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Abstract

We introduce a reasoning infrastructure for proving statements about resource consumption in a fragment of the Java Virtual
Machine Language (JVML). The infrastructure is based on a small hierarchy of program logics, with increasing levels of
abstraction: at the top there is a type system for a high-level language that encodes resource consumption. The infrastructure
is designed to be used in a proof-carrying code (PCC) scenario, where mobile programs can be equipped with formal evidence that
they have predictable resource behaviour.

This article focuses on the core logic in our infrastructure, a VDM-style program logic for partial correctness, which can
make statements about resource consumption alongside functional behaviour. We establish some important results for this logic,
including soundness and completeness with respect to a resource-aware operational semantics for the JVML. We also present a
second logic built on top of the core logic, which is used to express termination; it too is shown to be sound and complete. We then
outline how high-level language type systems may be connected to these logics.

The entire infrastructure has been formalized in Isabelle/HOL, both to enhance the confidence in our meta-theoretical results,
and to provide a prototype implementation for PCC. We give examples to show the usefulness of this approach, including proofs
of resource bounds on code resulting from compiling high-level functional programs.
© 2007 Published by Elsevier B.V.

Keywords: Program logic; Proof-carrying-code; Object-oriented languages; Java virtual machine language; Cost modelling; Quantitative type-
systems; Lightweight verification

1. Introduction

When we receive a program from another party, we want to know that it serves its intended purpose. Apart
from having correct functional behaviour, it is important that a program meets non-functional requirements such
as reasonable resource consumption. Indeed, non-functional requirements of application programs can often be more
important than functional ones, as they impact on the overall security and robustness of a system. For example, a game
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to be run on a mobile telephone should not make excessive network demands or use up all the phone’s memory; this
is more important to the user and network operator than, say, that the game calculates the correct score.

We want to equip mobile code with guarantees that resource constraints are satisfied, following the proof-carrying
code paradigm (PCC, [1]). PCC has emerged as a powerful means to guarantee type-correct behaviour or the adherence
to various security policies. Low-level code is sent together with a certificate which contains a formal logical proof
certifying that the program adheres to a given resource policy.

The bedrock of PCC is the logic for low-level code used to state and prove properties of interest. The logic must
satisfy several crucial requirements. First, it must be expressive enough to state and prove the policies required for
programs of concern. Second, it must be sound: proofs in the logic must be faithful to the behaviour of the code on the
target machine. Third, we must meet engineering requirements for implementing proof-carrying code: we must have
some way of effectively generating proofs in the logic, transmitting them in proof certificates, and efficiently checking
them on receipt.

In this paper we present two program logics designed to meet these requirements, as part of a prototype proof-
carrying code infrastructure aimed at certifying resource usage of Java bytecode programs.

Our core program logic is expressive enough to describe arbitrary cost metrics which are calculated by a resource-
annotated semantics for a fragment of the Java Virtual Machine Language. We formalize this semantics as a big-step
operational semantics whose correctness is self-evident. The core program logic makes partial correctness statements.
For the annotated operational semantics, we prove that this logic is sound and (relative to the underlying assertion
language) complete. Using the logic instead of the operational semantics directly has the main advantage of providing
direct support for reasoning with invariants for recursive methods and loops (represented as tail recursive functions).
To prove that a method satisfies some specification it suffices to show that its body satisfies it assuming that any
recursive call does so. Proving this principle sound for the operational semantics requires some effort which would
otherwise have to be spent with each individual verification.

We define a second logic for termination built on top of the core logic for partial correctness. Separating the two
logics allows us to establish resource properties under the assumption of termination following one proof approach,
and establish termination using a possibly different approach, and only where it is necessary (for example, on a case-
by-case basis for individual methods). We also prove that the termination logic is sound and complete.

The main part of the paper is concerned with the definition and metatheoretical properties of the core logic and
termination logic. Towards the end of the paper we will return to the original motivation of proof-carrying code, and
describe how the logics can be fitted into a larger infrastructure based on type systems for high-level languages. The
approach addresses the necessary engineering requirements for PCC.

This work represents a significant contribution to research in generalizing proof-carrying code scenario to richer
policies and richer languages; to our knowledge it represents one of the first applications of PCC for resources to Java
bytecode. It also provides advances in program logics for low-level code; we believe that our method has a number
of advantages over many existing related approaches, including the good meta-theoretical properties of the logics,
separate treatment of (partial) correctness and termination, and the functional treatment of iteration and local variables.
The body of the paper and a closing comparison with the existing literature describes these and other advantages in
detail. The entire infrastructure has been formalized in the theorem prover Isabelle/HOL, both to enhance confidence
in the meta-theoretical results, and to provide a prototype implementation for PCC. This contribution is part of our
work on the Mobile Resource Guarantees (MRG) project [2], see [3] for a high-level overview of the whole project.

1.1. Outline

The structure of this paper is as follows. Section 2 presents the Grail language for which we build these logics.
Grail is a subset of the Java Virtual Machine Language (JVML), written using a functional notation. The operational
semantics of Grail is annotated with a mechanism for calculating resource costs, using operators for each expression
former.

Section 3 presents the core program logic for partial correctness for Grail. It allows an expressive form of assertion
that facilitates compositional reasoning and gives powerful rules for mutual recursion. Proofs of soundness and
completeness for this logic are given, based on a full formalization in Isabelle/HOL. Examples demonstrate the use of
this logic for proving resource properties, making use of special rules for mutually recursive program fragments and
method invocations with argument adaptation.
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Section 4 builds the termination logic on top of the partial correctness logic, and thus arrives at a total
correctness logic. Proofs of soundness and completeness are given. An earlier example is revisited to demonstrate
the methodology.

In Section 5 we return to the big picture and describe how our hierarchy of program logics is used in the Mobile
Resource Guarantees architecture to obtain a system with a certifying compiler and independent validation of the
generated certificate. Section 6 discusses related work on program logics and their formalizations. Finally, Section 7
summarizes the main results of our work and sketches directions for further work.

2. The Grail language

Rather than working with the JVML directly, we use a reformulation called Grail (a contraction of Guaranteed
Resource Aware Intermediate Language). The version of Grail studied in this paper covers the most important features
of the JVML, including boolean and integer values, reference values and objects, mutable fields (allowing aliasing),
static and instance methods. We do not cover exceptions, arrays or threads here.

The design of Grail was motivated by the following goals, which we elaborate in turn:

(1) Suitability as a target for a resource-transparent compiler from a functional high-level language;

(2) Proximity to standard mobile code formats, so as to obtain executability and code mobility using existing wire
formats;

(3) Suitability as a basis for attaching resource assertions;

(4) Amenability to formal proofs about resource usage.

Grail uses a functional notation that abstracts from some JVM specific details such as the use of numerical
variable names as locals, and it has the operational semantics of an impure functional language: mutable object
fields, immutable local variables, and tail recursive functions instead of iteration. This makes it ideally suitable for
compilation of high-level functional languages such as Camelot, which is a variant of OCaml with a resource-aware
type system [4].

Code in Grail remains close to standard formats; it can be reversibly expanded into (a subset of) virtual machine
languages including JVM, the JCVML of JavaCard or the MSIL used by .NET.!

Because the translation mechanism into a virtual machine language is fixed [5], the resource usage of Grail
programs can be captured by considering the cost of execution of the translated form, and those costs can be used
to instantiate a resource model which is part of the operational semantics.

Our program logic and its implementation described in Sections 3 and 4 provide some evidence that the final design
goal of Grail has indeed been achieved, namely that it is amenable to formal proofs.

2.1. Syntax

At the level of classes and methods, the Grail representation of code retains the syntactic structure of Java
bytecode. Method bodies, in contrast, are represented as collections of mutually tail-recursive A-normalized functions
(ANF) [6]. In particular, only primitive operations can occur as ej in a let-expression let x =ej in e;. Similar to the
A-JVM [7] and other functional intermediate languages [8], primitive instructions model arithmetic operations, object
manipulation (object creation, field access) and the invocation of methods. Strengthening the syntactic conditions
of ANF, actual arguments in function calls are required to coincide syntactically with the formal parameters of the
function definitions. This condition allows function calls to be interpreted as immediate jump instructions; register
shuffling at basic block boundaries is performed by the calling code rather than being built into the function application
rule. As a result, the consumption of resources at virtual machine level may be expressed in a functional semantics for
Grail: the expansion into bytecode does not require register allocation or the insertion of gluing code [5]. In contrast
to the aim of A-JVM, Grail does not aim to represent arbitrary bytecode. Instead, the translation of raw bytecode into
Grail is only defined on the image of our expansion — and on this subset, it is the reversal of the code expansion. As
each QGrail instruction form expands to a sequence of bytecode instructions that leaves the operand stack empty, the

LAt present, our tools cover only the JVML.
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compiled code is highly structured. In particular, it satisfies all conditions identified by Leroy [9] as being required for
efficient bytecode verification on smart cards and other resource-constrained devices.

For the purpose of this paper, the syntactic restrictions of Grail may be largely ignored, since their significance
concerns the relationship between Grail and actual bytecode rather than the program logic, whose correctness does
not require them. The formal syntax treated in the remainder of this article therefore comprises a single category of
expressions expr that is defined over mutually disjoint sets M of method names, C of class names, F of function
names (i.e. labels of basic blocks), 7 of (static) field names and X of variables. These categories are, respectively,
ranged over by m, ¢, f, t, and x. In addition, i ranges over immediate values (integers, and booleans true and false)
and op over primitive operation of type V = V = V such as arithmetic operations or comparison operators, where VV
is the semantic category of values. Values are ranged over by v and comprise immediate values, references r, and the
special symbol L, which stands for the absence of a value. References are either null or of the form Ref/ where [ € £
is a location.

The syntax is given by the grammar below, which defines expressions expr and method arguments args. We write
a to stand for lists of arguments.

ec€expr m=null |immi|varx | primopxx |newc[t] :=X1,...,1; :=X,] |
xt|xti=x|cot|cot:=x|letx=eine|e;e]|
if xtheneelsee | callf | x-m(a) | c.m(a)

a € args = varx | null|i.

Our notations here are intentionally somewhat prolix, for example, by including the injections Ref, var and imm,
which would ordinarily be omitted using meta-syntactic conventions for names. We hope that the reader will forgive
the additional verbosity in return for the reassurance that the following rules, programs and example verifications have
all been formalized precisely as they are written here.

Expressions e € expr represent basic blocks and are built from operators, constants and previously computed
values. Expressions correspond to primitive sequences of bytecode instructions that may, as a side-effect, alter the
heap. For example, x.r and x.t:=y represent (non-static) getfield and putfield instructions, while cot and c o t:=y
denote their static counterparts. The binding let x =e; in e is used if the evaluation of e; returns a value on top of
the JVM stack while e; ; e represents purely sequential composition, used, for example, if e; is a field update x.z:=y.
Object creation includes the initialization of the object fields according to the argument list: the content of variable x;
is stored in field ¢#;. Function calls (call) follow the Grail calling convention (i.e. correspond to immediate jumps) and
do not carry arguments. The instructions x - m(a) and c.m(a) represent virtual (instance) and static method invocation,
respectively. The keyword self is a reserved variable name standing for the current object (this in Java).

