View metadata, citation and similar papers at core.ac.uk

brought to you by .{ CORE

A Unified Approach for Static and Runtime
Verification: Framework and Applications

Wolfgang Ahrendt!, Gordon J. Pace?, and Gerardo Schneider!*

! Dept. of Computer Science and Engineering, Chalmers | Univ. of Gothenburg,
Sweden.
2 Dept. of Computer Science, University of Malta, Malta.
ahrendt@chalmers.se, gordon.pace@um.edu.mt, gersch@chalmers.se

Abstract. Static verification of software is becoming ever more effective
and efficient. Still, static techniques either have high precision, in which
case powerful judgements are hard to achieve automatically, or they use
abstractions supporting increased automation, but possibly losing im-
portant aspects of the concrete system in the process. Runtime verifi-
cation has complementary strengths and weaknesses. It combines full
precision of the model (including the real deployment environment) with
full automation, but cannot judge future and alternative runs. Another
drawback of runtime verification can be the computational overhead of
monitoring the running system which, although typically not very high,
can still be prohibitive in certain settings. In this paper we propose a
framework to combine static analysis techniques and runtime verifica-
tion with the aim of getting the best of both techniques. In particular,
we discuss an instantiation of our framework for the deductive theorem
prover KeY, and the runtime verification tool LARVA. Apart from com-
bining static and dynamic verification, this approach also combines the
data centric analysis of KeY with the control centric analysis of LARVA.
An advantage of the approach is that, through the use of a single speci-
fication which can be used by both analysis techniques, expensive parts
of the analysis could be moved to the static phase, allowing the runtime
monitor to make significant assumptions, dropping parts of expensive
checks at runtime. We also discuss specific applications of our approach.

1 Introduction

There is a significant quest from the software industry for lightweight formal
methods — methods which achieve a high degree of confidence in desired (sub-)
system properties, while satisfying high demands on usability and automation.
There are various reasons for this increasing need in software development, in-
cluding the following recent parallel trends:
— Model driven development. There is an ever more dominant role of models
in the software development process.

* Corresponding author.

provided by OAR@UM

https://core.ac.uk/display/132620232?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 W. Ahrendt and G.J. Pace and G. Schneider

— Automated software engineering. There is a trend to (partly) automate even
more steps in the development cycle.

— Ezxploding complexity of embedded software. The demands on the safety of
the increasingly complex embedded units is typically extremely high.

— Concurrency and distribution. Distributed architectures led to an increase
in the possible causes of failure. On a more fine-grained level, concurrency
is also becoming more important due to the rise of multi-core processors.

— Software standards and certification. In certain domains (e.g., avionics, au-
tomotive, medical), standards for architecture, interfaces, and processes are
becoming very important.

— Application focus of program verification. Fundamental concepts of program
verification have been around for decades, but only lately have arisen many
techniques that are tailored to widely used languages and platforms.

— Increased efficiency of program verification. Verification technology has be-
come a lot more efficient, and automation has increased significantly.

Even if static verification of software has become more relevant, effective and
efficient, overcoming certain inherent limitations has proved to be hard. Certain
static verification techniques have high precision, in which case powerful judge-
ments are still too hard to achieve automatically, while others use abstractions to
enable increased automation, in which case important, or even critical, aspects
of the real, concrete system are easily missed, not to speak of the fundamental
difficulty of crafting the right abstraction. In reaction to this, there is a recent
trend towards more lightweight formal methods, which are easier to exploit but
give limited guarantees. One such lightweight method is runtime wverification
which, compared to static verification, has complementary strengths and weak-
nesses. Runtime verification combines the full precision of the execution model
(even including the real deployment environment) with full automation. On the
other hand, it only ever judges observed runs, and cannot judge alternative and
future runs. Another drawback is the computational overhead of monitoring the
running system which, although typically not very high, can still be prohibitive
in certain settings.

In this paper, we propose a unified static and runtime verification framework
for object-oriented software. The aim is to provide a unified, lightweight to use
but powerful in result, method for specifying and verifying, with a variety of
confidence levels, properties of parallel object-oriented software systems.

The paper is organised as follows. We first give some background on static and
dynamic verification techniques/tools. In Section 3 we present our framework,
and in Section 4 we provide an example to illustrate how our framework could
be applied in practice. We briefly describe some application domains of our
framework in Section 5. We discuss related work in Section 6 and we conclude
in the last section.

A Unified Approach for Static and Runtime Verification 3
2 Background

2.1 Static Verification of Software

Principles

Static software verification reasons about properties of all possible runs of a
program. There are basically two families of approaches, deductive verification
and model checking. Deductive program verification has been around for nearly
40 years [41], however, a number of developments during the last decade brought
dramatic changes to how deductive verification is being perceived and used.

