivity of security-type system analyses is illustrated using the following
two false negative results. Both example programs cannot be typed because of insecure
assignments, although the assignments occur in a control structure context that erases the
information leakage before it can be observed by an attacker and the programs are in fact
secure.

In the first example (Listing 2.1), line 5 explicitly assigns the value of tmp and thus the
secret evaluation of this.secret to the public variable input, which is returned by calls of
method m. However, line 6 erases all leaked information from the return value before it is
finally returned to the caller of the method.
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2.1. Security-Type Systems 7

1 class C /*@ low @*/ {

2 private /*@ high @*/ boolean secret;

3 public /*@ low @*/ void m(/*@low@*/ int input) {

4 /*@ high @*/ int tmp = this.secret;

5 if (tmp) {

6 input = 1;

7 } else {

8 input = 2;

9 }

10 input = 0;

11 return input;

12 }

13 }

Listing 2.2: A secure program that is rejected as being insecure by flow-insensitive analyses
because of indirect information flow

The second example is shown in Listing 2.2. Here, the code lines 6 and 8 assign different
constant values to the public variable input. This would reveal the value of the condi-
tional tmp and thus the secret evaluation of this.secret if the assignments were not both
superseded by the constant assignment in line 10. Thus, before the method returns with
the evaluation of input the public memory location is assigned the constant value 0 and
the method code is in fact secure.

In general, in order for a program to be typed according to a security-type system informa-
tion can never be temporarily declassified, as it was in the two example programs above,
and accumulates on the highest security level.

The examples above do not exploit any object-orientation features and could have been
implemented without the class definition. Banerjee and Neumann define a security-type
system for a sequential Java-like programming language and prove that it enforces non-
interference for typed programs [BN02]. However, they omit loops in favour of recursion
and forbid exceptional control flow. Myers even allows exceptional control flow in JFlow,
which is an extension of the Java programming language by a security-type system [Mye99].
However, an implication of noninterference for typed JFlow programs is not proved.
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8 2. Related Work

2.2. Program Dependency Graph-Based Approaches

Hammer et al. define the first flow-, context-, and object-sensitive static information flow
analysis, which supports unstructured control flow, like exceptions in Java, as well [HKN06].
The analysis is based on the identification of the statements that may determine the eval-
uation of the attacker observable memory locations in the final program states. Those
statements are called slices and are identified using a program dependency graph (PDG) of
the analysed program.

The nodes of a PDG are labelled with either statements or expressions and there are two
types of edges connecting nodes. The first type of edges connects two statement nodes
and means that the first statement assigns a value to a memory location whose evaluation
influences the evaluation of an expression the second statement refers to. And, the second
edge type is used to connect two statements if the value of the variable assigned in the
first statement determines whether the second statement is executed at all.

In the PDG-based approach by Hammer et al., slices are calculated for the public mem-
ory locations. The inclusion of secret memory locations in the slice of a public memory
location is a necessary condition for the existence of illicit information flow [HKN06].
Therefore, Hammer et al. prove the natural theorem stating that secret-free slices for all
public memory locations imply the satisfaction of a noninterference property [HKN06].

The fundamental program analysis tool exploited by this approach is program slicing. The
PDG, which slicing applies to, is an abstraction of the analysed program code. There may
be more than one program code resulting in the same PDG and PDGs do not encode
the exact control flow. Incorporating solely PDGs, the approach cannot perform path
condition falsification or functional equality establishment and the information flow anal-
ysis conducted is therefore still approximate. The complexity of this approach lies in the
precise calculation of the slices and thus the precise PDG generation. In order to improve
precision, the PDG-based approach also builds heavily on points-to analysis and dead code
erasure [HKN06].

Hammer et al. enable declassification of information by inserting special nodes into the
PDG that have a lower output security level than input security level [HKN06]. Otherwise,
nodes implicitly have an output security level (the declared security level) that is above the
input security level. When a declassification node intercepts a dependency edge connecting
a secret source and a public sink, the information flow from the source to the sink is no
longer considered illegal by the analysis.

The merits of the PDG-based approach described above over security-type systems include
the precise analysis of program fragments like the example shown in Listing 2.3. An
execution of that program fragment does not cause observable information flow from secret
memory locations (confidential) to public outputs (public). Therefore, the program
fragment is secure despite the assignments of two distinct constants (lines 2 and 4) by the
branches of the conditional statement and the branch decision dependence on confidential
information.
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1 if (confidential == 1) {

2 public = 42;

3 } else {

4 public = 17;

5 }

6 public = 0;

Listing 2.3: A Program fragment where the final public value does not interfere with the
initial confidential value

9



10 2. Related Work

2.3. Hoare-Like Logic-Based Approaches

During the work on this thesis, the first approach to add a modality to JavaDL that enables
information flow without explicitly executing the analysed program twice was based on
the logic proposed by Amtoft et al. [ABB06], which enables structured flow-, context- and
object-sensitive analysis.

Amtoft et al. develop a logic for information flow in object-oriented programs with a
Hoare-like syntax [ABB06]. Hoare logic was originally defined by Hoare as a first attempt
to formally prove functional properties of computer programs [Hoa69]. Therefore, Hoare
defined a new formula syntax P{Q}R, now known as Hoare-triple, where P and R are
first-order logic assertions and Q is a program fragment. The semantics of the Hoare-triples
can be informally interpreted as R being true in any final execution state of Q when the
program fragment was started in an initial execution state satisfying P .

In the logic defined by Amtoft et al., every formula also consists of a precondition, a pro-
gram fragment and a postcondition but additionally includes a set of modified memory
locations. Both pre- and postconditions contain agreement assertions for state equivalence
and points-to assertions for handling aliasing in addition to the first-order logic user asser-
tions for functional propositions. Agreement assertions express which memory locations
pre- and post-states agree on and points-to assertions express which memory locations
refer to the same heap objects.

Following the tradition of Hoare and similar to type systems, the information flow calculus
by Amtoft et al. is compositional. This characteristic is reflected in three essential rules.
Firstly, there is a rule Seq which breaks the initial program code down to single statements
and the further calculus rules reason locally about single statements and how they ensure
the type of assertions mentioned above. Secondly and thirdly, there are rules Frame
and Conseq. The first one allows symmetric addition of propositions to the pre- and
postconditions if they only refer to locations left unmodified by the statement the rule is
applied to. The second one strengthens the precondition and weakens the postcondition
of a formula. Thus, the rules allow to formulate the calculus rules using assertions that
mention only those sub-assertions which are affected by the type of statements the rule
applies to. The existence of such rules is essentially made possible by the modifies clause
and an implication relation on assertions.

The main distinction between the two logic-based approaches, the Hoare-like approach
and the JavaDL approach, is the state equivalence relation applied by the noninterference
criterion they both enforce. Amtoft et al. assume an attacker who is always able to observe
new object allocations. In contrast, the JavaDL approach applies a state equivalence that
models an attacker who can only distinguish states by new object allocations if it can
observe a memory location that is assigned the heap reference of the new object before
and after the allocation. Moreover, the JavaDL approach improves on the applicability of
efficient logic-based information analysis since it can handle unstructured control flow and
secret conditionals as well.
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3. Assumptions and Limitations

A formalisation of computer security is naturally achieved by defining the assumed attacker
of the assessed class of computer systems. Relative to that attacker model a specific
computer system is then secure or insecure. In this thesis, we are concerned with the data
confidentiality aspect of computer security and the verification that software systems do
not leak confidential data. For this purpose, we assume an attacker of the analysed software
system who can partially evaluate and modify the start and end states of arbitrarily many
executions of the software system’s program code. The analysed program code is known
to the attacker and must be written in the programming language Java Card.

Since Java Card is an object-oriented programming language, the program states define
not only the assignments of all occurring program variables but also the heap. The heap
can be seen as a special program variable that is accessed using indices in the form of
object references and field identifiers. The partial access we grant an attacker denotes that
there are variables and heap locations which are not explicitly revealed to the attacker.
Therefore, if two states assign the same values to the accessible memory locations the
inaccessible ones can be assigned different values in both states and it is unknown from
only the partial access to the states whether this or the opposite is true. Still, an attacker
may be able to infer the evaluations of the memory locations not included in the partial
access window on the state from the observation of the state and the knowledge of the
program code.

It is a crucial restriction on the attacker model that the attacker cannot evaluate arbitrary
fields of an object just because an accessible memory location evaluates to the reference
of this object. This comes from the fact that the attacker is granted only the knowledge
of the state evaluations of specific variable and field identifiers. In particular, since the
machine executing the program code is assumed to choose object locations on the heap for
newly allocated instances in an unspecified manner, an attacker can only observe which
reference type variables and fields refer to the same object or which point to a different
object in the final state of an execution than in the initial one. The attacker never knows
the complete object unless access is granted to all its fields.

The information flow analysis calculus defined in this thesis has four major limitations.
Firstly, the analysis is not termination-sensitive, secondly, the calculus cannot efficiently
handle secret dependent control flow and functional end state equivalence without loss
of precision, thirdly, it is not enabled for modular proofs and, lastly, it does not take
declassification of confidential data into consideration. However, termination-insensitivity
seems to be the only limitation future work will not be able to compensate for.

11



12 3. Assumptions and Limitations

Any analysis carried out using the calculus defined in this thesis is termination-insensitive
because infinite loops are not and cannot in general be identified by the calculus. Thus,
if the analysed program code contains the possibility for an infinite loop an attacker may
be able to manipulate the start state in a way that reveals, firstly, whether an infinite
loop is triggered and, secondly, what the constraints on the confidential data are so that
an infinite loop can be triggered. In that case, the knowledge of the constraints on the
confidential data leaks information.

If a secure program code contains control flow decisions determined by confidential data
and its security can only be verified by functionally evaluating the attacker observable
parts of the end states, the calculus defined in this thesis must resort to the less efficient
self-composition analysis. That is the case if there are attacker observable memory loca-
tions whose evaluations are determined by different execution paths and explicit proofs
of functional propositions are necessary in order to establish that no confidential data is
leaked through these public memory locations. On the contrary, if the evaluations always
result from execution paths and assignments not influenced by confidential data the ab-
sence of illicit information flow can be inferred using the calculus without knowing the
concrete values.

One major feature of logic-based program analysis, which is also essential for applications of
our logic-based information flow calculus in software engineering, is the reuse of verification
results after they have been proved. Because of reasons similar to why software engineers
design modules and mathematicians prove lemmas, the calculus defined in this thesis
must provide means for proving and reusing information flow method contracts. As of
the completion of this thesis, the calculus lacks this feature and methods must always be
inlined and proved secure in each context.

Another restriction that limits the applicability of the calculus defined in this thesis is that
memory locations are either public or secret. However, in software engineering it is often
necessary to assume only some meta information about memory locations to be public,
while their concrete values must still not be leaked. A recurring example requiring such
declassification features for its specification and verification is the analysis of a password
checker. Our calculus will fail to do so because it must declare mapping from usernames to
passwords secret in order to verify the specification that the implementation must not leak
passwords. However, specifying the mapping secret is not fine grained enough to account
for the perfectly fine leakage of whether a user exists and whether the password file exists.
No correct implementation of the password checker example can prevent such leakage and,
thus, no secure implementation can be verified using our calculus.

12



4. Flow Modality Calculus

In this chapter, we present the syntax and semantics of the JavaDL extension JavaDL*.
The extended set of formulae includes the new flow modality, which is also defined in this
chapter. In order to define the semantics of the flow modality, we first need to define
the noninterference state equivalence. The definition of the flow modality syntax requires
the definition of a new term type for the specification of lists of public memory locations.
Furthermore, we define a set of sequent calculus rules for the derivation of the JavaDL*
specific formulae at the end of the chapter.

13



14 4. Flow Modality Calculus

1 class C {

2 Object r;

3
4 void m() {

5 this.r = new Object ();

6 }

7 }

Listing 4.1: Java Card class definition containing a method implementation that instanti-
ates a new object and assigns its heap address to a reference type field

4.1. An Object-Sensitive State Equivalence

Information flow analysis applying a noninterference security model [GM82] is defined in
terms of an equivalence relation ≡L which models the indistinguishability of states from
the attacker’s perspective on the initial and final program states. An attacker is allowed
to observe the states by learning about the values assigned by each state to a limited set
of low program variables and object fields. Within the noninterference security model,
we examine two independent executions of the analysed program and check whether their
final states are related with respect to ≡L based on the assumption that their initial states
are related. In particular, the noninterference criterion requires programs to transform
equivalent initial states s1 and s2 (s1 ≡L s2) into equivalent states s′1 and s′2 (s′1 ≡L s′2)
respectively, but only if both executions terminate.