A formal type system can be imposed on Grail programs to rule out bad programs by reflecting typing conditions
enforced by the underlying virtual machine. Our operational semantics and program logic are more general, although
we always consider well-typed programs.

In the theoretical development, we assume that all method declarations employ distinct names for identifying inner
basic blocks. A program P consists of a table F7T mapping each function identifiers to an expression, and a table
MT associating a list of method parameters (i.e. variables) and an expression (the initial basic block) to class names
and method identifiers. We use the notations body, and body,. ,, to denote the bodies of function f and method c.m,
respectively, and pars, ,, to denote the formal parameters of c.m.

Fig. 1 shows an example method for appending the list represented by argument |, to the list I;. The Grail code
shown is the pretty-printed output of a compiler run on the source code: fragment

type ilist = Nil | Comns of int * ilist
let append 11 12 = match 11 with
Nil => 12
| Cons(h,t) => Cons(h,append t 12)

which is written in the high-level functional language Camelot [10,11]. Integer lists are represented by objects of
class LIST with fields HD, TL, and TAG, where TAG is used to discriminate between the constructors, i.e. empty
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method LIST LIST.append(ly, I2) = callf
[/ +— lettg=I;.TAG in
let b=prim (% z y. if z = 1 then true else false) tg tg in
if b then var |, else call fj
fi — leth=Il;.HDinlett=I;.TLin
let |} =LIST.append([var t, var |]) in let t{g=imm 2 in
new LIST [TAG :=1g,HD := h; TL := ;]

Fig. 1. Code of method append.

(TAG = 1) and non-empty (TAG = 2) lists. The emitted code consists of a method containing two functions whose
bodies are shown; the body of the method itself is the term call f which appears on the first line.>

2.2. Resource algebras

To admit reasoning about allocation and consumption of different computational resources, our operational
semantics is annotated with a resource counting mechanism based on a general cost model provided by a notion
of resource algebra. A resource algebra provides a basis for quantitative measurements such as instruction counters,
but it can also be used to monitor cost-relevant events such as the allocation of fresh memory, calls to specific methods,
or the maximal height of the frame stack encountered during the execution of a program. Moreover, the resources are
a purely non-invasive annotation on the ordinary operational semantics; evaluation of an expression is not affected by
the resources consumed in subexpressions.

Definition 1. A resource algebra R has a carrier set R consisting of resource values r € R, together with:

e A costordering < C R x R
. . o i rim etf tf ets ts
e For the atomic expressions, families of constants R*!1, Rimm Rvar, R op.ys Rgm , Rp;,’y, Rgc,, , Rplé’t’y,
RREY _of type R,

CoX]yeensX
e For compound expressions, families of operations R%, Rc?ll, RS - and RV - of type R — R, and

X c,m,a
o RISt RCOWP of type (R x R) — R.

Resource algebras simply collect together constant costs and operations on costs for each expression former in
the syntax. The cost ordering expresses when one resource value is considered cheaper or better than another. Our
operational semantics and logics are then based on an arbitrary resource algebra.’

An alternative way of cost accounting used elsewhere is by instrumenting the original code, i.e. by inserting
additional program variables and instructions to maintain resource counters, but without otherwise changing the
underlying program. Then the costs of executing the original program are obtained by reasoning about (or executing,
or executing symbolically, or performing static analysis on) the instrumented program [14—16]. Although flexible,
instrumentation has certain disadvantages. Most obviously, if the instrumented code is executed at run-time, there
will be extra costs associated in book-keeping and resource usage patterns themselves may change compared with
the uninstrumented code. Executed or not, in general there is a risk that the program behaviour of instrumented code
may differ from the original code due to race conditions. And compared with wholly static approaches, if run-time
monitors are employed to enforce a resource policy, we risk wasting computational resources by terminating offending
computations before they produce useful results. Finally and fundamentally, instrumentation limits the costs one may

21n later examples, we do simplify the notation somewhat, using some hopefully obvious shorthand from our implementation for standard
primitive operations and omitting the prim tag, for example, let b=iszerovy in....

3 We have investigated the algebraic structure of resources elsewhere [13]. A similar notion, under the name of Kripke resource monoid, has
been independently used as the basis of the semantics of the logic of Bunched Implication [12].
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RCount RIanr RPVaI(C’ M, P) RHpTr
R N XN xN xN expr B H
Rrotl (1000) [] true [h]
R" (1000) [] true [h]
RS (1000) [] true [h]
RP ooy (3000) [ true ]
RO Lty ((n+1)000) [ true [h]
RE (2000) [ true ]
RPY (3000) [] true ]
REGY {2000) [ true 1]
RS (3000) [] true ]
R (p,q) | (1000)® (p Ng) p@q pPAg p@q
R™(p, q) pnq p@q PAg p@q
R (p) (2000)® p p true p
R (p) (1100)® p p true p
R p) [ ((4+1ah01)@p | x-m@)::p D p
RimE (p) | (@+anoinep | em@zp | ©C 2(”;);'\’2 p

Fig. 2. Four example resource algebras.

consider to quantities where the domain and the modifying operations are expressible in the programming language,
and the interaction between resource-counting and “proper” variables may become difficult to reason about. Our
approach avoids these problems by including structured costs in the operational semantics. It retains flexibility by
being parametrized on the form of the costs, and, if required, semantics costs could be formally related to suitably
instrumented code using our program logic.

2.3. Resource algebra examples

A few motivating examples of resource algebras are collected in Fig. 2. The first algebra, R Count, represents a
simple cost model of the JVM with four metrics, and was already presented in [17]. The first component of a tuple
models an instruction counter that approximates execution time. Charging all JVM instructions at the same rate, this
counter is incremented roughly by the number of bytecode instructions each expression is expanded to. For example,
a field modification x.t:=y expands to a bytecode sequence of length three, comprising two load operations that
copy the contents of variables x and y onto the operand stack, and one putfield operation. In the rules for method
invocations, we charge for pushing all arguments onto the operand stack, the invocation and the returning instruction,
plus, in the case of a virtual invoke, for loading the object reference and the virtual method lookup. The second and
third components represent more specific instruction counters, for function calls (jumps) and method invocations,
respectively. Naturally, more fine-grained instruction counters can easily be defined, for example, by counting the
invocation of different methods separately or by charging complex instructions at an increased rate. Finally, the fourth
component monitors the maximal frame stack height observed during a computation. This value is non-zero exactly
for the frame-allocating instructions x - m(a) and c.m(a).

The definition of RCUM yses two binary operations, & and 1, to combine costs. The former represents pointwise
addition in all four components, while the latter performs pointwise addition in the first three components, and the
max operation in the fourth component. Note that we could have formulated the counters as four separate resource
algebras and obtained RCOUM as their product.

Some of our main examples are concerned with the amount of heap space used during execution of a program.
To monitor the dynamic allocation of objects we could use a counter in RCOUN for the instruction new, but since the
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operational semantics does not model garbage collection, we can in fact infer the number and class of objects allocated
by comparing the initial and final heaps.

The second resource algebra, RIVTF ranges over expression sequences and collects the (static or virtual) method
invocations in execution order. Here, the value for each nullary expression former is the empty list; branches and func-
tion invocations take the value for subexecutions; invocations prefix the respective method calls to the sequence (no-
tation :: in the meta-logic), and the operations for binary program composition R*¢* and R°™ append (notation @)
the sequences in the order of evaluation of the subexpressions.

The last two resource algebras, vaal(C, M, P) and RHpTr, concern a slight generalization of the formal setup,
where, in addition to pieces of syntax, values of resource algebras may also depend upon other components of the
operational semantics (to be defined shortly), such as environments E and heaps h. This allows us to formulate
policies that depend on the dynamic evaluation of syntactic items. The parameter values algebra RPVa(C M, P) can
be parametrized by a class name C, a method name M, and a parameter policy P which may refer to the environment
and heap. The resource value in this algebra maintains a flag which acts as a monitor to ensure that each invocation of
C.M(a) satisfies the policy P (). For example, for each k € N, the policy

Pr@ =3xnX.a=[var x] A h Ejsgm,x) E(x) A n <k

stipulates that @ consists of a single variable that represents a list of length at most k.* Value-constraining policies like
this may be useful in the domain of embedded systems, where calls to external actuators must obey strict parameter
limitations. See [3] for more motivation and a detailed example.

In general, resource algebras that depend on semantic components are sufficiently powerful to collect diagnostic
traces along the chosen path of computation — the final example, RPT simply collects all intermediate heaps (the
value set H is defined below). Like a syntactic trace originating from the algebra R™WT the resulting word may be
constrained by further policies, specified, for example, by security automata [18] or formulae from logics over linear
structures which can be encoded in our higher-order assertion language.

When not considering specific examples, we understand R to represent a fixed, but arbitrary resource algebra, and
identify R with its carrier set.

2.4. Operational semantics

The formal basis of the program logic is a big-step operational semantics that models an (impure) functional
interpretation of Grail. Judgements relate expressions e to environments E € &, initial and final heaps i, A’ € H,
result values v € V and costs p € R. Environments are maps from variables to values; we write E (x) for the value
bound to x in E. Heaps consist of two components, an object heap and a class heap. The object heap is a finite map of
type L —5in C x (T —fn V), i.e. an object consists of a class name and a field table. The class heap stores the content
of static fields and is represented by a map C —f, 7 —f,; V. The following operations are used for heaps:

h(l).t field lookup of value at ¢ in object at /,
hll.t = v] field update of t with v at [,

h(c).t lookup for static field ¢ in class c,
hlc.t — V] update of static field ¢ in class c,

h(l) class name of object at /,

dom h domain of the heap 4,

freshloc(h) a location [ chosen so that [ ¢ dom h.

A judgement E + h,e || h',v, p reads “in variable environment E and initial heap &, code e evaluates to the
value v, yielding the heap 4’ and consuming p resources”. The rules defining our semantics are formulated relative

4 The definition of the predicate 1 [=ig(n, x) E(x) is given later, in Section 3.5.2.
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to a fixed program P, whose components are accessed in the rules for functional calls and method invocations. The
following rules use further notation which is explained in the commentary below.