— The era of verification of individual algorithms written in academic languages
is over: contemporary verification tools support commercial programming
languages such as Java [20,52,29,11] or C# [8] and they are ready to deal
with industrial applications [39,47, 51, 38].

— Earlier, deductive verification tools used to be stand-alone applications that
were usable effectively only after years of academic training. Nowadays, one
can see a new tool generation that can be used after limited investment in
training [1], and that is integrated into modern IDEs [8,11]. On the other
hand, full automation is still rarely achieved when verifying functional prop-
erties of programs with loops, for instance.

— Perhaps the most striking trend is that deductive verification is emerging
as a base technology. It is not only employed for correctness proofs, but in
automatic test generation [19, 34, 30, 10], and bug finding [50, 36].

Among the state of the art efforts is the KeY tool [2], which it is close to
complete coverage of the Java programming language [9]. In contrast to verifiers
based on higher order logics, the prover of the KeY system provides a state-of-
the-art user interface, high automation, and an easy mechanism for extending
its rule base. We describe KeY in more details below.

Apart from deductive verification, model checking has been applied exten-
sively and successfully for the static verification of both hardware and software
systems. The adaptation of this technique to object-oriented software is pro-
gressing but still in an early stage.

KeY: A System for Static Verification of Java Programs

KeY is a deductive verification system for data centric functional correctness
properties of Java source code. From Java code augmented with specifications
given in JML (Java Modelling Language [43]), KeY generates proof obligations
in a program logic, called dynamic logic (DL) for Java [11]. DL extends first-
order logic with two additional operators, (p)¢ and [p]¢, where p is a program
and ¢ is another DL formula. A formula (p)¢ is true in a state s if there exists
a terminating run of p, started in s, which results in a state where ¢ is true. As
for the other operator, a formula [p]¢ is true in a state s if all terminating runs
of p, started in s, result in a state where ¢ is true. For deterministic programs
p, the difference between (p)¢ and [p]¢ is only termination. Hoare logic [37], can
be seen as a special case, as the Hoare triple {¢}p{¢} is equivalent to the DL
formula ¢ — [p]e.

4 W. Ahrendt and G.J. Pace and G. Schneider

The core of KeY is a theorem prover for validity of Java DL formulas, us-
ing a sequent calculus. We cannot introduce the calculus here, but we mention
a typical pattern of sequents. If I' is a list of formulas, the sequent I' - (p)¢
means that p, if started in a state fulfilling all I', terminates in a state fulfill-
ing ¢. For instance, x < y F (tmp:=x;x:=y;y:=tmp;) y < x is a valid sequent.
The calculus uses the symbolic execution paradigm. For that, DL is extended by
‘explicit substitutions’. During symbolic execution of p, the effects of p are grad-
ually, from the front, turned into explicit substitutions. Meaning that after some
proof steps, a certain prefix of p has turned into a substitution o, representing
the effects so far, while a ‘remaining’ program p’ is yet to be executed. While
verifying p, an intermediate proof node may look like I' - o(p')¢, telling that,
if I" was true before p, and o is the accumulated effect up to now, then ¢ will
be true after executing the remaining program p’. Note that most proofs branch
over case distinctions, largely triggered by Boolean decisions in the source code.
The branching happens by applying rules like the following, simplified® if rule:

] o) Fo(s1 w)o I'io(—b) Fo(sy w)p
I'o(if b s; else so w)o
Unlike the explicit substitutions preceding the diamond modalities “(...)”, the
notation o (b) indicates that o is applied to b, and thereby resolved. Similar for
o(—=b). Through rules like the above, the left side of any sequent, on any branch
of the symbolic execution proof, lists conditions for the current execution path
to be taken (in addition to the original precondition, in case there is any).

2.2 Runtime Verification of Software

Principles
Runtime verification is a technique for monitoring the execution of a software sys-
tem, detecting violations as they appear at runtime. In recent years researchers
have implemented monitoring tools which usually compile high-level (temporal)
properties into monitor implementation (e.g., [21,40,27,28,5,26]). There are
two main concerns when using runtime verification:
1. In order to minimise the possibility of erring it is desirable that monitors are
automatically synthesised from formally specified properties.
2. Though a minimal runtime overhead is acceptable, it is of course desirable
to reduce them as much as possible.

The above concerns are obviously interdependent: properties should be writ-
ten in a formal language that is expressive enough as to represent meaningful
properties, but not too much as to avoid efficient monitoring.

There are two main flavours of runtime verification — synchronous monitor-
ing, in which, after each performed action, the system does not proceed further
until the monitor confirms that the action did not violate the specification, and
asynchronous monitoring, in which the system logs all relevant events, which are
processed independently by the monitor, possibly on a separate address-space.