The equivalence relation applied in the instances of the noninterference security model for
Java Card programs due to Scheben and Schmitt [SS11] defines two states equivalent if
and only if all low program variables and object fields are assigned the same value in each
state, regardless of whether they are of primitive or reference type. In that case, ≡L is
formally defined by Definition 4.1.1.

Definition 4.1.1 (JavaDL noninterference state equivalence). Given a JavaDL signa-
ture Σ = (T ,�,V,PV,F ,FUnique,P, α, Prg), a JavaDL Kripke structure K = (D, δ, I,
S, ρ), a set of program variables V ⊆ PV, a set of heap locations L ⊆ allLocs and
two states s1 ∈ S and s2 ∈ S, s1 and s2 are related with respect to ≡〈V,L〉 (in sym-
bols s1 ≡〈V,L〉 s2) if and only if both of the following conditions hold.

• s1(v) = s2(v) for all v ∈ V

• I(select)(s1(heap), o, f) = I(select)(s2(heap), o, f) for all 〈o, f〉 ∈ L

�

Considering the example program in Listing 4.1, the definition of the state indistinguisha-
bility above (Definition 4.1.1) may be too restrictive if reference type variables or fields
are included in V or L.

Supposing that r is contained in L, this method body almost never transforms ≡〈V,L〉-
equivalent initial states into ≡〈V,L〉-equivalent final states. The reason for that is that the
Java Card virtual machine executing the method implementation generates the reference
values assigned by line 5 (this.r = new Object();) in an under-specified manner and the
values are likely to differ between executions. However, obviously there are no secrets
leaked to an attacker since all declared memory locations are public and there are no
specified secrets that could be leaked. We conclude that the application of ≡〈V,L〉 in the
noninterference security model gives false negative results and that its definition does not
suffice to model our assumed attacker precisely.

14



4.1. An Object-Sensitive State Equivalence 15

1 class C {

2 Object r;

3 boolean secret;

4
5 void m() {

6 if (this.secret) {

7 this.r = new Object ();

8 }

9 }

10 }

Listing 4.2: Java Card class definition containing a method implementation that only in-
stantiates a new object and assigns its heap address to a reference type field
if another field evaluates to true

A refinement of the state indistinguishability relation from above (Definition 4.1.1) could
be to require equality of the state assigned values only with respect to a bijective map
from the low object space of the first state to the low object space of the second state.
The existence of such a map is the first prerequisite in the state equivalence enforced by
the information flow calculus for object-oriented programs due to Amtoft et al. [ABB06].

Considering another program example (Listing 4.2), a second prerequisite similar to the
one defined by Amtoft et al. is in fact necessary.

In that example, the reference value is only generated if secret, which we do not include in
the specification of low memory locations for this analysis, evaluates to true. An attacker
may execute the implementation of method m in class C and compare the final evalua-
tion of r to its initial evaluation. As a result, the attacker learns about the evaluation
of secret because the virtual machine will assign a new reference value to r if it executes
line 7 (this.r = new Object();). The attacker will conclude secret == true if the eval-
uation of r changes after the initial state and secret == false otherwise. Nevertheless,
there is a bijective map between the two low object spaces in the noninterference security
model which maps the reference value assigned to r in the first final state to the reference
value assigned to it in the second final state. The map is trivially bijective since each low
object space consists solely of the object referenced by r.

This leads to the following definition of the noninterference state equivalence relation≡∗〈V,L〉
given by Scheben and Schmitt et al. [SSB+13, Definition 2, Definition 3]. It introduces a
bijective map between object spaces and requires the values of reference type variables and
fields in each state to be only related with respect to this map instead of being identical.
Additionally, the map that relates the final states must not alter the mapping of objects
already included in the initial object space.

Applying this definition in the noninterference security model corresponding to the second
example program (Listing 4.2), the final states of two arbitrary executions may be no more
related. In particular, if the evaluation of secret in the initial states differ then the map
that maps the reference value of r in the first final state to its value in the second final
state will associate two distinct objects with a single object in the first domain and will
not be a function anymore.

Definition 4.1.2 (Agreement of states). For a JavaDL signature Σ = (T ,�,V,PV,F ,
FUnique,P, α, Prg), a JavaDL Kripke structure K = (D, δ, I,S, ρ), a finite set of program
variables V ⊆ PV, a finite set of heap locations L ⊆ allLocs and two states s1 ∈ S
and s2 ∈ S define s1 ≡∗〈V,L〉 s2 if and only if there is an injective type-preserving and
array-length-preserving function η from the set of objects referenced by variables v ∈ V

15



16 4. Flow Modality Calculus

and locations 〈o, f〉 ∈ L in s1 to the set of objects referenced by V and L in s2, so that all
of the following conditions hold.

• s1(v) = s2(v) if v ∈ V and α(v) 6v Object

• η(s1(v)) = s2(v) if v ∈ V and α(v) v Object

• I(selectA)(s1(heap), o, f) = I(selectA)(s2(heap), η(o), f) if 〈o, f〉 ∈ L and α(f) =
A 6v Object

• η(I(selectA)(s1(heap), o, f)) = I(selectA)(s2(heap), η(o), f) if 〈o, f〉 ∈ L and α(f) =
A v Object

Instead of s1 ≡∗〈V,L〉 s2, we also say that s1 and s2 agree on 〈V,L〉. Furthermore, we call the
agreement function partial isomorphism. As Scheben and Schmitt et al. observe, we state
here that the partial isomorphism is uniquely defined by the choice of memory locations
and program states. �

Since the bijection introduced by Definition 4.1.2 substitutes references with references in
both the initially and finally attacker accessible terms so that the object types and the
evaluations of declassified fields continue to coincide, we base our noninterference analysis
on the assumption that this state equivalence relation models the attacker abilities both
correctly and completely.

16



4.2. Flow Modality Definition 17

4.2. Flow Modality Definition

In this section, we define a new modality for the JavaDL logic specifically designed for
information flow analysis using the JavaDL sequent calculus. The flow modality J · | · | · K
asserts that all executions of a given Java Card program transform low equivalent states
into again low equivalent states. Two states are low equivalent if they agree on a given set
of low memory locations and we use the agreement formalisation given by Definition 4.1.2.

Since low equivalence of states is always defined in terms of a set of low memory locations,
the following definition gives rise to a special syntax (RefSet expression) used for specifying
those sets as JavaDL terms within the flow modality.

Definition 4.2.1 (RefSet expression). For a fixed JavaDL signature Σ = (T ,�,V,PV,
F ,FUnique,P, α, Prg) a term of type RefSet is a pair 〈V,L〉, where

• V ⊆ PV is a finite set of primitive or reference type program variables

• L is a term of type LocSet that always evaluates to a finite set of heap locations

Given a JavaDL Kripke structure K = (D, δ, I,S, ρ), the objects referenced by a RefSet ex-
pression R = 〈V,L〉 in a state s ∈ S are given by the set Objs(R) of all s(v), if v ∈ V is a
reference type program variable, and I(selectA)(s(heap), o, f), if 〈o, f〉 ∈ valK,s,β(L) and f
is a reference type field of type δ(f) = A. �

From time to time, we need to talk about which program variables or heap locations are
contained in a RefSet expression. Especially in premises of calculus rules for the flow
modality, we are required to express such propositions in formal syntax. Thus, the follow-
ing two definitions introduce a special semantics for the well-known predicate symbols ∈
and ⊆.

Definition 4.2.2 (RefSet expression element-of relation). For a fixed JavaDL signa-
ture Σ = (T ,�,V,PV,F ,FUnique,P, α, Prg), a RefSet expression R = 〈V,L〉, a program
variable v ∈ PV, an Object term o and a Field term f , v ∈ R and 〈o, f〉 ∈ R are formulae.

v ∈ R and 〈o, f〉 ∈ R evaluate to true in a JavaDL Kripke structure K = (D, δ, I,S, ρ), a
state s ∈ S and a logic variable environment β if and only if v ∈ V and 〈o, f〉 ∈ valK,s,β(L)
for the sets V and valK,s,β(L) respectively. �

Definition 4.2.3 (RefSet expressions subset relation). For two RefSet expressions R1

and R2 is R1 ⊆ R2 a formula.

R1 ⊆ R2 evaluates to true in a JavaDL Kripke structure K = (D, δ, I,S, ρ), a state s ∈ S
and a logic variable environment β if and only if for all v and 〈o, f〉 so that v, 〈o, f〉 ∈ R1

evaluates to true the formulae v ∈ R2 and 〈o, f〉 ∈ R2 evaluate to true. �

The following definition of legal Java Card program fragments, which are used to specify
the programs within the flow modality, is equal to the definition of legal program fragments
in [Wei11, Definition 5.2].

Definition 4.2.4 (Java Card legal program fragment). For a JavaDL signature Σ = (T ,
�,V,PV,F ,FUnique,P, α, Prg) a legal program fragment π is a sequence of Java Card
statements so that extending Prg by the following definition of type C yields a legal Java
Card program according to [GJJ96], with the exception that π may reference members
and types that are not visible from within C and, furthermore, π may contain method-frame

statements. Hereby, a1, . . . , an ∈ PV are program variables and T1, . . . , Tn ∈ T are types.
Furthermore, for a legal program fragment πb and two program variables v, o, the statement
method-frame(result=v,this=o) {πb} is called a method frame. Within a method frame
this references have the same evaluation as o and return statements assign the return
value to v before exiting the method frame.

17



18 4. Flow Modality Calculus

1 class C {

2 static void m(T1 a1, ..., Tn an) {

3 π
4 }

5 }

�

Using the RefSet expression and legal program fragment definitions, we are now able to
define the flow modality syntax.

Definition 4.2.5 (Flow modality syntax). For a JavaDL signature Σ = (T ,�,V,PV,
F ,FUnique,P, α, Prg), a legal program fragment π, two RefSet expressions F and T is
J π | F | T K a formula. �

We are now able to define the set of JavaDL* formulae, which essentially consists of JavaDL
formulae that may contain the just defined flow modality formulae.

We obtain the set of JavaDL* formulae Fma′Σ by extending the set FmaΣ from [Wei11,
Definition 5.3].

Definition 4.2.6 (JavaDL* formula). For a fixed JavaDL signature Σ = (T ,�,V,PV,F ,
FUnique,P, α, Prg), a JavaDL* formula is any formula contained in the set Fma′Σ, which
in turn is defined by the following grammar.

Fma′Σ ::=true | false | p(Term1
Σ, . . . , T erm

n
Σ) | ¬Fma′Σ

| Fma′Σ ∧ Fma′Σ | Fma′Σ ∨ Fma′Σ | Fma′Σ → Fma′Σ | Fma′Σ ↔ Fma′Σ

| ∀Ax;Fma′Σ | ∃Ax;Fma′Σ

| [π]Fma′Σ | 〈π〉Fma′Σ | {UpdΣ}Fma′Σ | J π | F | T K

Here, π is a legal program fragment in the context of Prg, F and T are RefSet expressions.
Furthermore, p ∈ P is a predicate symbol, A ∈ T is a type and x ∈ V is a logic variable. �

We end this section with the definition of the semantics of the flow modality and a proof
that an equivalent JavaDL formula exists. The semantics says that the memory locations
in a RefSet expression T depend at most on the memory locations in another RefSet ex-
pression F . Furthermore, the semantics expresses the noninterference property of secure
programs if the two RefSet expressions are equal.

The flow modality semantics we define here conforms to the prerequisites Scheben and
Schmitt et al. prove the noninterference property compositional for [SSB+13, Theorem 3].
In addition to classic noninterference with respect to the object-sensitive state equivalence
relation defined in Section 4.1, the flow modality semantics requires that objects observable
in the final state are either new or were also observable in the initial state. The composi-
tionality result by Scheben and Schmitt et al. and thus the precise flow modality semantics
are essential to the statement-wise interpretation of the analysed program fragment.

Definition 4.2.7 (Flow modality semantics). For a JavaDL Kripke structure K = (D, δ,
I,S, ρ) and a logic variable assignment β a flow modality formula J π | F | T K evaluates
to true in a state s ∈ S, in symbols (K, s, β) |= J π | F | T K, if and only if for every
state t ∈ S so that

18



4.2. Flow Modality Definition 19

• π terminates when started in both s and t

• s and t agree on F by some partial isomorphism η

the following three conditions hold for the respective unique end states s′ ∈ S and t′ ∈ S,
in symbols 〈s, s′〉 ∈ ρ(π) and 〈t, t′〉 ∈ ρ(π),

• s′ and t′ agree on T by some partial isomorphism η′

• η′ extends η, that is objects observable in both s and s′ are mapped to the same
objects by η and η′, in symbols

∀o ∈ Objs(F ) ∩Objs′(T )(η(o) = η′(o)) (4.1)

• all objects referenced by T in s′ that existed already in s are also referenced by F
in s, in symbols

{o ∈ Objs′(T )|I(selectBoolean)(s(heap), o, I(created)) = tt} ⊆ Objs(F )

Instead of J π | F | T K, we also say that π allows information to flow at most from F to T .