NULL n IMM
El—h,nulli}h,nuII,Rnull( ) Ekh,immiuh,i,R”;‘m( )
VAR
Et+ h,varx | h, E{x), R'3" ( )
orim (PRIM)
Eth,primopxy | h,op (E{x)) (E(y)), R opxy
E{x) = Refl E{x) = Refl
= w57 (GETE) - s (UTE)
Evh,xty h, h(l).t, RE, E & h xt=y | hll.t > E()], L RPT)
(GETS) (PUTS)
Evh.cotlh hc).r, REE Ebh,cor=yl hlet E{)], L, RPE,
| = freshloc(h) ( )
—_—— NEW
E '+ honewc [t ==x]4 hll— (c, {t; == E(x))}], Refl, R*¥
E(xy=true EFh,e1 |y hi,v,p
: = (IFTRUE)
E - h,if x thenej elseer | hy, v, R*.(p)
E{(x)y=false Erh,eyl hi,v,p
- F (IFFALSE)
E - h,if x then ey elseer | hy, v, R*L(p)
Erheryh,w,p w#L Ex:=w)khy,ex | ha,v,q (LET)
EFh,letx=e;iney || ho, v, Rlit(p, q)
Erhyeiyh, Lp ErFhiexl hav,g (COMP)
Eth e ;e hyv, R (p, q)
EtFh, bodyf U hi,v,p (CALL)
Eth,callf | hy,v, RC;ll(p)
Env(self :: pars, . null :: @, E) = h, body,. , | h1, v, p (SINV)
E+ h,cm@ U hi, v, R _(p)
E{(x) =Refl h()=c¢ Env(self : pars.,,x:a, E)& h,body,,, | hi,v, p
: J (VINV)

Eth,x-m@ | hy, v, R™% (p)
The first nine rules are rather straightforward — the costs are simply obtained by applying the corresponding
components of the resource algebra to the syntactic components of the operation in question. In rules PUTF and PUTS,
the return values are set to L, in accordance with the fact that the corresponding virtual machine codes do not leave a
value on the operand stack. In the rule NEW, the allocated object is initialized by assigning the content of variable x;
to field ¢;, for all fields.
The two rules for conditionals contain no surprises either — the resources consumed during the execution of the
respective branch are promoted to the conclusion, adjusted by the operation Rifc. Similarly, the rules for program
composition, LET and COMP, combine the costs of the constituent expressions. The notation E(x := w) denotes
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environment update. The reason why we do not define COMP in terms of LET lies in the different resource consumption
of the two constructors.

In the rules CALL, SINV and VINV, the function and method bodies, and the method parameters, are retrieved from
the (implicit) program P. As discussed earlier, function calls occur in tail position and correspond to jump instructions,
hence the body is executed in the same environment. The costs of the function call are taken into account at the end of
the execution. In contrast, method calls can occur in non-tail positions, hence the rules for static and virtual method
invocations execute the method body in an unaltered heap, but in an environment that represents a new frame. The
semantic function Env(X, a, E) constructs a fresh environment that maps parameter x; to the result of evaluating a; in
environment E, i.e. to E(x) if a; is a variable x and to the explicit reference or integer value otherwise. The content
of the self variable is set to the location of the invoking object in the case of rule VINV, and to the null value in rule
SINV.

3. Program logic for partial correctness

The basis for reasoning and certificate generation is a general-purpose program logic for Grail where assertions are
boolean functions over all semantic components occurring in the operational semantics, i.e. evaluation environments,
pre- and post-heaps, result values, and values from a resource algebra. In this section, we define a logic of
partial correctness (i.e. in particular, non-terminating programs satisfy any assertion), which is complemented by
a termination logic in Section 4.

3.1. Assertions and validity

Deviating from the syntactic separation into pre- and post-conditions typical for Hoare-style and VDM-style
program logics [19,20], a judgement in our logic relates a Grail expression e to a single assertion A

I'>e: A
dependent on a context
F = {(ela Al)’ L) {ei’h Al’l)}

which stores verification assumptions for recursive program structures.

Following the so-called “shallow embedding” style, we encode assertions as predicates in the formal higher-order
meta-logic (i.e. Isabelle/HOL). Assertions range over the components of the operational semantics, namely the input
environment E and initial heap &, and the post heap 4, the result value v, and the resources consumed p. An assertion
A thus belongs to the type

A=E>H—->H—->V—>R—->B

5

where B is the type of booleans. We use the notation of Isabelle/HOL for writing logical connectives and predicates,
in particular, using A-notation to define predicates:

A=)LEhh vp. ---
and curried function application to denote application of predicates to particular semantic values:
A E1 h] h/l V1 pi1.-

In the rules of the logic, the conclusions define assertions which hold for each form of expression, by applying
assertions from the premises to appropriately modified values corresponding to the operational semantics. Axioms
define assertions which are satisfied exactly by the corresponding evaluation in the semantics.

Although this assertion format may be unusual, it has advantages. Compared to program logics with pre- and post-
conditions, a single assertion allows us to simplify the treatment of auxiliary variables: there is no need for special

5 Later on we sometimes use the term “specification” as a synonym for “assertion”, especially when referring to assumptions or assertions used
to define behaviour exactly.
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variables to record parts of the state before execution because the whole pre-state is available to the assertion at the
same time as the post-state. The single assertion format also gives a more elegant rule for composition, without the

modified precondition which is typical for Hoare-style logics. We discuss this further in Section 3.3.
The validity of assertion A for expression e is defined by a partial correctness interpretation: A must be satisfied

for all terminating executions of e.

Definition 2 (Validity). Assertion A is valid for e, written = e : A, if

EFh,el h,v,p impliecsAEhh vp

forall E, h, i/, v, and p.

This definition may be lifted to contexts I" in the obvious way.

Definition 3 (Contextual Validity). Context I' is valid, notation = I, if all pairs (e, A) in [ satisfy &= e : A.
Assertion A is valid for e in context I', written I' =e : A, if = I implies = e : A.

‘We next turn to the description of our proof system and the proof of its soundness and completeness for this notion

of validity.

3.2. Proof system

we consider classes and methods for a fixed program P.

I'null:AEhK vp.h' =h Av=null A p =R

F>immi: AEhh'vp.h' =h Av=i A p=R¥""

I'varx:AEhhvp.h ' =h Av=E{x) A p=R"3"

rim

I'>primopxy: AEhR vp. v=0p E(x) E(y) A h'=h A p=TRpnry

I>xt: Ehh'vp. 3l E(x)=Refl AW =h Av=K{0.c A p=RET

Fexr=y:AEhh'vp.3lL Ex)=Refl A p=RPT A

W=hllt— Ey] Av=_1

ets

I'>cot:AERRvp. ' =h Av=h().t A p=RE,

uts

I'>cot:=y: AEhWvp.h =hlct— EM] Av=1LA p:RPC’,’y

The program logic comprises one rule for each expression form, and two logical rules, VAX and VCONSEQ. Again,

(VNULL)

(VIMM)

(VVAR)

(VPRIM)

(VGETF)

(VPUTF)

(VGETST)

(VPUTST)
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I'>nevc(t; :=x;1: AEhRh vp.3l | =freshloc(h) A p = R ¥ A

CoXyeensXy

W = hil— (. {i = Ex))] A v =Refl

I'>e: A I'>ey: A

I'>if xthenejelseey: AERK vp.Ap’. p=R¥E(p)HA
(E{(x) =true — A1 Ehh vp) A
(E(x) =false —> Ay ER I v p') A
(E{x) =true v E{x) = false)

I'>e : A I'>e: B
I'>letx=ejiney: AEhRR vp.Ipipphiw. AEhhiwp A w# LA
B(E{(x:=w))hih v py A
p =R (p1, p2)

I'>e : A I'>ey: B
I'>ej;ep: AERW vp.Apipohy. AEhhy Lpi A BEh K vpyA
p =R ™ (p1, p2)

I'U{(callf, A)} > bodys : O(A,f)
I'>>callf: A

I'U{(c.m(a), A)} > bodyc)m DA, c,m,a)
I'>cm@a): A

Ve. I'U{(x-m(@), A)} > body, ,, : (A, x, c,m,a)
I'>x-m@): A

(e,A)eF(VAX) I'>e:A YEhRhWvp AEWRRK vp— BEhh vp
I'>e: A I'>e: B

(VCONSEQ)
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(VNEW)

(VIF)

(VLET)

(VCOMP)

(VCALL)

(VSINV)

(VVINV)

The rules for function calls and method invocations make use of the following operators that model the effect of

frame creation and the application of the resource algebra operations:

OA,f) = AEhh’vp.AEhh’v(RC;ll(p))
S(A,c,ma) = AEhh vp.

V E'. E = Env(self :: pars, ,,,null ::@, E') — AE hh'v (RIVS_(p))

c,m,a

U(A,x,c,ma) = LEhh vp.

VE'L (E'(x) =ReflAh(l) =c NE = Env(self : pars,,,.x :: 4, E'))

— AE hh v (R¥EY_(p)).

xX,m,a

The axioms (VNULL to VNEW) directly model the corresponding rules in the operational semantics, with constants
for the resource tuples. The VIF rule uses the appropriate assertion based on the boolean value in the variable x.
Since the evaluation of the branch condition does not modify the heap we only existentially quantify over the cost
component p’. In contrast, rule VLET existentially quantifies over the intermediate result value w, the heap /| resulting
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from evaluating e, and the resources from e and e;. Apart from the absence of environment update, rule VCOMP is
similar to VLET.

The rules for recursive functions and methods generalize Hoare’s original rule for parameter-less recursive proce-
dures, which allows one to prove the body of a procedure satisfying an assertion under the assumption that recursive
calls already satisfy that assertion. In our rules, the explicit context holds the assumptions about recursive invocations,
and we prove a modified assertion for the body which accounts for the change in resources and environment when
entering and exiting the function or procedure. The modifications match the corresponding operational rules CALL,
SINV and VINV. In rule VCALL, the modification @ only affects the resources, as the operational rule CALL leaves
the environment, the heaps, and the result value untouched. In the case of VSINV and VVINV, the construction of a
new frame in the operational rules corresponds to the universal quantification over the environment associated with
the caller, E’, in the definitions of operators @ and ¥. In both cases, the environment associated with the body, E,
arises from this outer environment E’ by the Env(_, _, _) function. Again, the costs of the method call are applied
by requiring that the body satisfies an assertion whose resource component makes A true after the application of the
appropriate operator from R. Recursive calls are proved by projecting from the context using the rule VAX.

The consequence rule, VCONSEQ, derives an assertion B that follows by implication from another assertion A in
the metalogic Isabelle/HOL,; this is the place where all logical and arithmetic reasoning enters the system.

The rules for program composition, VLET and VCOMP, compose two assertions satisfied by the subexpressions.
The composed assertion is formed by existential quantification over the intermediate state, and connecting it to the
post state. The design issues behind these rules are discussed further next.