3 The simplified rule ignores side effects or exceptions possibly caused by b.

A Unified Approach for Static and Runtime Verification 5

While the latter is attractive in that it induces minimal overheads on the sys-
tem, the a posteriori nature of the analysis makes it useless if one wants to
discover and address problems in real-time. Although in-between solutions have
been proposed (e.g., see [24]), they are far from being universally applicable, and
thus, if one wants to have a guarantee that the system does not proceed beyond
a violation, one has no choice but to pay the cost in terms of overheads induced
by synchronous monitoring.

Different solutions based on optimisations have been presented to alleviate
the overhead problem, e.g. [13,14]. Further approaches aim at obtaining small
monitors by construction [45], or use some kind of overhead guarantee, as pro-
posed in [23]. Despite the advance of the state-or-the-art with such approaches
there is still need to improve runtime monitoring techniques as motivated by the
development of specific techniques to improve monitor efficiency [18].

In the following, we give a brief overview over state-of-the-art runtime moni-
toring tools developed in recent years, without claiming completeness. ConSpec
[3] inlines a runtime monitor into applications on mobile devices based on ob-
served contract violations. JavaMOP [21] is a monitoring-oriented development
environment where parts of the system’s functionality are designed as monitor-
triggered code. Java-MaC [40] enables automatic instrumentation to have access
to system events. Higher-level activities are processed by the runtime checker
to raise an alarm if any of the specified properties are violated. Eagle [33] is a
runtime verification tool supporting future and past time logics, interval logics,
extended regular expressions, state machines, real-time and data constraints and
statistics. Lola [28] guarantees bounded memory to perform online monitoring,
and differs from most other synchronous languages in that it is able to refer to
future values in a stream. Tracematches [5] is an extension to AspectJ allowing
the specification of trace patterns, also supporting parametrisation of events.
This work has been extended in [15] to improve efficiency by making a temporal
and spatial partitioning among collaborative users.

LArvAa: A Runtime Verification tool for Java

LARVA (Logical Automata for Runtime Verification and Analysis) [26], is a tool
tailored to verify untimed and real-time properties of Java programs. Properties
can be expressed in a number of notations, including timed-automata enriched
with stopwatches (DATEs —Dynamic Automata with Timers and Events), Lus-
tre, and a subset of the duration calculus.

As an example of the kind of properties one can express in DATEs and verify
with LARVA let us consider a system where one needs to monitor the number
of successive bad logins and the activity of a logged in user. By having access
to badlogin, goodlogin and interact events, one can keep a successive bad-login
counter and a clock to measure the time a user is inactive. Fig. 1 shows the
property that allows for no more than two successive bad logins and 30 minutes
of inactivity when logged in, expressed as a DATE. Upon the third bad login or 30
minutes of inactivity, the system reverts to a bad state. In the figure, transitions
are labelled with events, conditions and actions, separated by a backslash. It is
assumed that the bad login counter is initialised to zero.

6 W. Ahrendt and G.J. Pace and G. Schneider

interact\\f.reset(); badlogin\\c+ +;

goodlogin
\\t.reset();

logged in logged out

~_ 7
logouf\c=0; padlogin
\c>=2

t@30*60

bad logins

Fig. 1. The DATE of the bad logins scenario

The tool has been successfully used on a number of case-studies, including an
industrial system handling financial transactions. LARVA also performs analysis
of real-time properties, and whenever possible to calculate an upper-bound on
the memory and temporal overheads induced by monitoring.

3 A Proposed Framework for Integrated Static and
Runtime Verification

In this section we present our framework. We start by discussing a unified lan-
guage for specifying both static and runtime properties, we then describe our
framework in general terms, and we finally discuss some interesting features that
could be added to enhance our framework.

Though the conceptual model underlying our framework is general and tool-
independent, we use LARVA and KeY as a basis to the proposed unified language,
and as instances of some of the modules to be used in the framework.

3.1 A unified specification language for static and dynamic
verificaion

In order to explore the proposed framework, we are investigating a concrete
instantiation — combining the deductive verification tool KeY with the runtime
verification tool LARVA. One of the first main challenges is that of identifying
a unified specification language. While KeY uses pre- and postconditions for
specifications, LARVA uses DATEs — essentially symbolic automata, with timers
(allowed to be used also as stopwatches) and the means for dynamic replication
of properties (for instance, a property which will be replicated for each user in
the system).