The following theorem (Theorem 1) states that the the flow modality semantics can be
expressed by a JavaDL formula. The proof given here is based on the corresponding results
for the flow predicate semantics defined by Scheben and Schmitt et al. [SSB+13]. In fact,
the flow modality formula consists of two sub-formulae. The first sub-formula expresses
noninterference and the extension condition as already expressed by the aforementioned
flow predicate semantics, whereas the second formula reasons only about the program
execution in the state the formula is evaluated in and expresses the observability condition
of the flow modality semantics, which is given last in Definition 4.2.7.

Theorem 1. For a JavaDL signature Σ = (T ,�,V,PV,F ,FUnique,P, α, Prg), a legal
program fragment π and RefSet expressions F , T , there is a JavaDL formula Φπ,F,T so
that the following holds for every Kripke structure K = (D, δ, I,S, ρ), logic variable assign-
ment β and state s ∈ S.

(K, β, s) |= J π | F | T K⇔ (K, β, s) |= Φπ,F,T

Proof. From [SSB+13, Theorem 1], we obtain a JavaDL formula Φ′π,F,T that is equivalent
to the flow modality semantics without the condition that objects observable in the final
state and existent in the initial state are also observable in the initial state (observability).
In fact, the flow modality semantics would be equivalent to the flow predicate semantics
defined in [SSB+13, Definition 4] without that condition. The formula Φ′π,F,T has the
following pattern. Since Scheben and Schmitt et al. specify the low memory locations as
sequences of JavaDL terms, which they call observation expressions, we implicitly trans-
form our finite sets of program variable identifiers and heap locations to JavaDL sequences
in the following formulae.

Φ′π,F,T ≡ ∀Heap ht, hs′ , ht′ ∀T ot ∀Tr rs′ , rt′ ∀ . . . , vs, vs′ , vt′ , . . .
Agreepre(F ) ∧ 〈π〉{save s′} ∧ {in t}〈π〉{save t′} −→ (Agreepost(T ) ∧ Ext)

(4.2)

Formula 4.2 is evaluated in state s and models a second state t which is low equivalent to s
with respect to the RefSet expression F . The two diamond modalities on the left-hand side
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20 4. Flow Modality Calculus

of the implication determine the final states s′ and t′ of the two independent executions
of the program fragment π with the initial states s and t respectively.

The update pattern {in . . .} is resolved to a succession of updates that establish the
specified state by initialising the heap, the current object reference this and the local
program variables. The unknown heap ht initialises the special program variable heap in t
and there is no initialiser for the heap in s since the program variable for the heap is
implicitly given by the state s the formula is evaluated in. The same applies to the initial
values ot and vt assigned to the special program variable this and the local variables v in t.
The formula quantifies over the values of program variables v occurring in the program
fragment π without being declared. The corresponding update pattern {save . . .} resolves
to a succession of equalities that ensure that the evaluations of the logic variables hs′ , ht′ ,
es′ , et′ , rs′ , rt′ , vs′ , vt′ conform to the values of the heap, the exception state, a return

statement and the local variables in the specified final states s′ and t′ respectively. The
special program variables heap and exc are evaluated in order to obtain the heap and
exception states respectively. Moreover, the return value is chosen randomly unless the
analysed program fragment is a method. In that case, rs′ and rt′ are ensured to conform
to the evaluation of the expression argument passed to the return statement which was
executed last. Apart from quantification, the logic variable correspondences are mainly
used for reasoning about states a formula is not evaluated in and hence in the formulae
inserted for the update patterns {in . . .}.

The formula Agreepre(F ) abbreviates a formula that models the agreement relation be-
tween s and t with respect to F . If Agreepre(F ) evaluates to true in state s, then t is low
equivalent to s and agrees with s on F by id. That additional constraint on the presuppo-
sition in the agreement definition that any partial isomorphism exists is proved equivalent
by Scheben and Schmitt et al.. More precisely, a program transforms low equivalent states
into low equivalent states if and only if it transforms states that agree on the set of low
memory locations by id into low equivalent states [SSB+13, Lemma 5]. The abbrevia-
tion Agreepost(T ) stands for a formula that implies the agreement of s′ and t′ on T by the
uniquely determined partial isomorphism. Lastly, the abbreviation Ext is resolved to a
formula that implies that the partial isomorphism that maps the objects observable in s′

to the objects observable in t′ extends id, which is the agreement isomorphism between
the object spaces observable in the initial states s and t respectively. Both Agreepre(F )
and Agreepost(T ) evaluate the heap and the local program variables in both s and t as well
as s′ and t′ respectively, and the substituted formulae can refer to those evaluations because
of the quantified logic variables and the update patterns {save s′} as well as {save t′}.

Based on this pattern, we now define the formula Φπ,F,T , which we will prove equivalent
to the flow modality semantics afterwards.

Φπ,F,T ≡ ∀Heap ht, hs′ , ht′ ∀T ot ∀Tr rs′ , rt′ ∀ . . . , vt, vs′ , vt′ , . . .
Agreepre(F ) ∧ 〈π〉{save s′} ∧ {in t}〈π〉{save t′} −→ (Agreepost(T ) ∧ Ext ∧Obs(F, T ))

In the definition of Φπ,F,T , we demand the observability condition Obs in the post-state
in addition to the agreement and extension conditions Agreepost(T ) and Ext respectively.
Obs (Formula 4.3) is an abbreviation for the JavaDL formulation of the additional condition
that occurs in the flow modality semantics but does not occur in the flow predicate seman-
tics. Because of space limitations, we write hs′(o, f) and heap(o, f) instead of select(hs′ ,
o, f) and select(heap, o, f) respectively in the definition of Obs.
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Obs(F, T ) ≡∧
v∈T

instanceofObject(vs′) ∧ heap(vs′ , created) = True −→ Obs′(F, vs′)

∧
∧

〈o,f〉∈T

instanceofObject(hs′(o, f)) ∧ heap(hs′(o, f), created) = True −→ Obs′(F, hs′(o, f))

(4.3)

Obs′(F, r) ≡
∨
v∈F

v = r ∨
∨

〈o,f〉∈F

heap(o, f) = r

Firstly, we assume (K, β, s) |= J π | F | T K and show (K, β, s) |= Φπ,F,T . Therefore, we
instantiate the universal quantifiers with arbitrary but fixed domain values and assume the
left-hand side of the implication in Φπ,F,T . Then, the presuppositions of the flow modality
semantics are fulfilled, particularly that the initial states agree on F by some partial
isomorphism (id in this case) and that both executions of π with initial states s and its
low-equivalent companion t, which is determined by the quantifier instantiations ht, ot, vt
terminate. Furthermore, the flow modality semantics dictate that the final states s′ and t′

agree on T by another partial isomorphism that extends the agreement isomorphism of
the initial states and that all objects observable in the final state are either not existent or
also observable in the initial state. The final state agreement and isomorphism extension
make the sub-formulae Agreepost and Ext true.

It remains to be shown that the third implication of the flow modality semantics makes the
sub-formula Obs(F, T ) true. Therefore, we fix an arbitrary object ∇ ∈ DObj observable
through T in s′ that existed in s already, that is there exists a program variable v ∈ T or
a location 〈o, f〉 ∈ valK,β,t(T ) so that t(v) = ∇ or I(select)(t(heap), o, f) = ∇ respectively
and I(select)(s(heap),∇, I(created)) = tt. Since the set of objects observable in the final
state and existent in the initial state is a subset of the objects observable in the initial state,
there exists a program variable v’ ∈ F or a location 〈o′, f ′〉 ∈ valK,β,s(F ) so that t(v’) = ∇
or I(select)(s(heap), o′, f ′) = ∇ respectively. We conclude that for any such object ∇ the
right-hand side Obs′(F,∇) of the implication in Obs(F, T ) is true. Since ∇ was arbitrarily
chosen, Obs(F, T ) evaluates to true and Φπ,F,T evaluates to true in state s.

Secondly, we assume (K, β, s) |= Φπ,F,T and show (K, β, s) |= J π | F | T K. Scheben
and Schmitt et al. showed that it is equivalent to show noninterference for states that
agree by id on F and to show noninterference for states that agree on F by any partial
isomorphism, we actually assume a transformation of Φπ,F,T that substitutes Agreepre(F )
with Agreetype&prim(F )∧Agreeobj(F ) in Φπ,F,T . The first operand ensures that the unique
partial isomorphism preserves types as well as primitive type values and the second operand
ensures that it is an injection between object spaces. We fix an arbitrary state t that
agrees with s on F so that executions of π with either s or t as initial state terminate. The
agreement assumption makes Agreetype&prim(F ) ∧ Agreeobj(F ) true and the termination
assumptions make the diamond modality formulae true for a set of instantiations of the
universal quantifiers. Since Φπ,F,T evaluates to true in s and the left-hand side of the
implication evaluates to true, the right-hand side of the implication must be true. Thus,
Agreepost(T ), Ext and Obs(F, T ) are all true and we know that these imply that s′ and t′

agree on T by a partial isomorphism that extends the isomorphism by which s and t agree
on F .

In order to conclude (K, β, s) |= J π | F | T K, we must show that the set of objects
observable in s′ and existent in s is a subset of Objs(F ). Therefore, we fix an arbitrary
object ∇ ∈ Objs′(T ) which satisfies I(select)(s(heap),∇, I(created)) = tt. Because ∇ is

21



22 4. Flow Modality Calculus

observable through T in s′, there is a program variable v ∈ T or a heap location 〈o, f〉 ∈
valK,β,s′(T ) that evaluates to ∇ in s′ and since Obs(F, T ) is true, Obs′(F,∇) is true and
there exists another program variable v’ ∈ F or heap location 〈o′, f ′〉 ∈ valK,β,s(F ) that
evaluates to ∇ in s. Hence, we have assured that ∇ is observable both through T in s′ and
through F in s. Since ∇ was arbitrarily chosen, we proved the subset relation between the
objects observable in the final state and the objects observable in the initial state. Thus,
the semantics of the flow modality in state s is satisfied and (K, β, s) |= J π | F | T K is
indeed a true proposition.

Finally, we proved that for every flow modality formula there is a JavaDL formula so that
for a given triple consisting of a Kripke structure, a logic variable assignment and a state
either both are true or both are false.
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4.3. Flow Modality Rule Set

In this section, we propose a set of inference rules for the JavaDL* calculus (Defini-
tion 4.3.2) and also give soundness proofs. The set of rules proposed is an extension
of the JavaDL rule set that includes rules for the flow modality (Definition 4.2.5). Most of
the JavaDL* rules are listed in the appendix of this thesis. However, the rules defined in
this section are core rules that illustrate the recurrent principles of the JavaDL extension.
In addition, correctness proofs are given for those rules, that is it is proved that they imply
the noninterference criterion (Definition 4.2.7) for the analysed program code if a proof
exists for each premise.

Before we define the new rules, we recall the definitions of sequents and rules as well as
the notion of a proof as they are already used in the JavaDL logic.

A JavaDL* sequent is a JavaDL sequent [Bec00, p. 14] with the exception that antecedent
and succedent are finite sets of JavaDL* formulae.

Definition 4.3.1 (JavaDL* sequent). A JavaDL* sequent is a pair 〈Γ,∆〉 ∈ Seq′Σ where
the set of all sequents is Seq′Σ = P(Fma′Σ)× P(Fma′Σ).

However, we will use the alternative notation Γ ⇒ ∆ for sequents throughout the text.
Moreover, we will write Γ, γ ⇒ ∆, δ instead of Γ ∪ {γ} ⇒ ∆ ∪ {δ} where γ and δ are
JavaDL* formulae.

The semantics of a JavaDL* sequent Γ ⇒ ∆ is the same as for a JavaDL sequent and
defined for a JavaDL Kripke structure K = (D, δ, I,S, ρ), a program state s ∈ S and a
logic variable assignment β by the evaluation of the JavaDL* formula

∧
Γ −→

∨
∆ with

respect to K, s and β. �

A JavaDL* rule is a JavaDL rule [Bec00, p. 16] except that both the premises and the
conclusion are JavaDL* sequents.

