
Formal Verification of Recursive

Predicates

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der Fakultät für Informatik

der Universität Fridericana zu Karlsruhe (TH)

genehmigte

Dissertation

von

Richard Bubel

aus Erlangen

Tag der mündlichen Prüfung: 29.06.2007

Erster Gutachter: Prof. Dr. P. H. Schmitt, Universität Karlsruhe (TH)

Zweiter Gutachter: Prof. Dr. U. Furbach, Universität Koblenz-Landau

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by KITopen

https://core.ac.uk/display/197560817?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 8
1.1 The KeY Approach . 8
1.2 Structure of the Thesis . 9
1.3 Related Work . 10

I Foundations 11

2 The JAVA CARD Dynamic Logic 12
2.1 Syntax And Semantics . 13

2.1.1 Type Hierarchy and Signature 13
2.1.2 Terms and Formulas in JAVA CARD DL 15
2.1.3 Semantics of JAVA CARD DL 18

2.2 Calculus . 22
2.2.1 Symbolical Execution . 23
2.2.2 Rules and Taclets . 23
2.2.3 Object Creation . 25
2.2.4 Java Reachable States . 27
2.2.5 Symbolical Execution of Method Invocations 27
2.2.6 The Method Contract Rule 30

II Structural Specification and Verification 35

3 Structural Specification with Recursive Predicates 36
3.1 Location Dependent Non-Rigid Symbols 36

3.1.1 Motivation . 36
3.1.2 Syntax and Semantics . 37
3.1.3 Update Simplification . 39
3.1.4 Soundness Proof Obligation for Axiomatisations of Loca-

tion Dependent Symbols 40
3.1.5 Modelling Queries . 42
3.1.6 Specification and Verification of a Sorting Algorithm . . . 43

3.2 Reachable Predicate . 45
3.2.1 Syntax and Semantics . 45
3.2.2 Calculus Rules for the Reachable Predicate 48

3.3 Structural Specification of Graph Structures 49
3.3.1 General Specification Predicates 50
3.3.2 Linked Lists . 52
3.3.3 Tree Structures . 54

2

3.4 Summary . 56

4 Recursive Methods Treatment 57
4.1 Motivation . 57

4.1.1 Current Problems and Challenges 57
4.2 Recursive Method Treatment . 59

4.2.1 Using Proof Obligations 59
4.2.2 Example: List Reversal 63

4.3 Summary . 66

5 Specifying Linked Data Structures with Abstract Data Types 69
5.1 Abstract Data Types and Linked Data Structures 69

5.1.1 Abstraction of Linked Data Structures 69
5.1.2 Connecting Abstract Data Structure and JAVA CARD DL . 71
5.1.3 Applications . 74

5.2 Summary . 76

6 Modelling JAVA-Strings 77
6.1 The Java String Class . 77
6.2 Specification of the JAVA-String class 79

6.2.1 The Abstract Data Type – AString 79
6.2.2 String Conversions . 81
6.2.3 String Creation . 82
6.2.4 String Literals . 84

6.3 String Pool and Optimisations 85
6.3.1 Complete Axiomatisation of the String Pool 85
6.3.2 Further JLS conform Optimisations 86

6.4 API specification challenges . 86
6.4.1 Assignable Clause . 87
6.4.2 Abstraction Level . 91

6.5 Summary . 91

III Case Study 92

7 Case Study: The Schorr-Waite Algorithm 93
7.1 Motivation . 93
7.2 The Graph Marking Algorithm “Schorr-Waite” 93

7.2.1 Description . 93
7.2.2 Implementation . 95

7.3 Specification . 97
7.3.1 Proof Obligation . 97
7.3.2 Encoding the Backtracking Path 99
7.3.3 The Loop Invariant . 101

7.4 Verification . 105
7.5 Results and Comparison . 107

3

IV Conclusions 109

8 Summary and Future Work 110

A Specification Predicates for Linked Datastructures 111
A.1 List Specification Predicates . 111

B Schorr-Waite Sources 118
B.1 Implementation . 118
B.2 Schorr-Waite Proofobligation . 121
B.3 Soundness Proofobligations for derived Taclets 126

B.3.1 Taclet: EffectlessUpdate 126
B.3.2 Taclet: EffectlessUpdate2 128
B.3.3 Taclet: onPathBase . 130
B.3.4 Taclet: onPathNoCycle 132
B.3.5 Taclet: onPathNull . 134
B.3.6 Taclet: onPathTransitive 136
B.3.7 Taclet: reachableBase . 138

4

Acknowledgement

In the first place, I would like to thank my supervisor Prof. Dr. Peter H. Schmitt
for providing an excellent working climate and environment, fruitful discussions,
steady support and help. In particular for his patience in the last months of
writing the thesis and his steady encouragements.

I am grateful to Prof. Dr. Ulrich Furbach that he agreed to act as second
reviewer for my thesis.

I am in deep debt of gratitude to my colleagues Dr. Andreas Roth and Dr.
Steffen Schlager including their families for discussions, suggestion and their
friendship.

Also I want to thank Prof. Dr. R. Hähnle for his support and to allow me to
finish writing my thesis, while I should have worked on the MOBIUS project.

My thanks go also to the other co-funders of the KeY-project Prof. Dr. Bern-
hard Beckert and Prof. Dr. Wolfram Menzel for allowing me to participate in
an exciting research project.

I want also to thank Prof. Dr. Wolfgang Ahrendt, Dr. Thomas Baar, Dr.
Martin Giese, Vladimir Klebanov, Dr. Wojciech Mostowski, Philipp Rümmer,
Angela Wallenburg and all other colleagues and also the many students of the
KeY-project, it was always a great pleasure to work with you.

I want also to thank my colleague Frank Werner, who started in Karlsruhe a
few month ago for the nice time and moral support.

Last, but not least my thanks go to my parents–Eva and Jörg Bubel–without
them nothing would have been possible.

Gothenburg, May 2007
Richard Bubel

5

Deutsche Zusammenfassung

Die vorliegende Arbeit ist im Bereich der Programmverifikation angesiedelt und
führt Methoden zur Verifikation verzeigerter Datenstrukturen ein. Diese Meth-
oden wurden von mir im Rahmen meiner Arbeit für das KeY-Projekt entwickelt.

Das KeY-Projekt erforscht Fragestellungen, die sich im Rahmen der deduk-
tiven Verifikation objekt-orientierter Programme ergeben. Insbesondere wurde
und wird ein Verifikationswerkzeug entwickelt mit dem sich JAVA CARD Pro-
gramme verifizieren lassen. Die zur Zeit umfassendste Beschreibung des KeY-
Projekts findet sich in [BHS06].

In Kap. 2 der Arbeit werden die Grundlagen der im KeY-Projekt verwende-
ten dynamischen Logik JAVA CARD so weit wie für das Verständnis der Arbeit
notwendig eingeführt. In weiten Teilen folgen die Definition denen in Kap. 3
im KeY-Buch [BHS06] angegebenen.

Im Mittelpunkt dieser Dissertation steht die Spezifikation und Verifikation
von Eigenschaften, deren Definitionen in der Regel rekursiven Charakter haben.
Dieser Art von Definitionen ist typischerweise bei der Spezifikation und Veri-
fikation von Eigenschaften induktiv-definierter Datenstrukturen wie Listen oder
Bäumen bzw. beliebiger Graphen anzutreffen.

Um Eigenschaften solcher Strukturen auf einfache und für die spätere Veri-
fikation geeignete Weise ausdrücken zu können, wird in Kap. 3 eine neue Kate-
gorie von zustandsabhängigen Symbolen eingeführt, die als expliziten Teil ihrer
Syntax Informationen über die Zustandsabhängigkeit enthält. Aus dieser Infor-
mation kann man schließen, ob eine Zustandsveränderung Einfluss auf den Wert
eines solchen Symbols hat. Das Verwenden dieser hier erstmals eingeführten
Symbolklasse führt zu einer signifikante Verbesserung der Effizienz des Kalküls.
Im angeführten Kapitel wird zudem eine Auswahl von Anwendungsgebieten
dieser Symbolklasse vorgestellt, wie die formale Definition von Erreichbarkeit in
verzeigerten Strukturen oder die Representation sog. Queries, d.h. von Metho-
den deren Implementierung keine Veränderung des Speichers (Zustands) verur-
sacht. Aufbauend auf der Erreichbarkeitsformalisierung werden systematisch
Prädikate für die Spezifikation ausgewählter Datenstrukturen eingeführt.

Während sich das vorhergehende Kapitel auf Spezifikationsaspekte konzen-
triert, wird in Kap. 4 eine Regel eingeführt, die die Verifikation rekursiv imple-
mentierter Methoden in JAVA CARD DL ermöglicht. Bisher war eine Verifikation
dieser Methoden in JAVA CARD DL nur möglich, wenn die maximale Rekur-
sionstiefe durch eine feste und parameterunabhängige Zahl gegeben war. Die
Anwendung der Regel wird anhand zweier Beispiele, wie die Implementierung
einer Listenumkehr, vorgeführt.

Kap. 5 präsentiert eine allgemeine Vorgehensweise mit der sich verzeigerte
Datenstrukturen unter Verwendung abstrakter Datentypen spezifizieren lassen.
Der Vorteil ist, dass letztere von vielen implementationsabhängigen Details ab-

6

strahieren können und sich somit Beweise vereinfachen lassen. Ein ausgear-
beitetes Beispiel wird in Kap. 6 vorgestellt, welches eine Formalisierung des
JAVA-Datentyps String vorstellt. Nach bestem Wissen des Autors wurde eine
solche Formalisierung in der Literatur bisher noch nicht beschrieben.

In Kap. 7 werden einige der vorgestellten Techniken im Rahmen einer Fall-
studie zur Verifikation der Korrektheit einer Implementierung des Schorr-Waite
Algorithmus vorgestellt. Der Graphenmarkierungsalgorithmus Schorr-Waite
kommt im Gegensatz zu anderen Algorithmen seiner Art mit einem festen, nicht
von der Größe des Graphen abhängenden, Platzbedarf aus. In Erweiterung zu
anderen bisher durchgeführten Verifikationen des Algorithmus wird hier die
Variante für beliebig verzweigende Graphen als korrekt nachgewiesen.

7

1 Introduction

1.1 The KeY Approach

The KeY-approach aims at the integration of deductive verification within the
development process. Therefore a tight integration into standard development
environments as CASE (computer aided design environment) tools and IDE
(integrated development environments) is indispensable.

KeY adds specification and verification support to these tools. A semi-
automatic prover builds up the system’s core component that allows to prove
that the implementation meets its specification, visualise possible thrown and
uncaught exceptions or generate test cases. The taken approach allows to draw
benefit even from incomplete specifications or not completed proofs.

As target programming language JAVA CARD has been chosen, which is mainly
a subset of JAVA. At the moment of writing1 this means no multi-threading,
floating point operations or graphical user interface classes are supported in-
cluding some other minor simplifications. But in addition to standard JAVA it
comes with built-in support for transactions. KeY supports the complete JAVA

CARD language and also most of the features previously summarised under mi-
nor simplifications like full object and class initialisation.

The supported high-level specification languages are

• the Unified Modelling Language (UML) in combination with the Object
Constraint Language which is part of the UML specification [Obj01].

• the Java Modelling Language [LPC+02, LBR00] a specification language
designed for the specification of JAVA programs.

these specifications become then translated into a variant of dynamic logic
called JAVA CARD DL, which can also be seen as a low-level specification lan-
guage. Using dynamic logic grants access to a wide repository of fundamental
knowledge and experience concerning a sound theoretic underpinning, calculus
design and others.

The thesis concentrates on handling non-rigid functions (resp. predicates),
i.e., symbols whose interpretation depends on the (program) state. Several
problems can be naturally specified on an acceptable abstraction level with the
help of auxiliary non-rigid functions or predicate symbols.

We will demonstrate how they can be used to specify interesting aspects of
inductively defined data structures like graphs, lists, etc. In these cases the
non-rigid symbols are often defined in a recursive manner. Another well-known
application area are (recursive) methods, which are in principle (recursively)

1the upcoming JAVA CARD specification will for example include multi-threading

8

defined non-rigid functions. In this thesis techniques are developed that allow
an efficient formal treatment in proofs.

1.2 Structure of the Thesis

The thesis is structured as follows: Chapter 2 fixes the notation and defini-
tions used throughout the thesis. It provides the theoretical underpinning of
JAVA CARD DL–the base logic of the KeY-project–and follows in most parts the
definitions given in Chapter 3 of the KeY-Book [BHS06].

The thesis is mainly concerned with the specification and verification of prop-
erties, whose definition is inherently recursive. The most common application
scenarios for such properties originate from the need to specify or verify induc-
tively defined data structures like lists, trees or, even more general, arbitrary
graph data structures.

In order to specify such properties in a convenient way, a new class of state
dependable (non-rigid) symbols is introduced in Chapter 3. In contrast to
classical non-rigid symbols, they carry syntactic information allowing to deduce
which state changes may or may not effect their value. This kind of dependence
information allows a considerable improvement in the efficiency of the calculus
when treating non-rigid symbols. Examples demonstrating their use for the
formalisation of reachability properties and for the specification of inductively
defined structures back up this statement. As a further application field, it is
shown how the modelling of queries benefits from the use of this new kind of
symbols.

While the former chapter is more tailored to specification issues, Chapter 4
presents a rule that allows to treat and verify recursive implemented methods
within the JAVA CARD DL framework. Up-to-now recursive methods could
only be treated if the maximal recursion depth had been a fixed value, which
must not depend on any kind of parameters. The section gives two examples
demonstrating the rule, such as a recursively implemented list reversal.

In Chapter 5 a general framework is presented that allows to connect a linked
data structure to an abstraction defined in terms of an abstract data type. The
advantage is that the specification of the linked data structure may abstract
from details on the implementation level and concentrate on functional prop-
erties. An elaborated example is given in Chapter 6 specifying JAVA’s String
data type, which has to the best of the author’s knowledge not been formally
specified before.

The case study described in Chapter 7 demonstrates the use of some of the
techniques introduced in this thesis. Its content is the specification and verifica-
tion of Schorr and Waite’s graph marking algorithm. The contained chapter is
an extended version of the corresponding chapter in the KeY-Book, which has
been written by the author of the thesis. The Schorr-Waite algorithm is used as
a benchmark for program verification environments. The specified and verified
JAVA-implementation is–again to the best of the author’s knowledge–also the
first one which had been done for an arbitrary (but finite branching) graph data
structure.

9

Chapter 8 rounds off the work by summarising the presented work and point-
ing out open points and directions for further future work.

1.3 Related Work

Treatment of linked data structures is necessary within any program verifica-
tion environment. The LOOP [vdBJ00] project used higher-order logics and a
deep embedding of the JAVA semantics to provide a program verification system
for JAVA. The use of higher-order logics and deep-embedding allows for a direct
formalisation of reachability. As the method invocation stack is directly repre-
sented standard induction techniques could be used to treat recursive methods.
Both approaches are not feasible within JAVA CARD DL. The disadvantage of
deep embeddings is the high encoding overhead, which lowers–together with
the expressivity of higher-order logics–the degree of automation and makes in-
teraction difficult.

Another project exploiting higher-order logics is BALI [Ohe01], which is im-
plemented in Isabelle/HOL and uses also a deep embedding. The advantages
and disadvantages are comparable to the ones mentioned for LOOP.

The KIV [BRS+00] group in Augsburg added also support for JAVA to their
verification system. KIV uses also a dynamic logic. In contrast to KeY, they
model the heap explicitly as a logic data type, which allows e.g. for explicit
quantification of the existence of a path between two objects. In JAVA CARD DL
the heap is not explicitly modelled, only the heap changes are bookkept using so
called updates. As updates are logic operators similar to syntactic substitutions
and not represented as a logic data type this kind of quantification is not possible
within KeY and other techniques needed to be developed.

Further there are several decision procedures for subclasses of graph struc-
tures implemented by SAT resp. SMT solvers like haRVey [ARR03]. Typical
problems solved by those theories is if two given structures (in the supported
class) are equal.

Related to heap structures is also an approach used in program analysis
called Shape Analysis. Shape analysis maps concrete heaps to abstract ones by
accumulating heap cell (nodes of graph) that cannot be distinguished by given
so called instrumentation predicates resp. local variables into a summary node.
The program is then executed on the abstract heap by abstract interpretation.
A nice approach is presented in [SRW99] using three valued logic to model the
abstract heap.

10

Part I

Foundations

11

2 The JAVA CARD Dynamic Logic

In order to reason about programs one needs a language that allows to make
them a subject of discussion. A number of different languages has been and is
used for this purpose. For example, programs can be represented as terms of
a higher order logics together with an axiomatisation of the program language
semantics. For the Java programming language, this approach has been taken
by the LOOP [vdBJ00] and BALI [Ohe01] project using PVS [ORS92] resp.
Isabelle/HOL [Pau94]. The advantages of using a higher order logic is a gain
in expressiveness which also allows to reflect about properties of the program-
ming language itself rather than about pure programs. Further, together with a
theorem prover these fundamental approaches allow to prove mechanically con-
sistency properties of the program language formalisation itself and so to gain
some substantial confidence about its accordance. Furthermore, any calculus
built on top of such a formalisation is to be guaranteed correct. Of course, also
these approaches do not close the gap between an informal (though precise)
language specification in a natural language and its translation into a strict
mathematical formalism. The drawbacks of this approach are the encoding of
programs in terms of the logic, which makes them hard to read and to orientate
if a proof needs interaction. If one works directly on the program semantics
axiomatisation one has to deal with a lot of internal details often not important
for pure reasoning about programs. Building a good calculus on top of the
axiomatisation that provides a reasonable abstraction is an additional major
work.

Another well known language and more tailored to the purpose of program
verification is the Hoare language/calculus. The main notion is that of a Hoare
triple {P}α{Q} where P,Q are formulas in a first order logic and α an arbi-
trary program. The semantics of this triple is that in a state where P holds
and when α terminates then after the execution of α the formula Q holds. In
contrast to the former approach programs are not translated into logic terms
and easy to recognise and read. Hoare triples are (mostly) limited to partial
correctness and lack of closure concerning quantifiers. In order to overcome
these drawbacks (and some more) KeY uses a different kind of logic that keeps
programs as first citizen members (i.e., without translating them into terms)
and which subsumes the Hoare logic. This logic called dynamic logic has been
invented by David Harel [Har84]. Mainly in contains two new operators box [·]
and diamond 〈·〉 where P → [α]Q has exactly the same meaning as the above
Hoare triple. The formula that results from replacing the box by the diamond
operator would in addition require program α to terminate in order to become
true. In contrast to higher order logics one gets different instances of dynamic
logics for different programming languages and usually for real-world languages
the program semantics is specified in terms of a basic set of calculus rules. In

12

KeY we are convinced that the increase in readability and the good abstraction
level from internal details are worth to use a logic tailored for program verifi-
cation and therefore to put additional effort in approaches that allow to gain
confidence in the correctness and consistency of the rules. This additional effort
is done in KeY by providing some kind of reflection mechanism [BRR04] that
allows to prove correctness of rules relative to a (small) set of axiom rules. A
selected set of axiomatic rules have been crossverified against the formalisation
of the Java program language semantics in Isabelle/HOL called BALI [Tre05].
The crossverification of the while invariant rule [Wid06] and the previously
mentioned reflection mechanism have been co-supervised by the author of this
thesis.

In the remaining chapter, the most important basic notions and concepts of
the logic JAVA CARD DL are introduced. A full account of the used logic is
given in [BHS06].

2.1 Syntax And Semantics

This section defines the logic JAVA CARD DL as far as necessary for this thesis. It
is assumed that the reader is familiar with sorted first-order logics and classical
first-order dynamic logic.

In the first part the signature, syntax and semantics of the logic is described.
It is sketched how to set up a concrete instance of the logic for a given program
environment. The definition of so called updates and the validity of formulas
are of particular importance.

In the second part the general design of the calculus is described and discusses
the logical axiomatisation of a few selected concepts of the JAVA programming
language.

At the moment of writing the best source for a full account of the logic JAVA

CARD DL can be found in [BHS06], which also served as basis for this section.

2.1.1 Type Hierarchy and Signature

As Java allows inheritance (for interfaces even multi-inheritance) the logic’s
sort system is modelled as a type hierarchy and allows multi-inheritance for
any type.

Definition 1 (Type Hierarchy). The type hierarchy to be used is modelled as
a bounded lattice (T ,⊑) where

• the set T denotes a finite set of symbols whose elements are called types.
It contains at least the any ⊤ and bottom ⊥ type.

• the relation ⊑ defines a partial order on T × T , which is a reflexive,
antisymmetric and transitive relation. In order to form a bounded lattice
there have to be an upper and lower bound. For these roles the designated
sorts ⊤,⊥ are used:

– for all t ∈ T the following holds: (⊥, t) ∈⊑ and (t,⊤) ∈⊑

13

From now on, we will write (a ⊑ b) instead of (a, b) ∈⊑.

In order to model interfaces, abstract and normal classes precisely, the set of
types T is disjointedly divided into

1. a set Ta of abstract types and

2. a set Td of dynamic types

The idea is that a dynamic type has elements which are exactly of this type
and not of a subtype. In contrast there is no element that of an abstract type A
but not of a subtype of A. The any type is a dynamic type, whereas ⊥ belongs
to the abstract types.

The actual type hierarchy for a concrete instance of JAVA CARD DL(T ,⊑)

depends on the program environment. The program environment are all class
declarations and interface declarations together with their inheritance structure.
The type hierarchy is then constructed from the environment in a straight
forward manner. That is to say, if there are two classes A and B, where class B
extends class A then there are two logic types of the same name and with the
same inheritance structure.

Any program environment includes at least all primitive types like boolean orint and all classes resp. interfaces mentioned in the Java Language Specification
(inclusive all inherited types), like java.lang.Object, java.lang.Throwable,
java.lang.Exception etc. as well as the Null type.

With the type hierarchy on hand, the predicate, function and variable sym-
bols can be declared. In logics those declarations are traditionally collected at
one place called signature, analogous to C++ header files:

Definition 2 (Signature). The signature Sig(T ,⊑) is defined relative to a given
type hierarchy and consists of the pairwise disjoint sets

• PSym containing all predicate symbols,

• FSym containing all function symbols and

• VSym containing all variable symbols

and an arity function α : (PSym∪FSym∪VSym) → T + assigning each symbol
its signature, i.e., argument types and result type. We define the arity n of a
function symbol f as n = |α(f)| − 1 and the one of a predicate symbol p as
n = |α(p)|, where | · | : T + → N is the length(=number of types) of the word
given as argument.

The predicate and function symbols are further partitioned into two disjoint
classes, namely rigid and non-rigid symbols. While at this point this are only
two notions, the interpretation of the non-rigid symbols will later on depend on
the state of a program, while the symbols of the first will be state independent.

There are some predefined function and predicate symbols, which will be
given a fixed interpretation when defining the semantics. The most important
are:

14

• for any type T there is a rigid function <−T : ⊤ → boolean, intended to
test if the given element is of type T (or one of its subtypes).

• for any type T (except ⊥) there is a so called cast function (rigid) (T) :
⊤ → T mapping any element to one of type T . The intention is that
the cast function will be the identity on elements of type T (or one of its
subtypes).

• the rigid constant null of type Null.

• the usual arithmetic operators (e.g., +, -, *, /) and comparators (e.g.,
>=, <=), where the first ones are modelled as rigid functions and the
second ones as rigid predicates. Further there are rigid function symbols
that allow to represent any natural number using the human readable
decimal system.

• the boolean typed constants TRUE and FALSE.

• the non-rigid predicate symbol inReachableState explained in a later sec-
tion

As for the type hierarchy a subset of the signature is derived from the program
environment, which are modelled as special kinds of non-rigid function symbols:

• program variables and static attributes are modelled as non-rigid con-
stants of the corresponding type.

• for any instance attribute a of type T declared in a class C, there is a
unary non-rigid function symbol a@(C) : C → T.

• for any non-void method there is a non-rigid function symbols of the same
signature.

Note 1. Program variables, (static) attributes and non-void method form own
distinguishable subcategories of non-rigid functions.

The word subset is chosen with care as we further demand that there is an
infinite number of function symbols for each arity.

2.1.2 Terms and Formulas in JAVA CARD DL

The definition of terms TrmT for T ∈ T , programs Prg and formulas Fml
coincide widely with the standard definitions of sorted first-order logic resp.
dynamic logic. The definitions are therefore kept short and concentrate on not
so often found constructs:

Definition 3 (Terms). The sets TrmT for T ∈ T is defined as the smallest set
satisfying

1. any variable symbol v ∈ VSym with α(v) = T is a term of type T and
belongs therefore to TrmT for T ∈ T .

15

2. given a function symbol f ∈ FSym with signature α(f) = T1 · · ·TnT and
terms t1, . . . , tn with ti ∈ TrmSi

where Si ⊑ Ti then f(t1, . . . , tn) is in
TrmT for T ∈ T .

3. given a formula (see Def. 4) φ ∈ Fml and terms t1 ∈ TrmT , t2 ∈ TrmT

then
\if (φ) \then (t1) \else (t2)

is in TrmT for T ∈ T .

4. given a variable symbol v ∈ VSym of type S a formula (see Def. 4)
φ ∈ Fml, terms t1 ∈ TrmT , t2 ∈ TrmT then

\ifEx S v; (φ) \then (t1) \else (t2)

is in TrmT for T ∈ T . The variable c is bound in φ and t1, but not in t2.

5. given an update u (see Def. 7) and a term t ∈ TrmT then {u} t is a term
in TrmT .

Definition 4 (Formulas). The set Fml of formulas is defined as the smallest
set satisfying

1. given a predicate symbol p with signature α(p) = T1 · · ·Tn and terms
ti ∈ TrmSi

where Si ⊑ Ti, i ∈ {1 . . . n} then p(t1, . . . , tn) is in Fml.

2. the definitions for composing formulas using negation !, conjunction &,
disjunction |, implication −> or equivalence <−> are as usual.

3. given a variable symbol v ∈ VSym of type T and a formula φ then
\forall T v; φ resp. \exists T v; φ are formulas in Fml.

4. given formulas φ,ψ and τ ∈ Fml then

\if (φ) \then (ψ) \else (τ)

is in Fml.

5. given a variable symbol v ∈ VSym of type T and formulas φ,ψ and τ ∈
Fml then

\ifEx S v; (φ) \then (ψ) \else (τ)

is in Fml. The variable v is bound in φ and ψ, but not in τ .

6. given an update u (see Def. 7) and a formula φ ∈ Fml then {u} φ is in
Fml.

7. given a program p ∈ Prg(see Def. 5) and a formula φ then

• 〈p〉φ (read: diamond p phi)

• [p]φ (read: box p phi)

are formulas in Fml.

16

Definition 5 (JAVA CARD DL Programs). The set of all JAVA CARD DL pro-
grams Prg is defined as the smallest set containing all legal sequences of JAVA

CARD DL statements.
Thereby a JAVA CARD DL statement is any JAVA statement as defined by the

Java Language Specification [GJSB00] or a method-frame (see Def. 23) resp.
method-body (Def. 22) statement.

A legal sequence is defined as a sequence of statements st1; . . . ; stn;, which
when embedded in a static method of a public class in the default package
would be a legal JAVA1 program with respect to the program environment.

Note 2. In other words a sequence of statements st1; . . . ; stn; is considered to
be a JAVA CARD DL program, ifpubli lass DefaultClass {publi stati void defaultMethod() {

st1;
. . .;
stn;

}

}

is compiled by the JAVA compiler.

The last syntactical category to be defined here are updates. Updates are
JAVA CARD DL specific, they have been introduced for the first time in [Bec01].
The most complete and formal treatment is given in [Rüm06].

Definition 6 (Syntactical Location). A syntactical location is a non-rigid func-
tion representing

• a program variable pv, or

• a static attribute T.a resp. an instance attribute a@(T) declared in type
T , or

• the array access operator []

of the corresponding arity.

Definition 7 (Update). Given a syntactical location f and terms oi and v.
Then the expression f(o1, . . . , on) := v denotes an elementary update (or as-
signment pair). Let now u, u1, u2 be updates then

• the sequential composition u1 ;u2

• the parallel composition u1 ||u2

• the conditioned \if φ; u where φ is a formula

1the notion legal for occurrences of method-frames or method-body statements will be
given in Def. 23 resp. Def. 22

17

• and the quantified \for x; φ; u where x is a logic variable bound in for-
mula φ and update u

are updates themselves.

Note 3. Updates assign locations (local program variables, fields, arrays, etc.)
a fixed value. In fact they change the evaluation state of the term or formula
occurring behind them. Instead of describing the complete state only the dif-
ferences between the pre-state (state before the update) and the post state are
enumerated.