3.3. Discussion

In Hoare-style program logics, the purpose of auxiliary variables is to link pre- and post-conditions by “freezing”
the values of (program or other) variables in the initial state, so that they can be referred to in the post-condition.
Formally, auxiliary variables need to be universally quantified in the interpretation of judgements in order to treat
variables of arbitrary domain, and their interaction with the rule of consequence. This quantification may either
happen explicitly at the object level or implicitly, where pre- and post-condition are predicates over pairs of states
and the domain of auxiliary variables. Kleymann [21] showed that by instantiating the domain of auxiliary variables
to the category of states one may embed VDM-style program logics in Hoare-style logics. In particular, VDM’s
characteristic feature that allows the initial values of program variables to be referred to in the post-condition was
modelled by giving both assertion components different types: preconditions are predicates on (initial) states while
post-conditions are binary relations on states.

Kleymann’s proposal to instantiate the domain of auxiliary variables to states also allows one to employ further
quantification in the definition of assertions. Such additional quantification typically ranges over semantic entities
rather than program variables. As an example, consider an object-orientated language of terminating commands c,
and a predicate classOf (s, x, A) that is satisfied if the object pointed to by variable x in state s is of class A. A
Kleymann-style judgement

AZs. Z=s}{AZt.VA. classOf (Z,x, A) — classOf (t, x, A)} @))

states that the class of object x remains unaffected by program c, with quantification occurring inside the post-
condition. This idiom is preferable to the alternative where the domain of auxiliary variables is chosen to be the
category of class names:

{A As. classOf (s, x, A)}c{\ A t. classOf (¢, x, A)}. )

Although this format appears simpler than the first, it has the disadvantage that the type of assertions conceptually
depends on the property one wishes to prove — an immediate obstacle to a compositionality if other program
fragments require different instantiations.

Our rules combine pre- and post-conditions and enforce Kleymann’s discipline. Were we to adapt our assertion
format to an imperative language, the above property would be expressed as:

I'>c:Ast.YA. classOf (s, x, A) — classOf (¢, x, A),

which uses the same inner quantification as (1) but avoids the auxiliary variable Z, similarly to a formulation in VDM.
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Obviously, since there are no auxiliary variables used in our assertion format, there is no need in our proof system
for rules that introduce or eliminate quantifiers over these variables (as are used elsewhere, e.g. [22]). The formal
completeness result to follow establishes that the present system suffices for deriving arbitrary valid statements, so
we are clearly expressive enough. And pragmatically, a proof system that is mostly syntax-directed supports the
automated generation of verification conditions better than a system with rules for introducing auxiliary variables at
arbitrary points.°

Another difference to Hoare’s calculus occurs in VLET. This rule combines rules for variable assignment and
sequential program composition (the latter one corresponding more closely to rule VCOMP), motivated by the syntactic
structure of Grail and its environment-based operational semantics. In contrast to Hoare’s assignment rule

{Ale/x]}x = e{A}
Our rule VLET does not involve any syntactic manipulation of formulae. Instead, the update of the environment (in an
imperative setting: the assignment to the store) is modelled in exactly the same way as in the operational semantics,
avoiding the (at first sight) counter-intuitive syntactic substitution in Hoare’s rule.

Our composition rules admit traversals in a forward direction, combining arbitrary assertions for subexpressions.

In contrast, in Hoare’s rule for program composition

{A}el{B} {B}c2{C}

{A}er; e2{C}

one must find a common intermediate assertion, perhaps using consequence; instead, we quantify only over interme-
diate states within a compound assertion. Again, our rule is more closely related to the corresponding rule in VDM:

{A}eir{rst. Bt AC st} {B}cy{D}

{Ajer; e2{D o C}

which uses relational composition to combine post conditions.

)

3.4. Admissible rules

In addition to the proof rules given Section 3.2, we need some rules to simplify reasoning about concrete programs,
and some others to help establish completeness. All of these rules involve the context of assumptions.

First, we introduce the concept of specification tables. These associate an assertion to each function name or
method invocation.

Definition 4. A specification table ST consists of functions of type ¥ — A, C - M — args — A, and
X - M — args — A, where args is the type of argument lists. We write ST(f), ST (c, m, a) and ST (x, m, a)
for the respective access operations.

The additional rules are as follows:

I'>e: A
_ (VWEAK)

F''UAp>e: A

I'>e:A VdB.d,B)el — A>d:B

(VCTXT)

Ap>e: A

{d,B)}ul'>e: A I'>d:B

(vecur)

I'>e: A

I'=ST (e,A) el

(MUTREC)

hr>e: A

6N onetheless, it is still desirable to make use of some richer admissible rules to help build up proofs for complete programs; these are introduced
in Section 3.4.
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I' =8T (c.m(@),ST(c,m,a)) eI’
@ > c.m(b) : ST(c, m, b)

(ADAPTS)

I'=ST (x-m@),ST(x,m,a)) el
@r>y-mb): ST(y, m,b)

(ADAPTV)

The first two rules, VWEAK and VCTXT, are proven by an induction on the derivation of I' &> e : A. The further cut
rule, VCUT, follows easily from VCTXT. The cut rules eliminate the need for introducing a second form of judgement
used previously in the literature (e.g., [23]) when establishing soundness of the rule MUTREC for mutually recursive
program fragments. This proof will now be outlined. Contexts whose entries arise uniformly from specification tables
are of particular interest.

Definition 5. The context I" respects specification table ST, notation I |= ST, if all (e, A) € I satisfy one of the
three following conditions

e (e, A) = (call f, ST(f)) for some f with I" > body; : O(ST(f), f)
e (¢, A) = (c.m(@), ST(c, m, @)) for some ¢, m and @, and all b satisfy

I'> bodyc,’m : (ST (c, m, E), c,m, B),
e (e, A) = (x-m(a), ST (x, m, a)) for some x, m and @, and all c, y, and b satisfy
I'>body,.,, : U(ST(y,m,b),y, c,m,b).

Here, the operators @, @, and ¥ are those defined in Section 3.2. Using rule VCUT, is not difficult to prove that this
property is closed under subcontexts.

Lemma 6. If (e, A) U ' = ST then I' |= ST.

Based on Lemma 6, rule MUTREC can be proved by induction on the size of I". Notice that the conclusion relates e to
A in the empty proof context — and thus, by rule VWEAK, in any context.

The remaining admissible rules ADAPTS and ADAPTV amount to variations of MUTREC for method invocations.
In these rules, the expression in the conclusion may differ (be adapted) from the expression stored in the context,
as long as this difference occurs only in the method arguments (including the object on which a virtual method is
invoked) and is reflected in the assertions. In Hoare logics, the adaptation of method specifications is related to the
adaptation of auxiliary variables, a historically tricky issue in the formal understandings of program logics [24,23,
21]. For example, Nipkow [23] adapts auxiliary variables in the rule of consequence; this allows him to adapt them
also when accessing method specifications from contexts. In addition to admitting such an adaptation using universal
quantification in the definition of method specifications (see the discussion in the previous section), our rules also
allow differences in syntactic components, namely the method arguments.

In order to show ADAPTS sound, we first prove

Lemma 7. If I' = ST and (c.m(a), ST(c, m,a)) € I then I' \ (c.m(a), ST(c, m, a)) > c.m(E) :ST(c, m, E)

using rule VvCUT. The conclusion in this lemma already involves method arguments, namely b, that may be different
from the arguments used in the context a. From this, rule ADAPTS follows by repeated application of Lemma 6. The
proof of rule ADAPTYV is similar.

3.5. Verification examples

Before treating the metalogical issues of soundness and completeness, we describe a number of verification
examples that we have carried out using our implementation of the program logic in Isabelle/HOL. These examples
show how to use the argument adaptation rules for method invocations, and how to specify and verify properties of
resource consumption using resource algebras. All proofs follow a similar strategy which we outline first.
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3.5.1. Proof strategy
We will always aim to verify that some methods’ ¢j.my, ..., cy.m, with bodies eq, ..., ey, respectively, satisfy
their specifications in S7, i.e. that

@ > ci.m;(a;) : ST(c;, m;, a;) 3)

holds for each i and arbitrary @;. In each case, the proof consists of defining a single context I" that contains entries
for all methods ¢;.m; and satisfies I' = ST, and then applying rule ADAPTS separately for each i. A suitable context
is one that contains

e at least all entries (c.m(a), ST (c, m, a)) where c.m(a) occurs in at least one body e; (we may discard the entries for
methods that have been verified previously), and
e at least one entry (c;.m;(a;), ST(c;, m;, a;)) foreachi € {1, ..., n}, where the @; are distinct meta-variables.

In order to establish I" = ST, we then prove
Vb, ' > bodyc’m : (ST (c, m, E), c,m, E)

for each pair (c, m) for which there exists an @ with (c.m(a), ST(c, m, @)) € I'. Here, the operator @ is the one defined
in Section 3.2. In the proofs of these lemmas, all method invocations for which there is an entry in I" are verified
using the axiom rule VAX, while invocations of methods for which property (3) has been established previously are
discharged by rule VWEAK. Together, these lemmas yield a verification of I" = ST in which each method body has
been verified only once.

3.5.2. Datatype representation predicates

To verify code resulting from compiling algebraic datatypes, we employ representation predicates which describe
when a JVM (reference) value represents a member of the abstract type. For the verification examples we discuss
in the present paper, “lightweight” predicates will suffice, only specifying the size of a value and the heap region it
inhabits, but not the abstract value itself. The definition of these predicates reflects the layout chosen by our compiler
and models representations without internal sharing. For example, consider the type of integer lists, and the layout
for such lists given in Section 2. The corresponding representation predicate 4 =iz (», x) v mandates that the heap h
contains a well laid-out (non-overlapping) list of length n starting at value v and occupying locations X:

h(l) = LIST I¢ X
h(l) = LIST h(l)TAG =1 /’l(l)TAG =2 h '=list(n,X) h(l)TL

h Eiisio, 1y Refl h Eilistn+1,x0py) Refl

3.5.3. Append

Our first example is for the method LIST.append depicted in Fig. 1. The program proceeds by induction on the first
argument, but modifies only the second argument. It also allocates fresh memory when constructing the result. The
result overlaps only with the second argument, and the content of all locations in the initial heap remains unchanged.
Formally, this understanding may be expressed by the specification table entry

ST(LIST, append, a) =

AERR vp.YY nm.
(3 X xy.a=[var x,var y] A h Ejisn,x) EX) A1 Ejigm,y) EQ) AXNY =0)
— 3Z. W Fiisttntm,z) VA ZNdomh =Y ANh =gomp h).