As briefly described in the previous section, while KeY addresses the be-
haviour of a method as a relation, DATEs are less structured and are triggered
with events happening in the system, which may refer to method entry and
exit points (although with no native notion of identifying the entry and related

A Unified Approach for Static and Runtime Verification 7

/Static \
Partial
Specification ™~ ’;pMonitor
Evaluator I

PPDATE ‘ f ppDATE’

Aspects I I
L »{ Monitor =
partial) -9 Generator : Prog. P’

Proofs * (weaved)

1 s static j
. %,/ rm— —’{ Monitoring
. Optimizer

Deductive Partially

Prog. P -
\ Verifier verified P
1

v

Totally
verified P

Fig. 2. High-level description of the framework

exit of a single call), but also to exceptions raised by the system. To combine
the approach, we propose ppDATEs, an extension of DATEs with the notion
of pre- and postconditions, enabling transitions from a state to another when-
ever a method call satisfying the precondition terminates with the postcondition
holding. Notationally, pre-/postconditions are additional elements of transition

labels, put in the front/end of the other label elements: s M) s

ppDATES enable the co-specification of data centric, control centric, and real
time aspects of a system in a unified way. Concretely, ppDATE describes com-
municating automata with event-triggered transitions, timers, and functional
unit specifications. Events are actions on objects (foremost method calls), timer
events, primitives for synchronising with different automata, or a combination
thereof. In addition, events are potentially augmented with conditions, actions,
plus logic based, data centric specifications of the pre-post behaviour of the
called method.

3.2 Description of the framework

An abstract view of the proposed framework, taking as input an object-oriented
program P and a specification of the desired properties, can be found in Fig. 2.
We describe our framework in what follows based on the figure.

Deductive verification tools typically rely on user input to difficult proof
steps, like finding loop invariants. However, the proposed framework is designed
for fully automated use of the verifier, represented in the figure by the Deductive
Verifier module. Therefore, not all proof attempts will lead to complete proofs.
The workflow makes use of both, complete and partial, proofs, when specialising
the ppDATE specification.

The purpose of the Partial Specification Fvaluator is to spare the runtime
verification (at the end of the workflow) from checking properties that were

8 W. Ahrendt and G.J. Pace and G. Schneider

proved statically. For instance, postconditions that were completely proved (rel-
atively to a certain method and precondition) do not need to be checked at
runtime at all. The more interesting question is how to still make use of the
information contained in partial proofs for the run-time verification phase. Here,
the basic idea is to construct, from the open proof goals, specialisations of the
precondition to the cases where the postcondition could, respectively could not,

be proved. For instance, suppose the original ppDATE automaton features a

t
transition s M) s’ (where pre and post are the pre- and postcondition

of calling method m). Suppose further the deductive verifier produces a partial,
i.e., unfinished proof for pre F (m())post (ignoring s for simplicity.) Then, it is
possible, by analysis of the open proof goals, to construct two specialisations
pre; and prey of pre, with pre; A prey <> pre, such that pre; corresponds to the
open and pre, to the closed proof branches, respectively, and pre, = (m())post is
a consequence of the partial proof. This can be used by the partial specification
evaluator to replace s’ with two clones s} and sj, and instead of the above tran-

. . st ey tr . .
sition have s M s} and s M sh. Thereby, during runtime

verification, only the transition to s§ will trigger a checking of the postcondition
post, but not the other transition, as post is ensured there statically.

The Monitor Generator takes as main input the specialised specification,
ppDATE’. From such a specification, it uses aspect-oriented programming tech-
niques to capture relevant system events, and implements runtime checks to
ensure no violation takes place. The current approach to automata based mon-
itor generation used in LARVA [25], cannot deal in a satisfactory manner with
the data-centric parts of the specification that could not be (fully) ensured stat-
ically. This is particularly true for postconditions as in most cases they involve
some kind of procedural checking (e.g., to check that an array is indeed sorted).
Here we will pursue alternative approaches, like dedicated nested automata (for
checking postconditions), and logic based runtime assertion checking of the kind
done for JML specifications [22].

Before weaving the generated aspects into the code to be monitored, further
static optimisations will be applied in the Static Monitoring Optimizer module,
using, and expanding on, recent results in the area of combining static analysis
(other than verification) with runtime verification. In particular, CLARA [18] is a
good candidate to base our static monitor optimizer. Note that the optimisations
can also affect the monitor itself giving the possibility to reduce its size and thus
enhancing performance (this part is not shown in Fig. 2).

The final step in the workflow is the actual runtime verification, which ex-
ecutes the weaved program P’ in parallel with the resulting monitor. Suitable
forms of reporting and analysing the results of runtime verification, in certain
cases including error recovery mechanisms, are natural extensions of the frame-
work. They will be addressed in future work, without aiming at full generality,
however. Rather, these issues are specific for the demands of a deployment sce-
nario and application area, and will be tailored for specific deployments and case
studies.

A Unified Approach for Static and Runtime Verification 9

3.3 Additional features

In addition to what is discussed above, a crosscutting concerns is the treatment
of real-time properties. On the runtime side, LARVA already supports timers. On
the static verification side, there is recent research on loop bound analysis using
a combination of KeY and COSTA [4]. Yet, these two are very different aspects
of real-time.