Example 1. Some updates and their intended semantics:

• The elementary update x := t assigns the program variable x the value t.
Applying it to a program variable y, i.e., {x := t} y, is equal to t if x and
y are the same program variables otherwise the term evaluates to y.

• The parallel update x := y || y := x swaps the content of the program
variables x and y. Please note that parallel updates are evaluated simul-
taneous, and therefore are independent of each other.

• The parallel update x := 1 ||x := 2 is called inconsistent as it assigns
the same location two different values (clash). In contrast to abstract
state machines (ASM) KeY resolves these clashes. For parallel updates
the clash semantics is a simple last-one wins semantics.

• The quantified update \for i; true; a[i] := 0 assigns all array compo-
nents to the value 0. In case of a clash in a quantified update, e.g.
\for i; true; a[0] := i the clash semantics is that the assignment with
smallest i satisfying the guard wins. Therefore the necessity of a well-
order for the domain mentioned in Sec. 2.1.3. The latter quantified up-
date assign a[0] the value 0 as the used well-order for integers is defined
as 0,−1, 1,−2, 2,

Definition 8 (Anonymous Update). The elements of the set AnonUpd :=
{∗1, ∗2 . . .} are called anonymous updates and belong also to the category of
updates.

Note 4. The idea behind anonymous updates is to erase any knowledge about
the state a formula is evaluated to. In principal they behave like an anonymous
program in classical dynamic logic, except that they always terminate.

2.1.3 Semantics of JAVA CARD DL

As usual in modal and therewith dynamic logics the semantics of JAVA CARD DL
is defined in terms of a so called Kripke structure.

Definition 9 (JAVA CARD DL Kripke Structure). The structure K := (M,S, ρ)
where

• M := (D, I) is a partial first-order structure with domain D and an
interpretation I for the rigid function and predicate symbols.

18

• a set of states S where a state is identified with the interpretation of
non-rigid function and predicate symbols.

• the state transition relation ρ : Prg × S → S where ρ(p)(S) denotes
that state reached when executing program p in state S. The transi-
tion relation is defined according to the semantics of JAVA as described
in [GJSB00].

Note 5. The previous definition uses the notion partial in relation to the first-
order structure M. The reason is that the interpretation is – as mentioned –
only defined for rigid function or predicate symbols. Those symbols are then in-
terpreted as total functions or predicates, in particular there is no undefinedness
value in JAVA CARD DL.

JAVA CARD DL models undefinedness by underspecification: Consider the
following JAVA CARD DL term div(1, 0) where div : int → int represents the
arithmetic division. As JAVA CARD DL has an arithmetic structure those func-
tions have a fixed interpretation. But in mathematics division by zero is not
defined, therefore the interpretation I is only fixed for div, as long as the sec-
ond argument does not evaluate to 0. Not fixed means that the value of the
term div(1, 0) may be evaluated differently in different JAVA CARD DL Kripke
structures, but also that it is always evaluated to some value. A comparison
and discussion of different approaches modelling undefinedness can be found
in [H0̈5].

Note 6. The domain D is part of the partial first-order structure M and there-
with the same in any state. Thus JAVA CARD DL follows a paradigm called
constant domain assumption.

Let K := (M := (D, I),S, ρ) denote a JAVA CARD DL Kripke structure. The
domain D := (U, δ0,�) consists of

• the universe U, which is a non-empty set of elements. In the following the
notation e ∈ D is often used, where in fact e ∈ U is meant.

• the function δ : U → T assigns each element of the universe its dynamic
type.

• JAVA CARD DL requires that a well-order � is defined on the universe U.
The rationale of the well-order is shortly given later, but for the remaining
thesis of no further importance.

Let the function δ−1 : T → P(U) assign any type T ∈ T the smallest set of
elements of U such that for any of its elements e the equation δ(e) = T holds.
In particular δ−1(T) is empty for all abstract types. Further it is required that
for a non-abstract class type C the set δ−1(C) contains an infinite number of
elements.

The interpretation I assigns any type T ∈ T a subset of the universe such
that

• I(T) = {} if and only if T = ⊥

19

• I(int) = Z is interpreted as the whole numbers,

• I(boolean) = {tt, ff},

• I(Null) = {null},

• for any dynamic type T representing a class or interface (reference) type
I(T) is defined as I(T) := δ−1(T) ∪

⋃

S⊑T I(S). The recursion is well-
defined, because the type hierarchy is finite (or at least noetherian).

Note 7. Any reference type contains at they have at least the dynamic type
Null as a subtype.

As the definitions for the semantics of terms and formulas does not differ sig-
nificantly from the standard definition, they are only sketched in the succeed-
ing. Terms and formulas are evaluated in a Kripke JAVA CARD DL structure
K := (M,S, ρ), a state S and a variable assignment β : VSym → D by the
continuation of the interpretation I resp. S.

• Let f(t1, . . . , tn) ∈ TrmT then f(t1, . . . , tn)(K,S,β) is defined as

– I(f)(t
(K,S,β)
1 , . . . , t

(K,S,β)
n), if f is a rigid function symbol.

– S(f)(t
(K,S,β)
1 , . . . , t

(K,S,β)
n), if f is a non-rigid function symbol.

• Let p(t1, . . . , tn) ∈ Fml then p(t1, . . . , tn)(K,S,β) is defined as

– I(p)(t
(K,S,β)
1 , . . . , t

(K,S,β)
n), if p is declared rigid.

– S(p)(t
(K,S,β)
1 , . . . , t

(K,S,β)
n), if p is declared non-rigid.

Predicate symbols are mapped to the truth values true, false.

• (\ifEx T x; (φ) \then(t1) \else(t2))
(K,S,β) evaluates to

– t
(K,S,β′)
1 , if if there is an element e such that (\exists T x; φ)(K,S,β)

evaluates to true. The variable assignment β′ evaluates on x to the
minimal element min� (wrt. the well-order �) satisfying the formula
φ. For all other variable the assignment β′ is identical with β.

– t
(K,S,β)
2 , otherwise. Note, that the variable assignment has not changed

for this case.

The next four definitions define the semantic of updates and their application
on terms or formulas.

Definition 10 (Semantic Location). A semantic location is defined as a tuple
〈f, (e1, . . . , en)〉 where f : T1 × . . .× Tn → T is a syntactical location as defined
in Def. 6 and ei, i ∈ {1, . . . , n} are elements in I(Ti) ⊂ D.

Definition 11 (Semantic Update). An elementary semantic update is a pair
(〈f, (e1, . . . , en)〉, d) where f : T1 × . . .× Tn → T , ei, i ∈ {1, . . . , n} are elements
in I(Ti) ⊂ D and d an element in the domain belonging to type T . A possible
empty set of elementary semantic updates is called semantic update.

20

Definition 12 (Consistent Semantic Update). A semantic update is called con-
sistent, if it contains for any semantic location at most one elementary semantic
update.

Definition 13 (Application of a Consistent Semantic Update). The application
of a consistent semantic updates CU is a mapping between states. Applying
CU on a state S maps S to a state CU(S), which is identical with S ex-
cept for the semantic locations occurring as part of the CU ’s semantic updates
(〈f, (e1, . . . , en)〉, d) for which S′(f)(e1, . . . , en) evaluates to d.

Definition 14 (Semantics of Anonymous Updates). A JAVA CARD DL Kripke
Structure K interprets an anonymous update ∗n as a consistent semantic update
CUn mapping all locations to fixed values, i.e., CUn(S) = Tn for all states S ∈ S
to a state Tn ∈ S.

Note 8. The interpretation of an anonymous update does not depend on the
current state, but may vary between different JAVA CARD DL Kripke structures.

Note 9. The given definition of an anonymous update differs from the presen-
tation given in [BHS06], where it is introduced as an abbreviation for a finite
parallel update and constructed in relation to a given proof situation, i.e., se-
quent.

Definition 15 (Evaluation of a Syntactical Update). Given a JAVA CARD DL
Kripke structure K, a state S ∈ S and a variable assignment β. A syntactical
update u is evaluate to a consistent update as described below:

• the elementary update u := f(t1, . . . , tn) := v then u(K,S,β) evaluates to

the semantic update {(〈f, (t
(K,S,β)
1 , . . . , t

(K,S,β)
n)〉, v(K,S,β))}.

• the conditioned update \if φ; u is evaluated to the same consistent up-
date as u, if φ(K,S,β) is satisfied. Otherwise it is evaluated to the empty
consistent update.

• the quantified update \for x; φ; u is evaluated to

:=QU
︷ ︸︸ ︷

{u(K,S,βd
x)| f.a. d ∈ D}−

{ū| f.a. ū := (〈f, (d1, . . . , dn)〉, ē) ∈ QU
for which a u := (〈f, (d1, . . . , dn)〉, e) ∈ QU exists such that e ≺ ē}

• the parallel update u1 ||u2 is evaluated to the semantic update CU2 ∪
¯CU1, where CU2 is the (consistent) semantic update u

(K,S,β)
2 and ¯CU1 :=

:=CU1
︷ ︸︸ ︷

u
(K,S,β)
1 −{u := (〈f, (d1, . . . , dn)〉, d) ∈ CU1|

exists u′ := (〈f, (d1, . . . , dn)〉, e) ∈ CU2}

(abbr. CU1 ||CU2 := CU2 ∪ ¯CU1)

• the sequential update u1 ;u2 is evaluated to u
(K,S,β)
1 ||u

(K,u
(K,S,β)
1 (S),β)

2

21

andLeft
Γ =⇒ φ,∆ Γ =⇒ ψ,∆

Γ =⇒ φ & ψ,∆
andRight

Γ, φ, ψ =⇒ ∆

Γ, φ & ψ =⇒ ∆

allLeft
Γ, \forall x; φ, {\subst x; t}φ =⇒ ∆

Γ, \forall x; φ =⇒ ∆
where t is an arbitrary ground term

Figure 2.1: Selected rules for the sorted first-order fragment in text book style

Lemma 1. The evaluation of a syntactical update results always in a consistent
semantic update.

Proof. Sketch. Structural induction about the structure of syntactical updates.
The only interesting cases are the ones for quantified and parallel updates.
But their definition already takes care of the removal of duplicates of semantic
locations. Together with the induction hypothesis that the composites u resp.
u1, u2 are evaluated to consistent semantic updates, the lemma’s proposition
follows.

Definition 16 (Application of Updates). Let K denote a JAVA CARD DL Kripke
structure, S ∈ S be a state and β a variable assignment. Given an update u, a
term t resp. formula φ then an application of u on t or φ, i.e., {u} t resp. {u} t
is evaluated as

t(K,u(K,S,β)(S),β) resp. φ(K,u(K,S,β)(S),β)

Definition 17 (Validity of Formulas). Let K denote a JAVA CARD DL Kripke
structure. A formula φ is satisfiable in K if there is a state s ∈ S and variable
assignment β such that φ(K,s,β) evaluates to true.

A formula phi is called valid if there is a JAVA CARD DL Kripke structure K
such that phi(K,s,β) holds for all states s ∈ S and all variable assignments β.

A formula phi is called logically valid if φ is valid for all JAVA CARD DL
Kripke structures K.

2.2 Calculus

In KeY a sequent calculus is used to prove the logical validity of formulas. The
rules for the classical first-order fragment of the logic are mainly identical to
the rules found in any traditional formalisation of a sequent calculus.

For the design of the calculus special care has been taken to maintain well-
typedness of terms and formulas when rules are applied. Consequently one had
to restrict the application of rules applying equalities and to compensate these
restriction by the introduction of type casts. The first-order fragment has been
proven sound and complete (see [Gie05]) for the sorted first-order fragment of
JAVA CARD DL (excluding arithmetic). An excerpt of these rules is shown in
Fig. 2.1.

22

2.2.1 Symbolical Execution

Symbolic execution, i.e., one allows symbolic values as input for programs, is
the basic paradigm followed by most of the calculus rules treating programs.
This means a complex statement is stepwise decomposed into a sequence of
simpler statements until an elementary (not further decomposable) statement
is reached. For example:

JAVA

x=a[++i] + 3;

becomes toint j = i + 1;int y = a[j];

x = y + 3;

JAVA

One problem to treat is how to decompose two statements, in classical dy-
namic logic one simply replaces the diamond containing the program by a nested
one, where the first diamond simply contains the first statement of the program
and the second one the rest:\<{ st1;st2;st3; }\> phi ---> \<{ st1; }\>\<{ st2;st3; }\> phi

In JAVA such a rule cannot be (easily) provided due to nested try-catch blocks,
method-frame blocks, or just simple labelled and unlabelled blocks, e.g.\<{ label:{try {

st1;

st2;

} ath(Exception e) { st3; }

}\> phi

---> ???

The solution taken by KeY is the introduction of the notion of the first ac-
tive statement. This means the rules dealing with programs focus on the first
statement occurring after a prefix of opening blocks and rewrite this state-
ment stepwise into a sequence of simpler ones until an elementary statement is
reached. An elementary statement is then, for example an assignment where
the left and right hand side have no side-effects.

2.2.2 Rules and Taclets

Fig. 2.1 lists already some rule of a first-order calculus in textbook style. These
rules are represented in KeY using taclets. The taclet language is an easy to
learn language in which logical rules can be expressed. This section will give
only some examples necessary to get an intuitive understanding, taclets are
described in detail in Chapter 4 of [BHS06] and in [BGH+04, Gie03].

The following taclet renders the andRight rules:

23

KeY

andRight {\shemaVar \formula b,c;\find (==> b & c)\replaewith(==> b);\replaewith(==> c)\heuristis(split,beta)
};

KeY

Any taclet has a unique name, here andRight. In addition, they can have an
additional displayname (not shown here) which is only presented to the user
and needs not to be unique. The first line defines the schema variables b and c

of type formula, i.e., they match only on formulas and not on (logic) terms.
The find section of the taclet identifies the pattern to look for in the sequent,

in the above case a top level conjunction in the sequents succedent. In the
succeeding lines a semicolon separated list of goal templates is given describing
the resulting goals of a taclet application. A goal template is a white space
separated list of at most one replacewith and at most one add statement. As
expected a replacewith causes the term focused on in the find part to be re-
placed, while the add statement simply adds a formula to the antecedent resp.
succedent of the sequent.

The heuristics section gives hints for the automatic application, but has no
logic meaning.

Another example of a taclet is the applyEq rule:

KeY

applyEq {\shemaVar \term G s;\shemaVar \term H t;\assumes (s = t ==>)\find (s)\sameUpdateLevel\replaewith (t)\heuristis (apply_equations)\displayname "apply equality"

};

KeY

In contrast to the former rule, the given rule is a pure rewrite rule which
matches on a term s and replaces the occurrence by a term t, but only when
the equation s = t is available in the antecedent. The last side condition
is expressed by the assumes section, its logical meaning is equivalent to an
additional goal template adding the equation to the succedent. This means if
the user applies this taclet and the equation is not syntactically present in the
sequent, then an additional goal opens where one has to prove that the equation
holds. Also new is the \sameUpdateLevel flag, which allows an application of
the taclet only if the occurrence of the focused term s is in the same state as

24

the occurrence of the assumes clause, e.g. the rule would not be applicable in a
case like:

o.a = 0 ==> {o.a:=3} o.a = 0

As a last example for a taclet, may serve the following program transforma-
tion taclet treating a post increment expression:

KeY

postincrementAssignment {\find (\<{.. #lhs0 = #lhs1++; ...}\> post)\varond (\new(#v, \typeof(#lhs0)))\replaewith (\<{..
#typeof(#lhs0) #v = #lhs1;

#lhs1 = (#typeof(#lhs1))(#lhs1+1);

#lhs0 = #v;

...}\> post)\heuristis(simplify_int)};
KeY

The find section matches on a postincrement assignment expression when
it is the first active statement, i.e., only preceeded by a sequence of opening
braces, try-statements, labels or methodFrame headers. The latter mentioned
sequence is matched by .., while the rest of the program following after the
postincremet is matched by The expression .. · ... is also called program
context schemavariable.

The above rule is also an example for the use of variable condition, which
can add further side conditions on the instantiations of schemavariables, in this
case that te introduced program variable must be not used yet in the proof.

2.2.3 Object Creation

KeY supports object creation and initialisation as specified in paragraph 12.5
of the Java Language Specification (JLS). A full account of object creation and
initialisation can be found in [Bub01, BP06, BHS06]. This section describes
only the formalisation of the object creation aspect, i.e., the allocation of a new
object.

The dynamic logic follows the constant universe paradigm, i.e., all states
share the same domain. The formula \forall T o; φ(o) quantifies about all –
even not yet created – objects. Consequently the creation of a new instance
cannot be modelled by adding new elements to the universe. Rather object
creation is seen and treated as a change of the objects respective classes state.
In order to describe the formalisation in more detail some new symbols need to
be introduced.

Definition 18 (Object Repository). In the context of object creation we use
the term object repository of a non-abstract class type T for the set of elements
with dynamic type T . The object repository of a type T is always interpreted
as an infinite and enumerable set.

25

In order to achieve a canonical representation of elements of an object repos-
itory of a type T and to access its elements we define a access function:

Definition 19 (Object Repository Access Function). For any non-abstract
class type T there exists a rigid function symbol T::get : int→ T . The function
symbol is interpreted as an injective function whose image is equal to the object
repository of T .

With the above definition the objects o and u of dynamic type T with o
.
=

T::get(i) and u
.
= T::get(j) are equal if and only if i

.
= j is valid.

Definition 20 (Object index). The index of an object o is the integer i such
that o

.
= T::get(i) is valid.

The above definitions give us a syntactical representation for any object in the
universe. On top of this we can define the notion of a created object. As a pre-
liminary step we require any non-abstract class type to declare a private static
integer field <nextToCreate>. These pre-existent, non-user declared fields are
called implicit fields.

Definition 21 (Created Object). In a state S, we call an object of dynamic
type T created, if its index is non-negative and less than the value of the static
implicit field T.<nextToCreate> is evaluated to in state S.

For convenience reasons there is an implicit Boolean field <created> declared
in class java.lang.Object, which has to be set true if an object is created.

When a new object of dynamic type T is created (allocated) by a Java pro-
gram, i.e., an instance creation expression in Java is transformed to a call of an
implicit static method <allocate>() declared by any non-abstract class type.
The return value of the method is then specified to be the object with index
T.<nextToCreate>. Simultaneously the value of T.<nextToCreate> is incre-
mented by one and the implicit field <created> of the object is set to true.
The taclet specifying the allocation method is:

KeY

instanceAllocationContract {\find (\modality{#allmodal}
{.. #t(#lhs)::#t.#allocate(); ...}\endmodality(post))\varond(\hasSort(#t, G))\replaewith ({#lhs := G::<get>(#t.<nextToCreate>) ||

#t.<nextToCreate> := #t.<nextToCreate> + 1 ||

G::<get>(#t.<nextToCreate>).<created> := TRUE}\modality{#allmodal}{.. ...}\endmodality(post))
};

KeY

Note 10. For incrementing the value of <nextToCreate> the mathematical ad-
dition is used and must be used. Otherwise, an overflow would occur when the
maximal value of Java integers is reached.

26

2.2.4 Java Reachable States

The Kripke structure of our logic contains several states that can never be
reached by a Java program. Besides others this is a consequence of using implicit
static or instance fields, that can be changed by an update, to encode the state
of an object, e.g., if it is created. As described in Sect. 2.2.3 the used implicit
fields are intended to be non-negative (e.g., <nextToCreate>) respective to be
consistent with the objects state like <created>. The problem is that both
properties cannot be ensured syntactically. The user can easily destroy these
properties by entering an update that sets the fields to inconsistent values, e.g.,
when applying the cut-rule.

The problem can be and is solved by introducing the non-rigid predicate
inReachableState , which is satisfied in a state S, if and only if, state S can be
reached via a JAVA program. In the calculus the predicate is axiomatised by
formulas, which express the above mentioned consistency properties.

For example, if we are in a state where the predicate is known to be true,
we can safely use the attribute <created> to express or demand that an object
has to be created or to reason that objects referenced from created objects are
created or null. There are special suited rules, which allow to exploit this
kind of properties and other rules that allow to prove that an update leads to
a JAVAReachable State.

For the second part the naive approach by just expanding the predicate to its
axioms would lead to inefficiently long and deep formulas. Therefore the rule
expanding the predicate, analysis preceeding updates and generates a stronger,
but noticeable shorter proof obligation. The author of the thesis has been
deeply involved in formalising the optimised rules.

2.2.5 Symbolical Execution of Method Invocations

Treatment of method-calls is always a challenging aspect of program analysis
and verification, as it comes with a change of context and the kind of solution
decides how far the used method scales up on larger systems.

The solution sketched in this section follows the symbolic execution paradigm,
but has substantial drawbacks with respect to modularity. The modular treat-
ment of method calls is described in Sect. 2.2.6.

In JAVA CARD a method is invoked when evaluating a method reference
statement. The typical shape of an instance method reference statement is
r=o.m(e1,..,en);, where o is an expression evaluating to an object called re-
ceiver of the method invocation, r denotes a location used to keep the return
value of the method invocation and the expressions e1 to en, whose values
are handed over as arguments. Details like static or void methods are left out
here, as their treatment is nearly equal–but simpler2–to the one of value typed
instance methods.

In a first phase the method reference statement is evaluated from the left to
the right in order to determine the location where to store the return value, the
receiver instance and the argument values to be handed over. If during these

2At least as long as ignoring static initialisation, which is not subject of this thesis.

27

1 B resLoc = u;

2 if (resLoc == null) {

3 throw new NullPointerException();

4 }

5 A receiver = o;

6 E1 v1 = e1;

7 ...

8 En vn = en;

9 R j = receiver .m(v1, ..., vn); resLoc.result = j;

Figure 2.2: Sequence of statements resulting from the symbolic execution of the
method reference statement u.result=o.m(e1,..,en);

steps an exception or error is raised the evaluation of the method reference
statement stops and the exception is propagated through.

In the context of symbolic execution this means a statement like the one
above with

• expression o being of type A,

• the location r keeping the return value denoting an attribute location of
type R, e.g. u.result where u is an expression of type B, and

• the expressions e1 to en being of type E1 to En

is transformed to the sequence of statement shown in Fig. 2.2.
In the following it is assumed that the symbolical execution has reached

line 9. At this point the calculus has to dynamically dispatch the actual used
method. Therefore the calculus splits the proof into two further branches. The
first one deals with the case that the receiver pointed to null in which case a
NullPointerException is thrown. The second proof branch assumes that the
receiver is not null and relies solely on the dynamic type of receiver and
the arguments static types for method dispatching. An if statement cascade is
created in order to test the type of receiver via instaneof from the bottom
most to the upper most type of classes implementing a method with a matching
signature. Assume three classes A2 extending A1 extending A and let method
m be declared abstract in class A and implemented in both subclasses. The if
cascade then looks like:if (self instaneof A2)

j=receiver .m(v1 ,...,vn)@(A2);else
j=receiver .m(v1 ,...,vn)@(A1);

The statement of the then- resp. else-branch is called method body statement
and, merely, a placeholder for the method body itself.

Definition 22 (Method Body Statement). A statement matching the following
syntax

(resultV ar=)optreceiver.methodName(argV ar1, . . . , argV arn)@className)

28

where

• resultV ar is a variable of type T0,

• receiver is a variable of type T ,

• argV ar1, . . . , argV arn are variables of types T1, . . . , Tn, and where,

• methodName : T1, . . . , Tn is the signature of a method 3 actually imple-
mented by class className being a subtype of type T

is called a method body statement.

Execution of a method body statement means to

1. assign each parameter variable the value of the corresponding argument
(variable). The introduction of fresh parameter variables ensures also
that assignments to those variables are only local, i.e., do not influence
the value of the variables handed over as arguments.

2. insert the method body of the referred method implementation embraced
by a so called method frame. A method frame can be seen as the symbolic
representation of an element of the method stack keeping track of the
current program context in which the statements are executed. Program
context means the instance referred to by a this reference and the class
context in which the statements are executed. The latter one is crucial
for visibility issues.

The syntax of a method frame is given in the following definition:

Definition 23 (Method Frame). The method frame statement consists of a
header storing the program context information and a program block with
statements executed in the context described by the header. The syntax is:

method -frame(result -> variable,this = variable,
source = className):{

. . . // statements

}

Note 11. If inside the method frame a return statement is executed, the value
to be returned is assigned to the variable given in the result section of the
method-frame header.

Assuming that in the previous example the dynamic type of receiver has
been A2 the symbolical execution leads to the following piece of program:

method -frame(result ->j,this=receiver , source=A2):{

T1 p1 = v1;

. . .
Tn pn = vn;

. . . // method body

}

3In JAVA the return type does not belong to the signature of a method.

29

2.2.6 The Method Contract Rule

Symbolical execution of a method invocation has some serious drawbacks. For
any invocation one has to repeat most of the proof steps, which have been
already done somewhere else. In case of overwritten methods, it is in general
necessary to split the proof into several branches – one for each implementation.
It is obvious that this kind of method treatment leads to huge and redundant
proof trees. Another disadvantage is that proofs with an unfolded method
implementation tend to be not modular. This manifests itself when changing
or overwriting a method implementation forces all proofs, which expanded that
particular method, to be redone. More details about modular verification can
be found in [Rot06].

In order to circumvent or at least reduce these problems one aims at an atomic
treatment of method invocations. In other words, the calculus switches tem-
porarily from a more small step to a big step semantics. Therefore one encodes
the visible behaviour of the method into a logic formula. A method invocation
is then replaced by the formula describing the post-state of the method.

Usually this formula is not generated, but provided by the developer in terms
of a method contract. If an implementation of a method complies to the speci-
fied contract, the contract can be used instead of the method implementation.
The compliance of a method’s implementation to its contract has to be proven.
Normally, this proof is the only one that requires to unfold the method and con-
sequently, the only proof that has to be redone in case of a contract compliant
change of the method implementation.

A method contract C := (P,mbs, pre, post,mod) consists of

• a set P of program variable declarations, which can be used in all con-
stituents of the contract.

• the method body statement mbs serves to identify the exact method being
the subject of the contract. The statement has the following shape

result=self.m@(par1,...,parN)@(T)

with the obvious alterations in case of static method invocations or void
methods. The symbols result, self and all method parameters are
program variables declared in P .

• the formula pre called precondition that has to be satisfied in order to
benefit from the contract.

• the formula post called postcondition, which describes the effects of the
method, or in other words, which is ensured to be satisfied when the
control flow returns from the method invocation.

• a set mod has to contain all locations that may have been changed at the
end of a method execution.

In a more general setting a method contract contains also a termination
marker that indicates whether termination is guaranteed or not. All contracts
that will be used or treated throughout this thesis require normal termination.

30

Therefore the syntactical add-ons needed to specify the behaviour in presence
of control flow redirections due to uncaught exceptions are skipped here.

Proving compliance of a method specification and its implementation. An
implementation of a method is called compliant to a method contract C, if it can
be proven that in any state, for any method call receiver and any combination
of parameters satisfying the precondition, the postcondition holds after the
method execution returns.

For a fixed contract C a formula poC can be generated which formalises the
above description:

∀selfLV : T ;∀
−−−−→
parLV ; {self := selfLV || −−→pars :=

−−−−→
parLV }

(pre −> ((〈result = self.m(par1,...,parN)@(T);〉post) & pomod
C))

The generated formula is called proof obligation of the method contract C. If
the formula is proven valid one has shown that for any receiver object and any
combination of method argument values that satisfy the method’s precondition
pre, the method will terminate and in its final state its postcondition post holds.
It should be noted that even if not explained further the modifies clause of the
method needs to be proven correct. How to formalise the modifies clause proof
obligation pomod

C is, for example, described in [Rot06].

Using method contract C. The rule, which replaces a method invocation
using its contract C can be written in textbook style as:

useMethodContractC

Γ =⇒ {self := o || −→par := −−→args} (pre & Vmod(post −> 〈.. ...〉φ))

Γ =⇒ 〈.. result=o.m(args)@(T); ...〉φ

The modifies set mod is used to generate an anonymising update Vmod, which
sets all locations contained in mod to a fixed, but unknown value by assigning
them the value of a new introduced constant or, more general, function. If the
modifies set contains all available locations the anonymous update(see Def. 8)
is taken for Vmod.

The method contract rule for a method contract C is not sound on its own
behalf. But soundness can be ensured when the proof obligation formula poC

can be shown valid.

Theorem 1. The useMethodContractC rule is sound, if the proof obligation
formula poC can be proven valid without using the method contract rule itself.