It asserts that the result v represents a list of length n 4 m in the final heap, provided that the arguments represent
non-overlapping lists of length n and m in the initial heap, respectively. Furthermore, the specification guarantees that
the region inhabited by the result may at most overlap with the region inhabited by the second argument, and that the

7 To simplify the explanation, we outline the verification strategy only for static methods.
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content of all locations present in the initial heap remains unchanged. The last two conditions restrict which locations
may be affected by the execution of the program and are necessary for a modular verification.
We verify that

Va. @ > LIST.append(a) : ST(LIST, append, a) 4

holds following the strategy outlined above.
In the first step, a suitable context is given by

T'append = {(LIST.append([var t, var |,]), ST(LIST, append, [var t, var |>]))},

since the only invocation in the body of append is LIST.append([var t, var I,]). The second step consists of proving
the lemma

Vb. I'append ™ body| ST append : (ST(LIST, append, b), LIST, append, b). 5)

This is achieved by automatically applying the syntax-directed proof rules and using rule VAX at the invocation of
LIST.append([var t, var I,]). Two verification conditions remain, one for each outcome of the conditional. The
condition for Nil is

ledomh A h(l)TAG =1A E’(x) =Ref IAh ':lixt(N,X) Ref I A
E'(y)=Reflhb Ah Flist(M,Y) Ref hbAXNY =0
—> 3 Z. h Eig(vn+M,72) Ref bAZNdomh=Y.

Note that all datatype predicates refer to 4 as no heap modification is performed by the program. It is easy to see
that h(1).TAG = 1 A h =jigv,x) Ref limplies N = 0 and X = {I}, so the goal follows by instantiating Z to Y. In
the verification condition for the Cons-case, we let the predicate A(h, [, I», r, h1) abbreviate

YVNMLXY.
(h(l).TL = Ref LhAh ':lixt(N,X) Ref 1 ANh 'Z[l‘st(M’Y) Ref bAXNY = @)
— @V I.r=Refl Al Flist(N+M, V) Refl! AVNdomh=Y Ah=g4omnhi))"

This term represents the induction hypothesis, i.e. the specification of the recursive call to append. The verification
condition may then be written as

ledomh A h(l)TAG =2A E/()C) =ReflAh |:List(N,X) Refl A
E/<y) =Reflhb AR ':List(M,Y) RefbAXNY =0 A Ah, L, 1, r, hy)
— 3 Z. I ELisw+m,z) Ref freshloc(dom h\) NZNdomh =Y Ah =gomp I.

From A(1). TAG = 2 we obtain that there are K, I3 and U such that N = K + 1, h(l).TL = Refl3, U U {l3} = X,
I3 ¢ U and h Erisk.uy Reflz. We can thus apply the induction hypothesis, instantiating N with K and X with U
and obtain iy Egv+m,v) Refl', ZNdom h =Y and h =g4op j, ) for some V and /. The right-hand side of the
verification condition may then be proven by instantiating Z by V U freshloc(dom hy).

The proof of the verification conditions involves instantiation of quantifiers, plus elimination, introduction and
preservation lemmas for datatype predicates such as

(h Elissn.x)y v AR =x h') — h' Ejisin, x) v

which are themselves proved by induction on & |=jis (s, x) v. (In the absence of automatically derived predicates and
lemmas for datatype definitions, the proof of our verification conditions relies on manual proof of required properties
for a fixed set of datatypes.)

As explained in the general description of our verification approach, the result (5) now immediately yields
I'append = ST and the correctness statement (4) follows using rule ADAPTS.

The specification of append may be refined to include quantitative aspects using appropriate resource algebras. For
example, we can verify that all four metrics that make up R Count depend linearly on the length of the list represented
by the first argument, and so does the memory consumption. To this end we consider a modified specification
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method LIST TREE flatten(t) = call f
[f +— 1lettg=t.TAG in let b=iszero tg in
if b then call fj else call fi
foo — 1leti=t.CONT inlettg=imm 1 in
let t=new LIST [TAG :=1g] in let tg=imm 2 in
new LIST [TAG :=1tg; HD :=i; TL :=1]
fi — let|=tLEFT in let r=1.RIGHT in let |=TREE.flatten(var|) in
let r=TREE. flatten(var r) in LIST.append([var |, var t])

Fig. 3. Code of method flatten.

which imposes linear constraints on these costs using symbolic factors AppTimeF, ..., AppHeapF and constants
AppTimeC, ..., AppHeapC.

ST(LIST, append,a) = AEhh'v p.
dXxy. a=|[varx,vary| Ah Eigm x) E(x) A
h Elissm,y) EQ) A XNY =0
3Z. N Eistoamzy v A ZNdomh =Y AN h =gomp B’ A
p={( (AppTimeF % n 4 AppTimeC)
(AppCallF x n + AppCallC)
(AppInvF * n + AppInvC)
(AppStackF % n + AppStackC) ) A
|domh'| = |dom h| + AppHeapF * n + AppHeapC

VY nm.

Following the same verification process as before, we obtain verification conditions that, in addition to the
assertions discussed above, include recurrence relations over the symbolic terms. The following numbers were
obtained by solving these constraints manually

AppTimeF | 35 | AppTimeC | 14
AppCallF | 2 | AppCallC 1
AppInvF 1 ApplnvC 1
AppStackF | 1 | AppStackC | 1
AppHeapF | 1 | AppHeapC | 0

and indeed these values allow one to complete the formal proof.

3.5.4. Flatten

To continue with another example program, Fig. 3 shows the definition of a method that flattens a binary tree into
a list. The code was obtained by pretty-printing the output of our compiler for a Camelot file that extends the earlier
code for append by

type itree = Leaf of int | Node of itree * itree

let flatten t = match t with
Leaf (i) => Cons(i,Nil)
| Node(l,r) => append (flatten 1) (flatten r).

Trees are laid out in memory as objects of class TREE, where leafs (TAG = 0) contain a field CONT and nodes
(TAG # 0) contain subtrees LEFT and RIGHT.
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Similarly to the previous example, we define a specification table entry for flatten,

ST(TREE, flatten,a) = A Eh h' v p.
Vnx. AX.a=[varx] A h Eyeen,x) E{x)) —
3z h |=list(2”,Z) v A ZNdomh=0 N h=gomn /’l/)

which universally quantifies over the argument name x. It asserts that the result v represents a list of length 2" in the
final heap, provided that the argument represents a balanced binary tree of height » in the initial heap. Moreover, the
region inhabited by the result, Z, does not overlap with % (i.e. the list is represented in freshly allocated memory),
and the content of all locations in dom h remains unchanged. The datatype representation predicate 2 =gee(n, x) U is
defined in a similar way to the list predicate & =is(n, x) v, namely:

h(l) = TREE l¢ LUR

h().TAG # 0 h Eireen,1) h(D).LEFT

h(l) = TREE h().TAG =0 LNR=40 h Etreen, ) h().RIGHT
h Etree(o,1y) Refl h Etreetn+1,Luruiry Refl

Once more, following the prescribed verification strategy, we prove
Va. ¢ > TREE.flatten(a) : ST(TREE, flatten, a). (6)

The context defined in the first step may be chosen as

r _ | (TREE flatten([var v»]), ST(TREE, flatten, [var v])),
flatten = | (TREE.flatten([var v3]), ST(TREE, flatten, [var v3]))

since the method append has already been verified.
In the verification of

Vb. Iatten > bodyTREE fiatten : P(ST(TREE, flatten, b), TREE, flatten, b), @)

the two invocations of flatten are discharged by rule VAX, while the invocation of append is discharged by appealing
to property (4) using VWEAK. Once more, the proofs of the verification conditions involve case analysis on the
datatype representation predicates, the instantiation of quantifiers, and the application of datatype preservation lemmas
for trees and lists. The preconditions of the latter are satisfied thanks to the separation conditions in the specifications
of append and flatten.

Similarly to the verification of append, we obtain [fagen = ST from the result (7), and the correctness of flatten,
i.e property (6), follows using rule ADAPTS.

To verify resource consumption for this method using RC°UM, we observe that the costs of flatten depend on those
of append, plus the costs of two recursive invocations of flatten on subtrees. The resulting recurrences for the four
additive metrics follow a uniform pattern FiCost of type (N = N) = N = N = N = N, defined by

FlCost app base step O = base
FlICost app base step (Suc n) = step + app(2") + 2 x (FICost app base step n).

This functional describes how the costs of flattening a tree depend on the height n and the costs of append. The
costs of flattening a tree of height zero are given by the parameter base. The costs of flattening a tree of height n + 1
are given by the costs of two flattening of a tree of height n, the costs of one invocation of append on a list of length
2", and the costs resulting from the remaining instructions in the loop body (parameter step). Note that this pattern is
modular in the costs of append.

The costs with respect to the four additive metrics may now be obtained by instantiating FICost with the appropriate
parameters. The parameters base and step are specific for the implementation of flatten and were once again obtained
experimentally. The append-specific costs are given by the linear terms proven earlier, using the factors and constants
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method BOOL EO.even(x) = 1letb=iszeroXxinletXx=Xx—11in

if b then imm true else EO.odd([var X])
method BOOL EQ.odd(y) = 1letb=iszeroyinlety=y—11in

if b then imm false else EO.even([var y])

Fig. 4. Code of methods even and odd.

AppTimeF, ..., AppHeapC, although the costs for a different implementation of append could be substituted easily.

FlTime n = FlCost (An.AppTimeF * n + AppTimeC) 38 22 n
FlCall n = FlCost (An.AppCallF * n + AppCallC) 22 n
Fllnv n = FlCost (An.AppInvF x n + ApplnvC) 1 1 n
FlHeap n = FlCost (An.AppHeapF * n + AppHeapC) 2 0 n.

The recurrence equation for the frame stack height is given by

FiStack 0 =1
FiStack (Sucn) =1 + max(FIStack n,2" +1).

The verification of the extended specification

ST(TREE, flatten,a) = AE h i v p.
Vnx. 3X.a=[var x] A h Eqyeen,x) E{x) —
1z. K Fiston,zy v A ZNdomh =0 N h =gomh h A
p = ((FlTime n) (FICall n) (Fllnv n) (FiStack n)) A
|domh'| = |dom h| + FlHeap n

again proceeds following the same structure as for the simpler specification (6). As expected, unfolding the recurrence
equations leads to functions of exponential growth, since the index # in the predicate & |=se(n, x) v denotes the height
of the tree.

3.5.5. Even/odd

As a third example, we verify that a run of the mutually recursive methods even and odd (code in Fig. 4) exhibits
the expected alternation of method invocations. This demonstrates that our rule MUTREC indeed works for mutually
recursive methods, and also shows how we may use resource algebras for reasoning about execution traces. In
particular, we consider the resource algebra R'™ T that collects the static method invocations in execution order.
We first define the auxiliary functions fgyen, foaqd : N — expr that calculate the list of invocations occurring inside a
method call, relative to a given input.

vaen 0= [ ]
SEven Sucn) = if (3 k.Sucn =2 xk) then (fgyen n) @ [EO.even([var y])]
else (feyen n) @ [EO.0dd([var x])]

foda 0 =11
fodd Sucn) = if Fk.Sucn =2 xk) then (foqq n) @ [EO.odd([var x])]
else (foqa n) @ [EO.even([var y])].