Definition 4.3.2 (JavaDL* rule). A JavaDL* rule is a binary relation r ⊆ Seq′∗Σ × Seq′Σ.

The semantics of a JavaDL* rule is that if all premises are valid then the conclusion is
valid. �

A JavaDL* proof is a JavaDL proof [Bec00, p. 16] with the exception that the nodes are
labelled with JavaDL* sequents and the edges are labelled with either JavaDL rules or one
of the schematic rules defined either in Section 4.3, Section 4.4 or in Appendix A of this
thesis.

Since the JavaDL rules and the rules defined in this thesis are sound, we do not separately
define proof trees but only proofs, which are closed proof trees that only contain edges
labelled with sound rules.

Definition 4.3.3 (JavaDL* proof). A JavaDL* proof is a finite and directed tree where

• Inner nodes are labelled with JavaDL* sequents

• Leaf nodes are labelled with the symbol ∗

• All edges from a parent node to its child nodes are labelled with the same JavaDL*
rule

• Each parent node sequent is derivable from its child node sequents using the rule the
edges from the parent to the children are labelled with or the only child node is a
leaf node and the rule has no premises
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�

Almost all flow modality rules are very similar to the respective rules defined in [Wei11,
Figure 5.9] for the JavaDL modalities box ([·]) and diamond (〈·〉). Each rule definition
applies to a specific Java Card syntax element and there is also a rule for the empty
modality.

The intuition behind the rules proposed here is that they synchronously execute the pro-
gram fragment within the modality in two states that assign equal values to a subset of
memory locations (Definition 4.1.2), and determine the set of agreed on memory locations
in the final execution states.

In the following definitions, v and c are primitive type program variables, r and s are
reference type program variables, f is a field and C is a class type. Moreover, π1, π2 and π
are Java Card program fragments (Definition 4.2.4) and µ is an update [Bec00]. There are
also two Java Card syntax placeholders θ and ρ used to refer to Java Card block head-
ers (like try) and the remainder program code respectively. Moreover, it is assumed that
the program fragments including those in the modalities contain no method calls, only
instance allocation (alloc()) calls, no for-loops, no declare and assign statements, only a
single declaration per statement, no operate and assign statement (like +=), only simple
conditional expressions and no field accesses in complex expressions. All those normali-
sations can be obtained by unfolding method and constructor calls as well as assigning
complex conditional expressions and field accesses to temporary program variables and
replacing their original occurrences with the freshly declared program variables.

We also introduce some implicit assumptions of the ensuing soundness proofs. Let K = (D,
δ, I,S, ρ) be an arbitrary but fixed JavaDL Kripke structure. Throughout this section,
s ∈ S and t ∈ S denote low equivalent program states and the formulae are always eval-
uated in s. However, this is never written out. Concerning the concrete low equivalence,
we assume the equivalent variant of the flow modality semantics where the initial states
in the security model are assumed to agree by id on the low memory locations [SSB+13,
Lemma 5]. Often, we prove a stronger version of noninterference (namely flow∗∗(·, ·, ·, ·))
which is defined by Scheben and Schmitt et al. [SSB+13, Definition 6]. For a program
fragment π, two RefSet expressions F , T and a set of objects O, flow∗∗(π, F, T,O) implies
the semantics of J π | F | T K [SSB+13, Lemma 8]. If noninterference holds in the stronger
semantics, the soundness proofs get simpler because the partial isomorphism between the
final states in the stronger semantics is only defined on the newly created objects. The
additional fourth predicate argument not present in the flow modality gives exactly the
set of objects that exist in the final state but did not exist in the initial program state.

The first three rules handle assignments, in particular assignments of local variables, object
fields and array elements. The latter two types of assignments update the heap while the
former type updates only the state and does not alter the heap. Each rule transforms
assignments into JavaDL updates of the heap or the assigned program variables.

Definition 4.3.4 (assignLocal*). The program fragments handled by the assignLo-
cal* rule are assignments of complex expressions α to program variables v.

Γ⇒ ∆, vars(α) ⊆ F Γ⇒ ∆, {µ}{v := α}J θρ | F ∪ {v} | T K
Γ⇒ ∆, {µ}J θ v =α; ρ | F | T K

�

Proof. Firstly, we conclude valK,s,β(α) = valK,t,β(α) from the premise vars(α) ⊆ F , since
for every variable x that occurs in α we have x ∈ F and thus s(x) = t(x). Each final
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1 r0.f = 0;

2 r1.f = 0;

3 r = s ? r0 : r1;

4 r.f = 1;

5 v = r0.f;

Listing 4.3: Java Card program fragment that leaks the evaluation of s through v

execution state s′ and t′ is determined by the state update introduced by the operational
Java Card semantics of the assignment statement:

s′ = s[v 7→ valK,s,β(α)]

t′ = t[v 7→ valK,t,β(α)]

Together with the equality of the evaluation of the expression α in the two initial states s
and t, we conclude flow∗∗(v = α;, F, F ∪ {v}, ∅), which implies J v = α; | F | F ∪
{v} K [SSB+13, Lemma 8]. From this and the second rule premise J θρ | F ∪ {v} | T K we
conclude J θ v =α; ρ | F | T K by the compositionality theorem [SSB+13, Theorem 3].

Field assignments result in updates of the special program variable heap at an index, which
is similar to the index-based access of arrays. In fact, JavaDL models the Java heap using
an array theory [Wei11, Section 4.2.3]. This is part of the reason why the reference to a
heap object (“the index”) may be illegal, which is exactly the case if the reference is the
special reference null. When null is dereferenced the Java Virtual Machine throws an
exception without altering the heap. The rule handling field assignments must, therefore,
take an alternative execution path into consideration. Since the JavaDL* calculus depends
on the fact that the two executions observed in the noninterference security model execute
the same statements, the assignment rule can only be applied if either both run into the
exceptional state or none does. That is the first reason why for the first rule premise the
reference variable must be proved among the low memory locations. The second reason
comes from the possibility of an attack if the assignment updates different heap objects
in each state. Consider the example program fragment shown in Listing 4.3 and the low
memory location specification R = {v}, there an attacker learns that s is assigned true if v
evaluates to 1 and that false is assigned if the evaluation of v is 0. However, if the rule for
field assignments did not presuppose that r was a low memory location, then the calculus
would simply infer that the objects r could only refer to heap locations with agreed on
evaluations and the program fragment would be verified secure.

Definition 4.3.5 (assignField*). The program fragments handled by the assignField*
rule are assignments of program variables v to fields f .

Γ⇒ ∆, r ∈ F Γ⇒ ∆, v ∈ F
Γ, {µ}(r 6= null)⇒ ∆, {µ}{heap := store(heap, r, f, v)}J θρ | F ∪ {{µ}〈r, f〉} | T K

Γ, {µ}(r = null)⇒ ∆, {µ}J θ throw new NullPointerException(); ρ | F | T K
Γ⇒ ∆, {µ}J θ r.f = v; ρ | F | T K

�

Proof. Again, we assume the initial states s and t to agree on F by id. Furthermore, from
the first premise we can assume that r is included in F and, hence, we consider the two
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cases separately where either both states assign null to r (s(r) = null = t(r)) or none
does (s(r) 6= null 6= t(r)).

In the first case, we have s(r) = null = t(r), both states s and t are left unaltered by the
Java semantics and the final states are determined by the program fragment that throws
an exception instead of carrying out the assignment.

θ throw new NullPointerException(); ρ

For the altered program fragment we conclude the rule conclusion from the second premise.

J θ throw new NullPointerException(); ρ | F | T K

In the second proof case, we have s(r) 6= null 6= t(r) and also s(r) = t(r) from the agree-
ment assumption. Each state is transformed into its successive state, s′ and t′ respectively,
by the execution of the assignment statement (r.f = v;). The ensuing states are given by
the following two equations.

s′ = s[heap 7→ I(store)(s(heap), s(r), I(f), s(v))]

t′ = t[heap 7→ I(store)(t(heap), t(r), I(f), t(v))]

Since v ∈ F we have s(v) = t(v) and we can conclude the equality of location evaluations.

valK,s,β(select(heap, r, f)) = valK,t,β(select(heap, r, f))

It follows that s′ and t′ are low equivalent with respect to F ∪〈s(r), f〉. The final proof step
infers the conclusion J θ r.f = v; ρ | F | T K again by application of the compositionality
theorem to the propositions J r.f = v; | F | F ∪ 〈s(r), f〉 K and J θρ | F ∪ 〈s(r), f〉 | T K.
The first proposition holds because of the low equivalence of s′ and t′, the second holds
because of the third rule premise.

Since array field accesses are modelled in JavaDL using a special Field domain value
returned by the function arr(·) for an index expression, they could also be handled by
the assignLocalField rule in JavaDL*. However, aside from a NullPointerException,
an array field access can also trigger an ArrayIndexOutOfBoundsException. Moreover, there
is a separate rule for handling array length expressions, which are immutable and thus not
translated into field accesses but using a special function symbol length.

Definition 4.3.6 (assignArray*). The program fragments handled by the assignAr-
ray* rule are assignments of program variables v to array elements a[i].

Γ⇒ ∆, a ∈ F Γ⇒ ∆, i ∈ F Γ⇒ ∆, v ∈ F
Γ, {µ}(a = null)⇒ ∆, {µ}J θ throw new NullPointerException(); ρ | F | T K
Γ, {µ}(a 6= null), {µ}(0 ≤ i < length(a))
⇒ ∆, {µ}{heap := store(heap, a, arr(i), v)}J θρ | F ∪ {{µ}〈a, arr(i)〉} | T K
Γ, {µ}(a 6= null), {µ}(i < 0 ∨ i ≥ length(a))
⇒ ∆, {µ}J θ throw new ArrayIndexOutOfBoundsException(); ρ | F | T K

Γ⇒ ∆, {µ}J θ a[i] = v; ρ | F | T K

�
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Proof. We distinguish the cases where either no exception, a NullPointerException or
an ArrayIndexOutOfBoundsException is thrown by the Java Virtual Machine. If one nonin-
terference execution path throws an exception, both do because the first premise requires
the array reference to be among the low locations and the definition of agreement preserves
both null references and array lengths (Definition 4.1.2).

Here, we only prove the case in which no exception is thrown and the state is actually
altered. The proofs of the other two cases are analogous to the proof of the first case of
the field assignment rule.

The assignment statement a[i] = v now transforms the initial states s and t into s′ and t′

respectively, which are determined as follows.

s′ = s[heap 7→ I(store)(s(heap), s(a), I(arr)(s(i)), s(v))]

t′ = t[heap 7→ I(store)(t(heap), t(a), I(arr)(t(i)), t(v))]

The premises a ∈ F , i ∈ F and v ∈ F imply s(a) = t(a), s(i) = t(i) and s(v) = t(v).
Moreover, since the heap is only updated at the location a[i] and F is at most extended
by a[i], it is sufficient to show I(select)(s(heap), s(a), I(arr)(s(i))) = I(select)(t(heap),
t(a), I(arr)(t(i))) in order to conclude flow∗∗(a[i] = v;, F, F ∪ 〈s(a), arr(s(i))〉,). The
former is already implied by the premises.

Lastly, with the help of the compositionality theorem, we conclude J θ a[i] = v; ρ | F | T K
from J a[i] = v; | F | F ∪ 〈s(a), arr(s(i))〉 K and J θρ | F ∪ 〈s(a), arr(s(i))〉 | T K. In that
case, the presuppositions of the compositionality theorem are implied by flow∗∗(a[i] = v;,
F, F ∪ 〈s(a), arr(s(i))〉, ∅) and the fourth rule premise respectively.

Above, we presented rules that handle the different types of memory locations that can be
assigned values. In the remainder, we discuss rules for object creation and control flow as
well as rules for closing flow modality proofs.

Definition 4.3.7 (createObject*). The program fragments handled by the createOb-
ject* rule are assignments of new C type object references to program variables v.

Γ, o 6= null, exactInstanceC(o),
{µ}(wellformed(heap)→ selectBoolean(heap, o, created) = False)
⇒ ∆, {µ}{heap := create(heap, o)}{v := o}J θρ | F ∪ {v} | T K

Γ⇒ ∆, {µ}J θ v = C.alloc(); ρ | F | T K

�

Proof. Firstly, we prove flow∗∗(r = C.alloc();, F, F ∪ {r}, {r}). Therefore, we assume
the agreement of the initial states s and t on F by id. We state that the objects os
and ot referenced by v in the successive states s′ and t′ did not exist in s and t. Further-
more, s′ and t′ are already determined by the assignment of the heap references os and ot
respectively to v.

s′ = s[v 7→ os]

t′ = t[v 7→ ot]
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28 4. Flow Modality Calculus

The objects s′(v) and t′(v) have the same type C so that we are able to define the partial
isomorphism η from the object space referenced by {v} in s′ to the object space referenced
by {v} in t′ through the mapping η(s′(v)) = t′(v). If the fresh objects in both states share
even the same reference value, then s′ and t′ agree on F ∪{v} by id. Indeed, id is a partial
isomorphism in our case, since the new object could not be referenced from F in the initial
states and we assumed id to be a partial isomorphism between the object spaces referenced
by F in s and t.