Allowing Let definitions in contracts. Let definitions are a common construct
in many formal languages. Writing specifications and using them later becomes
significantly simpler when providing at least some basic support. The syntax
of a Let expression is

\letFunc T f(T1 p1, . . . , Tn p2) = fctDefTrm \in

31

or
\letVar T x; \suchThat Φ(x) \in

Formally, Let definitions introduce new contract local rigid function symbols
resp. logic variables. Each Let function symbol declares a sequence of logical
variables as part of its signature. These variables are restricted to occurrences
in the function’s definition term (here:fctDefTrm).

The (possible) values of the Let variables are characterised by a specifier
provided formula. All those variables are universally bound on the complete
contract. There is also a strong relation ship between this kind of variables and
epsilon-terms as, for example, treated in [Gie98].

The function defining term resp. the variable characterising formula is eval-
uated in the pre-state of a method invocation. All function declarations must
occur in front of the variable declarations. The textual order of the definitions
plays also a role for visibility issues of the symbols in other Let definitions of the
contract as only previously declared symbols are visible in another Let defini-
tion. Note, that in particular no Let declared variable can occur as part of the
definition of a Let declared function. All Let functions or variables are accessi-
ble in the pre- and postcondition as well as in the modifies set. The justification
for these restrictions is to prevent inconsistencies that could occur in presence
of recursive definitions resp. to keep the method contract rule understandable
and usable.

A method contract C let with support for Let definitions is also referred to as
C let := (pv, (letFunc)∗, (letV ar)∗, pre, post,mod).

In postconditions one is often interested in the value of a term or the definition
of a non-rigid function (e.g. an attribute) as it has been in the method’s pre-
state. The Let definitions supply both needs.

Example 2. The class PayCard models a paycard with an integer typed field
balance that keeps the currently loaded amount of money. The method charge

loads a specified amount of money onto the paycard.

PayCard self; int amount;\method: self.transferMoney(amount)@(PayCard)\letFun int balance@pre(PayCard p1) = p1.balance \in\pre : amount >= 0\post: self.balance = balance@pre(self) + amount\modifies : self.balance

The proof obligation formula poClet for a contract with Let definitions is

32

defined as:

∀selfLV : Tself ; ∀
−−−−−→
parsLV :

−−→
Tmbs; {self := selfLV || −−→pars := parsLV } (

// for any Let function declaration fi(
−−−→parfi

)

((∀−−−−→parsf1 :
−−−−→
Tparsf1

; f1(
−−−−→parsf1) = fctDefTrmf1)

︸ ︷︷ ︸
:=transf1

& . . . &

(∀−−−−→parsfr
:
−−−−→
Tparsfr

; fr(
−−−−→parsfr

) = fctDefTrmfr
)

︸ ︷︷ ︸

:=transfr

) −>

∀
−−−−−→
letV ars :

−−−−−→
TletV ars;

(
(φ1(letV ar1) & . . . & φs(letV ars))

−>
(pre −> 〈self.m(par1,...,parN)@(T);〉post)
&
(pre −> pomod

Clet
)

)

)

The proof obligation quantifies first over all possible receivers of a method
call and the whole range of parameter combinations. Most of the shown proof
obligation is identical to the one for contracts without a Let expression. Thus
only some words on the translation of

Let defined functions: Each Let expression is translated into a logic equation

\letFunc T f(parsf) = fctDefTrmf \in ; f(parsf)
.
= fctDefTrmf

of which is then universally closed by all-quantification about the param-
eter variables. The function symbol itself is put to the signature of the
logic. All such translations are connected into a conjunction, which then
implies the remaining contract.

Let defined variables: For Let declared variables the translation is a bit less
straight forward. In a first step one concatenates all variable character-
ising formulas to a conjunction. The conjunction implies then the re-
maining proof obligation, which is identical to the inner part of the proof
obligation for contracts without Lets. The so constructed formula is then
universally closed.

The useMethodContractClet rule is now

useMethodContractClet

Γ =⇒

{self := o || −→par := −−→args}
(transf1 & . . . & transfr

& (∃
−−−−−→
letV ars :

−−−−−→
TletV ars; (

φ(letV ar1) & . . . & φ(letV ars)
& pre & Vmod(post −> 〈.. ...〉φ))))

Γ =⇒ 〈.. result=o.m(args)@(T); ...〉φ

33

Note 12. The Let variables, which are bound universally in the proof obligation
formula, have to be bound existentially when using the contract.

34

Part II

Structural Specification and
Verification

35

3 Structural Specification with
Recursive Predicates

3.1 Location Dependent Non-Rigid Symbols

3.1.1 Motivation

Defining auxiliary function and predicate symbols is indispensable for specifi-
cation purposes. Not only as abbreviations for complex terms and formulas,
but also to allow the specification of recursively defined functions or predicates
for which no closed expression exists. Even in the presence of an arithmetic
structure the need to introduce new symbols will arise sooner or later.

The introduction of auxiliary non-rigid symbols leads to some general prob-
lems independent whether their definition is axiomatised recursively or given
as closed expression, i.e., as term or formula without a self-reference.

The following list shall give only an impression of typical required non-rigid
auxiliary symbols:

1. In order to specify reachability between two objects o1, o2 the introduction
of a non-rigid recursive defined predicate reach is useful. The predicate is
then specified such that reach(o1,o2) holds iff. there is a chain of given
attributes connecting object o1 with o2 on the heap.

2. A useful abbreviation is the predicate nonNull defined on reference arrays,
such that nonNull(a) is satisfied, if no component of the array a is equal
to null.

Obviously the above listed predicates do not only depend on the values of
their arguments, but also on the state in which they are evaluated: The reach-
able predicate depends not only on the value of the concrete objects o1 and o2,
but also on the interpretation of the non-rigid attribute functions that make
the connection between both objects. A similar situation holds for the nonNull
predicate, whose value does not only depend on the array object a given as
argument, but also on the values of a’s components.

The problem with these implicit state dependencies can be easily illustrated
using the following small example

Example 3. Let the program variable a denote an array of element type
java.lang.Object and the program variable i be of type int. The sequent

{i := 4} nonNull(a) =⇒ nonNull(a)

illustrates the practical problems when proving with general non-rigid predi-
cates. The sequent cannot be closed easily, although obviously valid as the
value of program variable i has no influence on the truth value of nonNull.

36

The problem is that the update simplification rules have no information about
the locations on which the truth value of an auxiliary predicate depends. In
order to prove the sequent of the example valid, one either has to insert the
definition of the predicate (here: \forall int i; (a[i] !

.
= null)) or to write and

add special update simplification rules for any new introduced non-rigid symbol.
The first solution renders the use of auxiliary predicates nearly useless as

it forces the insertion of the definition in too many cases, which in case of
recursively defined predicates results in lengthy subproofs (requiring induction)
or may even not work at all.

The second solution is not so good since it would require to extend the calcu-
lus for each introduced auxiliary predicate and to prove these additional rules
sound. Beside the amount of work, as auxiliary predicates are often used by
specifiers one cannot expect that they know how to extend the calculus. These
considerations allow to reject this solution.

This chapter introduces therefore a new variant of non-rigid predicates, which
carry explicit syntactic information about the locations on which their value
depends on. In order to justify the introduction of this new class of symbols,
two applications are described.

3.1.2 Syntax and Semantics

The principle idea is to encode the set of locations on which the value of a
non-rigid symbol depends in their syntax and thus to make those dependencies
explicit. To represent this set of locations an already existing formalism is
reused. JAVA CARD DL provides already a flexible formalism to describe a set
of locations in order to describe the modifies set of a method. The syntax of
this formalism is derived from the syntax of quantified updates:

Definition 24 (Location Descriptor). The syntax of a location descriptor is
defined as

\for x1, . . . , xn; \if(φ) loc

where

• x1, . . . , xn are variables to be bound in φ and loc,

• φ is an arbitrary formula and

• the term loc must have a location as top level operator, i.e., a program
variable, an attribute function or the array access function.

Example 4. Some examples of location descriptors

• \for List x; \if(true) x.next@(List) describes the set of all next loca-
tions of type List.

• \for int i; \if(! (i
.
= 5)) a[i] contains all – but the fifth – component

locations of the array a

37

Definition 25 (Extension of a Location Descriptor). Let K := (M,S, ρ) be
a JAVA CARD DL Kripke structure with universe D. The extension of a loca-
tion descriptor ld for a given state S ∈ S is the set of locations, the location
descriptor ld evaluates to in (K, S):

(\for x1, . . . , xn; \if(φ) l(t1, . . . , tn)
︸ ︷︷ ︸

=:ld

)(K,s) =

{〈 l, (t1, . . . , tn)(K,S),β〉 | β |= φ, β : VSym → D}

The extension of a list or set of location descriptors is the union of their exten-
sion sets.

Attaching location descriptors to non-rigid function and predicate symbols
makes the locations on which the value of such a symbol depends, explicit:

Definition 26 (Signature and Syntax: Location Dependent Symbols). Let
ld; denote a semicolon separated list of location descriptors. The non-rigid
predicate symbol

p[ld;] : T1 × · · · × Tn

is called location dependent predicate symbol. Analogously defined are location
dependent function symbols.

The definition of terms and formulas remains unchanged. The only difference
is that the signature contains the above defined location dependent symbols.

There are only few restrictions on the interpretation of ordinary non-rigid
function and predicate symbols, mainly that the interpretation has to be well-
defined and to respect the types. The situation is different for the interpretation
of location dependent symbols. The interpretation of a location dependent
symbol p[ld;] has to coincide on states S1, S2 in which

1. the location descriptor extension of ld; is the same, and

2. for any location 〈f, (d1, . . . , dn)〉 in the extension set of ld; the value of
the f (K,S1)(d1, . . . , dn) and f (K,S2)(d1, . . . , dn) is equal.

Definition 27 (The relation ≈ld;). Let K := (M,S, ρ) denote a JAVA CARD DL
Kripke structure, and ld; a semicolon separated list of location descriptors.

For two states S1, S2 ∈ S, the relation S1 ≈ld; S2 holds iff. the location
descriptor set extension of ld; is equal in both states and

f (K,S1)(t
(K,S1)
1 , . . . , t(K,S1)

n) = f (K,S2)(t
(K,S2)
1 , . . . , t(K,S2)

n)

holds for any tuple 〈f, (t
(K,S1)
1 , . . . , t

(K,S1)
n)〉 ∈ ld;(K,S1).

Lemma 2. The relation ≈ld; is an equivalence relation.

Proof. Follows directly from the definition.

Note 13. The above definition iterates only over the locations described by
one location descriptor (here: ld;(K,S1)) in order to test if the values stored at
the locations are the same. This is sufficient as the first part of the definition
already requires that the extension sets are equal in both states.

38

Definition 28 (Semantics). Let K := (M,S, ρ) denote a JAVA CARD DL Kripke
structure, and ld; a semicolon separated list of location descriptors.

For any two states S1, S2 ∈ S, the atomic formula p[ld;](t1, . . . , tn) evaluates
to the same truth value, if S1 ≈ld; S2 holds. Analogously for location dependent
function symbols.

Example 5. Earlier in this section a normal non-rigid predicate nonNull has
been used to abbreviate the property that all component values of a given array
are not null. Now the location dependent predicate symbol

nonNull[\for Object[] o;\for int i; o[i];]

can be used for the same purpose. The reader should note that this formalisa-
tion over-approximates the set of locations the predicate depends on.

3.1.3 Update Simplification

With knowledge of the locations on which the value of a predicate or function
symbol depends, the update simplification rules become more fine grained and
it is possible to drop certain assignment pairs (see Def. 7) rather then accumu-
lating all of them in front of any non-rigid symbol. We present a rule which
allows to determine precisely whether an elementary update can be dropped in
front of an update or if it has to be maintained. The rule implemented in the
KeY system is a safe approximation of this rule. The presented rule may be
available for interactive application in a future version of KeY.

In order to decide if an elementary update can be dropped in front of a
location dependent function or predicate symbol, i.e., if

{l := v
︸ ︷︷ ︸

U

} p[ld;](s1, . . . , sn) ; p[ld;](s1, . . . , sn)

the following conditions must be satisfied: Let Spre denote the pre-state of U
and Spost the state into which the update U leads to

1. the extensions ldSpre and ldSpost are equal,

2. the updated location l is not contained in ldSpre and

3. the arguments s1, . . . , sn evaluate to the same value in Spre and Spost

The above properties can be expressed as logical formulae which have to
be proved valid. Let ldi := \for −→xi ; \if(φi) f(t1, . . . , tn) denote a location
descriptor where −→xi := 〈xi1 . . . , xim〉.

In order to prove that the extensions of location descriptors are the same in
Spre and Spost the following formulae must be satisfied.

∀ −→xi .(φi → ∃
−→
x′i .({U} φ

′
i ∧ t1

.
= {U} t′1 ∧ . . . ∧ tn

.
= {U} t′n)) (3.1)

∀
−→
x′i .({U} φ

′
i → ∃ −→xi .(φi ∧ t1

.
= {U} t′1 ∧ . . . ∧ tn

.
= {U} t′n)) (3.2)

39

where φ′i := φi{x1/x
′
1, . . . , xn/x

′
n} where x′i are new not already used variables

of the same sort as their counterpart xi (analogously t′i are obtained from ti).
Formalising property 2 can be achieved as follows: If the top level operator

of l is not f , i.e., the same location operator as in the location descriptor ldi,
then l cannot be in its extension. Otherwise, if l = f(r1, . . . , rn)

∀−→xi .(φ→ ¬(t1
.
= r1) ∨ . . . ∨ ¬(tn

.
= rn)) (3.3)

where freeV ar(ri) ∩ {xi1, . . . , xim} = ∅
Checking if property 3 is met is a merely standard task, it has only to be

shown that
({U} si)

.
= si. (3.4)

Theorem 2 (Soundness). Let K denote a JAVA CARD DL Kripke structure, S
an arbitrary state and U an elementary update l := v. If the formulae 3.1-3.2
are valid in (K, S) then

(K, S) |= {U} p[ld;](s1, . . . , sn) ↔ p[ld;](s1, . . . , sn)

Proof. Let S′ denote the state the update U leads to starting from state S, i.e.,
S′ = Sv

l . Without loss of generality, let the list of location descriptors contain
exact one descriptor: ld := \for −→x ; \if(φ) f(t1, . . . , tα(f)).

Assume S, S′ coincide on the evaluation of the argument terms si, but they
differ in the evaluation of p[ld;](s1, . . . , sn). From the definition of location
dependent predicates we derive that the extension of the location descriptor
depends on location l or that l is an element of the extension itself.

1. Again w.l.o.g., assume an L := 〈f, (d1, . . . , dα(f))〉 ∈ ldK,S , but L 6∈
ldK,S′

. According to Def. 25 there is a variable assignment β such that
K, S, β |= φ, but for all variable assignments γ where K, S′, γ |= φ there

exists an i ∈ α(f) such that di 6= tK,S′,γ
i . It is now obvious that in this

case we fail to show that formula 3.1 holds.

2. For the case that l is part of the location descriptor’s extension and had
no influence on the extension itself, one can easily recognise that it is not
possible to prove 3.4.

Despite the number and length of these formulas in most cases they collapse
into trivial tasks. Nevertheless, the update simplifier in KeY uses a safe approx-
imation of this rule and drops an elementary update only in the case that the
updated location operator is not used at any place in the succeeding formula.

3.1.4 Soundness Proof Obligation for Axiomatisations of Location
Dependent Symbols

Writing sound rules for location dependent symbols becomes slightly more dif-
ficult than for normal symbols. The reason is that one has to ensure that no

40

dependency on locations, which are not covered by the symbol’s location de-
scriptor, is introduced. In this section a proof obligation formula is defined
excluding this additional source of error. If the proof obligation formula can be
proven valid, it is ensured that a given axiomatisation of a location dependent
symbol is sound (consistent) with respect to Def. 28.

From now on it is assumed w.l.o.g. that there is exactly one rewrite rule,
which replaces a formula or term with a location dependent symbol as top level
operator by its axiomatisation resp. definition. The axiomatisation (definition)
may contain the symbol itself again (recursive definition).

Let p[ld;] be a location dependent predicate with arity
−−−→
Tp[ld;]. Let further be

formula φ its axiomatisation, such that

∀−→x :
−−−→
Tp[ld;]; (p[ld;](−→x) <−> φ(−→x))

holds. For the rewrite rule axiomp[ld;]

p[ld;](t1, . . . , tn) ; φ(t1, . . . , tn)

where the tis are terms of the appropriate type, the proof obligation pop[ld]; is
defined as

∀−→x :
−−−→
Tp[ld;]; (({∗n} {Vld;} φ(−→x)) <−> {Vld;} φ(−→x))) (3.5)

where

• the update Vld; is the anonymising update for the location descriptor ld;.

• the symbol ∗n belongs to the anonymous updates as introduced in Def. 8.

Theorem 3. If the formula pop[ld;] is logically valid, then the rewrite rule
axiomp[ld;] is correct with respect to Def. 28.

Proof. In order to prove the soundness of rule axiomp[ld;] one has to show that:

If the formula pop[ld;] as defined above is logically valid, i.e., holds in all JAVA

CARD DL Kripke structures then

for all JAVA CARD DL Kripke structures K := (M,S, ρ), for all states S1, S2 ∈
S and for all variable assignments β the following must hold:

If S1 ≈ld; S2 (see Def. 27) then

K, S1, β |= φ(x)
iff.

K, S2, β |= φ(x)

The proof is performed indirectly. Given a JAVA CARD DL Kripke structure
K′, two states S′

1, S
′
2 with S′

1 ≈ld; S
′
2 and a variable assignment β′, such that

w.l.o.g. K′, S′
1, β

′ |= φ(x), but K′, S′
2, β

′ 6|= φ(x).
From these a witness Kripke structure K̂, state Ŝ and variable assignment

β̂ is constructed in which pop[ld;] is not satisfied. Consequently pop[ld;] is not
logically valid.

Choose K̂, Ŝ ∈ Ŝ so that

41

1. the anonymising update Vld; in 3.5 constructed from the location descrip-

tor ld; evaluates to a consistent semantic update CUVld;
mapping state Ŝ

to state S′
1.

2. the anonymous update ∗n maps any state to state S′
2.

It is always possible to select K̂, Ŝ ∈ Ŝ which fulfil both point and is equal to
K′ for all other symbols.

Rationale:

1. the anonymising update Vld; assigns all locations fixed, but arbitrary val-
ues. Anonymising updates are created as quantified parallel updates as-
signing any location a rigid term with a not yet used constant or function
symbol as top level symbol. Not yet used means, the symbols do not occur
yet in the concrete proof. The proof obligation formula to be constructed
and shown logically valid, is the only formula in the (root sequent of the)
proof at construction time, this implies in particular that the top level
constant and function symbols are not used anywhere else in pop[ld;].

Consequently one can select a Kripke structure and therewith an inter-
pretation of the rigid symbols such that Vld; assigns all locations the value

they have in S′
1. For Ŝ one can then select any state coinciding with S′

1

on all other locations not covered by ld;.

2. anonymous updates are updates that evaluate to an infinite consistent
update which assigns any possible location a fixed value. The interpreta-
tion of an anonymous update is state independent and depends like rigid
symbols only on the chosen Kripke structure. In other words, any Kripke
structure interprets an anonymous update ∗i as a function ∗i : S → S,
which maps all states to exact one state Si ∈ S. For K̂ one selects from all
Kripke structures satisfying point 1 the one interpreting ∗n as the function
mapping all states to state S′

2.

For the evaluation of the left side of the equivalence in pop[ld;] one gets

({∗n} {Vld;} φ(−→x))(K̂,Ŝ,β̂) ≡ ({Vld;} φ(−→x)))(K̂,S′
2,β̂) ≡S′

2≈ld;S
′
1

(φ(−→x)))(K̂,S′
2,β̂)

and the right side evaluates to

({Vld;} φ(−→x)))(K̂,Ŝ,β̂) ≡ (φ(−→x)))(K̂,S′
1,β̂)

which are not equivalent by assumption and thus pold; cannot be proven logically
valid.

3.1.5 Modelling Queries

Definition 29 (Depends Clause of a Query). A depends clause of a query is
a list of location descriptors containing those locations on which the return
value of the query depends. This means when the query is started in two states
S1 ≈dep S2, where dep is the depends clause of the query, then the queries
termination behaviour and result must be the same.

42

A query with a depends clause can be now modelled using a location depen-
dent rather than a general non-rigid function.

Definition 30 (Proof Obligation for the Depends Clause). Given a query q

of class C with depends clause depq@C. The proof obligation formula for the
depends clause depq@C is defined as:

podepq@C
:=

∀
−−−−−−→
resultLV : TresultLV ; ∀

−−−−−→
argsLV :

−−−−−→
TargsLV ; ∀selfLV : C;

{self := selfLV || −−→args :=
−−−−−→
argsLV }

(({∗1} {Vdepq@C
} α1) & ({∗2} {Vdepq@C

} α2) −> resultLV1
.
= resultLV2)

with

• self is a program variable of type C and −−→args a sequence of program
variables with types corresponding to the queries signature.

• αi := [resulti=self.q(
−−→args)@(C);]resultLVi = resulti and

• Vdepq@C
being the anonymising update constructed from dep.

Note 14. It is already assumed that the method is a query, i.e., its modifies set
must be empty.

Theorem 4. Given the proof obligation formula podepq@C
for the implementation

of query q in class C. If podepq@C
can be proven valid, then depq@C is a correct

depends clause.

3.1.6 Specification and Verification of a Sorting Algorithm

The verification of a sorting algorithm seems not to be an application area
for location dependent functions, but it is. The here presented case study has
been done together with Steffen Schlager, who was interested in an application
example for the improved loop invariant rule he introduces in [Sch07].

The JAVA implementation of the sorting algorithm to be verified is shown in
Fig. 3.1. In general the specification of a sorting algorithm requires to specify
that afterwards

1. the array is sorted wrt. some given order.

2. the resulting array is a permutation of the original one.

It is the second item on the list, where location dependent symbols come into
play. In order to express the permutation property, one introduces an auxiliary
predicate

perm[\for(jint[] o; int i) \if(0 <= i < o.length)o[i]](jint[], jint[]);

such that perm holds in a state iff. the first array is a permutation of the second
array. Furthermore, its location descriptor states that it only depends on array
components and on array-length locations.

The proof obligation to show that the sorting algorithm is correct is given as
shown below:

43

publi void sort(int[] a) {int l=a.length;int pos=0;while (pos <l) {int counter = pos;int idx = pos;while (counter <l) {if (a[counter] > a[idx]) {

idx=counter;

}

counter ++;

}int tmp = a[idx]

a[idx] = a[pos];

a[pos++] = tmp;

}

}

Figure 3.1: Implementation of a selection sort algorithm for integer arrays

KeY

1 inReachableState ->\forall jint[] aCp; {\for int i; aCp[i]:=a[i]}

3 ((a!=null & a.length > 0 & a != aCp & aCp != null
& perm[\for (jint[] o; int i)

5 \if (0<=i & i<o.length) o[i]](a, aCp))

-> \<{ Sort.selectionSort(a)@Sort; }\> (

7 \forall jint i;(0 <= i & i < a.length-1 ->

a[i] >= a[i + 1])

9 & perm[\for (jint[] o; int i)\if (0<=i & i<o.length) o[i]](a, aCp)))

KeY

The precondition requires that

• array a, which will be sorted, is not null and contains at least one ele-
ment.

• array aCp1 intended to hold a copy of the original array must be different
from a, i.e., not aliased and thus not affected when the component values
of a might be changed.

• array aCp is a permutation of array a (line 4).

1allows to access the components of array a in the post state as JAVA CARD DL itself does
not provide an \old resp. @pre operator as known from high-level specification languages like
JML or OCL.

44

KeY

inReachableState &

0 <= pos & pos <= a.length

& \forall jint x; (x >= 0 & x < pos-1 -> a[x] >= a[x+1])

& \forall jint x; (x>=0 & x <= pos-1 ->\forall jint y; (y >= pos & y < a.length -> a[x] >= a[y]))

& perm[\for (jint[] o; int i)\if (0 <= i & i < o.length) o[i]](a, aCp)

KeY

Figure 3.2: Invariant for the outer loop of the selection sort algorithm

Then one has to prove that the execution of method selectionSort terminates
and that afterwards a has been sorted in descending order and that is still a
permutation of aCp (line 9). Please note, that the component values of aCp

have not been changed due to the not-aliased precondition.
During the proof one has to apply the loop invariant rule twice. Besides

others, the used invariants have to state that the permutation is preserved all
the time. The invariant for the outer loop is shown in Fig. 3.2.

For the proof of the selection sort algorithm, it is sufficient to exploit that
a permutation remains a permutation, when swapping two elements. The rule
allowing to prove this property is called swapPreservesPermutation and shown in
Fig. 3.3. The correctness of this rule has to be (and has been) proven, therefore
it has to be shown that it can be derived from the definition of the permu-
tation predicate (see Fig. 3.3). Its definition uses itself a recursively defined
location dependent function mult[\for(jint[] o; int i)o[i]]. The function mult

counts the occurrences of a given element in a specified range of the array, e.g.
mult[..](a, 4, 2, 5) counts the occurrences of 4 in the sequence of the values of
a[2], a[3] and a[4].

3.2 Reachable Predicate

3.2.1 Syntax and Semantics

A further application of location dependent non-rigid symbols is the reachable
predicate. An instance of a reachable predicate adheres to the following syn-
tactical restriction:

Definition 31 (Reachable Predicate - Syntax). The ternary location dependent
non-rigid predicate reach[accessorList;](T,T,int) is called reachable predi-
cate, where accessorList is a semicolon separated list of location descriptors
obeying a restricted syntactic form, namely:

\for T x; \if(φ) x.attr
︸ ︷︷ ︸

Type I

or \for T x; int i; \if(φ) x.attr[idx (x, i)]
︸ ︷︷ ︸

Type II

where idx is a function of integer type.

45

KeY

permDefinition {\find (perm[\for (o; i)\if (0<=i & i<o.length) o[i]](a,b))\varond(\notFreeIn(n,a,b))\replaewith (\forall n;

(mult[\for (o; i) o[i]] (a, n, 0, a.length) =

mult[\for (o; i) o[i])](b, n, 0, b.length)))

};

multDefinition {\find (mult[\for (o; i) o[i]](a, el, start, end))\replaewith(\if (start >= 0 & start < end)\then
((\if (a[start] = el) \then (1) \else (0)) +

mult[\for (o; i) o[i]](a, el, 1+start, end))\else (0))

};

swappingPreservesPermutation {\find (perm[\for (o; i)\if (0<=i & i<o.length) o[i])](a,b) ==>)\add(idx1 >=0 & idx2 >= 0 &

idx1 < a.length & idx2 < a.length ->

{a[idx1]:=a[idx2] || a[idx2]:=a[idx1]}

perm[\for (o; i)\if (0<=i & i<o.length) o[i]](a,b) ==>)

};

KeY

Figure 3.3: Permutation rules

(a) List (b) Graph

Figure 3.4: UML class diagrams modelling a list and graph

46

Example 6. Let o,u as well s, t be program variables of type List resp.
ASTNode (see Fig. 3.4) and n be an arbitrary integer constant, then

• reach[\for List x; \if(true) x.next](o, u, n) and

• reach[\for ASTNode x; int i; \if(i >= 0 ∧ i < x.children.length))
x.children[i]](s, t, n)

are formulas used to specify that from list node o one can reach u via next

attribute chains resp. that node t can be reached from node s via the children
array attribute in exactly n steps

For the definition of the reachable predicate’s semantics the following ab-
breviations will be useful: Let accessorList := ld1; . . . ; ldk where each ldi has
one of the shapes required by Def. 31, then lj(x, idxj(i, x)?) stands either for
x.attr if ldj := \for T x; \if(φj) x.attr or x.attr[idx(x, i)] if the j-th location
descriptor is of type II.

The semantics of the reachable predicate needs to be defined. The definition
will have to adhere the constraint given in Def. 28.

Definition 32 (Reachable Predicate - Semantics). Let s, e denote terms of
type T and n an integer term. Then val(K,S,β)(reach[accessorList;](s, e, n))
evaluates to true iff (K, S, β) |=

n >= 0 ∧ ∃i1, . . . , in; (ljn(. . . lj1(
s0

︷︸︸︷
s , idxj1(s, i1)?

︸ ︷︷ ︸
s1

), . . . , idxjn(sn, in)?)
.
= e ∧

φj1{x/s0, i/i1} ∧ . . . ∧ φjn{x/sn−1, i/in} ∧
∧

0<j<n ! end(sj))
The formula end specifies that the access chain is not continued behind certain

elements (for example, null).

The semantics definition is a bit cumbersome to read, due to the used unified
notation for attribute and array access. The following two examples should
clarify its meaning:

Example 7. The reachable predicate

reach[\for List x; \if(true) x.next](start, end, n)

of the previous List example is satisfied in (K, S, β) iff.