Next, the specification table entries for even and odd are defined. The specifications
ST(EO,even,a) = AEhh v p.
Yw. (@a=][var w] A E{w) >0) — (
ST(EO,odd,a) = LAEhh v p.
Yw. (a=[var w] A E{w) >0) — (

v =is_even(E(w)) A
p = EO.even([var w]) :: (feven(E(w)))

v = is_odd(E{w)) A )
p = EOQ.odd([var w]) :: (foqa(E(w)))
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f +— letn=n+linlet/=newLIST[HD := F(n,[),TL:=1[]in
C.M(var n,varl) ; let b=if n < 42 then imm true else imm false in
if b then call f else var/

Fig. 5. A loop repeatedly invoking method C.M.

constrain the form of input arguments, prefix the outermost call to the list of internal invocations, and specify the
result using the semantic functions

is_.even v = if (An. v =2x%n) then true else false

is.odd v =if(In. v =2*n) then false else true.

The context I'gg contains one entry for each method:

Tem — (EO.even([var y]), ST(EO, even, [var y])),
EO = 1 (EO.odd([var X]), ST(EO, odd, [var X]))

The verification of I'eg = ST unfolds each method body once, resolving the invocation of the opposite method by
rule VAX. We thus obtain

¥ > EO.even([var z]) : ST(EO, even, [var z])
and
¢ > EO.odd([var z]) : ST(EO, odd, [var z])
for an arbitrary variable z using rule ADAPTS, and unfolding the definitions of fEye, and fogg yields results such as

@>EQ.even(varz]) :AEhh vp. E{z) =4 —
v = true A
p = [EO.even([var z]), EOQ.odd([var X]),
EO.even([var y]), EOQ.odd([var X]),
EO.even([var y])].

3.5.6. Limits on parameter values

As a final example, we use the resource algebra RPVal o impose limits on the arguments of invocations of a (native)
method. The code fragment in Fig. 5 shows a loop that repeatedly prepends a new element to a list / and then invokes
C.M with /. In each iteration, the first argument, n, is intended to describe an upper bound on the length of /. The
semantic function F is an arbitrary function which constructs a value for the new HD field, maybe depending on the
current counter and tail (this is just suggestive and doesn’t play a role in the example).

A policy that describes the desired relation is

P@ =3xyn R.a=[var x,var y| A h Ejigm,r) E(y) A n < E{x) A E{x) <42.

This expresses that the method must always be invoked on two arguments, the first one being a bound on the length
of the list contained in the second; the list also has a fixed concrete limit on its length.

We can verify that all invocations of C.M arising from a call to f respect the policy, subject to conditions on the
initial state. The verification of this:

fr>callf:AEhh vp. (3mR.h Ejgmr) E{I) A m < E(n)) — p=(E(n) <42)

proceeds very similarly to the proofs described earlier.
3.6. Soundness

In order to prove that each derivable judgement is semantically valid, we first define a relativized notion of validity.
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Definition 8 (Relativized Validity). Specification A is valid for e at depth n, written =, e : A, if
m<n A El—h,ellmh/,v,p) — AEhh/vp.

Here, the judgement E + h,e |, h',v, p refers to an operational semantics that extends the semantics given
in Section 2.4 by an explicit index which models the derivation height. Note that this counter is only used for
metareasoning and is independent from the resources. It is immediate to show the equivalence of the two semantics
and we omit the details.

The counter n in Definition 8§ restricts the set of pre- and post-states for which A has to be fulfilled. It is easy to
show that = e : A is equivalent to Vn. =, e : A, and that relativized validity is downward closed, i.e. that for m < n,
En e: Aimplies =, e: A.

Like unrestricted validity, relativized validity may be generalized to contexts:

Definition 9 (Relativized Context Validity). Context I is valid at depth n, written |=, I, if for all (e, A) € I,
=, e : A holds. Assertion A is valid for e in context I' at depth n, denoted I' =, e : A, if =, I implies
e A.

Using the index and relativized validity, proofs may be carried out by induction on the derivation height of the
operational semantics; related proofs have appeared elsewhere [25,21,26].
In particular, we can prove the following lemma:

Lemma 10. For |=, ' and I' U {call f, A} &> body; : O(A, [), let
Em (I'U{callf, A}) —=m body; : O(A, f)
hold for all m. Then =, call f : A.
Proof. By inductiononn. [
Similar results hold for static and virtual method invocations. From this, the following result may be proved:
Lemmall. [fI'>e: AthenVn.I' Epe: A
Proof. By induction on the derivationof I'>e: A. [
Finally, the soundness statement is obtained from Lemma 11 by unfolding the definitions of (relativized) validity.
Theorem 12 (Soundness). If I'>e: Athen I =e: A.

In particular, an assertion that may be derived using the empty context is valid: # > e : A implies = e : A.
3.7. Completeness

The soundness of a program logic ensures that derivable judgements assert valid statements with respect to
the operational semantics. Soundness is thus paramount to a trustworthy proof-carrying code system. In contrast,
completeness of program logics has hitherto been mostly of metatheoretical interest. For the intended use as the basis
of MRG’s hierarchy of program logics, however, this metatheoretical motivation is complemented by a pragmatic
motivation. The intention of encoding (possibly yet unknown) high-level type systems as systems of derived assertions
requires that any property that (for a given notion of validity) holds for the operational semantics be indeed provable.
Partially, this requirement concerns the expressiveness of the assertion language, which, thanks to our choice of
shallow embedding, is guaranteed, as any HOL-definable predicate may occur in assertions. On the other hand, the
usage of a logically incomplete ambient logic such as HOL renders the program logic immediately incomplete itself,
via the rule of consequence. The by now accepted idea of relative completeness [27] proposes to separate reasoning
about the program logic from issues regarding the logical language. In particular, the side condition of rule VCONSEQ
only needs to hold in the meta-logic, instead of being required to be provable.

In our setting, the role of most general formulae, originally introduced by Gorelick [28] to prove completeness of
recursive programs, is played by strongest specifications. These are those assertions that are satisfied exactly for the
tuples of the operational semantics.
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Definition 13 (Strongest Specification). The strongest specification for e is defined by
SSpec(e) = AEhh'vp.EFh,e | h' v, p.
It is immediate that strongest specifications are valid
= e : SSpec(e)
and imply all other valid specifications:
If =e: AandSSpec(e) ERR vpthen AEhK vp. (8)

The context I's;ong associates to each function label and each method declaration in the global program P its
strongest specification

Vixma.e=x-m(a)

Fstmng = {(6, SSpec(e)) | df.e=callf v Icma.e= c.m(a)} .

By induction on e, we prove:
Lemma 14. For any e, we have Isyong D> € = SSpec(e).
This result can be used to show that I'y,,ne respects the strongest specification table,
ST strong = (A f. SSpec(call f), A ¢ ma. SSpec(c.m(a)), A x m a. SSpec(x - m(a))).
Lemma 15. We have Isyong = ST strong.

The proof of this lemma proceeds by unfolding the definitions, using Lemma 14 in the claims for function calls and
method invocations.
Next, we prove that

Lstrong = ST implies ¥ > e : SSpec(e) 9)

for arbitrary specification table ST, by applying rule VCTXT, where the first premise is discharged by Lemma 14
(i.e. I' is instantiated to I'yong) and the second premise is discharged by rule MUTREC.
Combining property (9) and Lemma 15 yields @ t> e : SSpec(e), from which

Theorem 16 (Completeness). For any e and A, = e : A implies A > e : A.

follows by rule VCONSEQ and property (8).
4. Program logic for termination

So far the program logic developed for Grail has been a logic for partial correctness. In this section we will
develop a program logic for termination, with a judgement >7{P} e |, to be read as “expression e terminates under
precondition P”. In formalizing the concept of a precondition, we adopt the same approach as in the core logic and
use a shallow embedding. Thus, preconditions are predicates over environments and heaps in the metalogic and have
thetype P =€ — H — B.

With this termination logic the total correctness statement that expression e fulfils assertion A and terminates under
precondition P is then the conjunction of statements of these two logics: d > e : A A >7{P}e |. In contrast to
the usual approach of adding the termination-guaranteeing side-conditions directly into the rules for function calls
and method invocations,® our approach has the advantage of being modular: we do not have to modify the underlying
logic for partial correctness at all.

Our goal with this logic is to characterize programs that terminate correctly and therefore we do not distinguish
between different sources of non-termination. We note, however, that most cases of program abortion are already
checked in earlier stages of code-generation, in particular during bytecode verification. Duplicating these checks in

8 One notable exception is [29], where a termination logic is built on top of a Hoare-Logic for a while-language.
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our logic would only obfuscate the rules and run contrary to our design goal of a modular structure. As ongoing further
work we are formalizing a notion of “partial termination” in order to reason about secure behaviour of non-terminating
programs and we elaborate on that in Section 7. To add confidence to the results in this section, we have formalized
the termination logic and its soundness proof in Isabelle/HOL.

In the rules for let and for composition we will need a form of semantic “implication”, relating the pre-condition
P of the construct to the precondition P’ for e, possibly after a value binding to the variable x. We express this as an
assertion in the partial correctness logic and define the following combinator.

Definition 17. A pre-condition implication of two assertions P, P’ with a binding to variable x, written P — (.=
P’, is defined as follows:

AERW vp.PEh — @i.v=i A P E{x:=i)h)).

Recall that the operation E(x := i) performs an update of the variable x by the value i. A similar combinator — (.,
expresses a precondition implication without value-binding.

4.1. Proof system

We now introduce the proof system for termination which defines the judgement >7{P} e |. While the core logic
uses contexts to collect assumptions on methods and functions, we rely here on metalevel implication for this purpose:
to prove that a call f terminates for all inputs one must exhibit a measure function and prove for all » that the body
of f terminates for inputs of measure up to n assuming that calls to f terminates for inputs of measure less than n.
Unlike the partial case such a rule can be justified by metalevel induction on the termination measure.

Note that a similar use of metalevel implication would be unsound for partial correctness. For each function (or
method) f it trivially holds that either f satisfies the partial correctness assertion ¢ or else it is the case that its body
satisfies it, assuming that any call to f satisfies ¢ by “ex falso quodlibet”. Thus, in the partial correctness case the
access to assumptions about calls must be suitably restricted (e.g. using contexts) so as to rule out metalevel case
distinctions as above, whereas no such restriction is necessary for termination logic due to the outside quantification
over the measure.

Thus, we can use a shallow encoding of object-logic contexts, or, in other terms, a form of hypothetical-parametrical
judgements as in type theory, where the meta-logic context encodes the object one. The drawback is that termination
does not have an induction principle, but the encoding abstracts from explicit context management operations such as
axiomatic lookup or weakening, which are delegated to the metalogic.