Secondly and lastly, since we know that flow∗∗(r = C.alloc();, F, F ∪{v}, {v}) holds in s
we also know that J r = C.alloc(); | F | F ∪{v} K holds in s and together with the second
premise J θρ | F∪{v} | T K we can conclude the rule conclusion J θ r = C.alloc(); ρ | F | T K
by application of the compositionality theorem.

The next two rules handle two essential programming language constructs for execution
path branching and recursion. The JavaDL* rules for conditionals and loops are respon-
sible for ensuring that no illicit implicit information flow occurs.

Our assignment rules are never able to establish that an assigned value does not leak
information although secret memory locations occur syntactically. Similarly, our control
flow rules are never able to establish that the execution of an alternative branch does not
leak information although the conditional evaluates a secret memory location. However, if
the condition is a low program variable, then the branch choice is determined solely by the
attacker and it will never leak confidential information. In that case, a security analysis
can verify noninterference for the possible branches independently by an application of the
conditional* rule.

Definition 4.3.8 (conditional*). The program fragments handled by the conditional*
rule are conditionals.

Γ⇒ ∆, c ∈ F Γ, {µ}(c = True)⇒ ∆, {µ}J θ πt ρ | F | T K
Γ, {µ}(c = False)⇒ ∆, {µ}J θ πe ρ | F | T K

Γ⇒ ∆, {µ}J θ if (c) {πt} else {πe} ρ | F | T K

�

Proof. We fix two arbitrary initial states s and t that agree on F by id. Since the evaluation
of the condition c is the same in both states, as implied by the first rule premise (c ∈ F ),
both the execution of the conditional started in s and the one started in t choose the same
branch. As a consequence, we can show the agreement of the final states s′ and t′ on T
independently for each branch.

If s(c) = tt = t(c) holds and the then branch is chosen, then the final states s′ and t′ are
both determined by the execution of the program fragment θ πt ρ. From flow(θ πt ρ, F, T )
we obtain a partial isomorphism η′ by which s′ and t′ agree on T and that is compatible
with id in s. The latter is the case since the initial states are not altered by the condition
evaluation and the branch execution begins in s and t respectively. The satisfaction of the
flow predicate is implied by J θ πt ρ | F | T K, which we infer from the first rule premise and
the fact that c = True holds in s. Moreover, the first premise, by definition, also implies
the observability condition {o ∈ Objs′(T )|I(selectBoolean)(s(heap), o, I(created)) = tt} ⊆
Objs(F ) and we finally conclude J θ if (c) {πt} else {πe} ρ | F | T K for the case where
the then branch of the conditional is executed.

In the second case we have to consider, s(c) = ff = t(c) holds and the final states s′ and t′

are both determined by the execution of the else branch (θ πe ρ). Once more, the third
rule premise implies the conclusion for this case (J θ if (c) {πt} else {πe} ρ | F | T K).
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In any case and for any state s, the final states agree on T by some partial isomorphism
that extends id, by which the initial states are assumed to agree on F , and the observability
condition is satisfied so that the conditional* rule is sound.

When we are concerned with implicit information flow, the loop semantics does not differ
much from the conditional semantics. That is also the reason why loops are often iteratively
transformed into a succession of conditionals in order to reason about them. However, the
number of loop iterations is not constant in general and, therefore, each loop iteration
must usually ensure the condition we want to assume for the possible states directly after
the execution of the loop statement. In our analysis such a condition is the set of low
memory locations. Since the same condition term is evaluated after each loop iteration, a
noninterference proof for a loop statement in the JavaDL* calculus requires that the loop
condition is not only a low program variable in the initial state but also after each loop
iteration. If that is indeed the case and noninterference can be proved for each execution
of the loop body, then the loop* rule can be applied.

Definition 4.3.9 (loop*). The program fragments handled by the loop* rule are loops.

Γ⇒ ∆, {µ}(I ⊆ F )
Γ⇒ ∆, {µ}(c ∈ I) Γ⇒ ∆, {µ}Inv Γ, {µ}V(c = True ∧ Inv)⇒ ∆, {µ}V[π]Inv

Γ, {µ}V(c = True ∧ Inv)⇒ ∆, {µ}VJ π | I | I K
Γ, {µ}V(c = False ∧ Inv)⇒ ∆, {µ}VJ θρ | I | T K

Γ⇒ ∆, {µ}J θ while (c) {π} ρ | F | T K

Here, V is an update that erases all information about the program variables and heap
locations that may be altered by an execution of the loop body π. Furthermore, π must
not contain throw, break, continue and return statements. �

Proof. For a fixed state s we can assume

s |= I ⊆ F (4.4)

s |= c ∈ I (4.5)

s |= Inv (4.6)

sV |= c = True ∧ Inv −→ [π]Inv (4.7)

sV |= c = True ∧ Inv −→ J π | I | I K (4.8)

sV |= c = False ∧ Inv −→ J θρ | I | T K (4.9)

since we can assume Γ in order to prove the rule conclusion. Here, sV is obtained by
assigning random and thus unknown well-typed values to variables and heap locations
that may be modified by statements occurring in the loop body π, which may be a too
weak assumption. We prove

s |= J θ while (c) {π} ρ | F | T K (4.10)

Therefore, we fix another arbitrary state t which is low equivalent to s with respect to F .
As clarified in the assumptions of this thesis, we assume the existence of final states s′

and t′ so that there must be finite numbers of loop iterations ns and nt respectively.

29



30 4. Flow Modality Calculus

First of all, we prove that the numbers of loop iterations are equal (ns = nt) as well as that
the program states after the completion of all iterations (sns and tnt) are low equivalent, by
a simple induction over ns. Therefore, consider the case ns = 0 first, then s(c) = ff holds
and because of c ∈ I ⊆ F (4.5 and 4.4) we also have t(c) = ff . Moreover, nt = 0 = ns
holds as well as s0 = s and t0 = t, which we assumed to be low equivalent. In order
to prove the induction step, we assume for ns = i that nt = ns holds as well as that
sns and tns are low equivalent. If ns = i + 1 holds, then si(c) = tt and si+1(c) = ff
also hold as well as ti(c) = tt because of the low equivalence of si and ti. Moreover,
because of the fifth rule premise (4.8) and the compositionality theorem, we know that
si+1 and ti+1 are again low equivalent and that ti+1(c) = si+1(c) = ff must hold. From
the fact that the loop condition evaluates to false in both si+1 and ti+1 for the first time, we
conclude ns = nt = i+ 1 in addition to the low equivalence of si+1 and ti+1. By induction
we proved that the states after the loop completion are low equivalent with respect to I.
However, we are only able to repeatedly apply rule premise 4.8 because we assume that
the loop body π does not contain throw, break, continue and return statements.

Second of all, we prove s′ and t′ low equivalent with respect to T . From the previous result
we obtain the low equivalence of sns and tns with respect to I and the equal number of
loop iterations (ns = nt). Thus, the executions of the program fragment started in s and t
reside in low equivalent states with respect to I directly after the execution of the last
loop iteration. The last rule premise (4.9) ensures that when the rest of the program is
executed beginning in low equivalent states with respect to I, the executions end in low
equivalent states with respect to T . Again, an application of the compositionality theorem
to s |= J πns | I | I K and sns |= J θρ | I | T K gives us s |= J θ while (c) {π} ρ | I | T K.
The previous prove step used that loop body is executed ns times and that the final
states after the executions of πns and while (c) {π} coincide. However, the from RefSet
expression does not yet match F and the soundness proof is not completed until a last
application of the compositionality theorem in order to conclude our proof goal (4.10)
from s |= J | F | I K and s |= J θ while (c) {π} ρ | I | T K. The former is trivially true
and the latter has just been proven.

When we applied the rule premises 4.8 and 4.9 during the proof above, we neither gave a
proof for Inv nor argued why the program states satisfied the constraints dictated by sV .
That Inv holds before and after each loop iteration is proved as for the usual JavaDL loop
invariant rule using the rule premises 4.6 and 4.7. Lastly, the premises can be applied
in each proof step because, by definition of V, only the memory locations contained in V
could have been altered since execution had left the initial program state s, and sV does
not make any assumptions about the assignments of those memory locations.

For the handling of unstructured control flow JavaDL provides another special program
variable, which is called exc. Again, in order to simplify the rule definitions the calculus
requires that throw statements occur in the analysed program code only with program
variable arguments. If the program variable that refers to the exception object is among
the low memory locations, the JavaDL* calculus handles the unstructured control flow,
just like the JavaDL calculus, by removing statements that are not executed from the
surrounding program code and choosing the matching catch block. The proof idea is the
same as for the conditional* rule.

Definition 4.3.10 (throw*). The program fragments handled by the throw* rule
are throw statements.

In the schematic rule, we denote by ρ1 the longest substring that does not contain a catch

or finally block on the same code level. That means that ρ2 possibly does not contain
any further statements.
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Γ⇒ ∆, r ∈ F Γ⇒ ∆, {µ}{exc := r}J θ ρ2 | F ∪ {exc} | T K
Γ⇒ ∆, {µ}J θ throw r; ρ1ρ2 | F | T K

�

Proof. Let s be an arbitrary program state the flow modality is evaluated in and t another
arbitrary state that agrees with s on F by id.

We conclude J θ throw r; ρ1ρ2 | F | T K from J throw r; | F | F ∪ {exc} K and J θ ρ2 | F ∪
{exc} | T K by the compositionality theorem. Executing θρ2 in the final program state after
the execution of throw r indeed establishes the final state of an execution of θ throw r; ρ1ρ2

since in an exceptional state the Java Virtual Machine continues with the execution of
a catch block or terminates the program execution.

While J θ ρ2 | F ∪{exc} | T K is obtained directly from the second rule premise, in order to
obtain J throw r; | F | F ∪ {exc} K we show flow∗∗(throw r;, F, F ∪ {exc}, ∅) by arguing
that exc is a low memory location. The latter is sufficient because the Java semantics
only advance the program counter without altering the states s and t, in particular no
objects are created. Eventually, the first rule premise proves immediately that exc is a low
memory location with respect to the partial isomorphism id.

Definition 4.3.11 (catch*). The program fragments handled by the catch* rule are
try catch statements.

In the schematic rule, we denote by ρ1 all remaining catch blocks that belong to the
try catch statement the rule is applied to. Consequently, ρ

try
1 is equal to πf if ρ1 is empty

and otherwise equals try { } ρ1 finally {πf}.

Γ⇒ ∆, exc ∈ F
Γ, {µ}instanceofE(exc)⇒ ∆, {µ}{e := exc}{exc := null}J θ πf πc ρ2 | F | T K

Γ, {µ}¬instanceofE(exc)⇒ ∆, {µ}J θρtry1 ρ2 | F | T K
Γ⇒ ∆, {µ}J θ try { } catch (E e) {πc} ρ1 finally {πf} ρ2 | F | T K

�

Proof. Let s be an arbitrary but fixed state. We show the rule conclusion for this state.

s |= J θ try { } catch (E e) {πc} ρ1 finally {πf} ρ2 | F | T K

Therefore, let t be an arbitrary but fixed state that agrees with s on F by id.

The first rule premise (exc ∈ F ) ensures that either both s and t are in an exceptional state
or none is. As a result, we distinguish those two cases in order to prove the agreement of the
final states s′ and t′ after the execution of θ try { } catch (E e) {πc} ρ1 finally {πf} ρ2

on T .