The framework has further potentials outside the main workflow as sketched
above. One is the possibility of a feedback loop from the runtime verification to
the (static) deductive verifier. For instance, there is work on discovering likely
invariants by dynamic analysis [31] or testing [35], and the proposed framework
could well be ideal for dynamic-to-static feedbacks of similar kind. Another issue
is the broadening of our current deductive test case generation approach [30] to
control related aspects, like call-graph related test coverage criteria.

4 An Illustrative Example

Let us reconsider the login-scenario, extending on Fig. 1, introduced in section
2.2 when describing the tool LARVA. We assume now that whenever a user logs in,
she is added to a set of current users. A specification of this scenario will consist
of a number of parallel ppDATESs specifying different properties. Such ppDATESs
could be activated by mutual synchronisation or by events. For instance the
high level property about the login will consist of a modified version of the
DATE shown in Fig. 1, where the good-/bad-login events are augmented with
the user’s identity as a parameter. Additionally we will have, in parallel, another
ppDATE which includes pre/post-conditions of data sensitive operations, like the

method call users.add(u) which is activated whenever the event goodlogin (u)

. e . . O
happens. An according transition will look like s M s’

Before giving details about pre and post, let us discuss the Java implementa-
tion of the set of users. We assume the set is implemented with help of an array
arr, using hashing for fast look-up. Hash conflicts are resolved by open address-
ing, meaning the method add first tries to put the object into arr at the position
of the computed hash code. If that index is occupied, however, add searches for
the nearest following index which is free. The set has a capacity limited by the
length of arr. To enable easy checking whether or not the capacity is reached,
a field size keeps track of the number of stored objects.

The ppDATE specifying the behaviour of the user set will therefore contain
size<arr.length\add()\3i.arr[i]=o

a transition s s’, among others. To deal with the
postcondition, the runtime verifier may use a technique known as ‘runtime asser-
tion checking’, where logical formulas are operationalised [22]. For our example,
Ji.arr[i] = o would be turned into a loop walking through the array.
Checking the postcondition needs to be done each time the transition fires.
However, we can optimise away this runtime check for certain cases, using static
verification with KeY. If one tries to statically prove, with KeY, that add’s imple-
mentation is correct with respect to some JML specification, KeY first will gener-

10 W. Ahrendt and G.J. Pace and G. Schneider

ate proof obligations in form of DL sequents. One of them could look like the fol-
lowing: size < arr.lengtht (add(o)) Ji. arr[il = o
When constructing a proof of this sequent, KeY will branch over case distinctions
in the code of add, such as whether the initial hash index is free or occupied.
The two sequents resulting from that branching look like:
size < arr.length, arr[o.hashCode()%arr.length] =null
and

size < arr.length, —arr[o.hashCode()%arr.length] = null +
The first branch will be easier to automatically close by KeY than the second,
which requires handling a loop searching for the next free index. Therefore, if
KeY runs in auto-mode, excluding using interaction, it might only close the first
branch.

As we have managed to prove one of the branches, there will be no need to
monitor the case when the initial hash index is free, and only the branch when
this is not the case will be monitored. Therefore, we can replace the transition

given above by two transitions:
size<arr.length, arr[o.hashCode()%arr.length]l=null\add (O \true ,
S
1

and

size<arr.length, —arr[o.hashCode()%arr.length]l =null\add()\3i.arr[i]=o0 ,
2
Thereby, during runtime verification, only the transition to s, will trigger a

checking of the postcondition, but not the other transition, as true is ensured
trivially. Given a hashtable that is well dimensioned, the cheaper case will be
more frequent at runtime.

5 Applications

5.1 Electronic and legal contracts

The term ‘contract’ has mostly been used in software systems as a metaphor
and not according to the common meaning of the word. The first use of the
term in connection with software programming and design was done by Meyer
in the context of the language Eiffel (programming-by-contracts, or design-by-
contract) [46]. Software contracts can appear as integrated part of a programming
language, like in Eifel, or phrased in a special contract language, like JML [42]
(supported by KeY) and Code Contracts [44]. Similarly, as a metaphor, the term
has been used to describe interfaces of component-based systems or service-
oriented architectures.

In the following, however, the word contract will be used as a general term to
describe any kind of normative document, including contracts in the legal sense
and other agreements where the different parties involved engage on certain
obligations. Here, we are primarily interested in electronic agreements, which
form an electronic version of legal contracts, and the role of static and dynamic
verification plays in their analysis.

As a simple example consider agreements in the context of installing applica-
tion on a mobile phone. In such cases the contract is shown in natural language

A Unified Approach for Static and Runtime Verification 11

(e.g., English) and the user must accept the terms and conditions stipulated
there; otherwise the application is not installed. Ideally, each user would read
and understand the agreement, and foresee the consequences in case of violation
of certain clauses. Reality is different, though. So how else could one validate a
contract between two parties before accepting it? This requires that the contract
is fully formalised, which is not an easy task as witnessed by a number of current
research papers on the topic (see for instance [48,49] and references therein).