4.2. Rules

VEh.P'Eh — PEh 1©>7{P}e |

P e | (TCONSEQ)
_ (TNULL) _ (TIMmMm)
>7{P}null | >7{P}immi |
R — (TVAR) (TPRIM)
>r{P}varx | >r{P}primopxy |
VEh.P Eh — E{x) # null VEh.PEh — E(x)# null
(TGETF) (TPUTF)
>r{P}x.t | >r{P}x.t:=y |
- (TGETS) (TPUTS)
>r{P}lcot | >r{P}lcot=y |
(TNEW)

>r{P}newc[t;i :==x;] |
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ST{AEh.PEh N E(x) =true}e; | Dr{AEh.PEh N E{x)=1false}e, |
VEh.PEh — E{x) € {true, false}

(TIF)
>7{P} if x thenej elseey |
>r{P}e >r{P'}e >ep: P —> .y P’
r{P}ler | r{P'}e | 1 (=) (TComP)
>r{Pler;er |
>r{P}e >r{P'}e >ep: P — ey P’
r{P}er | r{P'}er | 1 (xi=) (TLET)
>7{P}letx=e| iney |
Vo. >r{AEh.3m.m <n A Pm E h}callf | —> >r{P n}body, |
(TCALL)
>r{AE h.3n. Pn E h}callf |
Va. >r{AEh.I3m.m <n N Pm E h}cm(@) | —
>r{AE h.3E’. E = Env(self ::pars.,,null ::a, E'Y A Pn E' h) bod
T{ ( parse m - ) } Ye,m l« (TSINV)
>7T{AE h.3n. Pn E h} c.m(a) |
Vo. >r{AEh.d3ml.m <n AN E(x)=Refl A h() =c A PmE h}x-m(a) | —
>7{AE h.3E’'. E = Env(self :: pars, ,,x::da, E') A Pn E’ h}bod
T{ ( parse m ) } Ye,m i« (TINV)

Sr{AEh.3Gnl. E{(x)=Refl A h() =c A PnE h}x-m(a) |

The TCONSEQ rule allows us to weaken the precondition P’ to P if it is a logical consequence of P’. For the
leave cases the only possibility of non-termination is a null-reference in a get- or put-field operation. The operational
semantics gets stuck in this case. The conditional rule, TIF, requires termination of both branches under the added
knowledge of the value of the boolean header. In the rules for composition, TCOMP and for let, TLET, we use a side
condition in the partial correctness logic to establish a link between the overall precondition P and the precondition
P’ before the second subexpression.

To deal with recursion, the rules TCALL, TSINV and TINV use a well-founded relation < and require that
termination of the body must be provable, assuming termination of a Call (or Invoke) for an arbitrary, smaller
measure, i.e. for m < n. Note that any well-founded ordering can be used in these rules. It is also worth noting
that this formalization, with an inner existential quantifier in the precondition, is easier to apply than the version that
uses an outer universal quantification over m, since the value binding is deferred until the precondition is exposed
in the proof. As usual for such measures, the variable n is existentially quantified in the conclusions of the TCALL,
TSINV and TINV rules, since it captures the value of the measure at the particular call point. The rules for static
and dynamic method invocation account for the modification of the environment, by applying the Env operator to the
outer environment E’. The TINV rule contains another clause in its precondition, stating that the variable x points to
an instance of class c.

4.3. Soundness

We now define the notion of termination semantically as follows:

Definition 18 (7Termination). The expression e terminates under the pre-condition P, written =1 {P} e |, iff for all
environments E and heaps &

PEh — 3 vp. E-h,el W, v, p.

To spell it out, a Grail expression e terminates under a precondition P, if for all states, i.e. environments E and
heaps h that fulfil P, a final state comprised of heap 4’, value v and resources p exists in the operational semantics.

We now prove that the rules for the proof system in Section 4.2 are sound w.r.t. this definition of termination, i.e.
we will prove them as lemmas on the semantic definition of termination.

Theorem 19 (TSoundness). The relation =71 {P} e | is closed under the proof rules for >7{P} e | in Section 4.2.
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Proof. By cases on e: the leaf cases are straightforward. In the TCOMP and TLET cases, soundness of the
partial correctness logic is used to propagate the precondition P through the let header. Likewise for the header
in the conditional. The TCALL, TSINV and TINV cases are proven by well-founded induction of the predicate
AMNEhPnER — @Wvp. E - h, e | W, v,p)overn, where ¢ is call f, c.m(a), or x - m(a),
respectively. [

4.4. Completeness

In this section we present a proof of completeness for the termination logic. In the proof we only cover functions,
but the extension to methods can use the same techniques for a suitably modified definition of the predicate /Hy used
below. Note that we instantiate the well founded relation < to “strictly less” on the naturals numbers. The overall
structure of the completeness proof is as follows: as most general formulae we use pairs of expression e and its
weakest precondition wp e. Thanks to the consequence rule it suffices to show >7{wp e} e |. We reduce this to a
proof of Lemma 24, which augments the weakest precondition with a descending chain of naturals; this lemma can
be proven by induction over the chain.

Definition 20. The weakest precondition of an expression e, written wp e, and the bounded weakest precondition of
an expression e for n € N, written wp’ e n, are defined as follows:
wpe=AEh.3m. AW vp. E-helnh',v,p (10)
wpen=AEh.3m<n.3Wvp. EFh,el,h, v, p. (11

The index m in the operational semantic judgement refers to the height of the derivation, as in Definition 8. It is easy
to show that e terminates under pre-condition wp e, i.e. =7 {wp e} e |, and that it is the weakest such precondition,
ie.=r {P}le|— VEh.PEh — wpe E h.

In the proof of completeness we use a variant of the call rule that uses an explicit base case rather than a course-
of-values induction principle. This rule follows directly from TCALL and it goes back to Sokotowski [30].

VEh—POEh
Vn.>r {Pn}callf |— 7 {P (n+ D}body, | °

Sr{AEh.In. Pn Eh}callf |

(TCALL)

The completeness theorem establishes the fact that if =7 {P}e | holds, then this can be proven using the proof
rules for >>7 alone. This is established by reducing it to a proof of >7{wp e} e | (see Lemma 25), and this lemma
is in turn reduced to a proof of the following predicate IHy, for all k (see Lemma 24). In defining I H; we assume,
without loss of generality, that the function names are enumerated as fi, ..., fy. For the proof it turns out to be
crucial to include the decreasing list of measures n ; for the functions f; in the preconditions of the function calls and
of expression e.

Definition 21. For expressione, k, M e N,k < M, ny,...,nx € N, let

IHy = (V1<i<k or{wp' (call fij)ni AVI<j<in;>njy}call fi |) —
Sr{wp eny AV <j<k.nj>njqi}e |.
We will now prove, by induction over M — k, that IH; holds for all k. The following lemma will be used to prove

the base case, i.e. IH )y, and Lemma 23 will be used to prove the induction step.
Lemma 22. For all expressions e, ny,...,ny €N,

V1<i<M. >rf{wp (call fiyn; AVl <j<i.nj>njii}call f; |) —

Sriwp’eny AVI<j<Mnj>njii}e |.
Proof. By structural induction over e. For all non-call cases, apply the syntax-orientated rule, then for each
subexpression TCONSEQ, monotonicity of the bounded weakest precondition, and then the induction hypothesis.

The call case follows directly via TCONSEQ, monotonicity of the bounded weakest precondition and monotonicity of
the > chain. [
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The following lemma allows us to add information about the function fiy| into the metacontext. This will be
used to discharge the implication in /Hj in the proof of the induction step (see Lemma 24). Note that this step
corresponds to the cut rule on an explicit context, which was used in the proof for completeness of the core partial
correctness logic.

Lemma 23. Forallny, ..., ngs1 €N, if IHpy then

V1<i<k r{wp (call fi))ni AVI<j<inj>nju}call fi |) —
Dri{wp’ (call fip1) mgy1 A VI <j <k+1.nj>njp}call fipr .

Proof. We first use TCONSEQ then TCALL’. This leaves the following to prove:
Sr{wp’ (call fit1) (k1 +1) A VI <j<k+1. nj=njy+1j bOdyfk+1 b

assuming >7{wp’ (call fi+1) ng+1 A V1 < j < k+1. nj > njy1} call fryr |. This follows via TCONSEQ,
using the equality wp' (body;) n E h = wp’ (call f) (n + 1) E h and monotonicity of the > chain from
>7{wp’ (bodyys ., ) i1 AV < j<k+1.nj=njpi}bodyy |, which we know from the induction hypothesis
IHyy .

Lemma 24. Forallk € N, k < M, IH}, holds.

Proof. The proof of this lemma is by induction over M — k. The base case, with k = M, follows from Lemma 22, the
induction case follows from Lemma 23 and the induction hypothesis. [

Lemma 25. For all expressions e, the following holds: >r{wp e} e |.

Proof. By induction over e. The leaf cases are trivial. The cases TCOMP, TLET and TIF use completeness of
the core logic and determinism of evaluation of the operational semantics. The TCALL case uses TCONSEQ with
Lemma 24. [J

The completeness theorem now follows directly from Lemma 25 and TCONSEQ.

Theorem 26 (TCompleteness). If >t is any relation that validates the proof rules in Section 4.2, then =7 C >r.
4.5. Example

As example program we use a variant of the even/odd program from Section 3.5.5, which uses only functions
and decrements x. We emphasize that we can prove its termination directly via the rules in Section 4.2 without any
additional rules for mutual recursion.

We need to specify the precondition under which the functions terminate. Typically this involves characterizing the
possible parameter values and class membership for the methods involved. The form of the precondition should fit the
structure of the precondition in the call rule to be existentially quantified over the measure. In this case we can use the
same parameterized precondition for both functions: Py = An Eh.0 < E(x) An = E(x).

We need to provide a measure for each function, which assures termination. We can read the measure from the
form of the above precondition: M./, = AE h. E{(x). We prove termination of even, i.e.

>7{AE h.3n. Pejo n E h} call even | .

In the proof we first apply the TCALL rule, adding information about the precondition for even to the meta-
context. Only syntax-directed rules are used to traverse the body of the function. When encountering odd we first use
TCONSEQ and then prove termination of odd under the precondition AE h.3n". Pojon’ Eh A n’ =n — 1, which is
implied by the precondition at the call point. We use the constraint n” = n — 1 to relate the measure for even, namely
n, to that of odd, namely »’, and then apply the TCALL rule. Following the proof idea in the completeness proof, we
could use the weaker constraint n” < n; however, this would yield a longer proof and thus we pick the exact value for
this program. When arriving at the second call to even, we use the first clauses in the metacontext, which are:

Sr{AEh.Im.m <n AN 0 < E(x) A m = E(x)} calleven |
Sr{AEh.n—1<n" AO<E{(x) An—1=E(x)}callodd | .
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High-Level Type System Ptyt:t
compile
Specialized Logic >t D(P, 1)
Termination Logic >1{P} e |
I
Program Logic I'>e: A
Operational Semantics Ethell, v,p

Fig. 6. A family of logics for resource consumption.