(K, S, β) |= start.next.next
︸ ︷︷ ︸

n

.
= end

and
(K, S, β) |= ! end(start.next.next

︸ ︷︷ ︸

i

)

for any 0 <= i < n. A natural choice for the formula/predicate end would be
end(x) :⇔ x

.
= null.

47

Example 8. The meaning of the ASTNode reachable predicate in combination
with end(x) :⇔ (x

.
= null | x.children

.
= null) is then:

(K, S, β) |=
reach[\for ASTNode x; int i; \if(inBound(i)) x.children[i]](s, e, n)

iff.
\exists int k1, . . . , kn; \exists ASTNode l1, . . . , ln; (
l1
.
= start.children[k1] & . . . & ln

.
= ln−1.children[kn] & ln

.
= end &

(0 <= k1 < start.children.length& . . . &
0 <= kn < ln−1.children.length) &

(start !
.
= null & start.children !

.
= null

& . . . &
ln−1 !

.
= null) & ln−1.children !

.
= null))

3.2.2 Calculus Rules for the Reachable Predicate

In order to use the reachable predicate in practise the above definitions need
to be rendered as calculus rules. Therefore it is necessary to rewrite the above
definition into an equivalent recursive version.

Let accessors := ld1; . . . ; ldk be defined as before, where ldj is either of
type I or II. The reachable predicate reach[accessors;](s, e, n) can then be
recursively defined as follows:
reach[accessors;](s, e, n) :⇔
(s

.
= e & n

.
= 0) |

(n > 0 & ! end(s) &
\exists T step; (reach[accessors;](step, e, n− 1) &
∨

j∈1...k(recStepj)))
where recStepj :=

s.acci
.
= step & φj{x/step} , if ldj is of type I

\exists int m; (s.attrj [m]
.
= step & φj{x/step, i/m}) , if ldj is of type II

The big disjunction ranging from 1 to k enumerating all possible steps away
from the concrete object is finite and fixed for an actual reachable predicate.

The above definition can be directly used as a rule that inserts the axiomati-
sation of a reachable predicate in a direct manner. The resulting taclet for the
reachable predicate to express reachability for an ASTNode structure can the be
given as follows:

KeY

reachableDefinition {\find(reach[...](s, e, n))\varond(\notFreeIn(m, s, e, n),\notFreeIn(step, s, e, n))\replaewith (

(s = e & n = 0) |

(n > 0 &

!(s = null | s.children@(ASTNode) = null) &

n > 0 &\exists step;(reach[...](step, e, n-1) &

48

(\exists m;(m >= 0 &

m < s.children@(ASTNode).length &

(s.children@(ASTNode)[m] = step &

reach[...](step, e, n-1)))

))))

};

KeY

The described rule schema defines the reachable predicate recursively, but the
recursion is well-founded as for a negative path length n the formula evaluates
to false and and each unwinding causes n be decremented by one. Together
with induction over the natural number the above rule allows to express the
required reachable properties.

For practical use, one defines convenience rules derived from the axiom in-
sertion rule. These allow to treat often occurring special cases in an efficient
way. Some examples for this kind of rules are listed below:

KeY

reachableDefinitionBase {\find(reach[...](t1, t2, 0))\replaewith(t1 = t2)

};

reachableDefinitionFalse {\assumes (n < 0 ==>)\find(reach[...](t1, t2, n)) \sameUpdateLevel\replaewith(false)
};

reachableDefinitionTransitive {\assumes (reach[...](t1, t2, n) ==>)\find(reach[...](t2, t3, m) ==>)\replaewith(reach[...](t1, t3, n+m) ==>)

};

KeY

3.3 Structural Specification of Graph Structures

The defined reachable predicate(s) are useful to express properties of general
graph structures. In this section the specification of common linked structures
using reachability is treated.

Some inconveniences that arise in the practise are due to the general nature
of the predicate. Therefore further specification predicates are introduced and
defined in terms of the reachable predicate. These predicates add an abstraction
layer that simplifies the specification of (special) linked structures. In addition,
it becomes possible to prove auxiliary lemmas for these predicates and to use
them as taclets in proofs.

49

3.3.1 General Specification Predicates

In this section some general schemes for predicates are introduced. They are
intended to be instantiated and reused for specification predicates dedicated to
concrete data structures.

Definition 33 (Structure Constructors). Given a linked data structure LS.
The attributes or arrays of type LS building up the structure are called structure
constructors of LS.

Example 9. Typical examples of structure constructors are:

• the attribute next for a typical single linked list as shown in Fig. 3.5.

• the attributes left and right for a binary tree like in Fig. 3.6.

Note 15. The definition restricts the considered structures LS nearly almost to
inductively defined data structures, where a substructure is supposed to be itself
an element of LS. The impact of the restriction for practical use is limited as
many linked data structures are of this kind (maybe encapsulated by a wrapper
class). The specification framework is flexible enough to treat implementations
using a hierarchy of classes to model the graph structure’s nodes as long as the
hierarchy has one unique super class declaring the structure’s constructors.

Characterisation of a Linked Data Structure In order to characterise a linked
data structure LS one has to assign location descriptors2, fix the concrete in-
stance of the reachable predicate to be used, i.e., to concretise the end predicate
and last but not least to define the characteristic predicate isLSLS (LS), which
holds iff. the object given as argument represents an element of the structure.

Example 10. Common location descriptors for linked data structures:

Single Linked List. Assuming the structure constructor is an attribute called
next the characteristic location descriptor is:

\for List sl; sl.next@(List)

Binary Tree. Let the binary tree structure be constructed by attributes left

and right referring to the corresponding children, then

\for BinTree tr; tr.left@(BinTree);
\for BinTree tr; tr.right@(BinTree);

is the characteristic location descriptor.

Arbitrary Branching Tree or Graph. The following location descriptor

\for AB ab; int idx; ab.children@(AB)[idx]

is the characteristic descriptor for arbitrary branching trees or graphs,
whose children are kept in an array.

2in the following the linked data structure LS and its assigned location descriptors are
identified, i.e., LS is used to denote both

50

For sake of readability the following abbreviations are used for the reachable
symbol (and similar for other symbols of this kind)

• reachLS(start, end, step) for reach[LS](start, end, step)

• reachLS(start, end) for \exists int step; reachLS(start, end, step)

For the definition of the characteristic predicate it has been proven helpful
to build up on the following concepts:

Cycles onCycleLS(x) :⇔ \exists int n; (n > 0 & reachLS(x, x, n))

Finite Data Structure expressing that only a finite number of different ele-
ments can be reached from a certain point can be specified as follows:

finiteLS(x) :⇔
\exists LS[] elements; \exists int max; \forall LS z;

(\exists int d; reachLS(x, z, d) −>
\exists int pos; (pos <= max & elements[pos]

.
= z))

In case the finiteness property is needed for an acyclic data structure
there is a more convenient formalisation, which implies also the absence
of cycles:

finiteLS(x) :⇔ \exists int max; \forall LS z;
(\exists int d; reachLS(x, z, d) −> (d <= max))

Unique Path In order to express the property that there is a unique path be-
tween two instances of a linked structure, one defines first the following
helper predicate:

uniquePathAuxLS(x, y,m) :⇔
m >= 0 & reachLS(x, y,m) &
(
∧

li∈LS((reachLS(x.li, y,m− 1) −>
uniquePathAuxLS(x.li, y,m− 1)) &

∧

j !
.
=i ! reachLS(x.lj , y,m− 1)))

On top of this predicate the intended predicate can be defined:

uniquePathLS(x, y) :⇔ \exists int m; (uniquePathAuxLS(x, y,m) &
(\forall int m′; (uniquePathAuxLS(x, y,m′) −> m

.
= m′)))

In addition there are:

inLSLS (n, s) is a binary predicate used to query, if the given structure n occurs
as substructure of structure s. It is defined as

inLSLS (n, s) :⇔ isLSLS (s) & isLSLS (n) & reachLS (s, n)

51

separateLS(s1, s2) denotes that both given structures are separate, this means
do not share any node. Usually this is too strict as one sometimes want
that certain elements may be shared (e.g. the empty list or null) etc.
Therefore the given template parametrises separateLS with a predicate
(a syntax notion already introduced in [Rot06]) that allows to specify an
exceptional set of nodes that are allowed to be shared:

separate
φshared(x)
LS (s1, s2) :⇔

\forall LS x; ((inLSLS(x, s1) & inLSLS(x, s2)) −> φshared(x))

In case of φshared(x) := false any sharing is prohibited, whereas for
phishared(x) := x

.
= null sharing of null is allowed.

Some typical properties derived from the above predicates are

Substructure Invariance. A direct consequence of the definition is:

inLSLS(s, t) −> isLSLS(s) & isLSLS(t)

The property is not surprising at all, but having rules exploiting this fact
makes proving easier.

Update Simplification. Knowledge about separate parts of linked structures
allows to provide and apply update simplification rules to eliminate pre-
ceding updates that do not affect a particular (sub-)structure. These rules
follow the principle idea:

{U} isLSLS(s) ⇔ \forall LS x; li@pre(x)
.
= x.li −>

{U || \for x; \if(! inLSLS(x, s)); x.li := li@pre(x)} inLSLS(s)
resp.
\forall LS x; \forall int j; li@pre(x)

.
= x.li[j] −>

{U || \for x; \if(! inLSLS(x, s)); x.li[j] := li@pre(x, j)} inLSLS(s)

where

• li ∈ LS occurs as part of \forLS x; \if(φi(x));x.li resp.
\forLS x; int j; \if(φi(x, j)); x.li[j]

• li@pre is a new (not yet used) rigid function of the required arity

These rules allow further simplifications of specification predicate preced-
ing updates. They make use of the last one wins semantic of updates
where {x.a := c ||x.a := x.a} ψ can be simplified to {x.a := x.a} ψ and
finally to ψ.

3.3.2 Linked Lists

This section demonstrates how to use the reachable predicate and the construc-
tion schemes given in the previous section in order to provide a set of predicates
and rules for the specification and verification of structural properties of a typ-
ical single linked list implementation (see Fig. 3.5).

52

SimpleList

SimpleList next;

...

...
next next next

Figure 3.5: Single Linked List

Note 16. The specification predicates explained in the subsequent rely only on
the constructors of the structure in this case the attribute function next. As
long as the examined structure is solely build up using this constructor it is
allowed to have e.g. subclasses of the SimpleList to mark special list elements.
In particular it is also possible that the single linked list structure is embedded
in a more complex structure.

The reachable predicate for single linked lists. The canonical location de-
scriptor for a single linked list is

\for List l; l.next@(List)

here:
SLL := \for SimpleList n;n.next@(SimpleList)

In a first step, the end marker of the list structure needs to be defined. There
are two commonly used designs:

• a node denotes the end of a list, if and only if the next attribute refers
to null. In this case the end marker can be defined as:

end(x) :⇔ x
.
= null

• there is a special instance used as terminator, e.g. NIL often accessible as
final static field of the corresponding class. Thus:

end(x) :⇔ x
.
= SimpleList.NIL

Therefore the reachable predicate of this structure is:
reachSLL(start, end, n) :⇔
(start

.
= end & n

.
= 0) | (n > 0 & !end(start) &

\exists T listEl; (reachSLL(listEl, end, n − 1) & start.next
.
= listEl))

Note 17. Please note that the existential quantifier in the definition above has
only one possible solution. Therefore one can eliminate the quantifier and use
the simplified formula. In fact, that is done in practice. The simplified rule can
be proven sound wrt. to the original axiomatisation within the KeY system.

53

The isSLLSLL predicate for a single linked coincides nearly completely with
its reachable definition and can be defined as:
isSLLSLL(start) :⇔
\exists SLL end; \exists int n; (reachSLL(start, end, n) &
end

.
= SimpleList.NIL)

On top of the above reachable predicate, it is convenient to define that the
above structure implements a finite and acyclic list. The instantiated specifica-
tion property for an acyclic list is
acyclicSLL(x) :⇔ finiteSLL(x) :⇔

\exists int max; \forall SimpleList z;
(\exists int d; reachSLL(x, z, d) −> (d <= max))

The following short example shall serve as a motivation why the definition of
these specification properties are not only convenient for specification purpose,
but also allow while proving: An often experienced situation, when verifying
programs iterating through linked data structures is:

reach[..](s.next,s,m), reach[..](s,s.next,n), ... ==> ...

Exploiting that reachability is a transitive relation one derives directly that

reach[..](s,s,m+n) ... ==> ...

must hold. If the considered structure is now known to be acyclic, one can use
the following derivable rule

KeY

noCycles {\assumes(acyclic[..](s) ==>)\find(reach(s,s,m) ==>)\add(m=0 ==>)

}

KeY

which–when applied–leads to considerable simplifications. In many case the
considered proof branch can be closed within a few steps.

3.3.3 Tree Structures

This section demonstrates how to compose a set of predicates and functions
capturing structural properties of binary (similar finite arbitrary branching)
trees.

The structural specification predicates listed below require a binary tree data
structure similar to the one shown in Fig. 3.6. Similar means that the tree struc-
ture must be constructed solely by two distinguishable attributes (here:left
and right). One may notice that this allows also tree implementations, which
extend class TreeNode in order to have distinct node types for special purposes,
e.g. leaves, red-black nodes, etc.

The characteristic location descriptor for binary tree implementations is

Tree := \for Tree n;n.left; \for Tree n;n.right;

54

Tree

Tree left;

Tree right

...

rightleft

root

Figure 3.6: Binary tree implementation template

For the definition of the corresponding reachable predicate, one has to specify
the end marker for paths, e.g.

endMarkerTree(l) := l.left
.
= null & l.right

.
= null

Usually the definition of the end marker coincides with the standard definition
of leaves isLeafTree. The next step is to define the predicate characterising,
which elements are part of the structure:

inTreeTree : Tree× Tree

inTreeTree(node, root) :⇔ \exists int d; reachTree(root, node, d)

A tree is defined as an acyclic graph with a unique path between the root
and any node of the tree. The characterising predicate for a binary tree is then
defined as

isTreeTree : Tree
isTreeTree(t) :⇔

\forall Tree n; (inTreeTree(n, t) −> (! onCycleTree(n) &
\forall Tree m; uniquePathTree(n,m) & finiteTree(t)))

where the used auxiliary predicates are directly derived from the templates
given in Sect. 3.3.1, i.e.,

• onCycleTree(x) :⇔
\exists int dist; (dist > 0 & reachTree(x, x, dist)

• the uniquePathTree predicate is defined as declared above. The necessary
helper predicate is instantiated as follows:

uniquePathAuxTree(x, y,m) :⇔
m >= 0 & reachTree(x, y,m) &
((reachTree(x.left, y,m− 1) −>

(uniquePathAuxTree(x.left, y,m− 1)
& ! reachTree(x.right, y,m − 1))) &

(reachTree(x.right, y,m − 1) −>
(uniquePathAuxTree(x.right, y,m − 1)

& ! reachTree(x.left, y,m− 1))))

55

• finiteTree(t) :⇔
\exists int maxDist; \forall Tree n;

\forall int dist; (reachTree(t, n, dist) −> dist <= maxDist)

Note 18. The finite predicate in the version used above implies already that
the structure must be acyclic. Therefore the acyclic test can be skipped.

3.4 Summary

On the specification level recursive predicates provide a convenient way to spec-
ify linked data structures. It has been shown that using classical non-rigid pred-
icates for this purpose has serious drawbacks concerning the achievable degree
of automation.

Enabling the use of recursive non-rigid predicates while achieving a high
degree of automation is the main contribution of this section. Therefore a
variant of non-rigid symbols, so called location-dependent symbols, have been
introduced. Location-dependent symbols come with a set of location descriptors
attached describing all locations on which such a symbol may possibly depend.
In other words, a location-dependent symbol has to be interpreted same in any
two states which coincide on the value of the described locations.

It has been demonstrated how this kind of information leads to shorter proofs
and allows to achieve a significant increase in automation. A proof obligation
formula has been introduced for this kind of symbols which allows to ensure
that their definition obeys the explicit dependency restrictions. The presented
solution enables a set of powerful simplification rules for a whole class of sym-
bols. In contrast to more specialised solutions for which auxiliary rules/lemmas
needs to be proven separately for each new introduced predicate in order to
achieve the same results.

Further, application areas in specification of linked data structures as well as
their usage for modelling queries in the logic have been explored.

56

4 Recursive Methods Treatment

4.1 Motivation

The following sections focus on correctness proofs for recursively defined meth-
ods. In order to clarify the notion of a recursive method, it proves useful to
introduce the notion of an execution trace:

Definition 34 (Symbolic Execution Trace). A symbolic execution trace TrS(st)
is a not necessary finite list (st0(= st), . . . , sti, . . .) of all statements to be exe-
cuted when starting the symbolic execution of statement st in state S.

Note 19. As dealing with a deterministic language and starting in a defined
state S it is always possible to represent the symbolic execution trace as a list
in execution order. In order to capture all traces when starting in an unknown
or only partial known state a tree (or more general) data structure has to be
taken. A trace corresponds then to one path in the structure.

Note 20. Intuitively a symbolic execution trace captures the stepwise decom-
position of a statement (or program) into atomic programs.

Example 11. The statement i=(j=3)+1 executed in an arbitrary state S leads
to the following symbolic execution trace:

TrS(i = (j = 3) + 1;) := (i = (j = 3) + 1;, j = 3;, i = j + 1;)

It is now possible to define precisely the meaning of the term recursive
method :

Definition 35 (Recursive Method; Re-entry point). Let the symbols o and
vi (i ∈ N) denote program variables (or at least side effect free expressions)
of a fitting type. A method m is called recursive, if there is an execution trace
TrS(o.m(v1, . . . , vn);) of m that contains another invocation of method m at a
position i > 0. Position i is called a re-entry point of method m.

4.1.1 Current Problems and Challenges

This section explains the problems and limitations of the current KeY system
when a recursive method (or re-entry) occurs along a simple example. The
following recursive implementation of a simple method computes the factorial
of a given number:publi lass MathLib {publi stati int fac(int n) {

57

if (n==0 || n == 1) {return 1;

} else {return n*fac(n-1);

}

}

}

The factorial is not expressible in terms of a closed arithmetical expression.
Instead a proper specification may define a recursively defined (logic) function
fac according to the common mathematical definition:

KeY

factorialDefinition {\find (fac(x))\replacwith(\if (x > 1) \then (x*fac(x-1))\else (\if (x>=0 & x<=1)\then (1)\else fac(x)))

};

KeY

In order to prove the library function fac to be equivalent to the function
fac for non-negative arguments. In a first approach we try to prove

KeY\forall int x; (x>=0 -> {i:=x}\<{ result = MathLib.fac(i); }\> result = fac(x))

KeY

using the standard integer induction rule. The induction hypothesis can be
chosen straight forward. The base and use case can be closed easily, but the
step goal cannot be closed although valid. The remaining open goal looks like:

KeY

nv_1 >= 1, x_1 >= 0,

{n := nv_1} \<{ { j = MathLib.fac(n)@MathLib; }

result = j; }\> fac(nv_1) = result

==>

{j_2:=1 + nv_1 || n_1:=nv_1}\<{ {method-frame(result->j, source=MathLib)

: { { j_4 = MathLib.fac(n_1)@MathLib; }

j_3 = j_4;

j_1 = j_2*j_3;return j_1;

}

}

result=j;

}\> fac(1 + nv_1) = result

KeY

58

Although the result of the method invocation is in some sense given by the
third formula in the antecedent, the proof stops at this point. The reason is the
induction hypothesis is not general enough. The root of the problem is that it
is not possible to quantify about the method stack in the used logic.

Instead of introducing some instance of a higher order construct to quanti-
fy/generalise about the method stack (and therewith about programs), the rule
presented in the next section uses taclets to simulate this kind of quantifica-
tion. The taclet language allows to generalise in the above sense by using the
schematic program context ..(·).... The schematic program context allows to
match the inactive program prefix (..), the active statement ((·)) and the rest
of the program (...). In fact it represents a possibility to quantify about all
programs that contain the specified statement (·).

There are (at least) two alternatives to present the taken approach. The first
alternative introduces a new taclet (rule) that allows to prove the validity of a
property φ in presence of a recursive method. This means, in the case the a
proof of φ has to consider a recursive implemented method.

The second alternative describes how to generate a set of proof obligations
that allow to prove the correctness of a recursive method with respect to a
given contract. Afterwards, the proven contract can be used when proving the
property φ.

The second alternative allows a more concise explanation of the principal
idea as it has to cope with less technical problems. Therefore this alternative
is chosen to present the approach. The first alternative will be discussed in a
later section.

4.2 Recursive Method Treatment

4.2.1 Using Proof Obligations

Two(+1) proof obligation are required to prove the correctness of a recursive
method with respect to a given contract C := (pre, post,mod), instead of one
for non-recursive methods.

The principle idea is to combine induction and the method contract rule.
The first proof obligation to be generated represents the base case of the in-
duction. In this context, the base case contains usually exact those cases for
which the recursion can be eliminated by a (small) finite number of method
body expansions. A non-negative distance function dist is used to characterise
exactly those states that belong to the base case. That are all states in which
the distance function evaluates to 0.

The second proof obligation includes a restricted variant of the contract C
in its rules collection. Restricted means that the precondition is stronger in
the sense that it requires the distance function to have a value lesser than an
arbitrary but fixed value.

In the third (+1) proof obligation, it has to be shown that the formula dist >
0 holds in any state that satisfies the method’s precondition pre.

It is necessary to loose some more words about the provable method contracts
C. The contract to be provable following this approach has to be in general

59

more detailed than one would expect or usually specify in JML or OCL. The
reason for this is that during the execution of the recursive method one may
observe intermediate states at the re-entry points which could not be observed
by an outside caller. This means that at invocation time one may not necessary
assume that all invariants are valid and will have thus to encode the required
parts of the invariant in the precondition. Taking special care of invariants is
necessary, as we use in KeY an observable state semantics for invariants, in
contrast to JML’s visible state semantics. In addition, it may be necessary to
relax the precondition itself for certain re-entry points.

Furthermore the modifies set has to include more locations as a temporarily
changed location may be restored only some time after returning from the re-
entry point and thus changed field values may be observable. It should be
noted that the locations contained in the modifies set can be further restricted
to static or instance fields and need not to take local fields into account.

If the method contract becomes too complex for practical purposes, it can
be used afterwards to prove a stronger contract Cpub better suited for general
(public) use.

Some preliminary definitions are still required, mainly the notion of a recur-
sive method contract :

Definition 36 (Recursive Method Contract; Distance Function). A recursive
method contract RecCtrt := (pre, post,mod, dist) extends a normal method
contract by a distance function dist, which is specified as an integer typed
term that has to evaluate to a non-negative value in any state satisfying the
precondition pre.

In the next paragraphs the following abbreviations will be used:

• The symbols −−→args := (arg1, . . . , argn),
−−−−→
argslv := (arglv1, . . . , arglvn) rep-

resent sequences of program variables (respective logical variables) of
equal size which have pairwise the same type, i.e., sort(argsi) = sort(argslvi).
This notation is typically used to abbreviate quantification or updates,
e.g.

– ∀
−−−−→
argslv; is short for ∀arglv1 : T1; . . . ;∀arglvn : Tn;

– −−→args :=
−−−−→
argslv is short for arg1 := arglv1 || . . . || argn := arglvn

• The expression dist(−−→args) is an integer typed term representing the dis-
tance functions. In order to make the dependence of dist on the method’s
arguments more explicit they are mentioned explicitly. It does not mean
that dist must depend on all arguments or only on those arguments.

• The non-rigid predicate pomod is an abbreviation for the proof obligation
of the modifies set.

• The program variable self is used to address the receiver of the method
call. It can be used by the pre- and postcondition.

For sake of simplicity treatment of exception will be skipped. At a later
point it will be explained how to incorporate abrupt termination of methods

60

by uncaught exceptions. The way exceptions are supported is equivalent to the
approach taken for standard method contracts.

Base Case The proof obligation to be generated for the base case is

=⇒ ∀o :T ; ∀
−−−−→
argslv; {self := o || −−→args :=

−−−−→
argslv}

(o !
.
= null & pre & dist(−−→args)

.
= 0 −> (〈self.m(−−→args)@T ; 〉(post)))

Most parts of the formula are identical to the standard proof obligation for
method contracts. As usual the adherence to a given contract is shown for a
fixed implementation of method m, namely the implementation found in type
T . Thus the concrete method body statement of this implementation is used
in the modality.

In order to prove the validity of the formula one has to show that for any
non-null object o on which the method is invoked and any parameter assign-

ment −−→args :=
−−−−→
argslv the method satisfies the contract’s postcondition after

its execution (and that the method terminates). But only if the precondition
pre holds and the distance function evaluates to 0. The latter point is where
the generated proof obligation deviates from the contract rule for non-recursive
methods.

Example 12. The proof obligation for the factorial example is:

KeY\forall int inlv;{in:=inlv}(in >= 0 & in = 0 ->\<{ result=MathLib.fac(in)@MathLib; }\>(result = fac(in)))

KeY

which can be closed in a couple of steps and one interaction namely the
application of the taclet factorialDefinition. The quantification about all method
call receivers is missing, because the method is declared static.

Step Case The formula of step case proof obligation differs only slightly from
the one of the base case:

=⇒∪mcrestricted
∀o :T ; ∀

−−−−→
argslv; {self := o || −−→args :=

−−−−→
argslv}

(o !
.
= null & pre & depth >= 0 & dist(−−→args)

.
= depth+ 1 −>

(〈self.m(−−→args)@T ; 〉(post)))

where depth is a newly introduced rigid integer typed constant.
The only visible difference is that the distance function is assumed to evaluate

to value depth+1, where depth >= 0. The integer induction rule would provide
a formula in the premise stating that the correctness of the method contract
has already been proven for all cases where 0 <= dist(−−→args) <= depth. As
already explained, that is not expressible on the syntactical level of our logic.

Instead the proof obligation for the step case contains an additional rule
mcrestricted

1, namely the application rule for the method contract to be proven,

1in fact there are two rules, one for the antecedent and one for the succedent

61

but with one important derivation: In order to apply the method contract, it
has not only to be shown that the precondition is satisfied, but also that the
distance function (or term) evaluates to a non-negative value lesser or equal
than depth.

Example 13. The proof obligation for the factorial example is:

KeY\forall int inlv;{in:=inlv}((in>=0 & depth>=0 & in=depth+1) ->\<{ result=MathLib.fac(in); }\>result = fac(inlv))

}

KeY

The restricted version of the method contract can be written in pseudo taclet
code as

KeY

methodContractRestricted {\find (==>\<{.. #result = MathLib.fac(#v)@MathLib; ...}\>(phi))
"Precondition and Restriction":\add (==> #v>=0 & depth >= 0 & #v <= depth) ;

"PostCondition" :\replaewith (==> #result=fac(#v) -> \<{.. ...}\>(phi))
};

KeY

The proof has been performed in the KeY system. The closed proof tree con-
sisted of 231 nodes on three branches. Four interactive steps have been required
(1×methodBodyExpand, 1× methodContractRestricted, 2×factorialDefinition).

Well-Defined Distance Function After proving the last two proof obligation,
one has shown that the method satisfies its contract, but only when the distance
function evaluates to a non-negative value. Either we can add this requirement
to the precondition and show that–at any time–when the method contract is
used or one can try to get rid of the distance function. The last proof obligation
serves the latter approach, but it may (in rare cases) make the formulation of
the precondition or distance function more complicated.

The third proof obligation

=⇒ ∀o :T ; ∀
−−−−→
argslv; {self := o || −−→args :=

−−−−→
argslv}

((o !
.
= null & pre) −> depth >= 0)

is usually the easiest to prove. It states that in any state satisfying the
precondition, the distance function term must evaluate to non-negative value.

Example 14. For the running example, we get

KeY\forall int inlv;{in:=inlv}(in>=0 -> in>=0)

KeY

62

which can be nearly immediately proven.

Correctness of the Modifies Set It remains to show the correctness of the
modifies set. The procedure is analogously to the one above, i.e., the modifies
set is first shown to be correct for all states where dist evaluates to 0.

The step case assumes again that the modifies set is correct for all method in-
vocations in a state satisfying the precondition and where the distance function
evaluates to an arbitrary, but fixed non-negative value. The restricted version
of the method contract is added again to the rule base.

The well-definedness case remains unchanged.
The proof obligation to be generated is the one shortly described in Sect. 2.2.6

and the first time introduced in [Rot06]. Besides adding the distance function
requirements to the different proof obligations nothing has to be changed.