One solution is to monitor the system using a contract as the specification,
possibly giving a notification before allowing actions which may lead to a vio-
lation to go through. Our proposal is that a third party would statically verify
the application software against the agreement, leaving as little as possible to
be verified at runtime in the form of a monitor provided with the application.
This ensures contract adherence, whilst keeping overheads low.

5.2 Transaction-handling systems

Systems which handle transactions (such as financial payments) are becoming
increasingly prevalent. Although various design patterns are used to control the
complexity of their development, they still pose various challenges to their veri-
fication:

— Concurrency. Typically, a transaction-handling system handles many trans-
actions concurrently, and unless appropriate design principles are adhered to,
this can lead to an overload in complexity. The main principle is to structure
transactions to act in a manner which externally is perceived to be atomic
— the operation takes place without the possibility of interference. While
being a sound design principle, ensuring that the transactions are internally
built to satisfy this is rarely easy.

— Long-lived transactions. Whenever transactions have to communicate with
real-life systems, they may end up with a substantial increase of their lifes-
pan. This means that the complete locking of all necessary resources for the
duration of the transaction is not an option. This requires the use of more
complex design patterns to engage and use resources in a rational way.

— Handling failure. Various transactions interact with external systems (e.g., a
payment transaction may have to communicate with a bank) over which the
system has no control. One of the side-effects of these interactions is that the
external systems may fail. Handling such failure is not trivial, and although
approaches such as compensations have been proposed and used, entwining
the logic of normal and exceptional (failing) behaviour induces an overhead
in complexity.

— Varying system loads. Although typically transactions are not individually
computationally expensive, the concurrent nature of the handling of trans-
actions introduces a varying load on the machine processing them. In many
domains, this load frequently features regular surges in activity, during which
performance becomes an important issue. For example, in an online betting
system, the number of incoming bets per minute may peak in the last min-
utes before an important football match.

12 W. Ahrendt and G.J. Pace and G. Schneider

The first three issues indicate that such systems are ideally verified, even
if runtime verification may introduce unacceptable overheads. We thus believe
that transaction-handling systems can be an ideal domain on which to apply our
proposed framework.

6 Related Work

The combination of different verification techniques in order to get the best
from each, is not new. In particular there have been some successful stories
combining different static analysis techniques. This is the case for instance of
the SLAM project [7], where symbolic model checking, program analysis and
theorem proving are combined on a novel fashion to verify drivers written in C.
Another example is InVeSt [12] integrating algorithmic and deductive verification
techniques, using abstraction, to verify invariance properties.

More recently, some research has been conducted aiming at a combination
of static analysis (other than verification) and runtime verification in different
ways. Arhto and Biere describes an architecture based on JNuke where Java
programs can be statically and dynamically analysed [6]. In this framework, a
static analyser tries to detect faults which are manually checked by a user who
writes test cases for each fault found. The program is then run many times
against those test cases confirming, or not confirming, the failure. In the latter
case, a log is kept for future runs of the static analyser.

In [16] static analysis is used to improve the performance of runtime mon-
itoring based on tracematches. The paper presents a static analysis to speed
up trace matching by reducing the runtime instrumentation needed. The static
analysis part is based on 3 stages in order to: rule out some tracematches, elim-
inate inconsistent instrumentation points, and finally further refine the analysis
taking into account certain execution order.

In [17] Bodden et al present ahead-of-time techniques to statically prove the
absence of all program errors, or mark specific parts of the programs where such
errors are likely to occur at runtime. The approach is based on tracematches.

CLARA is a framework to statically optimise runtime monitoring [18], which
uses static analysis techniques to operate on the monitors themselves with the
aim of improving performance, as opposed to the combination of static analysis
and verification with runtime verification techniques to verify software.

As opposed to [6], we are not concerned with testing faults found by a static
analyser but to prove as much as we can with a static verifier, and only the
non-provable parts are verified during the real execution of a program. Besides
we do not extract test cases to test the system but perform runtime verification.
Like [16] our proposed approach also aim at improving the efficiency of runtime
verification but our techniques are completely different. While Bodden et al. use
static analysis we use deductive wverification. This distinction is crucial as the
kind of properties we can prove is not the same.

A related structure to ppDATESs has already been explored in [32], a work
supervised by one of the authors of this paper.

A Unified Approach for Static and Runtime Verification 13

7 Conclusion

We have presented the conceptual model of a framework for the verification of
object-oriented systems. The proposed framework is based on a suitable combi-
nation of static and dynamic verification techniques, in particular based on the
underlying approaches of KeY and LARVA. We have proposed ppDATEs as a
unified specification language for describing both static and dynamic properties,
and we have shown an example to illustrate how our approach could be used.
We have also described two application domains that we believe could benefit
from our approach.