If s(exc) = null = t(exc), then no execution state is exceptional and the execution con-
tinues after the try catch statement with the finally block and ρ2. However, this case is
treated in a more general manner by the rule since JavaDL provides exc whose dynamic
type is compared to the catch block condition types (instanceofE(exc)). Those checks
will never succeed, as long as exc is the null reference, and the states are not altered by
those dynamic type checks. Therefore, the third rule premise (J θρtry1 ρ2 | F | T K) implies
that information flows between s and s′ at most from F to T .
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On the other hand, if the execution states are both exceptional (s(exc) = t(exc) 6= null),
then either the same catch block will be executed in both states or no catch condition
matches the type of exc. In the latter case, the rule conclusion is proved from the third rule
premise in the same way as it was proved in the first case where there is no exception, with
the only exception that the execution state is still exceptional in this case. If the catch

condition of the catch block this rule is applied to matches the dynamic type of exc, then
instanceofE(exc) holds in both states and the second rule premise implies the noninter-
ference criterion for the given program fragment, since the final states are determined by
the execution of θ πf πc ρ2 and the execution states are no more exceptional (exc = null).
However, if there is a matching catch condition but ¬instanceofE(exc) holds, then the
final execution states will be the same if we remove the catch block catch (E e) {πc} from
the try catch statement and the third rule premise implies the noninterference criterion
for θ try { } catch (E e) {πc} ρ1 finally {πf} ρ2.

The next rule is applied to flow modalities where the program fragment is the empty
program. An application of the emptyModality* rule rewrites the flow modality to a
subset predicate of the set of low memory locations determined by an attacker and the set
of low memory locations observed by the attacker. Then, a proof that the subset predicate
is satisfied implies that the attacker only learns information that it already knew. Usually,
the contents of the first set is established through symbolic execution of a larger program
and the reduction of an instance of the noninterference security model to a subset relation
ends with an application of the emptyModality* rule. The JavaDL* rules for inferring
the validity of the subset predicate formula are listed in the appendix of this thesis.

Definition 4.3.12 (emptyModality*). The emptyModality* rule erases a flow modal-
ity from the sequent.

Γ⇒ ∆, {µ}(T ⊆ F )

Γ⇒ ∆, {µ}J | F | T K

�

Proof. We show flow∗∗(, F, T, ∅), which implies J | F | T K [SSB+13, Lemma 8]. Therefore,
we assume the arbitrary initial states s and t to agree on F by id. Any two states, in
particular s and t, agree on the empty set (as given in the flow predicate as the set of
new object instantiations) by id so that we must show their agreement on T by id without
further assumptions.

Consider any program variable v ∈ T . Since the program fragment is empty, each start and
end state of both executions s s′ and t t′ are the same. From the rule premise T ⊆ F
we obtain v ∈ F and, hence, the succession of equalities s′(v) = s(v) = t(v) = t′(v).

The same applies to any heap location 〈o, f〉 ∈ T ⊆ F . Observe that the heaps in s
and t are not necessarily equal but they assign the same value (agreement by id) to
the location 〈o, f〉 so that select(s′(heap), o, f) = select(s(heap), o, f) = select(t(heap), o,
f) = select(t′(heap), o, f).

Conclusively, by restricting id to the object space referenced by T in s′ we obtain the
intended result that id is a partial isomorphism with respect to T in the final program
state s′.

We now present the last rule in this section. The Fallback rule translates a flow modality
formula into a JavaDL formula by self-composition, which is the standard theorem proving
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approach to information flow analysis []. The rule is essential to the practicability of the
JavaDL* calculus since it reduces a flow modality formula to a formulation of its precise
semantics and, thus, compensates for the inapplicability of the syntax-oriented rules when
functional reasoning is necessary. In such cases an application of the Fallback rule
continues with a proof without losing closed proof branches for other execution paths.
The latter would be the case if the calculus, instead, always had to apply self-composition
to the complete program code and start from the beginning.

Definition 4.3.13 (Fallback). The Fallback rule translates between a flow modality
and a JavaDL formula Φπ,F,T (Theorem 1).

Γ⇒ ∆, {µ}Φπ,F,T

Γ⇒ ∆, {µ}J π | F | T K

�

Proof. We prove the rule Fallback sound. Therefore, we assume s |= Φπ,F,T for an
arbitrary but fixed state s and show s |= J π | F | T K. From Theorem 1 we know that
both propositions are even equivalent. This concludes the proof.
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4.4. Rewrite Rules

The problem of determining which expressions have the same evaluation, or at least equal
values in terms of a state equivalence relation, after the termination of both program
executions in the noninterference security model is reduced to the problem of determining
which program variables and heap object fields are assigned equal values in the respective
final program states by the JavaDL* information flow analysis.

Recall that the calculus rules for the flow modality compare states with respect to a
list of program variables and heap object fields and that the rules for conditionals and
loops expect a program variable as condition and that there is only one rule defined in
the JavaDL* calculus that handles expressions that include more evaluated syntax than
a single variable occurrence or field access. Therefore, the purpose of this section is to
shortly clarify which program transformations may be necessary before the JavaDL* rules
can be applied to arbitrary Java Card programs.

In the following definitions, we will employ the syntax π1  π2 to denote the existence
of a transformation rule that rewrites the program fragment π1 anywhere in a JavaDL*
formula or term by replacing it with the program fragment π2.

Method and constructor calls Without loss of generality, it is assumed that method calls
appear only in statements of the form v = o.m(p1, . . . , pn);. If the analysed program
fragment consists solely of a method call, then the return value will be assigned to
the special program variable res. If the method being called is declared without a
return type, then there will be no return statements after inlining the void method
and this rewrite rule can thus be applied even if the method call is not the right-hand
side of an assignment.

The method m is inlined by declaring program variables for the method’s formal
parameters and assigning them the actual parameters p1, . . . , pn and replacing the
method call with the method frame statement method-frame(result=v,this=o).

If there is more than one implementation of m defined in the class type hierarchy, the
method call is firstly replaced with a conditional restricting the dynamic type of o

and inlining each method implementation on the conditional branch that belongs
to the respective dynamic class type. Furthermore, there must always be a case
distinction whether the object reference o is the null reference or not.

Similar transformation steps are applied to constructor calls in order to inline them
as well. However, inlined constructor code is additionally preceded by a C.alloc();

call statement, where C is the dynamic type of the created object.

For loops for loops are trivially expressed as while loops. There is a JavaDL* rule that
is applied to the latter syntax in order to handle loops in proofs.

for (πi;α;πs) {π}  πi; while (α) {π;πs}

Switch statements Without loss of generality, it is assumed that each case blocks ends
with a break statement.

switch (αs) { case αc: πc; break; ρ }

 if (αs==αc) {πc} else { switch (αs) {ρ} }

switch (αs) { default: πd }  πd

Missing finally block For every try catch statement that does not have a finally block
an empty one is inserted.
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Single or multiple branch conditionals Conditionals that open no alternative branch or
more than one branch are normalised by the addition of an empty else branch or
through nested conditionals.

if (α) {πt}  if (α) {πt} else { }

if (α1) {πt} else if (α2) {πei} ρ  if (α1) {πt} else { if (α2) {πei} ρ }

Complex conditions Expressions in conditionals and loops that do not solely consist of
a program variable are assigned to a fresh program variable c and replaced in the
statement with an occurrence of c.

if (α) {πt} else {πe}  boolean c = α; if (c) {πt} else {πe}

while (α) {π}  boolean c = α; while (c) { π; c = α; }

Complex field assignments Like complex conditions, assignments of complex expressions
to fields are replaced by assignments of the complex expressions to fresh variables
and assigning those to the field afterwards.

r.f = α;  T v = α; r.f = v;

(T is the static type of the expression α)

Method calls and field accesses in expressions The rewrite rules described in the follow-
ing remove method calls and field accesses from complex expressions completely since
their evaluation opens alternative execution paths.

v = r.f op α;  T t = r.f; v = t op α;

v = o.m(p1, . . . , pn) op α;  T t = o.m(p1, . . . , pn); v = t op α;

(op stands for an operator and may be a method call or field access itself as well; T
is the static field type or method return type)

Multiple variable or field declarations or definitions Statements that declare more than
one identifier or declare and define at the same time are split into separate statements
so that a single declaration and definition calculus rule suffices.

T v1 = α1, . . ., vn = αn;  T v1 = α1; . . .; T vn = αn;

T v = α  T v; v = α;

Ternary operator The ternary operator is translated into a conditional in a straightfor-
ward manner if its result is assigned to a program variable in the rewritten program
fragment. Otherwise, expression simplifying rewrite rules must be applied first.

v = c ? a : b;  if (c) { v = a; } else { v = b; }

Compute and assign There are operators and assignments that implicitly assign a vari-
able or carry out additional computation on the assigned expression.

v = u++;  v = u; u = u + 1;

v = ++u;  u = u + 1; v = u;

The same applies to the operator -.

v += u;  v = v + u;

The same applies to other operators like -, %, /, *.
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5. Information Flow Analysis

This chapter describes information flow analysis of Java Card programs using the JavaDL*
calculus defined in this thesis. We begin with a general introduction and end with the ver-
ification of concrete examples. The introduction refers to the common noninterference
security model that specifies a single set of public memory locations and the examples
illustrate that the JavaDL* calculus generalises that security model and allows the speci-
fication of distinct sets in the initial and final program states.
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5.1. Flow Modality Verification

This section explains how noninterference information flow analysis is carried out using
the JavaDL* calculus. An analysis begins with the security model parameter specifications
and ends in a verification proof. Besides, this section depicts which attackers will never
succeed in case of a positive verification result.

The analysed program source code must be given by the complete class hierarchy and
its respective class definitions as well as the entry point by an initial method call. The
initial method call is usually a static invocation of a method that has the well-known
signature void main(String[] args) but will be a different one if only parts of a software
system or a critical section are analysed.

Firstly, we revisit the assumed attacker model in order to clarify how analysis results
can be interpreted. Secondly, we depict which parameters of the security model must be
specified and what a developer specification for the analysed source code may look like.
Lastly, we give a translation of the latter into a JavaDL* proof obligation.

The attacker model we assume in this thesis allows an attacker to modify and evaluate only
a fixed set of program variables and heap object fields before the initial method invocation
and after its termination. Because of the latter, our analysis is restricted to terminating
programs and, for instance, cannot analyse programs that loop infinitely. From now on,
the fixed set of memory locations accessible by an attacker is referred to as the set of
“low” memory locations in contrast to the “high” memory locations, among which are
all program variables and heap object fields that are not contained in the low set. The
intended intuition behind these commonly used labels is that public memory locations have
a low security classification and secret memory locations have a high security classification.

The analysed source code must be annotated with a specification defining the set of low
memory locations users of the software system and attackers alike can influence in the
ways defined by the attacker model. When a complete software system is verified and not
only parts of it, the specification may include the stream objects that abstract from the
input and output devices, which are written to and read from during user interaction. More
importantly, the special program variable exc must be a low memory location if exceptional
program states are exposed to the user by the Java Virtual Machine. If critical sections
are analysed, then the low set usually contains fields of existing heap objects and a special
program variable for the return value of the initial method call. Even more important than
in the first verification scenario is the declaration of exc as a low memory location in these
scenarios since the absence of reasonable return values is commonly signalled through the
exception mechanism.

In order to verify that a program is secure concerning its information flow, the goal is to
prove that an attacker cannot learn anything about the high memory locations by execut-
ing the program with freely chosen values for the low memory locations and evaluating
the low memory locations in the final state. The noninterference security model formalises
that goal by demanding that two independent executions of a secure program with ran-
domly initialised memory that cannot be distinguished by examination of the low memory
locations in the initial state, are indistinguishable after their termination. The satisfaction
of the noninterference criterion by a program and its specification implies that an attacker
cannot alter inputs in a way such that the outputs reveal insights about the secret mem-
ory locations. The reason is that the secret memory locations may be changed arbitrarily
and the attacker still observes the same public results, in particular we may alter exactly
the secret information an allegedly successful attacker claims to have acquired and the
attacker must still assume them to be valid afterwards if they were not acquired outside
the attacker model, which is an obviously false conclusion.
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5.1. Flow Modality Verification 39

It remains to clarify what it means for two executions to be indistinguishable. A program
execution is a succession of state transitions and a state is given by the values assigned
to the program variables, which are either of primitive or reference type, and the heap
object space. States are compared by comparing the respective state value of each low
program variable or heap object field. Therefore, a primitive type low memory location
in two indistinguishable states evaluates to the same value in both states. A reference
type low memory location may point to different heap locations in both states without the
states becoming distinguishable, as long as the referenced objects are indistinguishable.
The latter is the case if what applies to the program variables and was just described also
applies to the type’s fields. An exception of this rule occurs, and two executions become
distinguishable, if the initial reference value of a reference type program variable or field
is only changed during one execution and left unaltered by the second execution.