Example 15. The factorial computation has an empty modifies set, this means
in order to fulfil the contract it must not change the value of any instance or
static field. The proof obligation for the step case is:

KeY\forall int inlv;{in:=inlv}((in>=0 & depth>=0 & in=depth+1) ->

((\<{ result=MathLib.fac(in); }\>\<{ MathLib.anon()@MathLib; }\>true) <->\<{ MathLib.anon()@MathLib; }\>true))
KeY

In addition with the restricted method contract rule (for the antecedent and
succedent). The closed proof has 305 nodes, 6 branches and required four
interactive steps (2×methodBodyExpand, 2×methodContractRestricted)

4.2.2 Example: List Reversal

In order to demonstrate how to verify a recursive method contract, we reuse
the SimpleList implementation of a single list once again. The task is to
prove that the recursive instance method contract of the method reverse() is
correct. The method implementationpubli void reverse () {if (next != null) {

next.reverse ();

next.next=this;
next = null;

}

}

is obviously recursive. It descends until the end of the list has been reached.
Up to this point the list structure has not been altered yet. Then the method
returns step-by-step and after each ascending step, it reverses the next reference
of its next element. For example, assume the following sequent to represent the
list (n0, . . . , nsz), when the algorithm has reached node nsz, it starts returning.

63

After taking one step upwards, it is back at node nsz−1 and the list still un-
changed. Now it redirects the next reference of node nsz to the current node
nsz−1 and so further on until n0 is reached.

The property to be proven is that when executing self.reverse() the
method terminates normally and afterwards

• the next reference of the first element self is null.
• for any element e other than self, the next reference has been reversed

to its predecessor, i.e., the equation e.next.next@pre
.
=e is satisfied (the

unary function next@pre captures the value of next in the pre-state for
any list).

The specification of the method contract uses the linked data structure pred-
icates as introduced in Sect. 3.3. The contract to be verified can then simply
be written as

let next@pre(list:SimpleList) = list.next in

let elementInList:SimpleList such that \exists n;

reach[\for (SimpleList l)

l.next@(SimpleList)](self,x,n) in

pre:

self != null &\forall SimpleList list;

isList[\for (SimpleList l) l.next@(SimpleList)](list)

post:\if (elementInList.next = null)\then (elementInList = self)\else (nextAtPre(elementInList.next) = elementInList)

distance:

(\ifEx (int len)(len>0 & reach[\for (SimpleList l)

l.next@(SimpleList)](self, null, len)) \then (len-1)\else (-1))

The let-definitions as defined in Sect. 2.2.6 are evaluated in the pre-state. The
declared function symbols like next@pre have to be created newly for
each application. The declared logic variable x to represent an arbitrary
element of the list, will be bound and is therewith always locally declared
(i.e., newly introduced).

In the above contract the first let definition introduces the new rigid
function symbol next@pre used to capture the pre-state value of function
next. The second let definition fixes an arbitrary element of the list
starting at self.

The distance term is defined using the \ifEx x T ; operator. This operator
binds a logical variable x in its guard and its \then branch. The term

64

evaluates to the value of its \then branch, if there exists a smallest element
that satisfies the guard formula2 and otherwise the value of the term is
equal to the value of its \else branch.

For a list of length size the distance term evaluates to size − 1. Note,
that lists of type SimpleList are null or have at least one element.

In the next paragraphs, the correctness proof of this method contract is
shortly sketched and a short statistic is given. The number of interactive steps
is higher than necessary, i.e., the linked structure predicates are not treated
automatically at all. Further, finding the shortest proof has not been one goal,
i.e., in particular there are unnecessary interactive steps, which have been just
applied for convenience reasons during the proof, e.g. to get the sequent more
readable.

Base Case: Lists with one element. For the base case we have to prove
that the method satisfies the contract for all lists with exact one element. The
generated3 proof obligation is:

KeY\forall SimpleList selfLV;{self:=selfLV}(\forall SimpleList list;(nextAtPre(list) = list.next) ->\forall SimpleList elInList;(\exists int idx;

(elInList != null & idx >= 0 &

reach[\for (SimpleList l)

l.next@(SimpleList)](self,elInList,idx)) ->

// precondition

((self != null &\forall SimpleList list;

isList[\for (SimpleList l) l.next@(SimpleList)](list) &

// distance restriction

(\ifEx (int len)(len>0 & reach[\for (SimpleList l)

l.next@(SimpleList)](self, null, len))\then (len-1) \else (-1)) = 0

) ->\<{ self.reverse()@SimpleList; }\>
// postcondition

(\if (elInList = self)\then (elInList.next = null)\else (nextAtPre(elInList.next) = elInList))

)))

KeY

2In fact the logic used in KeY defines a well-order on the universe. Consequently, if a
smallest element e exists that satisfies a given formula φ(e), there exists always a smallest
element m such that φ(m).

3At the moment of writing the generation is done manually. The generation will become
automatically after the new contract framework for methods has been introduced.

65

The first four lines are the translation of the contracts let constructs. Fol-
lowed as marked by the translation of the precondition. The precondition has
been strengthened and requires that the value of distance term is equal to zero.
Finally, the translated postcondition to be shown satisfied is placed directly
after the modality that contains the method invocation.

The base case branch as well as all the other branches have been proven in
the KeY system. The closed proof for the base case branch consists of 135 nodes
on four branches, twelve interactive steps have been applied. The proof is very
simple, the greatest part of the work had been investigated to derive from the
distance function that self.next is null and thus no recursive call occurs.

Step Case: Lists with more than one element. As expected the step case is
the interesting one. The generated proof obligation assumes that the contract
has been already proven for lists with less than depth elements. For those lists
the restricted method contract(see Fig. 4.1) is already available.

The proof obligation itself is equal to the base case proof obligation except
for the distance term, which covers this time all lists for which the distance
term evaluates to depth+1 for some arbitrary value depth with depth>=0.

The proof fixes an arbitrary list node elInList0 of the list starting at element
self. Then one expands the method reverse exactly once.

When the re-entry point is reached, that is the recursive call of reverse on
the successor node self.next, one applies the restricted method contract. At
this point two cases need to be distinguished and treated differently. Depending
on whether the element of interest elInList0

1. is the same as self: In order to close this goal, the only assertion of
the method contract that can (and must) be used, is that the method
terminates. Therefore we instantiate the let variable definition of the
method contract with self.next and have later on only to show that
the precondition and distance term restriction holds. The goal can be
closed by symbolic execution of the remaining program after the recursive
method call.

2. the self.next: This subgoal can be closed when instantiating the method
contract let construct with elInList0. After showing that the precondi-
tion and distance restriction is satisfied once again, all that is needed to
close the goal is asserted by the used method contract’s postcondition.

The closed proof for the step case has 963 nodes on 24 branches and required
87 interactive steps.

4.3 Summary

This section introduced a rule that allows to prove that the implementation
of a general recursive method satisfies a given specification in a dynamic logic
with state updates and an implicit method call stack as used in JAVA CARD DL.
The main idea is to combine the induction rule and contract application rule.

66

restrictedMethodContract {\shemaVar \variables SimpleList l, list1, list2;\shemaVar \variables int idx, len, n;\shemaVar \program Variable #o, #self;\shemaVar \program MethodName #mn;\shemaVar \formula phi;\find(==> \<{.. #o.#mn(); ...}\> phi)\varond(\new(#self, \typeof(#o)),\notFreeIn(l, phi), \notFreeIn(idx, phi),\notFreeIn(list1, phi), \notFreeIn(list2, phi))\replaewith(==>
{#self := #o} (

// let definitions\forall list1;(nextAtPre2(list1) = list1.next) ->

(\exists l;((\exists idx; (l!=null & idx>=0 &

reach[\for (listLV)listLV.next](#self, l, idx)))

&

// precondition

(

#self != null
& \forall list2; isList[\for (listLV) listLV.next](list2)

&

// distance restriction

depth >= 0

&

(\ifEx (len)(len>0 &

reach[\for (listLV)listLV.next](#self, null, len))\then (len-1) \else (-1)) = depth

)

// postcondition

& {\for list2; \if (\exists idx; (idx>=0 &

reach[\for (listLV)listLV.next](#self, list2, idx)))

list2.next:=anon(list2)}

(

(\if (l = #self) \then (l.next = null)\else (nextAtPre2(l.next)= l))

-> \<{.. ...}\>(phi))))))\addprogvars(#self)
};

Figure 4.1: Restricted Method Contract for List Reversal

67

Allowing the restricted use of the contract to be proven in the step case paying
attention not to introduce a circular dependency. The presented approach has
been explained and evaluated using two examples: Fibonacci numbers and list
reversal.

68

5 Specifying Linked Data Structures
with Abstract Data Types

5.1 Abstract Data Types and Linked Data Structures

Abstract data types are a well-known and explored area in computer sciences.
Of interest for this section are generated abstract data types as they enable
reasoning by structural induction.

Generated abstract data types are axiomatised with help of a set of function
symbols. A selected subset of them is marked as constructors. Their semantics
is that all elements of the abstract datatype can be written as ground terms
consisting only of constructors. In particular any element of the domain has
a syntactical representation. The remaining functions can be divided into ob-
servers, which do not manipulate the structure, and operations mapping an
ADT element to another one.

The semantics of the queries and operations is usually given in terms of a
rewrite system and/or general axioms in a (fragment) sorted first order logic.
Some characteristics of the algebraic data type are strongly tied to the allowed
rewrite system resp. logic.

Abstract data types are a useful tool to model linked data structures. To
some extend they allow to (re-)use methodologies invented for their analysis for
verifying object-oriented programs.

5.1.1 Abstraction of Linked Data Structures

This section demonstrates how to abstract a linked data structure using abstract
data types. The found abstraction can then be used instead of the linked
data structure itself when verifying programs using the data structure. An
elaborated example is given in Sect. 6 modelling the JAVA String data type in
KeY.

An abstract data type is traditionally described using an algebraic specifica-
tion. An algebraic specification defines a signature algebra consisting at least
of

• a set of sorts (sort names) TADT with one distinguished S ∈ TADT often
called the sort or type of interest.

• a set of functions FADT

• a set of axioms AxADT

The intent of the axioms set is to give the functions a meaning. The axioms
are usually given as (conditional) equations. The concrete used framework is

69

characteristic for the expressiveness of the specified algebra. It ranges from
(universally closed) equations to conditional equations or a full first-order logic.
While the first often allow a direct execution of the specification emulated by
a rewrite system, this is in general not possible for the more powerful logic
languages.

The semantics of an algebraic equation is then given as an interpretation
assigning each sort a domain, the function symbols a mathematical function
such that the axioms are valid. An interpretation of this kind is called model
of the algebra.

The close relation ship to our specified logic is evident in particular as the
logic itself can be seen as an algebra itself.

Definition 37 (Abstract Data Type). A collection of interpretations of an
algebraic specification is called abstract data type if and only if it is closed
under isomorphism.

Many algebraic specification languages allow to specify additional constraints
on the set of interpretations to be considered. Those constraints cannot be
expressed as axioms in a first order language. The interesting constraint for
this theses is called generated, others are for example freely generated, loose
etc.

Definition 38 (Generated ADT). An abstract data type is called generated,
if there is a set C ⊂ FADT such that any element, belonging exactly to the
domain of the sort of interest, can be represented by a ground term consisting
only of functions and constants (nullary functions) in C.

Specifying an abstract data type in JAVA CARD DL and the KeY system is
straight forward: one declares the sorts and (rigid) functions of the ADT and
adds the axioms as rules or universally closed formulae to the sequent. The
way how the axioms are formalised has some influence on the proving style and
degree of automation. Adding them as formulae (or nearly equivalent as rules,
which add these formulae to the antecedent of a sequent) requires in general
the application of instantiation rules and result in a declarative but less auto-
matic proving style. The taclet formalism allows in particular to draw benefit
from algebraic specifications using (conditioned) equations. These can be eas-
ily translated into rewrite taclets with an optional assumes part containing the
rewrite rule condition.

Example 16. Given axiom ax as conditioned equation

x = 0 −> 5 ∗ x
.
= 0

where x is an implicit universally bound variable. From this one can construct
the taclet

ax {\assumes (==> x = 0)\find (5*x)\replaewith (0)

};

70

It is also possible to create a symmetric taclet where the find and replacewith
parts are swapped. But then the character of a directed equation is lost and
therewith an (easily) executable specification.

If a given abstract data type has to be generated, a structural induction rule
is added as taclet to complete the axiomatisation. The structural induction
rule for a data type T is a cut rule of the following shape:

structInduction

Base Case
|C0|
i=1 Step Case

|C−C0|
i=1 Use Case

Γ =⇒ ∆

• for all ci ∈ C0 : Base Casei := Γ =⇒ Cl∀({\subst T iv; ci}IH), ∆

• for all ci ∈ C −C0 let αT (ci) denote the number of arguments of c which
are of type T . Then Step Casei :=

Γ =⇒

\forall T nv1, . . . , nvαT (ci);

((
∧αT (c)

i=1 Cl∀({\subst T iv; nvi}IH)) −>
Cl∀({\subst T iv; ci(nv1, . . . , nvn)}IH)), ∆

• Use Case := \forall T nv; {\subst T iv; nv}IH

with

• IH as induction hypothesis and free induction variable iv of type T

• C0 := {c ∈ C|α(c) = T1 × . . .× Tn → T, Ti 6= T f.a. i ∈ {1 . . . n}}

• Cl∀(φ): universal closure of φ. Necessary, as the constructors may include
other types as arguments, e.g. the content stored in one list element.

In Fig. 5.1 an excerpt of an algebraic specification of a linked data structure
is shown. Its embedding in JAVA CARD DL is presented in Fig. 5.2.

5.1.2 Connecting Abstract Data Structure and JAVA CARD DL

While the previous section summarised how to model a linked data structure,
this section describes how to connect them to linked data structures modelled
in JAVA.

Therefore the following requirements need to be fulfilled:

• a relation ρ between both formalisations of the linked data structures has
to be defined. Intuitively the relation shall hold if the abstract data type
is a valid abstraction of the concrete one.

• operations modifying the linked data structure must be mapped to oper-
ations on the abstract data type.

71

sort AList import intgeneratedonstrutors nil:AList | cat(int, AList)

prepend ::AList -> AList -> AList

prepend(first , nil) = first

prepend(first , cat(x, tail)) =

cat(x,prepend(first , tail))
get::AList -> int -> int

get(cat(x, fstTail), n) =if (n = 0) then
xelse
get(fstTail ,n-1)fi

Figure 5.1: Algebraic Specification of list data type AList (first, tail,

fstTail are variables of type AList, n,x are variables of type int)

In order to model the connection between an abstract data type and the
concrete linked data structure, the latter one is equipped with a ’virtual’ at-
tribute. This virtual attribute is modelled as a location function and behaves
like a normal attribute with two exceptions:

1. location functions cannot occur as part of a program and

2. they can be declared of a sort, which is not derived from a program type
like reference or primitive types.

Definition 39 (Location Function). A location function is a non-rigid function,
which can occur as top level symbol on the left side of an update’s assignment
pair.

Note 21. The name location function has been chosen to emphasise that the
function models a location and therefore can be evaluated as a semantic location
as defined in Def. 10. Consequently, it is directly updateable via an update.

Attribute and arrays are special kinds of location functions as they are allowed
to occur in and therewith to be changed by programs.

In principle one could allow any non-rigid function to be modified directly
by an update and would thus not need to define a new syntactic category. The
drawback would be that the use of non-rigid predicates as auxiliary functions
becomes more difficult as one could not define them via simple rewrite rules.
For example, let the unary non-rigid boolean function nonNullF be intuitively
defined to evaluate to TRUE, if the argument’s value is not equal to the value
of the null literal. In this setting, the rewrite taclet nonNullConcrete

72

KeY\sorts {AList;}\funtions {

AList nil, cat(int, AList); // constructors

AList prepend (AList, AList), get(AList, int);
}\rules {

prependEmptyList {\shemaVar \term AList first;\find(prepend(first, nil))\replaewith(first)
};

prependNonEmptyList {\shemaVar \term AList first, sndTail;\shemaVar \term int x;\find(prepend(first, cat(x, sndTail)))\replaewith(cat(x, prepend(first, sndTail)))

};

getElement {\shemaVar \term AList fstTail;\shemaVar \term int x, n;\assumes (n>=0 ==>) // alternative: \add(==> n>=0)\find(get(cat(x, fstTail), n))\replaewith(\if (n = 0) \then (x) \else (get(fstTail, n-1)))

};

// providing structural induction implies generatedness

structInductionAList {\shemaVar \formula b;\shemaVar \variables AList nv;\shemaVar \variables int x;\varond(\notFreeIn(x,b))
"Base Case": \add(==> {\subst nv; nil}(b));

"Step Case": \add(==> \forall nv ; (b ->\forall x;{\subst nv; cat(x, nv)}b));

"Use Case" : \add(\forall nv;b ==>)

};

}

KeY

Figure 5.2: JAVA CARD DL Specification of AList

73

KeY

nonNullConcrete { \find(nonNull(null)) \replaewith(FALSE) }

KeY

would not be sound, which becomes obvious when we look at the following
formula

KeY

{nonNullF(null):=TRUE} nonNullF(null) = FALSE

KeY

Dependant on the rule application order, it is possible to derive TRUE when
the taclet nonNullConcrete is applied before the update simplification rules,
otherwise FALSE can be derived.

The kind and use of these functions is similar to concepts found in other
specification languages like JML model fields or let-definitions in OCL. On
advantage of their use is the connection of two worlds - programs and logic. It
embeds abstract data types as primitive types into JAVA.

As attributes are in principal unary location functions, the update simplifi-
cation rule for the latter one can be easily derived by a slight generalisation of
the rule for applying updates on attributes:

{

:=U
︷ ︸︸ ︷

g(y1, . . . , yn) := v} f(x1, . . . , xn) ;

{
v, if g = f and val(yi) = val(xi)
f({U} x1, . . . , {U} xn), otherwise

Let L denote a concrete linked data structure and LA its abstraction and
let the location function abstraction : L → LA be used as the corresponding
virtual attribute.

The intention is to establish the following property. Given an object l repre-
senting the concrete data structure and its abstraction lA

ρ(l, lA) :⇔ abstraction(l)
.
= lA (5.1)

The difficulty when trying to ensure property 5.1 is that the virtual attribute
may be altered to any value using an update possibly invalidating 5.1. This
implies that one cannot simply assume that the value of the location function
abstraction(l) satisfies the above equation 5.1, but that it must be stated
explicitly when one intends to rely on the equation. Let po denote a proof
obligation, which makes use of the abstraction. In order to be sound one has
to assume that all considered states represent which relate the linked data
structure L of interest to a valid abstraction:

\forall L l; (ρ(l, abstraction(l))) −> po

5.1.3 Applications

Specifying (collection) libraries. The advantage of relating an instance of a
linked data structure to an instance of an abstract data type becomes immedi-
ately when specifying libraries like collection libraries. The operational seman-
tics of the methods provided by the interfaces (and classes) of these libraries

74

can be specified easily if one can refer to abstract data types. Of particular
advantage is that most algebraic data type specification are at least to some
point executable in a functional style. This leads to easy readable specifications
and provides sufficiently different specification and implementation languages.

An excerpt of a specification of a List interface is shown below. The location
function is named <abstraction>. In order to emphasise its close relationship
to an attribute the remaining part of the chapter makes use of the postfix
notation, i.e., o.<abstraction> instead of <abstraction>(o). The location
function <abstraction> maps an instance of type List to an instance of the
abstract data type AList. The excerpt used an pseudo-OCL syntax to provide
a better readability than using the JAVA CARD DL syntax:

OCLontext List::get(int idx):Objectpre : idx >= 0 and idx < self.size()post : result = get(self.<abstraction>, idx)modifies: {}ontext List::size():intpre : truepost : result = size(self.<abstraction>)modifies: {}ontext List::prepend(Object o)pre : truepost : head(self.<abstraction>) = o and
tail(self.<abstraction>) = self.<abstraction>@pre and
validAbstraction(self, self.<abstraction>modifies: self.<abstraction>

OCL

Please note that method prepend is a destructive method altering the list
object. Therefore the modifies clause must contain the abstraction field. Any
class implementing the interface List has to include at least all locations oc-
curring in the valid abstraction formula ρ. In most cases the locations, which
may change when the abstraction field changes will be specified explicitly. In
order to realise this kind of mapping one can use the data groups provided by
JML, which realise exactly such a mapping for model fields.

In order for practical use one usually requires that after the execution of a
method the valid abstraction property is restored. a translation from a high-
level specification to a JAVA CARD DL specification may add this postcondition
explicitly, here it is stated explicitly in prepend’s postcondition.

The method contracts rendered by this specification can be used directly
when verifying a program using one of the library classes resp. methods. Proving
such a method contract sound is more difficult as the JAVA implementation
cannot and does not know anything about the abstraction field itself and will
therefore never ’change’ it. The solution to be taken is that the specifier of an
implementation must describe the necessary change by stating explicitly the

75

new value of the abstraction field. This can e.g. be done via an explicit set

statement as used in JML for ghost fields.

Mapping OCL associations to JAVA CARD=DL Another application scenario
is a proper mapping of OCL associations into JAVA CARD DL terms and formu-
las. When one uses OCL as specification language the model contains besides
classes, attributes and operations also associations (aggregations, compositions)
which have no direct representation on the program side. In order to interpret
them one can introduce location functions, which model the associations as
attributes, sets, lists etc. The chosen data type depends on the stereotypes
restricting the kind of association.

5.2 Summary

This section contributed to the still open scientific problem how to close the
gap between abstraction levels of data types. In particular, it analysis the
situation where an abstract data type representation on the specification level
has to be related to an imperative/object-oriented realisation on the program
level for verification purposes. The presented suggestion expresses this relation
using location functions bridging a concrete realisation of the data type with
its abstract counterpart.

76

6 Modelling JAVA-Strings

6.1 The Java String Class

Java’s String support differs in some aspects from the one found in other lan-
guages. For example, in contrast to the standard C or C++ solution a Java
String is not identical to an array of characters. Following the object-oriented
approach, they are realised as instances of a normal class part of the standard
library, but benefit from some built-in support of the Java language.

For example, the operator + is overloaded to cover String concatenation. If
one of the operator’s arguments is a String, it becomes interpreted as String
concatenation and a String conversion is performed if necessary. In presence
of a conversion the operator + is not commutative, which is already described
in [GJSB00, GJSB04].

The following list should cover most of the String specific properties:

String immutability. Strings are designed as an immutable class, i.e., after their
creation it is not possible to change them. Immutability is a crucial prop-
erty to allow some of the below mentioned features as literals of Strings,
which behave similar to literals of primitive types. Immutability plays
also a crucial role for the realisation of a String pool facility.

String Literals. A String literal in Java is a textual representation of the con-
tent enclosed in quotation marks. A String literal is an explicit reference
to an instance of type String (with the specified content). Two equal
literals refer always to the same String instance, so that for example the
statement System.out.println("abc"=="abc"); prints true. In order
to mimic this literal behaviour Java provides a pool, which contains all
String literals occurring in Java program and, in addition, all Strings
that are part of a compile-time constant expression. A compile-time
constant expression is an expression, whose value can be expressed as
a literal and computed statically at compile-time. For example, the ex-
pression "abc"+"def" is a compile-time constant expression and evaluates
to "abcdef".

String Pool. The String pool is a technical detail mainly used to provide a
sensible String literal support. Any two references which are part of the
pool, reference objects with a different content.

The pool is set up at start-up (or more precise when a class is loaded)
with references to String instances occurring in the class as literals or that
are the result of constant compile time expressions.

Resolving a String literal means to test if the pool contains already an
instance that represents the required content. If the test is positive the

77

literal is resolved to reference the already existing object. Otherwise a new
String instance with the required content has to be created (or maybe,
it has been already created to perform the test) and a reference to this
object is added to the String pool.

The programmer may access the pool at runtime by invoking the method
intern on a String object s. The invocation checks if an object equal to
s is already a member of the pool and if not it will add the String s to
the pool. Finally, it returns the reference to the now guaranteed to be
existing pool member equal to s.

String conversion. The Java Language Specification(JLS) defines for any -
primitive or reference - type, conversion rules that convert a member
(instance) of the type to its canonical String representation. In case of an
instance of a reference type, the corresponding toString method is in-
voked. In case of the null reference the conversion returns the text string
null instead. The conversion rules for primitive types returns their nat-
ural textual representation.

There has been a minor flavour change between the second and third
edition of the Java Language Specification. Influenced by the autoboxing
and -unboxing feature in Java 5, the latter one specifies the conversion as
the result of calling the toString method on the corresponding wrapper
object. As an optimisation it is still allowed to implement the conversion
in directly without creating intermediate objects, which is more in the
flavour of Java 2.

String concatenation. Operator overloading for reference types is not sup-
ported by Java in general. The String concatenation operation, which
uses the plus operator + is the exception of the rule. Java interprets the
plus operator as String concatenation as soon as one of the operands is
of type String. String conversions are performed if necessary.

With the approach introduced in this section, we do not aim to give a com-
plete axiomatisation of Strings. The main concern is to allow to derive the most
common properties about Strings in a user friendly way. The programmer us-
ing Strings will have to obey some rules if the program has to be verified. We
believe that these rules should usually be followed by any well written program.
The most important rule is:

Do not test for String equality via ’==’, use equals instead.

Some further problems are explicitly allowed optimisations to be performed by
the compiler. These optimisations make it hard (impossible) to specify the
String support in a platform independent way. This issue will be discussed in
Section 6.3.

The followed line of attack is to model the content of a String separately
from its concrete Java representation in terms of an abstract data type. When
Strings are concerned one is usually interested in comparing a content to a

78

given literal. The abstraction to be presented is particularly adapted to this
task since it abstracts away from object identity.

The remaining section assumes that all compile-time constant expressions
have been already computed and replaced by the resulting literal.

6.2 Specification of the JAVA-String class

In this section we concentrate on modelling the JAVA-String class by mapping its
operational semantics to operations of an abstract datatype. The specification
makes use of location functions as defined in Def. 39.

6.2.1 The Abstract Data Type – AString

In this section we define the abstract datatype AString to be used to model
the content of JAVA Strings. We keep this section short as the abstract data
type does not differ significantly from the standard modelling found in many
textbooks. An excerpt of the axiomatisation is shown in Fig. 6.1.

The axioms of the rewrite system above can be directly translated into the
taclet language used in KeY. One problem to be solved is how to relate the
abstract datatype with the concrete JAVA class java.lang.String.

For this purpose the location function

<content>: java.lang.String→ AString

is declared. It represents a 1-to-n relationship between Strings and their content.
The plan is to axiomatise the function in a way resembling at invariants. In
order to cope with the problem that a user can introduce an update that “hurts”
these invariants in a way a valid JAVA program would not be able to, we have
to restrict the application of the taclets to states which are reachable by a
JAVA program. In our case we extend the predicate inReachableState to cover
also these modelling. The justification for reusing this predicate is the tight
integration of Strings into the JAVA standard.

Example 17. Assume a simple programming language where a statement con-
sists of a command followed by a space and a list of additional arguments.
A semicolon terminates the statement, e.g. init 0 1 10;. We specify the
method parseCommand that returns the command part of a statement, i.e., the
sequence of characters up to the first space:\forall String s;(inReachableState & s!=null &

s.<created>=TRUE -> {inStr := s}\<{ exc = null;try { cmdStr = parseCommand(inStr); }ath (Exception e) { exc = e; } }\> (\ifEx (int idx; s.<content>.getCharAt(idx, ’ ’)) \then (

exc = null & inReachablestate &

cmdStr.<content> = subAString(s.<content>, 0, idx)\else (exc != null)))
79

constructors: empty | cat: char -> AString -> AString

axioms:

length: AString->int

length(empty) = 0

length(cat(c, lStr)) = 1+length(lStr)

append: AString -> char -> AString

append(empty, c) = c

append(cat(fst, lStr), c) = cat(fst, append(lStr, c))

concat: AString -> AString -> AString

concat(lStr, empty) = lStr

concat(lStr, cat(c, lStr’)) = concat(append(lStr, c), lStr’)

toAString: String -> AString

toAString("") = empty

toAString("a"+tail) = cat(’a’, toAString(tail))

getCharAt: AString -> int -> char

idx>0 & idx<length(lStr) -> getCharAt(cat(c, lStr), idx) =

getCharAt(lStr, idx-1)

getCharAt(cat(c, lStr), 0) = c

subAString:AString -> int -> int -> AString

subAstring cat(c, lStr) start end :=

start >= 0 & end = start & end <= length(cat(c,lStr) ->

subAString(cat(c, lStr), start, end) = empty

start > 0 & end > start & end <= length(cat(c,lStr) ->

subAString(cat(c, lStr), start, end) =

subAString(lStr, start-1, end-1)

start = 0 & end > start & end < length(cat(c,lStr) ->

subAString(cat(c, lStr), 0, end) =

cat(c, subAString(lStr, 0, end-1))

Figure 6.1: The abstract data type modelling strings.