This is a position paper and as such much work is still to be done, starting
with a formal definition of ppDATESs and ending with a full implementation of
the framework, including proving interesting properties about the approach and
applying it to real case studies.

References

1. W. Ahrendt. Using KeY. In Beckert et al. [11], pages 409-451.

2. W. Ahrendt, T. Baar, B. Beckert, R. Bubel, M. Giese, R. Hahnle, W. Menzel,
W. Mostowski, A. Roth, S. Schlager, and P. H. Schmitt. The KeY tool. Software
and System Modeling, 4:32-54, 2005.

3. I. Aktug and K. Naliuka. Conspec: A formal language for policy specification. In
FLACOS 07, pages 107-109, Oslo, Norway, October 2007.

4. E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini. COSTA: Design
and Implementation of a Cost and Termination Analyzer for Java Bytecode. In
FMCO’08, number 5382 in LNCS, pages 113-133. Springer, 2007.

5. C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren, S. Kuzins, O. Lhotdk,
O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. Adding trace matching
with free variables to aspectj. SIGPLAN Not., 40:345-364, October 2005.

6. C. Artho and A. Biere. Combined static and dynamic analysis. In AIOOL’05,
volume 131 of Electr. Notes Theor. Comput. Sci., pages 3—14, 2005.

7. T. Ball, V. Levin, and S. K. Rajamani. A decade of software model checking with
slam. Commun. ACM, 54(7):68-76, 2011.

8. M. Barnett, K. R. M. Leino, and W. Schulte. The Spec# programming system:
an overview. In CASSIS’05, volume 3362 of LNCS, pages 49-69. Springer-Verlag,
2005.

9. B. Beckert. A dynamic logic for the formal verification of Java Card programs. In
Java Card 2000, LNCS 2041, pages 6—24. Springer, 2001.

10. B. Beckert and C. Gladisch. White-box testing by combining deduction-based
specification extraction and black-box testing. In TAP’07, LNCS 4454. Springer,
2007.

11. B. Beckert, R. Hahnle, and P. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNCS. Springer-Verlag, 2007.

12. S. Bensalem, Y. Lakhnech, and S. Owre. InVeST: A tool for the verification of
invariants. In CAV’98, volume 1427 of LNCS, pages 505—510. Springer, 1998.

13. K. Bhargavan, C. A. Gunter, M. Kim, I. Lee, D. Obradovic, O. Sokolsky, and
M. Viswanathan. Verisim: Formal analysis of network simulations. IEEE Trans.
Software Eng., 28(2):129-145, 2002.

14

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

W. Ahrendt and G.J. Pace and G. Schneider

E. Bodden, L. J. Hendren, P. Lam, O. Lhotdk, and N. A. Naeem. Collaborative
runtime verification with tracematches. In Runtime Verification (RV), volume 4839
of LNCS, pages 22-37. Springer, 2007.

E. Bodden, L. J. Hendren, P. Lam, O. Lhotdk, and N. A. Naeem. Collaborative
runtime verification with tracematches. J. Log. Comput., 20(3):707-723, 2010.

E. Bodden, L. J. Hendren, and O. Lhotdk. A staged static program analysis to
improve the performance of runtime monitoring. In FCOOP “07, volume 4609 of
LNCS, pages 525-549. Springer, 2007.

E. Bodden, P. Lam, and L. J. Hendren. Finding programming errors earlier by
evaluating runtime monitors ahead-of-time. In SIGSOFT FSE’08, pages 36—47.
ACM, 2008.

E. Bodden, P. Lam, and L. J. Hendren. Clara: A framework for partially evaluating
finite-state runtime monitors ahead of time. In RV’10, volume 6418 of LNCS, pages
183-197, 2010.

A. D. Brucker and B. Wolff. Interactive testing with HOL-TestGen. In FATES 05,
volume 3997 of LNCS, pages 87-102. Springer-Verlag, 2005.

L. Burdy, A. Requet, and J.-L. Lanet. Java applet correctness: a developer-oriented
approach. In F'M “03, volume 2805 of LNCS, pages 422-439. Springer-Verlag, 2003.
F. Chen and G. Rosu. Java-mop: A monitoring oriented programming environment
for java. In TACAS’05, volume 3440 of LNCS, pages 546-550. Springer-Verlag,
2005.

Y. Cheon and G. T. Leavens. A runtime assertion checker for the Java Modeling
Language (JML). In SERP’02, pages 322-328. CSREA Press, 2002.

C. Colombo. Practical runtime monitoring with impact guarantees of Java pro-
grams with real-time constraints. Master’s thesis, University of Malta, 2008.

C. Colombo, G. J. Pace, and P. Abela. Safer asynchronous runtime monitoring
using compensations. Formal Methods in System Design, 40:1-26, 2012.