In order to deductively verify a program and its specification, the low set definition is
translated into a RefSet expression R (Definition 4.2.1) and the proof goal into the flow
modality J r.m(); | R | R K, where r.m(); is the initial method call. That any two
executions are indistinguishable is encoded in the agreement of states (Definition 4.1.2)
and the comparability of references before and after an execution (Equation 4.1).
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1 class C {

2 /*@

3 @ \from input;

4 @ \to \result;

5 @*/

6 int m(int input) {

7 input = secret;

8 input = 0;

9 return input;

10 }

11 }

Listing 5.1: Example specification of a secure program that temporarily assigns a secret
to a low program variable and clears it afterwards

5.2. Examples

In this section, we apply the information flow analysis described in the previous sec-
tion (Section 5.1) to some rather pathological examples of Java Card programs. Each
example given in this section defines a new type class C that contains a method m. The
method definitions are annotated with a to be verified information flow contract that spec-
ifies the list of low memory locations before and after a method invocation. The contract
syntax borrows the JML-style comments [LBR06] and uses the keywords \from and \to

for defining the RefSet expressions F and T respectively. The initial proof obligation is to
prove J c.m(); | F | T K in arbitrary states that assign c an instance of the example-specific
type C with its differing signatures and implementations of the method m. A proof of the
flow modality formula implies a correct method implementation of the security policy that
information flows at most from F to T . Each example is accompanied by a proof outline
or, alternatively, an argument for why no proof should exist at all. In the proof outlines,
we concentrate on the proof steps that apply rules to the flow modality or the RefSet ex-
pressions. In particular, we will not carry out the preceding program transformations, that
may be necessary, explicitly. As mentioned earlier, among those program transformations
are method binding and inlining.

The first example is shown in Listing 5.1 and we want to verify that the method m allows
information to flow at most from the method argument input to the return value, although
the secret variable secret is assigned to input in line 7, which is eventually returned by the
method body. We could have omitted input from the low declarations but it seems more
intuitive to declare arguments as user input. In particular, interference between input and
any other memory location is impossible since it is never read.

For the proof of example 5.1 shown in Figure 5.1, the program variable identifiers are short-
ened and are only referred to by their first character. The from RefSet expression 〈{i}, ∅〉
consists of the method argument input and the to RefSet expression 〈{r}, ∅〉 consists of
the special program variable result that was inserted for the return value during method
inlining. The proof is carried out straightforwardly by symbolically executing the program
fragment and determining that in the final state any two executions initially agreeing
on the actual method parameter agree on both the value of the formal parameter vari-
able input and the return value. Since the return value is included in this judgement, the
method specification is fulfilled.

The second example is shown in Listing 5.2 and the return value of the method m in class C

must not interfere with any other memory location. Essentially, this means that the return
value must be constant in any implementation that adheres to this security policy. The
particularity in this example, however, is that line 6 declares a local variable we did
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trueRight⇒ True
applyOnRigid⇒ {i := s}{i := 0}{r := i}True

subset∗1, subset∗3⇒ {i := s}{i := 0}{r := i}(〈∅, ∅〉 ⊆ 〈{i, r}, ∅〉)
subset∗1, subset∗2, inUnion*, inSingleton*

⇒ {i := s}{i := 0}{r := i}(〈{r}, ∅〉 ⊆ 〈{i, r}, ∅〉)
emptyModality*⇒ {i := s}{i := 0}{r := i}J | 〈{i, r}, ∅〉 | T K

assignLocal*⇒ {i := s}{i := 0}J r = i; | 〈{i}, ∅〉 | T K
assignLocal*⇒ {i := s}J i = 0; r = i; | 〈∅, ∅〉 | T K

assignLocal∗3⇒ J i = s; i = 0; r = i; | F | T K

Figure 5.1.: A JavaDL* proof of the example specification shown in Listing 5.1

1 class C {

2 /*@

3 @ \to \result;

4 @*/

5 void m() {

6 int tmp = secret;

7 return 0;

8 }

9 }

Listing 5.2: Example specification of a secure program that assigns a secret to a local pro-
gram variable that is not included in the specification and is merely temporary

not include in the low specification and we would not include in a specification of secret
memory locations, either. This unspecified local variable is assigned an intentionally secret
memory location and we want to illustrate with this example that such assignments treated
naturally by the JavaDL* calculus.

A proof of the program specification 5.2 is given in Figure 5.2. The proof tree shows the
steps after the method implementation is inlined. The from RefSet expression F turns
out to be empty for this specification and the last proof steps establish that the special
program variable result (again abbreviated by its first character) is included in the set
of memory locations the final states of any two method body executions agree on (in this
case, 〈{result}, ∅〉). In fact, this is the case and the proof can be closed since the to set T
consists of exactly result.

The third example is shown in Listing 5.3. The implementation of m in this example returns
the actual method argument if the field secret evaluates to false and a new instance of

trueRight⇒ True
applyOnRigid⇒ {t := s}{r := 0}True

subset∗1, subset∗3⇒ {t := s}{r := 0}(〈∅, ∅〉 ⊆ 〈{r}, ∅〉)
subset∗1, subset∗2, inSingleton*

⇒ {t := s}{r := 0}(〈{r}, ∅〉 ⊆ 〈{r}, ∅〉)
emptyModality*⇒ {t := s}{r := 0}J | 〈{r}, ∅〉 | T K

assignLocal*⇒ {t := s}J r = 0; | ∅ | T K
assignLocal∗3⇒ J int t; t = s; r = 0; | F | T K

Figure 5.2.: A JavaDL* proof of the example specification shown in Listing 5.2
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1 class C {

2 /*@

3 @ \from input;

4 @ \to \result;

5 @*/

6 public C m(C input) {

7 if (secret) {

8 input = new C();

9 }

10 return input;

11 }

12 }

Listing 5.3: Example specification of an insecure program that updates a reference type
variable on only one possible execution path and the execution path is chosen
depending on a secret

...
⇒ False

applyOnRigid⇒ {i := v}{r := i}False
subset∗1, subset∗2, inEmpty*

⇒ {i := v}{r := i}(〈{r}, ∅〉 ⊆ 〈∅, ∅〉)
emptyModality*⇒ {i := v}{r := i}J | 〈∅, ∅〉 | T K

assignLocal∗3⇒ {i := v}J r = i; | 〈∅, ∅〉 | T K
conditional∗2⇒ J if (s) { i = new C(); } else { } r = i; | F | T K

Figure 5.3.: Failed proof attempt for the example specification shown in Listing 5.3

class C otherwise. The natural specification says that users initialise the method argument
and evaluate the return value. Since the method argument and the return value are
identical if and only if the secret field is false this implementation of m does not fulfil its
noninterference contract.

The attempt to prove the specification given in Listing 5.3 by the rule applications listed
in Figure 5.3 fails as expected. Because the field secret forming the conditional is not
a low memory location, the second conditional rule, which removes all memory locations
that may be modified on either branch from the low set, must be applied. Since there
is an execution path that alters the method parameter input, the low set is empty after
the conditional and input gets assigned an unknown value through the V update in the
schematic rule. Thus, the return value does not become a low memory location when the
execution of the method body is finished and the proof tree cannot be closed.

The fourth example, which is shown in Listing 5.4, is an implementation of the method m

that does not fulfil its specification. The illegal information flow occurs in line 8. After
that line of code is executed, the program variable tmp points to the object o for which the
field f is declared accessible by users and attackers alike. As a result, an attacker learns
the evaluation of secret by evaluating f and a sound information flow analysis of object-
oriented programs must cope with explicit information flow through aliasing. If input was
not declared a low memory location, then there would be also implicit information flow
because input could be the null reference and line 8 would throw a NullPointerException.

Figure 5.4 shows a possible proof attempt for example 5.4 that symbolically executes
the transformed method body and finds that 〈o, f〉 is not included in the set of memory
locations two arbitrary executions will always agree on in their final states. In the method
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1 class C {

2 /*@

3 @ \from input;

4 @ \to \old(input).f;

5 @*/

6 public void m(C input) {

7 C tmp = input;

8 tmp.f = secret;

9 }

10 }

Listing 5.4: Example specification of an insecure program that assigns a secret to a public
field by accessing it on a temporary alias

...
⇒ False

applyOnRigid⇒ {i := o}{t := i}{heap := store(heap, t, f, s)}False
inEmpty*⇒ {i := o}{t := i}{heap := store(heap, t, f, s)}(〈o, f〉 ∈ ∅)

subset∗1, subset∗2⇒ {i := o}{t := i}{heap := store(heap, t, f, s)}(〈∅, {〈o, f〉}〉 ⊆ 〈{i, t}, ∅〉)
emptyModality*⇒ {i := o}{t := i}{heap := store(heap, t, f, s)}J | 〈{i, t}, ∅〉 | T K

assignField∗2⇒ {i := o}{t := i}J t.f = s; | 〈{i, t}, ∅〉 | T K
assignLocal*⇒ {i := o}J C t; t = i; t.f = s; | F | T K

Figure 5.4.: Failed proof attempt for the example specification shown in Listing 5.4

specification, the term \old(input).f is used to refer to the field f of the object the
method argument input points to when the method m is called. For the translation of the
specification into a proof obligation, we introduce a fixed but unknown logic variable o
that is assigned to the program variable input by an initial update. The from RefSet
expression F consists of input solely, which allows us to apply the rule assignField* but
is also consistent with our intuition that the method argument input is a low memory
location. The to RefSet expression T consists of the location 〈o, f〉.

The last example in this section specifies a secure program fragment that cannot be verified
by the JavaDL* calculus. The fifth example is shown in Listing 5.5 and similar to the
third example (5.3) the evaluation of the secret field secret decides whether the method
parameter input gets assigned a fresh reference to an instance of class C. However, this
time input is altered both if the secret field evaluates to true (line 8) and if the secret
field evaluates to false (line 12). Thus, both executions observed in the noninterference
security model always overwrite the actual method argument with fresh object references.
It is true that those almost always differ but an attacker cannot determine which evaluation
of secret generated which reference value. While a self-composition analysis will verify
the secure behaviour of m in this example, the JavaDL* calculus is not able to exploit the
fact that both conditionals execute the same statements and that each conditional is the
negation of the other. Aside from the Fallback rule, conditional∗2 is the only applicable
JavaDL* rule with satisfied premises. An application of the second conditional rule to the
example erases all low memory locations and makes the value of input anonymous. As
a result, the non-empty set of low memory locations in the final state T must be proved
a subset of the empty set, which is not possible. The failed proof attempt is conducted
in Figure 5.5.
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1 class C {

2 /*@

3 @ \from input;

4 @ \to \result;

5 @*/

6 public C m(C input) {

7 if (secret) {

8 input = new C();

9 }

10
11 if (! secret) {

12 input = new C();

13 }

14
15 return input;

16 }

17 }

Listing 5.5: Example specification of a secure program that assigns fresh reference values to
a low program variable on two alternative branches. The branches are selected
depending on boolean secrets, which, however, are mutual negations

...
⇒ False

applyOnRigid⇒ {i := v}{i := w}{r := i}False
subset∗

1, subset∗
2, inEmpty*

⇒ {i := v}{i := w}{r := i}(〈{i, r}, ∅〉 ⊆ 〈∅, ∅〉)
emptyModality*⇒ {i := v}{i := w}{r := i}J r = i; | 〈∅, ∅〉 | T K
assignLocal∗3⇒ {i := v}{i := w}J r = i; | 〈∅, ∅〉 | T K

conditional∗2⇒ {i := v}J if (!s) { i = new C(); } r = i; | 〈∅, ∅〉 | T K
conditional∗2⇒ J if (s) { i = new C(); } if (!s) { i = new C(); } r = i; | F | T K

Figure 5.5.: Failed proof attempt for the example specification in Listing 5.5
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6. Conclusions

We extended the JavaDL calculus by inference rules that defer the application of self-
composition when proving noninterference between two sets of program variables and loca-
tions in Java Card programs. Moreover, we provided semi-formal proofs for the soundness
of the defined rules. In the course of this work, a new modality was added to the JavaDL
syntax. The semantics of the introduced flow modality is only a sufficient condition for
the noninterference property of the analysed program fragment. However, this is due to
an exploitation of a compositionality result which has recently been proven by Scheben
and Schmitt et al. for their information flow predicate. The compositionality of the flow
modality enabled the symbolic execution of program fragments without resorting to self-
composition until implicit information flow might occur. As a result, the complexity of
information flow proofs in JavaDL could be reduced for many obviously secure programs.
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7. Outlook

The KeY system [BHS07] includes an interactive prover for JavaDL. JavaDL formulae can
directly be inserted or generated from JML annotated Java source files. As mentioned
before, JML noninterference contracts as well as their translation into JavaDL formulae
were defined by Scheben and Schmitt [SS11] and implemented in a development version
of the KeY system. The KeY prover includes an implementation of the JavaDL sequent
calculus and supports easy addition of further rules to the rule database via a domain
specific language. The rules defined in this thesis are thought of as an extension to the
JavaDL sequent calculus and may be implemented in the KeY system in the future. Before
that, an efficient handling of RefSet expressions must be found. The operations on RefSet
expressions include the addition and removal of elements in the assignment rules as well
as the enumeration of the elements in the fallback rule.