80

6.2.2 String Conversions

As already described the Java Language Specification defines rules how to con-
vert an instance of arbitrary type into a string. In this section we will by way of
an example discuss the rule for the conversion of an int to its natural textual
representation.

For example, in the following piece of code

JAVAint a = 1;

String s = a + "23";

JAVA

the int typed variable a has to be converted into a String. In KeY following
the symbolic execution paradigm, we need to make the conversion explicit. The
rule initiating the conversion is:

KeY

convertIntToString {\find (\<{.. #string1Loc = #int + #string2SE; ...}\> post)\varond(\new (#tmp, \typeof(#string1Loc)))\replaewith (\<{..
java.lang.String #tmp = String.<convert>(#int);
#string1Loc = #tmp + #string2SE; ...}\> post)

};

KeY

where <convert> is an implicit method defined besides others for int. There
is no implementation for this implicit method, instead its behaviour has to be
specified with taclet. This way it is also possible to easily adapt the specification
to different implementations:

KeY

converterSpecForIntToString {\find (\<{.. #stringLoc =

java.util.String::<convert>(#int); ...}\> post)\replaewith ({#stringLoc := convertIntToAString(#int)}\<{.. ...}\> post)

};

KeY

Note, that for the String conversion we do not allow any objects to be created,
in particular no wrapper objects are used. Last, but not least, it remains to
specify the AString converter function. In KeY a number literal is represented
by a term of sort Number, a number is mapped to its canonical integer via
the projection function Z. The encoding is in reverse order, i.e., the term
Z(3(2(1(#)))) represents the integer value 123.

81

KeY\find (convertIntToAString(Z(0(number)))\replaewith (append(convertIntToAString(Z(number)), ’0’))

....\find (convertIntToAString(Z(9(number)))\replaewith (append(convertIntToAString(Z(number)), ’9’))\find (convertIntToAString(Z(#)))\replaewith (empty)

KeY

This kind of rule has to be specified for any primitive type. For reference
types the conversion rule is even simpler. The reference #ref to be converted
needs only to be replaced by the expression

#ref == null ? "null" :

#ref.toString() == null ? "null" : #ref.toString()

After specifying the built-in conversions of Java. It proves useful to introduce
a further conversion function intended to convert an array of characters into an
AString by concatenating the arrays elements. This function is later used to
specify one of the most common explicit constructors of class String. We need
first an auxiliary function that maps the tail of an array after a given index idx

into an AString.

charArrayToAStringHelper: char[] -> int -> AString

charArrayToAStringHelper array idx =

if (idx>=0 & idx < array.length) then

cat(array[idx], charArrayToAStringHelper(array, idx + 1))

else

empty

endif

charArrayToAString: char[] -> AString

charArrayToAString a = charArrayToAStringHelper a 0

As the function does not only depend on the value of its argument, but also
on the component elements of the first argument, it has to be modelled as a
non-rigid symbol. In order to improve the precision, it is modelled as a location
dependent function.

6.2.3 String Creation

Implicit creation of Strings is by far more common than using an explicit con-
structor call. For example, at any time when an application of the concatenation
operator is performed. According to the application interface specification of

82

the Java standard classes, the class String offers several constructors for the ex-
plicit creation of Strings from byte or character arrays with respect to a given
encoding.

In order to model Strings accurately at the right abstraction level one has to
decide how many implementation details have to be considered. Incorporation
of too many internal details lead easily to strong restriction for a concrete
implementation and reduces also the benefits of a higher abstraction level as
one would have to deal for example with concrete character arrays storing the
content of a String instead of the just using the AString abstraction.

Thanks to the immutability of Strings and that the Java Application Interface
does not reveal too many details about the owned fields – in fact only one final
static field is explicitly enumerated containing the lexicographical comparator
for Strings, which needs not to be considered in this context – we can restrict
ourself to a basic model consisting of the type itself and its declared operations.
Nevertheless the constructor call will most likely create some character arrays,
which requires to update static implicit fields in KeY that are used to model
the instance creation process.

The necessity to know intermediately created but not escaping objects in
order to gain a correct specification is a general model when specifying library
functions with an unknown implementation. Forcing the specifier to explicitly
mention all kinds of object to be created will put the programmer into narrow
confines concerning the algorithm to use and the way to implement the algo-
rithm. Further, it will be hard to update or exchange a (third party) library.
On the other side simply allowing any object to be created will cause clumsy
and lengthy updates, as quantification over types and attributes is not possible
in KeY and the use of the assignable everything update operator – the anony-
mous update – erases nearly all benefits of representing assignable properties
by updates.

Coming back to the specification of a String constructors and assuming that
only character arrays are allowed to be created as intermediate non escaping
objects during constructor’s execution, the following specification can be used:

KeY

stringInstanceCreation {\find (\<{.. #s = new java.lang.String(#se); ...}\>post)\replaewith (\if (#se == null) \then (\<{.. throw new java.lang.NullPointerException(); ...}\>post
) \else (

{String.nextToCreate:=String.nextToCreate + 1,

#s.<created>@(java.lang.Object):=TRUE,

#s.<initialised>@(java.lang.Object):=TRUE,

<content>(#s):=toAString(#se),har[].nextToCreate:=har[].nextToCreate + c}

(inReachableState & \<{.. ...}\>post)))\add (==> c>=0, inReachableState) };

KeY

83

where the constant c is newly introduced. Please note that the specifica-
tion assumes that the implementation of the String constructor checks before
the creation of any instance if the given argument is the null reference or not.
The given specification ensures furthermore that the inReachableState property
is preserved. Otherwise we would have to add further information about the
created character arrays in order to use the specification in proofs. The func-
tion toAString chooses the conversion function according to the type and kind
of the element matched by the schemavariable #se. The abstract data type
function delegates the conversion to the matching conversion function, for ex-
ample to charArrayToAString if the simple expression #se is matched against
a character array.

6.2.4 String Literals

As already mentioned a String literal represents exactly one reference to an
already created instance of type String at least in a Java reachable state. A
problem when modelling String literals correctly is that they are a finite set,
i.e., one has to forbid to introduce new String literals via cut-like rules. This
means the only String literals that are allowed to be used in a proof are those
that already exist in the context program explicitly or implicitly as part of a
constant compile-time expression.

As consequence the following property is valid in any Java reachable state:

Theorem 5. Let Lit denote the set of all literals occurring in the context pro-
gram and |Lit| its cardinality. Then

K, s |= inReachableState → String. < nextToCreate > ≥ |Lit|

holds for any state s.

As the set of literals is determined by the context program the exact value is
known. The corresponding taclet is then

KeY\assumes (inReachableState ==>)\add(String.<nextToCreate> >= card(Lit) ==>)

KeY

where this taclet is either created dynamically or card(Lit) is a meta operator
returning the number of literals occurring in the context program.

Assigning a literal to a variable looks up in the pool for the reference to take.
To implement the correct rule some additional work is necessary:

Definition 40 (Pool function). The partially defined injective function pool
maps an element of AString to an instance of type java.lang.String. It is
defined for any AString element for which the natural String literal representa-
tive occurs in the context program.

Java reachable states have now to obey further restrictions according to the
pool function, which is modelled as a non-rigid function symbol, which is left

84

unspecified for the undefined arguments, i.e., AString elements that have no
representative in the context program. As long as the pool shall not be update-
able by the programmer, i.e., no support for the method intern, the function
can be declared as rigid.

The following additional property has to hold in any Java reachable state:

For any l ∈ Lit the reference returned by the pool function, that is pool(l) has
to be created and pool(l). < content > equals the content described by the

string literal l.

Notice that the above property already guarantees that pool is an injective
function on Lit.

The String literal assignment rule can then simply be written as

KeY

stringLiteralAssignment {\find(\<{.. #s = #lit; ...}\> post)\replaewith({#s := pool(#litAString),

#s.<content> := #litAString}\<{.. ...}\> post)

};

KeY

When assuming a normalised program in the sense that all constant compile-
time expressions have been computed, then concatenation of String literals
cannot occur as part of an expression inside a diamond. In case of a lazy
normalisation implementation, the following rule will work

KeY

stringLiteralConcatenation {\find(\<{.. #s = #lit1 + #lit2; ...}\>post)\replaewith(\<{.. #s = #append(#lit1,#lit2); ...}\>post)
};

KeY

where the #append is a program meta construct computing the concatenated
literal and inserting it into the abstract syntax tree at the specified place.

6.3 String Pool and Optimisations

6.3.1 Complete Axiomatisation of the String Pool

In the above formalisation the String pool function has been realised as a rigid
function. The chosen formalisation is possible as long as one does not intend
to support the instance method intern of class String. For this support a
solution is to define pool as a non-rigid location function. Additionally a newboolean typed instance field ¡interned¿ of type java.lang.String has to be
introduced that indicates, if the instance is a member of the pool.

85

The price of the new flexibility comes along with a more complex defini-
tion of the Java reachable state predicate inReachableState . In a state where
inReachableState is valid the following formulas must hold:

Let aString denote a variable of type AString

pool(aString).<content> = aString

Let s denote a variable of type String then

s.<interned> = TRUE ->

(pool(s.<content>).<created>=TRUE & pool(s.<content>) = s)

for any lit ∈ Lit

lit.<interned>=TRUE

A valid taclet matching the semantics of an intern() invocation is then

KeY\find(\<{.. #v = #s::intern()@(java.lang.String); ...}>post)\replaewith(\if (#s.<interned>=TRUE) \then
(\<{.. #v = #s; ...}\>post)\else
({s.<interned>:=TRUE, pool(s.<content>):=s}\<{.. ...}\>post)

)

KeY

6.3.2 Further JLS conform Optimisations

The Java Language Specification allows a number of further optimisations to
be performed by the compiler of the virtual machine. For example, a virtual
machine may create intermediate StringBuffer instances when evaluating a
chain of String concatenations. The problem is that then the concatenation
operators implicit assignable clause must contain also the implicit fields of type
StringBuffer. Optimisations of similar kind can be also observed for String
conversions.

In our approach we have not considered the intermediate creation of String-
Buffer instances. The problem is not that this would be hard to realise its more
that the JLS also allows similar optimisations without specifying them further.
The question is which proofs can be believed to be platform independent with
respect to optimisations. Currently the cause of the problem seems to be that
JAVA CARD DL allows the inspections of properties which are not accessible
from the Java language itself.

6.4 API specification challenges

Some of the above mentioned obstacles when formalising Strings reoccur in
different setting, for example when writing a specification for library methods.

86

While the library implementation may change, the specification usually shall
remain unaltered.

In the next few paragraphs, we will shortly describe some of the problems in
more detail.

6.4.1 Assignable Clause

Assignable clauses capture change information. Their usage allows to preserve
as much knowledge about the prestate of a method as possible and to erase only
those parts, which may have become invalid after the method call returned.
The drawback are restrictions in the choice of (realisations of) algorithms to
implement the intended functionality.

The consequences can be moderated when the fields that are changed are only
private fields and are also only required in the specification of private invariants
and methods. As it is possible to reduce the logic model of the library to non-
private fields and methods. This also encourages a programming style that
prefers fields to be declared private and enforces data encapsulation. If the
program fulfils further encapsulation properties, the implementation may also
use package private or protected fields.

Another problem is caused by the current formalisation of object initialisation
in KeY. The used formalisation unveils more details about the used memory
model than done by the JLS. It is for example possible to query the order in
which two objects of the same dynamic type have been created by comparing
their indices. As described in Sect. 2.2.3 the index of the object to be taken
next is stored in a static field implicitly declared in each class. In principle
the assignable clause has to contain all implicit fields with a connection to
initialisation or object creation of all objects and types. The current implemen-
tation requires to specify the assignable clause in detail i.e., by enumerating
all implicit fields to be changed or to use the anonymous update erasing any
knowledge about the prestate.

In the subsequent paragraphs two and a half solutions are presented to cope
with this problem.

Restricted type quantification in assignable clauses In order to address static
fields of the same name and type, but declared in different types or by quan-
tifying over all objects of certain types in assignable clauses, one solution is
to add special quantifier expression for assignable clauses to the specification
language.

For example, the both informally introduced quantifiers are sufficient for the
above mentioned object creation purposes:\forallTypes T;TypeRestriction(T);T.attr@(T)

or \forallTypes o:T;TypeRestriction(T);o.attr

where TypeRestriction is a decidable Boolean expression, which can be eval-
uated statically. A valid expression can be composed according to the following
grammar:

87

TypeRestriction ::=

PackageRestricted | InheritanceRestricted |

TypeRestriction (’&’ | ’|’) TypeRestriction |

’!’ TypeRestriction | true

PackageRestricted ::=

’inPackage’ ’(’ PackageIdentifier ’)’ |

’inPackages’ ’(’ PackageIdentifierWildCard ’)’

InheritanceRestricted ::=

TypeName (’=’ | ’<’ | ’<=’ | ’!=’) TypeName

PackageIdentifier ::= IDENT ’.’ IDENT

PackageIdentifierWildCard ::= PackageIdentifier (’.’ ’*’)?

Note 22. These quantification expressions evaluate to sets of attributes. Please
note that the sets are always finite as the set of all types is finite in our logic.

Example 18. The location descriptor expression

\forallTypes T;inPackages(’java.*’);T.<nextToCreate>@(T)

describes the set of all attributes named <nextToCreate> of all class types that
are members of the standard library package java or one of its subpackages.

There are two different approaches how to make use of these extended location
descriptor sets.

The first solution is to leave the logic unchanged and to eliminate these
quantifiers when translating the location descriptor to an anonymous update.
The drawback is that the occurring updates will often become clumsy.

Example 19. Assume that the assignable clause of a method m is given as

@assignable\forallTypes T;inPackages(’java.*’);T.<nextToCreate>,\forallTypes o:T;inPackages(’java.*’);o.<created>

In words: The given assignable clause allows the implementation of method
m to create an arbitrary number of objects as long as the dynamic type of the
created objects is a member of the java package or any of its subpackages. As
the Boolean expression used for the type restriction is by definition statically
decidable and by remembering Note 22, the assignable clause can be translated
to an anonymous update as follows:

{ java.lang.Object.<nextToCreate> := c1, ...,

java.lang.Integer.<nextToCreate> := cm,\forall java.lang.Object o;\if (java.lang.Object::exactInstance(o)=TRUE | .. |

java.lang.Integer::exactInstance(o)=TRUE)

o.<created>:=d(o) }

88

In order to avoid clumsy updates resulting from the translation, it is also
possible to extend the language of quantified updates by these new quantifier
expressions. As the quantification is statically decidable, the additional update
rules can be of a very simple kind which mainly translate the new quantifications
lazily when an update is applied.

One problem that remains is that the values of the newly created attributes
may have been changed. Assume a void method which only creates an Object
of type T and forgets it afterwards. Even for such a simple case the formula\forall T o; o.a = 1 -> \<{ m(); }\> \forall T o; o.a = 0

is not valid. The implications of this fact are rather huge as one now has to
either anonymise all fields by enumerating them or to extend the language for
quantified updates once again. In general the first suggestion will lead to really
long updates, although the updates can be kept small in presence of a reduced
logic model as mentioned above, simply spoken only the types and methods of
the library class are represented and used.

We treat the second suggestion in more detail as it will be reused by the
approach to be presented in the next paragraph. Anonymising all attributes
that belong to an object can be done fairly simple by introducing a new kind
of assignment pair. Its syntax is ∗(l) := c ∗, where l denotes a term and c ∗ a
nullary function symbol of sort ⊤. Given a Kripke Structure K, a state S and
a variable assignment β such an assignment pair evaluates to a set of location
triples

〈f, (valK,S,β(l)), I(cast(typeof(f)))(c ∗ (valK,S,β(l)))〉

The update rule for an application on an attribute access term o.a of type T
is then

{∗(o) := c ∗} o.a ; (T)c∗(o)

Alternative Formalisation of Object Creation The second solution changes
the way object creation is formalised in KeY. Assume the existence of a logic
type FinObjectSet together with a set of functions and axioms. The type shall
be axiomatised as a generated finite set (i.e., inclusive a structural induction
rule) and the typical constructors, functions and queries for operations on sets.
Further, only elements of type java.lang.Object are allowed to be elements
of this kind of set.

Instead of the implicit attributes <nextToCreate> and <created> used to
keep book of created objects, the new nullary location function createdObjects

of type FinObjectSet is used. In order to query if an object is created, the loca-
tion dependent Boolean valued function isCreated[createdObjects;] is used
instead of an implicit Boolean attribute like <created>. The formal definition
of this function given as taclet is:

KeY\find (isCreated[createdObjects;](o))\replaewith (contains(createdObjects, o))

KeY

89

At any time when a new object is created, the set is updated to contain the
newly created object. Specified in taclet code this looks like

KeY\find(\<{.. #newObject = T.<getObject>(); ...}\>phi)\replaewith({createdObjects:=add(createdObjects,

T::<get>(maxIndex(createdObjects)+1)),

#newObject:=T::<get>(maxIndex(createdObjects)+1)}\<{.. ...}\>phi)
KeY

The index of the newly created object is determined by querying for the
maximal index in the set of already created objects and increasing the index by
one. This formalisation allows us also to derive that the newly created object
cannot be an element of createdObjects. This formalisation ensures also that
object creation remains deterministic.

The new formalisation simplifies also the definition of inReachableState pred-
icate as it has not to take care if the <created> attribute is consistent with
the attribute <nextToCreate> or if the field <nextToCreate> is in the allowed
range, i.e., non-negative. It is also possible to exclude if a state can be reached
from another one by looking at the subset relation ship as objects are never
deleted.

The main improvement has been also our motivation, that is to allow a concise
and comfortable specification of methods regarding their assignable clause. It
is now possible to change the semantics of a methods assignable clause to allow
the creation of an arbitrary number of objects.

When applying the method contract rule (see Sect. 2.2.6) it will update the
set of createdObject by adding a finite (but unknown) number of new objects.
The update looks like

{createdObjects:=union(createdObjects, anonCreatedObjects),\for java.lang.Object o; *(o):=c_*}

Note 23. The used constant c_* has to be new at each application of the method
contract rule.

Note 24. In addition the method contract rule application has to add the fol-
lowing axioms to the antecedent:

• the finite sets createdObjects and anonCreatedObjects have no element
in common, i.e., their intersection is empty

• the indices of the objects in anonCreatedObjects are greater than the
maximal object index to be found in createdObjects or more precisely:

maxIndex(anonCreatedObjects) -

minIndex(anonCreatedObjects) = size(anonCreatedObjects) &

minIndex(anonCreatedObjects) = maxIndex(createdObjects) + 1

90

In order to be sure that the new formalisation is an improvement in contrast
to the current one, it needs to be taken care that it is easily possible to prove that
two (or more) successively created objects are not the same object. The current
formalisation reduces this question to a simple arithmetic problem, namely the
comparison of the object indices, i.e., to prove that

T::<get>(i) = T::<get>(j)

can be reduced to a prove of i=j. This reduction is possible in the new
formalisation as well and can be used as efficiently as before since the object
creation chooses the index to be taken deterministically.

6.4.2 Abstraction Level

An abstraction layer as for Strings may also be of advantage for other data types
than Strings. For example, list or stream implementations could be related to
their canonical abstract data type realisation. The procedure would be similar
to Strings. These abstractions are suitable if one is mainly interested in the
content of a list and not its real implementation.

In order to relate an abstract data type model to a concrete implementation
the following items need to be done:

• Introduction of a location function to relate the concrete type with its
abstraction, as seen for Strings.

• A relation defining non-rigid predicate, which evaluates to true if the
real data structure and its abstraction are consistent. For Strings we
have not introduced a separate predicate, but reused and redefined the
inReachableState predicate.

• Specify the methods of the classes and interfaces in terms of the newly
introduced data type.

6.5 Summary

This section analysed and presented a solution for a faihtful modelling of Java
Strings on the program logic level. It provides an abstraction that allows for
convenient specification and verification in the presence of character strings.

91

Part III

Case Study

92

7 Case Study: The Schorr-Waite
Algorithm

7.1 Motivation

The Schorr-Waite graph marking algorithm ([SW67]) named after its inventors
Herbert Schorr and William M. Waite has become an unofficial benchmark for
the verification of programs dealing with linked data structures.

It has been originally designed with a LISP garbage collector as applica-
tion field in mind and thus, its main characteristic is low additional memory
consumption. The original design claimed only two markers per data object
and, more important, only three auxiliary pointers at all during the algorithm’s
runtime. It is the latter point, where most other graph marking algorithms
lose against Schorr-Waite and need to allocate (often implicitly as part of the
method stack) additional memory linear in the number of nodes in the worst
case. These resources are used to log the taken path for later backtracking
when a circle is detected or a sink reached.

Schorr and Waite’s trick is to keep track of the path by reversing traversed
edges offset by one and restoring them afterwards in the backtracking phase of
the algorithm. A detailed description including the Java implementation to be
verified is given in Section 7.2.

Formal treatment of Schorr-Waite is challenging as reachability issues are
involved. Transitive closure resp. reachability is beyond pure first order logic
and some extra effort has to be spent to deal with this kind of problems. On
the other side, the algorithm is small and simple enough to serve as a testbed
for different approaches. The specification is described in detail in Sect. 7.3,
some notes on the actual verification can be found in Sect. 7.4

7.2 The Graph Marking Algorithm “Schorr-Waite”

7.2.1 Description

As usual a directed graph G is defined as a set of vertexes V and edges E ⊆
V × V . The directed edge s ⇀ t ∈ E connects source node s ∈ V with target
node t ∈ V , but not vice versa. We call node t a direct successor of node s
(resp. s a direct predecessor of t).

For sake of simplicity, we require that each edge e is labelled with a unique
natural number l(e) where l : E → N. The labelling allows us to put an order
on all outgoing edges ei := s ⇀i ti, i ∈ {1, . . . , n} of a node s, which complies
with the natural number ordering ≤ of the corresponding labels l(ei).

93

When speaking of visiting all children (of a node s) from left-to-right, we
mean in fact that all direct successors of s are accessed via its outgoing edges
in ascending order of their labels. We refer to the target node of the edge with
the i-th smallest label of all outgoing edges of node s as the node’s i-th child.

In addition each node is augmented with a flag visited and a field usedEdge,
which will be used to store the number of the most recently visited child via
this node (or equivalently the corresponding edge label).

n1
−, 0

n2
−, 0

n3
−, 0

n4
−, 0

n5
−, 0

n6
−, 0

e31

e35

e12

e16

e56

e24

e64

(a) Initial unmarked Graph

n1
+, 1

n2
+, 1

prev

n3
+, 1

n4
+, 0

n5
−, 0

n6
−, 0 crt

e12

e35

e24

e16

e56

e64

(b) Visiting node n4 via n2; edge
e12 (e24) reverses formerly traversed
e31 (resp. e12)

prev
n1

+, 2
n2

+, 1

n3
+, 1

n4
+, 0

n5
−, 0

n6
+, 0 crt

e35

e12

e16

e56

e24

e64

(c) Visiting node n6 via n2; back-
tracking restored the formerly modified
edges e12, e24

Figure 7.1: Illustration of a Schorr-Waite run: edges coloured red (curved) have
been modified to encode the taken path; pointers crt, prev refer to
the currently resp. previously visited node

In the subsequent four additional pointers are required:

• current and previous, whose intended purpose is to refer to the currently
respective previously visited node and

• the two helpers next and old1.

Given a directed graph G as for example shown in Fig. 7.1 and a designated
node s, Schorr-Waite explores G starting at node s applying a left depth-first
strategy:

1. outgoing from the currently visited node current the leftmost not yet
visited child next is selected and the taken edge e redirected to target
the node referenced by pointer previous. The usedEdge field of current
is used to keep the label l(e) of the reversed edge in order to restore

1in fact one of the helper variables is superfluous as we could reuse the other. The drawback
would be a more generic and unintuitive naming like tmp.

94

edge e later in the backtracking phase (step 2). Afterwards previous is
altered to point to our current node, while pointer current moves onto
node next. Finally, the new current node becomes marked as visited.
Continue with step 1.

2. if all children of the node referred to by current have already been vis-
ited or it is a childless node and current 6= s, then a backward step is
performed. Therefore the edge via which current has been accessed and
remembered in the usedEdge field of node previous during step 1, is
restored this means rebend to its original target current, but not before
rescuing its current target using pointer old. Now pointer current can
be reset to the node referenced by previous and – last but not least –
previous is moved back to node old. Continue with step 1.

After all reachable nodes have been visited the algorithm terminates when
after a backtracking step the starting node s is reached. At this time the original
graph structure has been also restored.

7.2.2 Implementation

The design of our Java implementation to be verified is illustrated in Fig. 7.2.
The graph nodes are modelled as instances of class HeapObject, where each
instance contains a children array, whose i-th component contains the node’s
i-th child.

HeapObject

- visited:boolean

- nextChild:HeapObject

- children:HeapObject[]

+ isVisited()

+ getChild(int pos):HeapObject

+ getIndex():int

+ hasNext()

...

SchorrWaite

+ mark(HeapObject startNode)

0..n

children

Figure 7.2: Class diagram showing the involved participants

All HeapObject instances provide a rudimentary iterate facility to access
their children. Therefore they implement an integer index field, which contains
the array index of the child to be visited next. Method hasNext tests if the
index field has reached the end of the array and therewith all children of the
node have been accessed. The index field is used to realise the usedEdge field
of the description above. In fact, usedEdge is equal to the value stored in the
index field minus one.

The JAVA implementation of the algorithm itself is realised as method mark

of class Schorr-Waite shown in Fig. 7.3. Invoking mark with a non-null start
node handed over as argument starts the graph traversal. The method assumes
that before it is invoked, all HeapObject instances have no marks set.

95

publi void mark(HeapObject startNode) {

previous = null;
current = start;

current.setMark(true);
5 while (start != current || start.hasNext ()) {final HeapObject tmpChild ;if (current.hasNext ()) {final int nextChild = current.getIndex ();

tmpChild = current.getChild (nextChild);

10 if (!tmpChild .isMarked ()) {// forward scan

current.setChild(nextChild , previous);

previous = current;

current.incIndex ();

current = tmpChild ;

15 current.setMark(true);
} else {

// already visited or no child at this slot

// proceed to next child

current.incIndex ();

20 }

} else {

// backwardfinal int ref2restore = previous.getIndex () - 1;

tmpChild = previous .getChild(ref2restore);

25 previous .setChild(ref2restore , current);

current = previous ;

previous = tmpChild ;

}

}

30 }

Figure 7.3: These few lines implement the core of Schorr-Waite

The first lines of method mark initialise the fields current and previous.
The starting node s of the previous section is handed over as the method’s
argument referred to by parameter startNode. It becomes also the first node
current points to. All other pointers are set to null for the first. Before the
while loop is entered, the starting node startNode is marked.

After these preparations the graph is traversed in left depth-first order as long
as current has not yet returned to the starting node startNode or if there are
still children of node startNode to be checked.

If node current has a child left, a forward step is performed (lines 7-21):

line 8 the nextChildth component of node current’s children array (that is the
current’s next not already accessed child) is assigned to variable next

96

lines 10-15 these lines are entered in case that the HeapObject instance re-
ferred to by next has not already been visited, which is tested by calling
method isMarked in the conditionals guard. First the taken edge, i.e., the
nextChildth component of current’s children array, has to be redirected
to the node variable previous refers to (line 11). In the succeeding lines,
field nextChild of node current is updated, pointer previous is moved
toward the node current refers to, and finally, node next becomes the
new current node. At the end the new current node is marked as visited
with help of method setMark.

line 19 is only executed in case that node next has been already marked in a
previous step

Whereas lines 22-28 are executed if node current has no remaining children
to be visited. In this case a backward step has to be performed:

line 24 the nextChild-1th child of node previous, which stores the penulti-
mate node is memorised in old

line 25 the nextChild-1th children array component of node previous is re-
stored, i.e., redirected to node current

lines 26-27 finally, current becomes previous and previous is set to the node
stored in old.

7.3 Specification

7.3.1 Proof Obligation

As already mentioned the properties of interest are that the original graph
structure is preserved after the algorithm terminates and of course, that all
reachable nodes have been visited.