C. Colombo, G. J. Pace, and G. Schneider. Dynamic event-based runtime monitor-
ing of real-time and contextual properties. In FMICS’08, volume 5596 of LNCS,
pages 135-149. Springer-Verlag, September 2009.

C. Colombo, G. J. Pace, and G. Schneider. Larva - a tool for runtime monitoring
of java programs. In SEFM’09, pages 33-37. IEEE Computer Society, 2009.

M. d’Amorim and K. Havelund. Event-based runtime verification of Java programs.
SIGSOFT Softw. Eng. Notes, 30(4):1-7, 2005.

B. D’Angelo, S. Sankaranarayanan, C. Sanchez, W. Robinson, B. Finkbeiner, H. B.
Sipma, S. Mehrotra, and Z. Manna. Lola: Runtime monitoring of synchronous
systems. In TIME’05, pages 166-174. IEEE Computer Society Press, June 2005.

X. Deng, J. Lee, and Robby. Bogor/Kiasan: a k-bounded symbolic execution for
checking strong heap properties of open systems. In ASE’06, pages 157-166. IEEE
Computer Society, 2006.

C. Engel and R. Hahnle. Generating unit tests from formal proofs. In TAP’07,
volume 4454 of LNCS. Springer, 2007.

M. Ernst, J. Cockrell, W. Griswold, and D. Notkin. Dynamically discovering likely
program invariants to support program evolution. IEEFE Transactions on Software
Engineering, 27(2):99-123, 2001.

K. Falzon. Combining runtime verification and testing techniques. Master’s thesis,
University of Malta, 2010.

A. Goldberg and K. Havelund. Automated runtime verification with eagle. In
MSVVEIS, 2005.

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

A Unified Approach for Static and Runtime Verification 15

W. Grieskamp, N. Tillmann, and W. Schulte. XRT — exploring runtime for.NET
architecture and applications. In Proc. Workshop on Software Model Checking
(SoftMC 2005), Edinburgh, UK, volume 144(3) of Electr. Notes Theor. Comput.
Sci, pages 3-26, 2006.

A. Gupta, R. Majumdar, and A. Rybalchenko. From tests to proofs. Tools and
Algorithms for the Construction and Analysis of Systems, pages 262—276, 2009.
R. Héhnle, M. Baum, R. Bubel, and M. Rothe. A visual interactive debugger
based on symbolic execution. In ASE’10, pages 143-146, New York, NY, USA,
2010. ACM.

C. A. R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576-580, 583, Oct. 1969.

J. J. Hunt, E. Jenn, S. Leriche, P. Schmitt, I. Tonin, and C. Wonnemann. A case
study of specification and verification using JML in an avionics application. In
JTRES’06, pages 107-116. ACM Press, 2006.

B. Jacobs, C. Marché, and N. Rauch. Formal verification of a commercial smart
card applet with multiple tools. In AMASTO0/, volume 3116 of LNCS, pages 241—
257. Springer-Verlag, 2004.

M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-mac: A run-
time assurance approach for java programs. Formal Methods in System Design,
24(2):129-155, 2004.

J. C. King. A program verifier. PhD thesis, Carnegie-Mellon University, 1969.

G. T. Leavens, A. L. Baker, and C. Ruby. JML: a java modeling language. In
Formal Underpinnings of Java Workshop (at OOPSLA ’98), 1998.

G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Miiller, J. Kiniry,
and P. Chalin. JML Reference Manual. Draft Revision 1.200, 2007.

F. Logozzo. Our experience with the code contracts static checker. In VSTTE’12,
volume 7152 of LNCS, pages 241-242. Springer, 2012.

P. O. Meredith, D. Jin, F. Chen, and G. Rosu. Efficient monitoring of parametric
context-free patterns. Autom. Softw. Eng., 17(2):149-180, 2010.

B. Meyer. Design by Contract. Technical Report TR-EI-12/CO, Interactive Soft-
ware Engineering Inc., 1986.

W. Mostowski. Formalisation and verification of Java Card security properties in
dynamic logic. In FASE’05, volume 3442 of LNCS, pages 357—-371. Springer-Verlag,
2005.

G. J. Pace and G. Schneider. Challenges in the specification of full contracts. In
iFM’09, volume 5423 of LNCS, pages 292-306, 2009.

C. Prisacariu and G. Schneider. A dynamic deontic logic for complex contracts. J.
Log. Algebr. Program., 81(4):458-490, 2012.

P. Riimmer. Generating counterexamples for Java Dynamic logic. In Prel. Proc. of
Workshop on Disproving at CADE’05, pages 32—44, 2005.

P. H. Schmitt and I. Tonin. Verifying the Mondex case study. In SEFM’07, pages
47-56. IEEE Press, 2007.

K. Stenzel. Verification of Java Card Programs. PhD thesis, Fakultét fiir ange-
wandte Informatik, University of Augsburg, 2005.

https://www.researchgate.net/publication/262370856