The JavaDL* calculus still does not contain a loop invariant rule that allows the loop body
to contain statements that lead to unstructured control flow. In particular, the forbidden
statements are throw, break, continue and return. If there is one of those statements
executable from the loop body, then the JavaDL* rule is no more correct since control
flow will continue after the loop. An alternative loop invariant must be added to the
JavaDL* calculus since this is a considerable restriction on the programming language
features.

An important feature when program properties are verified on a meta-language level is the
support of modular specification and proof reuse. Modular specification of noninterference
properties is possible since the extension of JML by Scheben and Schmitt [SS11]. However,
the reuse of proofs for specific noninterference specifications is not yet possible, neither
using the standard JavaDL rules nor using the flow modality rules defined in this thesis.

The RefSet expressions, which are used in this thesis to denote the attacker accessible
information, only support the specification of variable identifiers and heap locations. It
may be desirable to specify any JavaDL term since this would simplify the RefSet type
definition and, most of all, give rise to more fine-grained security policies. Moreover, the
support of specifying the public information as a list of arbitrary JavaDL terms seems to be
closely related to the declassification of meta-information about memory locations, which
stands in contrast to only disclosing the assigned values. A recurrent program example that
needs declassification for a realistic specification is that of a password checker. Classifying
the password file object confidential is too restrictive since it is obviously necessary for a
correct implementation to forward error messages like FileNotFoundException to the user,
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which would not fulfil a specification saying that the file object does not interfere with
the program output. A declassification of the information whether an error occurred or
not would enable a proof of the noninterference contract under the assumption that an
attacker knows the evaluation of a formula describing whether an error occurred or not.
Declassification was not taken into consideration in this thesis and may be possible as soon
as the flow modality can handle a generalised version of RefSet expressions.
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emptyModality*
Γ⇒ ∆, {µ}(T ⊆ F )

Γ⇒ ∆, {µ}J | F | T K

subset∗
1

Γ⇒ ∆, {µ}(TV ⊆ FV ) Γ⇒ ∆, {µ}(TL ⊆ FL)

Γ⇒ ∆, {µ}(〈TV , TL〉 ⊆ 〈FV , FL〉)

subset∗
2

Γ⇒ ∆, {µ}(v ∈ s) Γ⇒ ∆, {µ}(V ⊆ s)
Γ⇒ ∆, {µ}({v} ∪ V ⊆ s)

subset∗
3

Γ⇒ ∆, {µ}True
Γ⇒ ∆, {µ}(∅ ⊆ s)

inEmpty*
Γ⇒ ∆, {µ}False
Γ⇒ ∆, {µ}(v ∈ ∅)

inSingleton*
Γ⇒ ∆, {µ}True

Γ⇒ ∆, {µ}(v ∈ {v})

inUnion*
Γ⇒ ∆, {µ}(v ∈ s1 ∨ v ∈ s2)

Γ⇒ ∆, {µ}(v ∈ s1 ∪ s2)

inSetMinus*
Γ⇒ ∆, {µ}(v ∈ s1 ∧ v 6∈ s2)

Γ⇒ ∆, {µ}(v ∈ s1 \ s2)
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inIntersect*
Γ⇒ ∆, {µ}(v ∈ s1 ∧ v ∈ s2)

Γ⇒ ∆, {µ}(v ∈ s1 ∩ s2)

assignLocal*
Γ⇒ ∆, vars(α) ⊆ F Γ⇒ ∆, {µ}{v := α}J θρ | F ∪ {v} | T K

Γ⇒ ∆, {µ}J θ v = α; ρ | F | T K

assignLocal∗2
Γ⇒ ∆, r ∈ F

Γ, {µ}(δ(r) � D)⇒ ∆, {µ}{v := castD(r)}J θρ | F ∪ {v} | T K Γ, {µ}(δ(r) 6� D)⇒ ∆, {µ}J θ throw new ClassCastException(); ρ | F | T K
Γ⇒ ∆, {µ}J θ v = (D)r; ρ | F | T K

assignLocal∗3
Γ⇒ ∆, {µ}{v := α}J θρ | F \ {v} | T K

Γ⇒ ∆, {µ}J θ v = α; ρ | F | T K

assignLocal∗4
Γ⇒ ∆, r ∈ F Γ⇒ ∆, {µ}〈r, f〉 ∈ F Γ, {µ}(r 6= null)⇒ ∆, {µ}{v := select(heap, r, f)}J θρ | F ∪ {v} | T K

Γ, {µ}(r = null)⇒ ∆, {µ}J θ throw new NullPointerException(); ρ | F | T K
Γ⇒ ∆, {µ}J θ v = r.f; ρ | F | T K

assignLocal∗5
Γ⇒ ∆, r ∈ F Γ, {µ}(r 6= null)⇒ ∆, {µ}{v := select(heap, r, f)}J θρ | F \ {v} | T K

Γ, {µ}(r = null)⇒ ∆, {µ}J θ throw new NullPointerException(); ρ | F | T K
Γ⇒ ∆, {µ}J θ v = r.f; ρ | F | T K
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assignLocal∗6
Γ⇒ ∆, a ∈ F Γ⇒ ∆, i ∈ F

Γ⇒ ∆, {µ}〈a, arr(i)〉 ∈ F Γ, {µ}(a 6= null), {µ}(0 ≤ i < length(a))⇒ ∆, {µ}{v := select(heap, a, arr(i))}J θρ | F ∪ {v} | T K
Γ, {µ}(a 6= null), {µ}(i < 0 ∨ i ≥ length(a))⇒ ∆, {µ}J θ throw new ArrayIndexOutOfBoundsException(); ρ | F | T K

Γ, {µ}(a = null)⇒ ∆, {µ}J θ throw new NullPointerException(); ρ | F | T K
Γ⇒ ∆, {µ}J θ v = a[i]; ρ | F | T K

assignLocal∗7
Γ⇒ ∆, a ∈ F Γ⇒ ∆, i ∈ F Γ, {µ}(a 6= null), {µ}(0 ≤ i < length(a))⇒ ∆, {µ}{v := select(heap, a, arr(i))}J θρ | F \ {v} | T K

Γ, {µ}(a 6= null), {µ}(i < 0 ∨ i ≥ length(a))⇒ ∆, {µ}J θ throw new ArrayIndexOutOfBoundsException(); ρ | F | T K
Γ, {µ}(a = null)⇒ ∆, {µ}J θ throw new NullPointerException(); ρ | F | T K

Γ⇒ ∆, {µ}J θ v = a[i]; ρ | F | T K

assignField*
Γ⇒ ∆, r ∈ F Γ⇒ ∆, v ∈ F Γ, {µ}(r 6= null)⇒ ∆, {µ}{heap := store(heap, r, f, v)}J θρ | F ∪ {{µ}〈r, f〉} | T K

Γ, {µ}(r = null)⇒ ∆, {µ}J θ throw new NullPointerException(); ρ | F | T K
Γ⇒ ∆, {µ}J θ r.f = v; ρ | F | T K

assignField∗
2

Γ⇒ ∆, r ∈ F Γ, {µ}(r 6= null)⇒ ∆, {µ}{heap := store(heap, r, f, v)}J θρ | F \ {{µ}〈r, f〉} | T K
Γ, {µ}(r = null)⇒ ∆, {µ}J θ throw new NullPointerException(); ρ | F | T K

Γ⇒ ∆, {µ}J θ r.f = v; ρ | F | T K

assignArray*
Γ⇒ ∆, a ∈ F Γ⇒ ∆, i ∈ F

Γ⇒ ∆, v ∈ F Γ, {µ}(a 6= null), {µ}(0 ≤ i < length(a))⇒ ∆, {µ}{heap := store(heap, a, arr(i), v)}J θρ | F ∪ {{µ}〈a, arr(i)〉} | T K
Γ, {µ}(a 6= null), {µ}(i < 0 ∨ i ≥ length(a))⇒ ∆, {µ}J θ throw new ArrayIndexOutOfBoundsException(); ρ | F | T K

Γ, {µ}(a = null)⇒ ∆, {µ}J θ throw new NullPointerException(); ρ | F | T K
Γ⇒ ∆, {µ}J θ a[i] = v; ρ | F | T K
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assignArray∗
2

Γ⇒ ∆, a ∈ F
Γ⇒ ∆, i ∈ F Γ, {µ}(a 6= null), {µ}(0 ≤ i < length(a))⇒ ∆, {µ}{heap := store(heap, a, arr(i), v)}J θρ | F \ {{µ}〈a, arr(i)〉} | T K

Γ, {µ}(a 6= null), {µ}(i < 0 ∨ i ≥ length(a))⇒ ∆, {µ}J θ throw new ArrayIndexOutOfBoundsException(); ρ | F | T K
Γ, {µ}(a = null)⇒ ∆, {µ}J θ throw new NullPointerException(); ρ | F | T K

Γ⇒ ∆, {µ}J θ a[i] = v; ρ | F | T K

createObject*
Γ, o 6= null, exactInstanceC(o), {µ}(wellformed(heap)→ selectBoolean(heap, o, created) = False)
⇒ ∆, {µ}{heap := create(heap, o)}{v := o}J θρ | F ∪ {v} | T K

Γ⇒ ∆, {µ}J θ v = C.alloc(); ρ | F | T K

throw*
Γ⇒ ∆, r ∈ F Γ⇒ ∆, {µ}{exc := r}J θ ρ2 | F ∪ {exc} | T K

Γ⇒ ∆, {µ}J θ throw r; ρ1ρ2 | F | T K

throw∗
2

Γ⇒ ∆, {µ}{exc := r}J θ ρ2 | F \ {exc} | T K
Γ⇒ ∆, {µ}J θ throw r; ρ1ρ2 | F | T K

catch*
Γ⇒ ∆, exc ∈ F

Γ, {µ}instanceofE(exc)⇒ ∆, {µ}{e := exc}{exc := null}J θ πf πc ρ2 | F | T K Γ, {µ}¬instanceofE(exc)⇒ ∆, {µ}J θρtry1 ρ2 | F | T K
Γ⇒ ∆, {µ}J θ try { } catch (E e) {πc} ρ1 finally {πf} ρ2 | F | T K

finally*
Γ⇒ ∆, {µ}J θ πf ρ | F | T K

Γ⇒ ∆, {µ}J θ try { } finally {πf} ρ | F | T K
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conditional*
Γ⇒ ∆, c ∈ F Γ, {µ}(c = True)⇒ ∆, {µ}J θ πt ρ | F | T K Γ, {µ}(c = False)⇒ ∆, {µ}J θ πe ρ | F | T K

Γ⇒ ∆, {µ}J θ if (c) {πt} else {πe} ρ | F | T K

conditional∗2
Γ⇒ ∆, {µ}VJ θ ρ | F \ V | T K

Γ⇒ ∆, {µ}J θ if (c) {πt} else {πe} ρ | F | T K

V is a set that contains all program variables and heap locations that may be altered by an execution of πt or πe. V is the update that results from
assigning random values to the memory locations included in V and thus erasing all information about them after the conditional. throw and return

statements must not occur in both πt and πe.

loop*
Γ⇒ ∆, {µ}(I ⊆ F ) Γ⇒ ∆, {µ}(c ∈ I) Γ⇒ ∆, {µ}Inv Γ, {µ}V(c = True ∧ Inv)⇒ ∆, {µ}V[π]Inv

Γ, {µ}V(c = True ∧ Inv)⇒ ∆, {µ}VJ π | I | I K Γ, {µ}V(c = False ∧ Inv)⇒ ∆, {µ}VJ θρ | I | T K
Γ⇒ ∆, {µ}J θ while (c) {π} ρ | F | T K

Fallback
Γ⇒ ∆, {µ}Φπ,F,T

Γ⇒ ∆, {µ}J π | F | T K

return∗
1

Γ⇒ ∆, {µ}J θ v = r; ρ2 | F | T K
Γ⇒ ∆, {µ}J θ method-frame(result=v,this=o) { return r; ρ1 } ρ2 | F | T K

return∗
2

Γ⇒ ∆, {µ}J θ throw r; ρ2 | F | T K
Γ⇒ ∆, {µ}J θ method-frame(result=v,this=o) { throw r; ρ1 } ρ2 | F | T K
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