These properties can be formalised in JAVA CARD DL as shown in Fig. 7.4,
which is further explained in the following: The lines 1 to 17 formalise properties
of instances of class HeapObject derived from decisions made when designing
that piece of software like

line 1 any HeapObject has a non-null reference to a children array. Conse-
quently sinks are modelled as nodes with a zero length array.

lines 3-4 the length of the children arrays in non-negative (this property is
necessary as it is not guaranteed by the logic definition itself).

lines 6-7 no two HeapObjects share the same children array.

lines 9-11 the nextChild counter of an HeapObject is in range, i.e., its value
is between and including zero and the length of its children array.

lines 13-17 the entries of the children array are not null.

97

KeY\forall HeapObject ho; (!ho = null -> !ho.children = null)
& \forall HeapObject ho;

(!ho = null -> ho.children.length >= 0)

5 & \forall HeapObject h1;\forall HeapObject h2;

(!h1 = h2 -> !h1.children = h2.children)

& \forall HeapObject ho; (!ho = null ->

10 (ho.nextChild >= 0 &

ho.nextChild <= ho.children.length))

& \forall HeapObject ho;\forall int i;(!ho = null &

15 0 <= i & i < ho.children.length ->

!ho.children[i] = null)
& inReachableState

& !sw = null
20 & !startNode = null

& sw.<created> = TRUE

& startNode.<created> = TRUE

& \forall HeapObject ho;

(!ho = null -> ho.visited = FALSE & ho.nextChild = 0)

25 & \forall HeapObject ho;\forall int i;

ho.children[i] = childrenPre(ho, i)

->\[{
sw.mark(startNode);

30 }\℄ \forall HeapObject x;\forall int n;(

!x = null & reach[...](startNode, x, n) ->

(x.visited = TRUE &\forall int i;(i>=0 & i<x.children.length ->

x.children[i] = childrenPre(x,i))))

35 }

KeY

Figure 7.4: JavaCardDL specification for structure preserving, correct and com-
plete graph coverage of Schorr-Waite

98

In high-level specification languages these properties are usually specified as
(instance) invariants. Besides these properties the following propositions are
required to hold

line 18 the method is called in a state actually reachable by a JAVA program

lines 19-22 the instance on which the graph marking algorithm is called is not
null and created. Same holds for the node given as starting node.

lines 23-24 initially all instances must not be marked as visited and their
nextChild counter is set to 0. In high-level specification languages this
property would be expressed as preconditions, the other properties in
this list would be translated when compiling the high-level specification
language to a low level one like JAVA CARD DL.

lines 25-26 this properties allows to refer to the old graph structure in the post
state by providing a ’copy’ in terms of a rigid function definition.

such that when the graph marking algorithm terminates in its final state all
reachable notes have been visited (line 32) and the graph structure is the same
as before the method call (lines 33-34).

7.3.2 Encoding the Backtracking Path

For the specification of the loop invariant it turns out to be useful to define a
relation onPath, which describes the backtracking path. We formalise the rela-
tion as the characteristic function of the set of nodes lying on the backtracking
path by means of an auxiliary non-rigid predicate with explicit dependencies
onPath[∗.children[∗]; ∗.nextChild] : HeapObject×HeapObject× int.

For sake of shortness and readability, we will skip the accessor list for the
onPath predicate from now on. Formally, the non-rigid predicate onPath is
defined as follows:

Let σ denote a state, x, y terms of type HeapObject and n an integer term
then

σ |= onPath[. . .](x, y, n)
iff.

n >= 0 and there exist terms x = u0, . . . , un = y, such that
for all 0 ≤ i < n :

σ |= ui+1
.
= ui.children[ui.nextChild− 1]

and
σ |= n > 0 −>

!ui
.
= null & ui.nextChild > 0 & ui.nextChild <= ui.children.length

Notice that onPath[. . .](x, y, 0) is equivalent to x
.
= y. The semantical definition

of onPath is reflected by the calculus in form of a recursive definition:

99

KeY

onPathDefinition {\find(onPath[...](t1, t2, n))\replaewith(n >= 0 &

((t1 = t2 & n = 0) |(t1 != null & t1.nextChild > 0 &

t1.nextChild <= t1.children.length) &

onPath[...](t1.children[t1.nextChild - 1], t2, n-1))))

};

KeY

The recursion is well founded and required to formalise the existential state-
ment given in the semantical definition. For convenience reasons, we use addi-
tional taclets which can be derived directly from the rule onPathDefinition:

KeY

onPathBase {\find(onPath[...](t1, t2, 0))\replaewith(t1 = t2)\heuristis(simplify)
};

onPathNull {\find(onPath[...](null, t2, n))\replaewith(n = 0 & t2 = null)\heuristis(simplify)
};

onPathEffectlessUpdate {\find(onPath[...](t1, t2, n)) \sameUpdateLevel\varond(\notFreeIn(hov,loc),\notFreeIn(iv,n,t1,loc))\replaewith({loc.children[locIdx]:=val}onPath[...](t1,t2,n));\add(==> \forall iv;(iv>=0 & iv<=n -> !onPath[...](t1,loc,n)));\add(==> \forall hov;(hov.children=loc.children -> hov=loc))

};

onPathEffectlessUpdate2 {\find(onPath[...](t1, t2, n)) \sameUpdateLevel\varond(\notFreeIn(iv,n,t1,loc))\replaewith
({loc.nextChild:=val}onPath[...](t1, t2, n))\add(\forall iv;(iv>=0 & iv<=n ->

!onPath[...](t1, loc, n)) ==>);\add(==> \forall iv;(iv>=0 & iv<=n ->

!onPath[...](t1, loc, n)))

};

100

onPathNoCycle2 {\find(onPath[...](t1, t1, n2) ==>)\varond(\notFreeIn(i, t1))\add((t1 = null & n2 = 0) | n2 = 0 ==>);\add(==> \exists i; onPath[...](t1, null, i))

};

onPathTransitive2 {\find(onPath[...](t1, t2, n2) ==>)\varond(\notFreeIn(i, t1, t2, t3, n2))\add(\forall i;(onPath[...](t2, t3, i)

-> onPath[...](t1, t3, n2 + i)) ==>)

};

KeY

With this work done, we can now express the property that a node x is on
the backtracking path by:

\exists int n onPath[. . .](previous, x, n); | x = current

where previous and current are the reference variables declared in method
mark. Note, that we have included the current node to belong to the back-
tracking path.

7.3.3 The Loop Invariant

The most critical part of the specification is the loop invariant as most of
the later verification depends on a sufficiently strong invariant. The while
invariant rule used in KeY takes change information into consideration and
allows to reduce the complexity of the invariant.

The loop’s assignable set is

{sw.current, sw.previous,\for HeapObject h;h.children[*],\for HeapObject h;h.visited,\for HeapObject h;h.nextChild}

In the first line all possibly altered method-local pointers are enumerated.
The remaining lines denote all the fields of nodes that are likely to be changed.
The assignable set is a conservative approximation in principal it would be
sufficient to restrict to fields of nodes reachable from the starting node. Please
note that the local variable startNode is not part of the assignable clause and
remains therewith unchanged during loop execution.

The complete loop invariant is shown in Fig. 7.5 and in Fig. 7.6. Some useful
explanations:

lines 1-5 this part of the loop invariant records properties to be satisfied by
the auxiliary fields previous and current resp. the nodes they refer to:

• the node current refers to is marked as visited.

101

KeY

sw.current.visited=TRUE & sw.current!=null
&

(sw.current=startNode <-> sw.previous=null)
&

5 startNode.visited=TRUE

& \forall HeapObject ho;\forall int i;(

(ho!=null & i>=0 & i<ho.children.length) ->

(ho.children[i]=null <->

10 (ho=startNode & i=startNode.nextChild-1 &

startNode!=sw.current)))

& \forall HeapObject ho;

(ho!=null -> (ho.nextChild <= ho.children.length &

15 ho.nextChild >= 0))

& \exists int end;(onPath[. . .](sw.previous, null, end))

&

!\exists int i;(onPath[. . .](sw.previous, sw.current, i))

20 & \forall HeapObject ho;(ho!=null & ho.visited=FALSE ->

(ho.nextChild=0 &\forall int i;((i>=0 & i<ho.children.length) ->

ho.children[i]=childrenPre(ho,i))))

25 & ... continued in Fig. 7.6

KeY

Figure 7.5: Loop invariant (part I)

102

• the current field keeps never the null reference. This fact is, for
example, useful to derive the absence of NullPointerExceptions.

• the previous field is usually not null except when current refers
to startNode.

In addition one has to record that the startNode has already been visited.
This is necessary as the assignable clause is only a safe approximation
containing the visited field of all nodes.

lines 7-11 as mentioned before the children array of a node contains nevernull. This property is temporarily violated, when leaving the start node.
In that situation (see item above) previous is null, which is the value
the nextChild-1 child entry of the startNode will be set to. Please note
that when leaving the loop, current refers to the same node as startNode
and therewith the class invariant of HeapObject will have been restored.

lines 13-15 state that the value of the nextChild field of a node is always
between and including 0 and children.length.

lines 17-19 these lines rescue knowledge about the backtracking path, namely
that the backtracking path is acyclic and terminated by null. Further
current does not lie on the backtracking path.

lines 24 this part of the loop invariant expresses intuitively that the algorithm
cannot have changed any node or sub-graph, which has not yet been
reached.

The loop invariant continues with Fig. 7.6. While the previous part con-
centrated mainly on some general properties and rescued knowledge about not
(yet) visited parts of the graph, the remaining loop invariant focuses on visited
nodes:

lines 2-4 for a visited node which is not the actual current node the range of
nextChild is strictly greater than zero except if the node is a sink (i.e.,
no outgoing edges).

lines 5-8 the children entries of a visited node above and with the nextChild
entry have not yet been looked at by the algorithm and are therewith un-
changed. This information is necessary to establish that the loop invariant
is preserved, but not needed in the use case of the loop invariant. In the
latter case this part of the conjunction is trivially true as the antecedent
of the implication evaluates obviously to false.

lines 10-16 this part of the invariant captures the old value of the nextChild-1
entry of a node on the backtracking path, which has been used to encode
the backtracking path itself. The identity used is shown in Fig. 7.7 and
valid for all nodes on the backtracking path except for the node previous
points to. Further all nodes on the backtracking path are visited and have
a nextChild index greater then zero (attention: as the current node is
no member of the backtracking path, a sink will also never lie on the
backtracking path).

103

KeY

... for the first part of the invariant see Fig. 7.5

& \forall HeapObject ho; (ho!= null & ho.visited=TRUE &

ho!=sw.current ->

(ho.nextChild>=1 | ho.children.length=0))

5 & \forall HeapObject ho;(ho!=null & ho.visited=TRUE ->

(\forall int i; (

(i>=0 & i>=ho.nextChild & i<ho.children.length) ->

ho.children[i]=childrenPre(ho, i))))

&

10 \forall HeapObject ho;((ho!=null &\exists int i; onPath[. . .](sw.previous, ho, i)) ->

((childrenPre(ho.children[ho.nextChild-1],

ho.children

[ho.nextChild-1].nextChild-1) = ho

15 | (ho.children[ho.nextChild-1]=null & ho=startNode))

& ho.visited=TRUE & ho.nextChild>=1))

&

(sw.previous != null -> childrenPre(sw.previous,

sw.previous.nextChild-1) = sw.current)

20 & \forall HeapObject h;((h!=null & h.visited=TRUE) ->

(\forall int i; ((i>=0 & i<h.nextChild-1) ->

(h.children[i].visited=TRUE &

h.children[i]=childrenPre(h,i)))

25 &

((!(\exists int dist;

onPath[. . .](sw.previous, h, dist)))

-> ((h!=sw.current -> h.nextChild=h.children.length) &

((h.nextChild>0) ->

30 (h.children[h.nextChild-1].visited=TRUE &

h.children[h.nextChild-1]=

childrenPre(h,h.nextChild-1))))

)))

&

35 (startNode=sw.current ->

(\forall int i;((i>=0 & i<startNode.children.length) ->

startNode.children[i]=childrenPre(startNode,i)) &

(startNode.nextChild>0 ->

startNode.children

40 [startNode.nextChild-1].visited=TRUE)))

KeY

Figure 7.6: Loop invariant (continued)

104

lines 18-19 These lines fix the hole of the previous item for the previous node.

lines 21-33 For any visited node all entries of the children array from zero to
(and including) nextChild-2 have been restored and these children are
of course marked as visited. Except for nodes on the backtracking path
this is also valid for the nextChild-1 child of the corresponding node.

lines 35-40 the above item does not cover the case where current refers to the
startNode. The hole is patched here.

edge in the original graph

n.nextChild − 1

m.nextChild − 1

m n

current edge

Figure 7.7: Identity used to reverse the backtracking path.

7.4 Verification

The proof that all reachable nodes have been marked as visited and that the
graph structure has been restored after the method terminates consists of 17936
nodes distributed on 392 branches. To complete the proof 1017 interactive steps
had been necessary. The relative high number of interaction is mainly due to

• manual instantiation of quantifiers: The KeY-version used for this proof
did not yet support automatic instantiation of quantifiers. The built-in
support for calling external decision procedures like Simplify had not been
used.

• taclets dealing with reachability issues need mainly to be performed man-
ually as for example no automatic strategies have been implemented yet
to exploit transitivity of reachable automatically or that updates do not
influence the truth value of a non-rigid predicates in a sensible manner.

• control of the proof structure. Many of the interactions would not have
been necessary in principle, but have been useful to keep track of the
current part of the property to be proven.

Reducing the number of necessary interaction is planned for the near future.
It will be interesting to see how many interactions are necessary when using the
recent version of KeY, which supports automatic instantiation of quantifiers.

105

Some information about the verification itself. After some initial steps the
proof splits up into the three branches created by the loop invariant rule.

The first branch requires to show that loop invariant is initially valid. The
branch can be closed straight forward, as the simple parts of the loop invariant
like that the current field is not null are established by the statements before
the loop is entered. The more difficult parts of the loop invariant collapse
immediately as the initially no field is marked visited, the backtracking path is
empty, etc.

The branch where the preservation of the invariant has to be proven is the
most difficult and lengthy one. The loop condition forces a proof split into two
cases:

1. the current node is not equal to the start node and therefore at least
further backward steps have to be performed.

2. the start and current node are the same, but not all of its children have
been treated yet.

For each of the two cases the proof tree splits up into three further sub-proofs.
The proof splitting is induced by the program structure. The loop body splits
the control flow into separate flows.

The first flow is entered in case of a forward step, which itself causes a further
split depending if the node chosen for the forward step has already been visited
or not. The second one implements the backward step logic.

This multiplies to six branches at all. Only the backward step branch in case
that the current and start node are the same can be closed within a few steps
as in this case no backward step is possible. For any of the other five branches
one has to show independently that the loop invariant is preserved.

The only remaining open proof branch is the “use case” of the loop invariant
rule. In order to close this branch one has to show that for any node ho

reachable from startNode the following holds: the visited flag is set and the
children of ho are the same as before. The induction is performed over the path
length from the start node to ho. Fig. 7.8 shows the induction hypothesis: the
induction variable is iv, the rigid function symbols followed by 1 are introduced
by the loop invariant rule and refer to corresponding field resp. array element
value after the last loop iteration. Up to further notice all line numbers in the
following paragraphs refer to Fig. 7.6

The base case establishes both properties for the start node itself (only node
with path length 0). This branch can be closed nearly immediately by using
the implication of lines 35-40 of the loop invariant. The antecedent of the
implication can be proven true as the current field refers to startNode when
leaving the loop.

For the step case, the things are more difficult. The principal idea is as
follows: by induction hypothesis one knows that all nodes with a distance of
iv have been visited and their children arrays are as before. In order to derive
the same for a node m in distance iv + 1 one proceeds as follows: If m is also
reachable within iv steps nothing has to be done and the induction hypothesis

106

KeY\forall HeapObject start;\forall HeapObject ho;

((start != null & visited_1(start)=TRUE & ho != null &

{\for (int i; HeapObject h)

h.children[i] := get_1(h.children, i)}

reach[\for (HeapObject x; int i) x.children[i];\for HeapObject x; x.children.length](start, ho, iv))

-> (visited_1(ho) = TRUE &\forall int i;(i>=0 & i<ho.children.length ->

get_1(ho.children,i) = childrenPre(ho,i))))

KeY

Figure 7.8: Use Case: Induction hypothesis

applies directly. Otherwise, there is a node p in distance iv from which m
is reachable. The induction hypothesis allows to derive that iv is marked as
visited and its children array is in its original state. Node p can then be used
to instantiate the quantifier of line 21. The value of node p’s nextChild field is
equal the length of p’s children array. Thus one has to use lines 26-32, if node
m is referenced only by the last component of p’s children entry, otherwise
lines 22-24 have to be used. Now one knows that m is visited as well, the step
case can then be closed by instantiating the quantifier in line 21 once again,
but this time with m.

The use case can be closed by a direct instantiation and application of the
induction hypothesis.

7.5 Results and Comparison

There is a variety of literature available about verification of the Schorr-Waite
algorithm. We will briefly describe a (representative) selection of them.

Broy and Pepper The Schorr-Waite algorithm has been treated by [BP82]. In
this paper, the authors start with the construction of an algebraical data type
modelling a binary graph. They continue with the definition of the reflexive
and transitive closure relation R∗ of the graph. Then a function B is developed,
proven to compute the set of all reachable graph nodes from a distinguished
node x, i.e., R∗(x). The function B turns out to realise the well-known depth-
first traversal algorithm for (binary) graphs.

An extended graph structure is build upon the binary graph data type. In
addition to the binary graph it provides two distinguished nodes (representing
the current and previous node). Also two additional basic functions ex and
rot are defined, which exchange the current and previous node resp. perform a
rotation operation (forward step). By composition of these elementary graph
operations a function is constructed that computes and return a tuple consisting
of a set of nodes and an extended graph structure. It is proven that the returned

107

node set is the same as computed by the former functionB and that the returned
extended graph structure is the same on which the function has operated.

Afterwards the functional algorithm is refined to a procedural version.

Mehta and Nipkow The authors of [MN03] verify the correctness of a Schorr-
Waite implementation (for binary graphs) using higher order logics. The pro-
gram is written in a simple imperative programming language designed by the
authors themselves. The operational semantics of the programming language
has been modelled in Isabelle/HOL and a Hoare style calculus has been derived
from the semantics.

The main difference to our approach is the explicit modelling of heaps and
the distinction between addresses and references. On top of these definitions a
reachability relation (and some auxiliary relations) is defined as above.

The program is then specified using Hoare logic by annotating the program
with assertions and a loop invariant making use of the former defined relations.
From these annotations, verification conditions are generated, which have to be
proven by Isabelle/HOL.

Abrial The approach described in [Abr03] uses the B language and method-
ology to construct a correct implementation of the Schorr-Waite algorithm.
Therefore the author starts with a high-level mathematical abstraction in B of
a graph marking algorithm and then successively refines the abstraction towards
an implementation of an (improved) version of Schorr-Waite. Each refinement
step is accompanied by several proof-obligations that need to be proven to
ensure the correctness of the refinement step.

H. Yang In [Yan00] the authors use a relative new kind of logic called Sepa-
ration Logics, which is a variant of bunched implication logics. For verification
they use a Hoare like calculus. The advantage of this logic is the possibility to
express that two heaps are distinct and in particular the existence/possibility
of a frame introduction rule. In short the frame introduction rule allows to
embed a property shown for a local memory area in a global context with other
memory cells.

The frame rule allows to show that if {P}C{Q} is valid for a local piece of code
C then one can embed this knowledge in a broader context {P ∗H}C{Q ∗H}
as long as the part of the heap H talks about is not altered by C (separate
heaps). Without this frame rule one would have to consider H when proving
{P}C{Q}, which makes correctness proves very tedious, in particular when the
property shall be used in different separate contexts Hi.

Hubert and Marché In [HM05] the authors follow an approach very similar to
the one presented in this chapter. They used a weakest precondition calculus
for C implemented in the CADUCEUS tool to verify a C implementation of
Schorr-Waite working on a bigraph. In the same manner as described here,
they specified the loop invariant with help of an inductively defined reachable
predicate using a higher order logic.

108

Part IV

Conclusions

109

8 Summary and Future Work

The previous chapters concentrated on specification and verification of pro-
grams implementing or using linked data structures like lists, trees or arbitrary
graphs. The specification of graph related properties has been mainly build up
on the notion of reachability.

In order to provide a notion suitable for specification and verification, several
predicates have been introduced to specify those properties. These predicates
had to be defined non-rigid as their truth value depends not only on the value
of their arguments, but also on the current heap structure. It showed that
classic non-rigid predicates lead to significant problems during the verification
as the update simplification rules could not access knowledge on the locations
on which a non-rigid predicate depended and had to assume safely that the
truth value depended on all locations. The presented solution introduced a
new class of non-rigid predicates encoding their dependencies into the symbol’s
syntax. These symbols proved not only useful for specification of graph data
structure, but allowed also to improve the use of query symbols in the logic.

Besides the above mentioned specification predicates, a second way to spec-
ify linked data structure had been presented. Therefore abstract data types
have been related to linked reference structures. As an elaborated example the
presented technique had been applied to model JAVA-Strings.

Verification in presence of linked data structures includes often the verifi-
cation of recursive defined methods. As JAVA CARD DL has no possibility to
quantify about the method invocation stack like other approached this had not
been possible up-to-now. The presented rule enables their verification.

The specification and verification of Schorr-Waite in the arbitrary graph ver-
sion demonstrated the practical use of some of the above introduced concepts.

As future work remains to include decision procedures for graph structure
within the JAVA CARD DL calculus. A first step towards this will be to imple-
ment existing rewrite systems for selected linked data structure in the rule and
strategy framework. Further it is possible and intended to extend the notion of
location dependent symbols, so that the location descriptors can make use of
the symbols argument. The way to go is to allow free variables in the location
descriptors which can be bound to the symbols arguments.

110

A Specification Predicates for Linked
Datastructures

A.1 List Specification Predicates\predicates {

end(SimpleList);

\nonRigid
reach[\for SimpleList z;(z.next@(SimpleList))]

(SimpleList, SimpleList, int);
\nonRigid

disjointSimpleList[\for SimpleList z;

(z.next@(SimpleList))](SimpleList,SimpleList);

\nonRigid
unsharedNodeSimpleList[\for SimpleList z;

(z.next@(SimpleList))] (SimpleList);

\nonRigid
isolatedSimpleList[\for SimpleList z;

(z.next@(SimpleList))] (SimpleList,SimpleList);

\nonRigid
isList[\for SimpleList z;

(z.next@(SimpleList))](SimpleList);

}

111

// == Reachable Axioms and Auxiliary Rules ==

// In the printed reachable definition the endmarker has

// been already replaced by null resp. the query ’x = null’

reachableDefinition {

\shemaVar \term SimpleList t1, t2;

\shemaVar \term int n;

\shemaVar \variables SimpleList z;

\find(reach[\for (z) z.next@(SimpleList)](t1, t2, n))

\replaewith(t1 = t2 & n = 0 |

(t1 != null & n > 0 &

reach[\for (z) z.next@(SimpleList)]

(t1.next@(SimpleList), t2, n-1)))

};

reachableDefinitionBase {

\shemaVar \term SimpleList t1, t2;

\shemaVar \variables SimpleList z;

\find(reach[\for (z) z.next@(SimpleList)](t1, t2, 0))

\replaewith(t1 = t2)

};

reachableDefinitionFalse {

\shemaVar \term SimpleList t1, t2;

\shemaVar \term int n;

\shemaVar \variables SimpleList z;

\assumes (n <= -1 ==>)

\find(reach[\for (z) z.next@(SimpleList)](t1, t2, n))

\sameUpdateLevel
\replaewith(false)

};

reachableDefinitionStep {

\shemaVar \term SimpleList t1, t2;

\shemaVar \term int n;

\shemaVar \variables SimpleList z;

\assumes (n>=1 ==> t1 = null)
\find(reach[\for (z) z.next@(SimpleList)](t1, t2, n))

\sameUpdateLevel
\replaewith(reach[\for (z) z.next@(SimpleList)]

(t1.next@(SimpleList), t2, n-1))

};

112

reachableDefinitionStepAlt {

\shemaVar \term SimpleList t1, t2;

\shemaVar \term int n;

\shemaVar \variables SimpleList z;

\assumes (n>=1 ==> t2 = null)
\find(reach[\for (z) z.next@(SimpleList)](t1, t2, n))

\sameUpdateLevel
\replaewith(reach[\for (z) z.next@(SimpleList)]

(t1, t2.next@(SimpleList), n+1))

};

// The interactive rules are the same as above using ’add’

// instead of ’assumes’, otherwise proofs cannot be saved.

reachableDefinitionFalseInteractive {

\shemaVar \term SimpleList t1, t2;

\shemaVar \term int n;

\shemaVar \variables SimpleList z;

\find(reach[\for (z) z.next@(SimpleList)](t1, t2, n))

\sameUpdateLevel
\replaewith(false);
\add (==> n < 0)

};

reachableDefinitionStepInteractive {

\shemaVar \term SimpleList t1, t2;

\shemaVar \term int n;

\shemaVar \variables SimpleList z;

\find(reach[\for (z) z.next@(SimpleList)](t1, t2, n))

\sameUpdateLevel
\replaewith(reach[\for (z) z.next@(SimpleList)]

(t1.next@(SimpleList), t2, n-1));

\add(==>n>0 & t1 != null)
};

reachableDefinitionStepAltInteractive {

\shemaVar \term SimpleList t1, t2;

\shemaVar \term int n;

\shemaVar \variables SimpleList z;

\find(reach[\for (z) z.next@(SimpleList)](t1, t2, n))

\sameUpdateLevel
\replaewith(reach[\for (z) z.next@(SimpleList)]

(t1, t2.next@(SimpleList), n+1));

\add (==>n>0 & t2 != null) };

113

//\includeFile "listReachablePredicates.key";

// Rules for finite lists

// List specific

pathInListUnique {

\shemaVar \term SimpleList t1, t2, t3;

\shemaVar \term int n;

\shemaVar \variables SimpleList z;

\assumes(reach[\for (z) z.next@(SimpleList)]

(t3, t2, n) ==>)

\find(reach[\for (z) z.next@(SimpleList)]

(t1, t2, n) ==>)

\add(t1 = t3 ==>);

\add(==> isList[\for z;(z.next@(SimpleList))](t1) &

isList[\for z;(z.next@(SimpleList))](t3))

};

pathLengthInFiniteListUnique {

\shemaVar \term SimpleList t1, t2, t3;

\shemaVar \term int n1, n2;

\shemaVar \variables SimpleList z;

\assumes(reach[\for (z) z.next@(SimpleList)]

(t1, t2, n1) ==>)

\find(reach[\for (z) z.next@(SimpleList)]

(t1, t2, n2) ==>)

\add(n1 = n2 ==>);

\add(==> isList[\for z;(z.next@(SimpleList))](t1) &

isList[\for z;(z.next@(SimpleList))](t2))

};

114

// == Axioms for Spec. Predicates ==

endMarkerIsNull {

\shemaVar \term SimpleList list;

\find(end(list))
\replaewith(list = null)
\heuristis (simplify)

};

disjointAxiomSimpleList {

\shemaVar \term SimpleList x,y;

\shemaVar \variables int n,m;

\shemaVar \variables SimpleList sl;

\shemaVar \variables SimpleList z;

\find(disjointSimpleList[\for z;(z.next@(SimpleList))](x,y))

\varond(\notFreeIn(n,x), \notFreeIn(m,y),
\notFreeIn(sl,x,y))

\replaewith(!end(x) & !end(y) & \forall sl;(

(\exists n;reach[\for z;

(z.next@(SimpleList))](x,sl,n) &

\exists m;reach[\for z;

(z.next@(SimpleList))](y,sl,m)) -> end(sl)))

};

unsharedNode {

\shemaVar \term SimpleList x;

\shemaVar \variables SimpleList sl;

\shemaVar \variables int n;

\shemaVar \variables SimpleList z;

\find(unsharedNodeSimpleList[\for z;

(z.next@(SimpleList))](x))

\varond(\notFreeIn(sl,x), \notFreeIn(n,x))
\replaewith(\forall sl;(

\forall n;!reach[\for z;(z.next@(SimpleList))](sl,x,n)))

};

115

listDefinition {

\shemaVar \term SimpleList x;

\shemaVar \variables int size;

\shemaVar \variables SimpleList z;

\find (isList[\for z;(z.next@(SimpleList))](x))

\varond(\notFreeIn(size,x))
// \replacewith(\exists size;\exists z;(reach[\for

// z;(z.next@(SimpleList))](x,z,size) & end(z)))

\replaewith(\exists size;(reach[\for z;

(z.next@(SimpleList))](x,null,size)))
};

// derived rule

listDefinitionTransitive {

\shemaVar \term SimpleList x, y;

\shemaVar \term int size;

\shemaVar \variables SimpleList z;

\find (reach[\for z;(z.next@(SimpleList))](x, y, size)==>)

\add(isList[\for z;(z.next@(SimpleList))](y)==>);

\add(==>isList[\for z;(z.next@(SimpleList))](x))

};

// list is acyclic

listIsAcyclic {

\shemaVar \term SimpleList x, y;

\shemaVar \term int size;

\shemaVar \variables SimpleList z;

\find (reach[\for z;(z.next@(SimpleList))]

(x.next@(SimpleList), x, size))

\sameUpdateLevel
\add(==>isList[\for z;(z.next@(SimpleList))](x));

\replaewith(x = null)
};

116

// improve isolated(x) <->

// all y,z (reach(x,z) & reach(y,z) -> reach(x,y))

isolatedSimpleListDefinition {

\shemaVar \term SimpleList x,y;

\shemaVar \variables int n,m;

\shemaVar \variables SimpleList sl;

\shemaVar \variables SimpleList z;

\find(isolatedSimpleList[\for z;(z.next@(SimpleList))](x, y))

\replaewith(
disjointSimpleList[\for z;(z.next@(SimpleList))](x, y) &

unsharedNodeSimpleList[\for z;(z.next@(SimpleList))](x) &

unsharedNodeSimpleList[\for z;(z.next@(SimpleList))](y))

};

117

B Schorr-Waite Sources

B.1 Implementationpubli lass HeapObject {

// as starter we only consider graphs with an out-degree

// of at most twoprivate HeapObject[] children;

// used by the graph marking algorithm to

// keep track of the next child to visit and

// if this heap object has been already visitedprivate int nextChild;private boolean visited;

/** creates a new heap object */publi HeapObject() {

nextChild = 0;

visited = false;
children = new HeapObject[0];

}

/** creates a new heap object */publi HeapObject(HeapObject[] children) {

nextChild = 0;

visited = false;this.children = children;

}

/**

* sets <code>obj</code> as <code>pos</code>-th child

*/publi void setChild(int pos, HeapObject obj) {if (pos < 0 || pos >= children.length) {throw new IndexOutOfBoundsException();

}

children[pos] = obj;

}

118

/**

* sets the ’visited’ marker

*/publi void setMark(boolean mark) {this.visited = mark;

}

/**

* sets the tracker of the next child to be visited

*/publi void incIndex() {this.nextChild++;
}

/**

* true if the mark is set

*/publi boolean isMarked() {return visited;

}

/**

* true if there is a next child to be visited

*/publi boolean hasNext() {return nextChild<children.length;

}

/**

* returns the index of the next child to visit

*/publi int getIndex() {return nextChild;

}

/** returns the <code>pos</code>-th child */publi HeapObject getChild(int pos) {return children[pos];

}

/** returns the numbe of children at this node */publi int getChildCount() {return children.length;

}

}

119

/**

* This class implements the graph marking algorithm

* known as Schorr-Waite algorithm.

*/publi lass SchorrWaite {private HeapObject previous;private HeapObject current;publi void mark(HeapObject start) {

previous = null;
current = start;

current.setMark(true);while (start != current || start.hasNext()) {final HeapObject tmpChild;if (current.hasNext()) {final int nextChild = current.getIndex();

tmpChild = current.getChild(nextChild);if (!tmpChild.isMarked()) {// forward scan

current.setChild(nextChild, previous);

previous = current;

current.incIndex();

current = tmpChild;

current.setMark(true);
} else {

current.incIndex();

}

} else {

// backwardfinal int ref2restore = previous.getIndex() - 1;

tmpChild = previous.getChild(ref2restore);

previous.setChild(ref2restore, current);

current = previous;

previous = tmpChild;

}

}

}

}

120

B.2 Schorr-Waite Proofobligation

\javaSoure "../src/";

\sorts {

\generi G;

}\predicates{
\nonRigid reach

[\for (HeapObject x; int i)

x.children@(HeapObject)[i];

\for (HeapObject x)

x.children@(HeapObject).length]

(Heapobject, HeapObject, int);
\nonRigid onPath

[\for (HeapObject x; int i)

x.children@(HeapObject)[i];

\for (HeapObject x)

x.children@(HeapObject).length;

\for (HeapObject x; int i)

x.nextChild@(HeapObject)]

(HeapObject, HeapObject, int);
}

\funtions{
HeapObject childrenPre(HeapObject, int);

}

\shemaVariables {

\program Variable #a;

\term HeapObject t, t1, t2, t3;

\term int n, n1, n2;

\term any then, else;
\variables int k, iv, i, dist;

\variables HeapObject u, hov, hov2, hov3;

}

\programVariables{
SchorrWaite sw;

HeapObject startNode;

}

\rules {

ifExUniqueSolution {

\find(\ifEx u; (u.#a = t.#a) \then (then) \else (else))

\varond(\notFreeIn(u, t))

\replaewith({\subst u; t}then)

\heuristis (concrete)

};

121

reachableDefinition {

\find(reach[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2)

hov2.children@(HeapObject).length] (t1, t2, n))

\varond(\notFreeIn(k, t1, t2, n))

\replaewith(t1 = t2 & n = 0 |

(t1 != null & n > 0 & \exists k;(k>=0 &

k<#lengthReference(t1.children@(HeapObject)) &

reach[\for (hov; iv) hov.children@(HeapObject)[iv];

\for (hov2) hov2.children@(HeapObject).length]

(t1.children@(HeapObject)[k], t2, n-1))))

};

reachableDefinitionBase {

\find(reach[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2)

hov2.children@(HeapObject).length](t1, t2, 0))

\varond(\notFreeIn(k, t1, t2))

\replaewith(t1 = t2)

\heuristis(simplify)
};

// on path

onPathDefinition {

\find(onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t2, n))

\replaewith(n >= 0 & ((t1 = t2 & n = 0) |

(t1 != null & t1.nextChild@(HeapObject) > 0 &

t1.nextChild@(HeapObject) <=

#lengthReference(t1.children@(HeapObject)) &

onPath[\for (hov;iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)]

(t1.children@(HeapObject)[t1.nextChild@(HeapObject)-1],

t2,n-1))))

};

onPathBase {

\find(onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t2, 0))

\replaewith(t1 = t2)

\heuristis(simplify)
};

onPathNull {

\find(onPath[\for(hov;iv)hov.children@(HeapObject)[iv]@(HeapObject[]);
\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](null, t2, n))

\replaewith(n = 0 & t2 = null)
\heuristis(simplify)
};

122

onPathEffectlessUpdate {

\shemaVar \term int locIdx;

\shemaVar \term HeapObject loc, val;

\find(onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t2, n))

\sameUpdateLevel
\varond(\notFreeIn(hov,loc),\notFreeIn(iv,n,t1,loc))
\replaewith (

{loc.children@(HeapObject)[locIdx]@(HeapObject[]):=val}

onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t2, n));

\add(==> \forall iv;(iv>=0 & iv<=n ->

!onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, loc, n)));

\add(==> \forall hov;(

hov.children@(HeapObject)=loc.children@(HeapObject) -> hov=loc))

};

onPathEffectlessUpdate2 {

\shemaVar \term int locIdx, val;

\shemaVar \term HeapObject loc;

\find(onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t2, n))

\sameUpdateLevel
\varond(\notFreeIn(iv,n,t1,loc))
\replaewith (

{loc.nextChild@(HeapObject):=val}

onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t2, n)

)

\add(\forall iv;(iv>=0 & iv<=n ->

!onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1,loc,n)) ==>);

\add(==> \forall iv;(iv>=0 & iv<=n ->

!onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1,loc,n)))

};

123

onPathNoCycle2 {

\find(onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)]

(t1, t1, n2) ==>)

\varond(\notFreeIn(i, t1))

\add((t1 = null & n2 = 0) | n2 = 0 ==>);

\add(==> \exists i;

onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, null, i))

};

onPathTransitive2 {

\find(onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)]

(t1, t2, n2) ==>)

\varond(\notFreeIn(i, t1, t2, t3, n2))

\add(\forall i;

(onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t2, t3, i)

->

onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1,t3, n2 + i))

==>)

};

}

\problem {

inReachableState

& !sw = null & !startNode = null
& sw.<created> = TRUE & startNode.<created> = TRUE

& \forall HeapObject ho;

(!ho = null
-> (ho.nextChild >= 0 & ho.nextChild <= ho.children.length))

& \forall HeapObject ho;

(!ho = null -> ho.children.length >= 0)

& \forall HeapObject ho;

(!ho = null -> !ho.children = null)
& \forall HeapObject h1;

\forall HeapObject h2;

(!h1 = h2

-> !h1.children = h2.children)

& \forall HeapObject ho;

\forall int i;

124

(!ho = null & 0<=i & i< ho.children.length

-> !ho.children[i] = null)
& \forall HeapObject ho;

\forall int i;

ho.children[i] = childrenPre(ho, i)

& \forall HeapObject ho;

(!ho = null
-> ho.visited = FALSE

& ho.nextChild = 0)

-> \[{
sw.mark(startNode);

}\℄ \forall HeapObject x; \forall int n;

(!x = null &

reach[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for HeapObject x; x.children@(HeapObject).length]

(startNode, x, n)

-> (x.visited = TRUE &

\forall int i;(i>=0 & i<x.children.length ->

x.children[i] = childrenPre(x,i))))

}

125

B.3 Soundness Proofobligations for derived Taclets

B.3.1 Taclet: EffectlessUpdate

\javaSoure "../src/";

\sorts {

\generi G;

}\predicates{
\nonRigid onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x; int i) x.nextChild@(HeapObject)]

(HeapObject, HeapObject, int);
}

\shemaVariables {

\term HeapObject t1, t2;

\term int n;

\variables int iv;

\variables HeapObject hov, hov2, hov3;

}

\rules {

// on path

onPathDefinition {

\find (onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t2, n))

\replaewith(n >= 0 &

((t1 = t2 & n = 0) |

(t1 != null & t1.nextChild@(HeapObject) > 0 &

t1.nextChild@(HeapObject) <=

#lengthReference(t1.children@(HeapObject)) &

onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)]

(t1.children@(HeapObject)

[t1.nextChild@(HeapObject) - 1], t2, n-1))))

};

}

\problem {

\forall HeapObject t1;\forall HeapObject loc;\forall int n;(

((\forall int i;(i>=0 & i<=n ->

!onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x) x.nextChild@(HeapObject)]

(t1, loc, i))) &

\forall HeapObject t2;(t2.children = loc.children -> t2 = loc)) ->

\forall HeapObject t2;\forall HeapObject val;\forall int locIdx;(

(onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

126

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x) x.nextChild@(HeapObject)]

(t1, t2, n)

<-> {loc.children@(HeapObject)[locIdx]@(HeapObject[]):=val}

onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x) x.nextChild@(HeapObject)]

(t1, t2, n))))

}

127

B.3.2 Taclet: EffectlessUpdate2

\javaSoure "../src/";

\sorts {

\generi G;

}\predicates{
\nonRigid onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x; int i) x.nextChild@(HeapObject)]

(HeapObject, HeapObject, int);
}

\shemaVariables {

\term HeapObject t1, t2;

\term int n;

\variables int iv;

\variables HeapObject hov, hov2, hov3;

}

\rules {

// on path

onPathDefinition {

\find (onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t2, n))

\replaewith(n >= 0 &

((t1 = t2 & n = 0) |

(t1 != null & t1.nextChild@(HeapObject) > 0 &

t1.nextChild@(HeapObject) <=

#lengthReference(t1.children@(HeapObject)) &

onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)]

(t1.children@(HeapObject)

[t1.nextChild@(HeapObject) - 1], t2, n-1))))

};

}

\problem {

\forall HeapObject t1;\forall HeapObject loc;\forall int n;(

(\forall int i;(i>=0 & i<=n ->

!onPath[

\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x) x.nextChild@(HeapObject)]

(t1, loc, i))) ->

\forall HeapObject t2;\forall int val; (

(onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x) x.nextChild@(HeapObject)]

128

(t1, t2, n)

<-> {loc.nextChild@(HeapObject):=val}

onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x) x.nextChild@(HeapObject)]

(t1, t2, n))))

}

129

B.3.3 Taclet: onPathBase

\javaSoure "../src/";

\sorts {

\generi G;

}\predicates{
\nonRigid onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x; int i) x.nextChild@(HeapObject)]

(HeapObject, HeapObject, int);
}

\shemaVariables {

\term HeapObject t1, t2, t3;

\term int n;

\variables int iv, i;

\variables HeapObject hov, hov2, hov3;

}

\rules {

// on path

onPathDefinition {

\find(onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t2, n))

\replaewith(n >= 0 &

((t1 = t2 & n = 0) |

(t1 != null & t1.nextChild@(HeapObject) > 0 &

t1.nextChild@(HeapObject) <=

#lengthReference(t1.children@(HeapObject)) &

onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1.children@(HeapObject)

[t1.nextChild@(HeapObject)-1], t2, n-1))))

};

/*

To be proven correct:

onPathBase {

\find(onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t2, 0))

\replacewith(t1 = t2)

\heuristics(simplify)

};

*/

}

130

\problem {

\forall HeapObject t1;\forall HeapObject t2;(

onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x) x.nextChild@(HeapObject)]

(t1, t2, 0) <-> t1 = t2)

}

131

B.3.4 Taclet: onPathNoCycle

\javaSoure "../src/";

\sorts {

\generi G;

}\predicates{
\nonRigid onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x; int i) x.nextChild@(HeapObject)]

(HeapObject, HeapObject, int);
}

\shemaVariables {

\term HeapObject t1, t2, t3;

\term int n;

\variables int iv, i;

\variables HeapObject hov, hov2, hov3;

}

\rules {

// on path

onPathDefinition {

\find (onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t2, n))

\replaewith(n >= 0 &

((t1 = t2 & n = 0) | (t1 != null & t1.nextChild@(HeapObject) > 0 &

t1.nextChild@(HeapObject) <=

#lengthReference(t1.children@(HeapObject)) &

onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)]

(t1.children@(HeapObject)[t1.nextChild@(HeapObject)-1], t2, n-1))))

};

/*

To be proven correct:

onPathNoCycle2 {

\find(onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t1, n) ==>)

\varcond(\notFreeIn(i, t1))

\add((t1 = null & n = 0) | n = 0 ==>);

\add(==> \exists i;

onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, null, i))

};

*/

132

onPathTransitive2 {

\find(onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t2, n) ==>)

\varond(\notFreeIn(i, t1, t2, t3, n))

\add(\forall i;(

onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t2, t3, i)

->

onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t3, n+i)) ==>)

};

}

\problem {

\forall HeapObject t1;\forall int n;((

\exists int i;(

onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x) x.nextChild@(HeapObject)]

(t1, null, i)) &

!((t1 = null & n = 0) | n = 0)

) ->

!(onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x) x.nextChild@(HeapObject)]

(t1, t1, n)))

}

133

B.3.5 Taclet: onPathNull

\javaSoure "../src/";

\sorts {

\generi G;

}\predicates{
\nonRigid onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x; int i) x.nextChild@(HeapObject)]

(HeapObject, HeapObject, int);
}

\shemaVariables {

\term HeapObject t1, t2, t3;

\term int n;

\variables int iv, i;

\variables HeapObject hov, hov2, hov3;

}

\rules {

// on path

onPathDefinition {

\find(onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t2, n))

\replaewith(n >= 0 &

((t1 = t2 & n = 0) |

(t1 != null & t1.nextChild@(HeapObject) > 0 &

t1.nextChild@(HeapObject) <=

#lengthReference(t1.children@(HeapObject)) &

onPath[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)]

(t1.children@(HeapObject)[t1.nextChild@(HeapObject)-1],t2,n-1))))

};

/*

To be proven correct:

onPathNull {

\find(onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](null, t2, n))

\replacewith(n = 0 & t2 = null)

\heuristics(simplify)

};

*/

}

134

\problem {

\forall HeapObject t1;\forall int n;(

onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x) x.nextChild@(HeapObject)]

(null, t1, n) <-> (n=0 & t1 = null))
}

135

B.3.6 Taclet: onPathTransitive

\javaSoure "../src/";

\sorts {

\generi G;

}\predicates{
\nonRigid onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length;

\for (HeapObject x; int i) x.nextChild@(HeapObject)]

(HeapObject, HeapObject, int);
}

\shemaVariables {

\term HeapObject t1, t2, t3;

\term int n;

\variables int iv, i;

\variables HeapObject hov, hov2, hov3;

}

\rules {

onPathDefinition {

\find (onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t2, n))

\replaewith(n >= 0 &

((t1 = t2 & n = 0) | (t1 != null & t1.nextChild@(HeapObject) > 0 &

t1.nextChild@(HeapObject) <=

#lengthReference(t1.children@(HeapObject)) &

onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)]

(t1.children@(HeapObject)[t1.nextChild@(HeapObject)-1], t2, n-1))))

};

/*

To be proven correct:

onPathTransitive2 {

\find(onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t2, n) ==>)

\varcond(\notFreeIn(i, t1, t2, t3, n))

\add(\forall i;

(onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t2, t3, i)

->

onPath[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length;

\for (hov3) hov3.nextChild@(HeapObject)](t1, t3, n + i))

==>)

};

*/

}

136

\problem {

\forall HeapObject t1;\forall HeapObject t2;

\forall int n;

(onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for HeapObject x; x.children@(HeapObject).length;

\for HeapObject x; x.nextChild@(HeapObject)

](t1, t2, n)

-> \forall HeapObject t3;\forall int i;(

onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for HeapObject x; x.children@(HeapObject).length;

\for HeapObject x; x.nextChild@(HeapObject)

](t2, t3, i) ->

onPath[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for HeapObject x; x.children@(HeapObject).length;

\for HeapObject x; x.nextChild@(HeapObject)

](t1, t3, n+i)

))

}

137

B.3.7 Taclet: reachableBase

\javaSoure "../src/";

\sorts {

\generi G;

}\predicates{
\nonRigid reach[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length]

(HeapObject, HeapObject, int);
}

\shemaVariables {

\term HeapObject t1, t2;

\term int n;

\term any then, else;
\variables int k, iv;

\variables HeapObject hov, hov2;

}

\rules {

reachableDefinition {

\find(reach[\for (hov; iv) hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length](t1, t2, n))

\varond(\notFreeIn(k, t1, t2, n))

\replaewith(t1 = t2 & n = 0 |

(t1 != null & n > 0 &

\exists k;(k>=0 & k<#lengthReference(t1.children@(HeapObject)) &

reach[\for (hov; iv) hov.children@(HeapObject)[iv];

\for (hov2) hov2.children@(HeapObject).length]

(t1.children@(HeapObject)[k], t2, n-1))))

};

/*

To be proven correct:

reachableDefinitionBase {

\find(reach[\for (hov; iv)

hov.children@(HeapObject)[iv]@(HeapObject[]);

\for (hov2) hov2.children@(HeapObject).length](t1, t2, 0))

\varcond(\notFreeIn(k, t1, t2))

\replacewith(t1 = t2)

\heuristics(simplify)

};

*/

}

\problem {

\forall HeapObject t1;\forall HeapObject t2;(

reach[\for (HeapObject x; int i) x.children@(HeapObject)[i];

\for (HeapObject x) x.children@(HeapObject).length]

(t1, t2, 0) <-> t1 = t2)

}

138

Bibliography

[Abr03] J.R. Abrial. Event Based Sequential Program Development: Appli-
cation to Constructing a Pointer Program. In FME 2003: Formal
Methods, pages 51–74. Springer, September 2003.

[ARR03] Alessandro Armando, Silvio Ranise, and Michaël Rusinow-
itch. A rewriting approach to satisfiability procedures. Inf. Comput.,
183(2):140–164, 2003.

[Bec01] Bernhard Beckert. A dynamic logic for the formal verification of
Java Card programs. In I. Attali and T. Jensen, editors, Java
on Smart Cards: Programming and Security. Revised Papers, Java
Card 2000, International Workshop, Cannes, France, volume 2041
of LNCS, pages 6–24. Springer-Verlag, 2001.

[BGH+04] Bernhard Beckert, Martin Giese, Elmar Habermalz, Reiner Hähnle,
Andreas Roth, Philipp Rümmer, and Steffen Schlager. Taclets: A
new paradigm for constructing interactive theorem provers. Revista
de la Real Academia de Ciencias Exactas, F́ısicas y Naturales, Serie
A: Matemáticas (RACSAM), 98(1), 2004. Special Issue on Symbolic
Computation in Logic and Artificial Intelligence.

[BHS06] Bernhard Beckert, Reiner Hähnle, and Peter H. Schmitt, editors.
Verification of Object-Oriented Software: The KeY Approach. LNCS
4334. Springer, 2006. To appear.

[BP82] Manfred Broy and Peter Pepper. Combining algebraic and algorith-
mic reasoning: An approach to the schorr-waite algorithm. ACM
Trans. Program. Lang. Syst., 4(3):362–381, 1982.

[BP06] Bernhard Beckert and André Platzer. Dynamic logic with non-
rigid functions: A basis for object-oriented program verification.
In U. Furbach and N. Shankar, editors, Proceedings, International
Joint Conference on Automated Reasoning, Seattle, USA, LNCS
4130, pages 266–280. Springer, 2006.

[BRR04] Richard Bubel, Andreas Roth, and Philipp Rümmer. Ensuring cor-
rectness of lightweight tactics for java card dynamic logic. In Pre-
liminary Proceedings of Workshop on Logical Frameworks and Meta-
Languages (LFM) at IJCAR 2004, pages 84–105, 2004.

[BRS+00] M. Balser, W. Reif, G. Schellhorn, K. Stenzel, and A. Thums. For-
mal system development with KIV. In T. Maibaum, editor, Funda-
mental Approaches to Software Engineering, volume 1783 of LNCS.
Springer-Verlag, 2000.

139

[Bub01] Richard Bubel. Behandlung der Initialisierung von Klassen und
Objekten in einer dynamischen Logik für Java Card. Studienarbeit,
Fakultät für Informatik, Universität Karlsruhe, August 2001.

[Gie98] Martin Giese. Integriertes automatisches und interaktives Beweisen:
Die Kalkülebene. Diploma Thesis, Fakultät für Informatik, Univer-
sität Karlsruhe, June 1998.

[Gie03] Martin Giese. Taclets and the KeY prover. In User Interfaces for
Theorem Provers Workshop at TPHOLS, Rome, Italy, 2003.

[Gie05] M. Giese. A calculus for type predicates and type coercion. In
B. Beckert, editor, Automated Reasoning with Analytic Tableaux and
Related Methods, Tableaux 2005, volume 3702 of LNAI, pages 123–
137. Springer, 2005.

[GJSB00] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification Second Edition. Addison-Wesley, Boston,
Mass., 2000.

[GJSB04] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java
Language Specification–Third Edition. The Java Series. Addison-
Wesley,, 2004.

[H0̈5] Reiner Hähnle. Many-valued logic, partiality, and abstraction in for-
mal specification languages. Logic Journal of the IPGL, 13(4):415–
433, july 2005.

[Har84] David Harel. Dynamic logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, volume II: Extensions of
Classical Logic, chapter 10, pages 497–604. Reidel, Dordrecht, 1984.

[HM05] Thierry Hubert and Claude Marché. A case study of C source
code verification: the Schorr-Waite algorithm. In Bernhard K.
Aichernig and Bernhard Beckert, editors, Proc. Third IEEE Inter-
national Conference on Software Engineering and Formal Methods
(SEFM), Koblenz, Germany, pages 190–199. IEEE Computer Soci-
ety, 2005.

[LBR00] Gary T. Leavens, Albert L. Baker, and Clyde Ruby. Preliminary
design of JML: A behavioral interface specification language for
Java. Technical Report 98-06i, Iowa State University, Department
of Computer Science, February 2000.
ftp://ftp.cs.iastate.edu/pub/techreports/TR98-06/TR.ps.gz.

[LPC+02] Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, and
Clyde Ruby. JML Reference Manual, August 2002.

[MN03] Farhad Mehta and Tobias Nipkow. Proving pointer programs in
higher-order logic. In F. Baader, editor, Automated Deduction —
CADE-19, volume 2741 of LNCS, pages 121–135. Springer, 2003.

140

[Obj01] Object Modeling Group. Unified Modelling Language Specification,
Version 1.4, September 2001.

[Ohe01] David von Oheimb. Analyzing Java in Isabelle/HOL: Formalization,
Type Safety and Hoare Logic. PhD thesis, Technische Universität
München, 2001.

[ORS92] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype veri-
fication system. In Deepak Kapur, editor, 11th International Con-
ference on Automated Deduction (CADE), volume 607 of Lecture
Notes in Artificial Intelligence, pages 748–752, Saratoga, NY, June
1992. Springer-Verlag.

[Pau94] Lawrence C. Paulson. Isabelle: a generic theorem prover, volume
828 of LNCS. Springer-Verlag, 1994.

[Rot06] Andreas Roth. Specification and Verification of Object-oriented
Components. PhD thesis, Fakultät für Informatik der Universität
Karlsruhe, June 2006.

[Rüm06] Philipp Rümmer. Sequential, parallel, and quantified updates of
first-order structures. In Logic for Programming, Artificial In-
telligence and Reasoning, volume 4246 of LNCS, pages 422–436.
Springer-Verlag, 2006.

[Sch07] Steffen Schlager. TBA. PhD thesis, Fakultät für Informatik der
Universität Karlsruhe, February 2007.

[SRW99] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric
shape analysis via 3–valued logic. In Symposium on Principles of
Programming Languages, pages 105–118, 1999.

[SW67] H. Schorr and W. M. Waite. An efficient machine-independent pro-
cedure for garbage collection in various list structures. Commun.
ACM, 10(8):501–506, 1967.

[Tre05] Kerry Trentelman. Proving correctness of javacard dl taclets using
bali. In SEFM, pages 160–169, 2005.

[vdBJ00] J. van den Berg and BPF Jacobs. The LOOP Compiler for Java and
JML. Computing Science Institute Nijmegen, Faculty of Science,
University of Nijmegen, 2000.

[Wid06] Florian Widmann. Crossverification of while loop semantics. Diplo-
marbeit, Universität Karlsruhe, Fakultät für Informatik, October
2006.

[Yan00] H. Yang. An example of local reasoning in bi pointer logic: the
schorr-waite graph marking algorithm, 2000.

141

	Introduction
	The KeY Approach
	Structure of the Thesis
	Related Work

	Foundations
	The Java Card Dynamic Logic
	Syntax And Semantics
	Type Hierarchy and Signature
	Terms and Formulas in Java Card DL
	Semantics of Java Card DL

	Calculus
	Symbolical Execution
	Rules and Taclets
	Object Creation
	Java Reachable States
	Symbolical Execution of Method Invocations
	The Method Contract Rule

	Structural Specification and Verification
	Structural Specification with Recursive Predicates
	Location Dependent Non-Rigid Symbols
	Motivation
	Syntax and Semantics
	Update Simplification
	Soundness Proof Obligation for Axiomatisations of Location Dependent Symbols
	Modelling Queries
	Specification and Verification of a Sorting Algorithm

	Reachable Predicate
	Syntax and Semantics
	Calculus Rules for the Reachable Predicate

	Structural Specification of Graph Structures
	General Specification Predicates
	Linked Lists
	Tree Structures

	Summary

	Recursive Methods Treatment
	Motivation
	Current Problems and Challenges

	Recursive Method Treatment
	Using Proof Obligations
	Example: List Reversal

	Summary

	Specifying Linked Data Structures with Abstract Data Types
	Abstract Data Types and Linked Data Structures
	Abstraction of Linked Data Structures
	Connecting Abstract Data Structure and Java Card DL
	Applications

	Summary

	Modelling Java-Strings
	The Java String Class
	Specification of the Java-String class
	The Abstract Data Type -- AString
	String Conversions
	String Creation
	String Literals

	String Pool and Optimisations
	Complete Axiomatisation of the String Pool
	Further JLS conform Optimisations

	API specification challenges
	Assignable Clause
	Abstraction Level

	Summary

	Case Study
	Case Study: The Schorr-Waite Algorithm
	Motivation
	The Graph Marking Algorithm ``Schorr-Waite''
	Description
	Implementation

	Specification
	Proof Obligation
	Encoding the Backtracking Path
	The Loop Invariant

	Verification
	Results and Comparison

	Conclusions
	Summary and Future Work
	Specification Predicates for Linked Datastructures
	List Specification Predicates

	Schorr-Waite Sources
	Implementation
	Schorr-Waite Proofobligation
	Soundness Proofobligations for derived Taclets
	Taclet: EffectlessUpdate
	Taclet: EffectlessUpdate2
	Taclet: onPathBase
	Taclet: onPathNoCycle
	Taclet: onPathNull
	Taclet: onPathTransitive
	Taclet: reachableBase