These clauses were added by the two invocations of the TCALL rule. We now instantiate the measure to n —2 for even.
After using TCONSEQ only the side-conditions generated by the syntax-orientated rules remain. These are solved
using soundness of >, rules of the operational semantics and some auxiliary lemmas, formalizing non-interference of
variables in the evaluation of subexpressions. A case distinction over n > 0 is necessary to separate the recursion path
from the non-recursive path through the program, and basic arithmetic completes the proof.

5. An infrastructure for resource certification

In this section we describe the infrastructure for certification of resources which we build on top of the program
logics presented above. This is based on a multilayered logics approach (shown in Fig. 6), starting from a type system
at the top. A more detailed discussion of this infrastructure is given in [31].

While the complexity of proving general program correctness often restricts the research on program verification to
only security-critical systems, increasingly complex type systems have found their way into mainstream programming
and are accepted as useful tools in software development. Given their complexity, soundness proofs of those type
systems can be subtle, and the user has to trust both the proof and the translation of the high-level code into the
object-code. One approach to guaranteeing the absence of bad behaviour is to translate types into proofs in a suitably
specialized program logic. Going by this route, a formal certificate can be generated and independently checked.

We begin with our (trusted) annotated operational semantics that encodes the basic security-sensitive operations
(for example, heap allocation if the security policy is bounded heap consumption). The Foundational PCC
approach [32] handles proofs directly at this level and thereby reduces the size of the trusted code base (TCB).
Likewise, in principle we do not include any of our logics into the TCB, since we formalize the entire hierarchy
of logics in a proof assistant together with their soundness proofs. The formal soundness statements can be used as
lemmas to establish claims back down to the operational semantics.

Above the operational semantics, we have our general-purpose program logic for partial correctness. It serves as
a platform around which higher level logics may be unified; this purpose makes logical completeness of the program
logic a desirable property whereas it has hitherto been mostly of meta-theoretic interest. Of course, soundness remains
mandatory, as the trustworthiness of any application logic defined at higher levels depends upon it. Our soundness and
completeness results establish a tight link between operational semantics and program logic, as shown in Fig. 6.

While assertions in the core logic make statements on partial program correctness, as we have seen, the termination
logic is defined on top of this level to certify termination. This separation improves modularity in developing these
logics, and allows us to use judgements of the partial correctness logic when talking about termination.

On top of the general-purpose logic, a specialized logic (for example the heap logic of [33]) can be defined
to capture the specifics of a particular security policy and its proof mechanism. This logic uses another form of
judgement, dubbed derived assertions, which reflects the information of the high-level type system. Judgements in the
specialized logic have the form > "t : D(®, t), where the expression "t is the result of compiling a high-level term
t down to the low-level language, and the information in the high-level type system is encoded in the derived assertion
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D(®, t) that depends on the high-level typing context ® and type t associated to t. Depending on the property of
interest, this level may be further refined into a hierarchy of proof systems, for example, if parts of the soundness
argument of the specialized assertions can be achieved by different type systems. Of course, to have confidence in the
infrastructure, we want to believe that user-level statements in the high-level type system are faithfully translated into
the program logic, and that the compilation is correct. It may be that the expansion of a particular derived assertion
is comprehensible to the user, but typically both the encoding and compilation functions will be additional points of
trust in our infrastructure.

Unlike the general-purpose logic, this logic is not expected to be logically complete, but instead it should provide
support for automated proof search or reconstruction. For the heap logic mentioned, this is achieved by formulating
a system of derived assertions with a similar level of granularity to the type system itself. However, the rules are
expressed in terms of code fragments in the low-level language. Since the side conditions of the typing rules are
computationally easy to validate, automated proof search is supported by the syntax-directness of the typing rules. At
points where syntax-directness fails — such as recursive program structures — the necessary invariants are provided by
translation from the type system.

Finally, on the top level we find the high-level type system itself, that encodes information on resource consumption
in a way that can be meaningful to the high-level programmer. In the judgement @ kg ¢ : 7, the term ¢ has an
(extended) type T in a context @. This level is of closer relevance to programming languages research, and numerous
type-based inferences have been suggested for establishing safety and resource usage policies. The system we worked
with in the heap logic of [33] was Hofmann & Jost’s type system for heap usage [34], but our infrastructure and
methodology is quite general.

5.1. Example

For illustration purposes, let us instantiate this hierarchy with a a security property of “well-formed datatypes”,
related to memory safety polices typically considered in PCC. To model datatypes, we use a version of the previously
defined predicate h =, a, expressing that an address a in heap £ is the start of a (high-level) datatype 7. In the core
program logic we can express the fact that a method c.m ¢ compiled from the high-level function f :: t list — 7 list
preserves (the representation of) a well-formed data-type as follows:

>cemp(x) 0 AEhR v h iy E(x) — h' Eiig v.

To abstract over the details of modelling data-structures, we construct a specialized logic for this security property,
by restricting the form of the assertions to reflect the high-level property to be formalized. These derived assertions
D(®, ) must have the following property for a program term ¢ and a high-level type t:

byttt = >t D(D, 7).
The definition of the derived assertion carries with it the high-level types of the variables, and accesses low-level

predicates, which are needed to express the security policy but should be hidden in the specialized logic itself:
D({x :tlist,y:tlist},tlisty = AEhKW vp. hkEig EX) A hEig E(y) —
b =i E{x) A B Eis E(y) A h Eiig v.
Based on this format we could phrase a rule for a high-level list-cons operator, which abstracts from the
representation predicates:
> ':D(P,t) > D(P, T list)
>cons(ty, ) ' : D(P, T list)

The soundness of the rules in the specialized logic can then be proved once and for all on top of the core logic.
Each rule roughly corresponds to a case in the type soundness proof at the high level. The main advantages of the
specialized logic are proofs in this logic being largely syntax-directed with simpler side conditions. It is in fact possible
to turn (high-level) type checking into an (effective) tactic in a proof assistant. In comparison, we found that using
an interactive prover to prove such assertions directly becomes very complicated for non-trivial programs. Even with
a verification condition generator, side conditions arise that are difficult to handle manually and too challenging for
current automatic theorem provers.
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6. Related work

There has been an outstanding amount of research on formalizing the safety of Java, the Java Virtual Machine and
the JavaCard environment; see [35] for a review up to 2001. For our purposes, we review only work related to program
logics, which we can divide in roughly three categories: imperative and object-orientated logics, pointer logics and
bytecode logics. Note, however, that none of this related work contains any formalized account of resources.

6.1. Imperative and object-orientated logics

Most closely related to our work on the metatheoretical side are Nipkow’s implementation of Hoare logic [25], the
Java-light logic by von Oheimb [36], Kleymann’s thesis [21], and Hofmann’s [26] work on completeness of program
logics. The formalized logic by Nipkow in [25] concerns a while language with parameterless functions, with proofs
of soundness and completeness. Although several techniques we use in our proofs are motivated by this work, we
have made advances on the treatment of mutual recursion and adaptation. In particular, in covering mutual recursion
we do not specify a separate derivation system but only use a derived rule MUTREC; this make the logic smaller and
easier to handle when proving soundness and completeness.

Several options for formalizing either VDM or Hoare-style program logics were explored by Kleymann in
his thesis [21]. In particular, his work demonstrates how to formalize an adaptation rule that permits to modify
auxiliary variables. Kleymann’s logic for total correctness of a while language with functions is closely related to our
termination logic. In particular, the call rule is similar, but he does not cover methods. We used these results, together
with our own previous experience on VDM-style logics [37] to design the Grail program logic. The techniques used
in our completeness proof are based on those by one of the authors in [26].

The program logic for Java-light by von Oheimb [36] is encoded in Isabelle and proven sound and complete. It
covers more object-orientated features, but it works on a higher level than our logic for a bytecode language and
does not address resources. Moreover, because of the focus on metatheoretical properties, it is hardly suitable for
concrete program verification, as it can also be seen from the only example provided. In the same paper von Oheimb
discusses an alternative calculus for total correctness with a rule for method invocation that allows a similar handling
of mutual recursion as our system. Both Kleymann and von Oheimb develop logics combining functional correctness
and termination in one logic, yielding a far more complicated system than our termination logic.

Elsewhere, de Boer et al. [38,39] present a sound and complete Hoare-style logic for a sequential object-orientated
language with inheritance and subtyping. In contrast to our approach, the proof system employs a specific assertion
language for object structures, a WP calculus for assignment and object creation, and Hoare rules for method
invocation. The approach is heavily based on syntactical substitutions and the logic is not compositional. Recently
a tool supporting the verification of annotated programs (flowcharts) yielding verification conditions to be solved in
HOL has been produced [40]. This also extends to multi-threaded Java [41], where also a non-formalized proof of the
soundness and completeness of its assertion-based proof system is provided.

Abadi and Leino combine a program logic for a simple object-orientated language with a type system [42,43]. The
language supports subclassing and recursive object types. In a judgement, specifications as well as types are attached
to expressions. It uses a global store model, with the possibility of storing pointers to arbitrary methods in objects.
This logic is more expressive than our program logic, but it is incomplete.

Homeier [29] also develops a termination logic separately from his partial correctness Hoare-logic for a simple
while-language with procedures. His treatment of mutual recursion builds on procedure entrance specifications that
relate the state at the beginning of procedure with that at a call point in the procedure. These entrance specifications
can be used to encode a descending chain, as we use it in the completeness proof, but in terms of logics his work
uses heavier machinery (a separate logic for entrance specifications). In contrast to our work, he doesn’t give formal
completeness results for his termination logic.

Several related projects aim at developing program logics for subsets of Java, mainly as tools for program
verification. Miiller and Poetzsch-Heffter present a sound Hoare-style logic for a Java subset [22]. Their language
covers class and interface types with subtyping and inheritance, as well as dynamic and static binding, and aliasing
via object references, which has been implemented in the Jive tool [44]. As part of the LOOP [45] project, Huisman
and Jacobs [46] present an extension of a Hoare logic that includes means for reasoning about abrupt termination and
side-effects, encoded in PVS and Isabelle. In [47] a set of sound rules for the sequential imperative fragment of Java



440 D. Aspinall et al. / Theoretical Computer Science 389 (2007) 411-445

are given, based on the Java Modelling Language (JML). This combines all possible termination modes in a single
logic.

Krakatoa [48] is a tool for verifying JML-annotated Java programs that acts as front-end to the Why system [49],
using Coq to model the semantics and conduct the proofs. Why produces proof obligations for programs in imperative-
functional style via an interpretation in a type theory of effects and monads. JACK [50] is based on a weakest
preconditions calculus, which is asserted rather than semantically derived from a machine model. It generates proof
obligations from annotated Java sources. The proof obligations can be discharged using different systems, from
automated tools such as Simplify to interactive theorem provers. Much effort is invested in making the system usable
by Java programmers by means of an Eclipse plug-in and a proof-obligation viewer. Recently this has been extended
to a logic for sequential bytecode, where annotations are expressed in a Bytecode Modeling Language, which is the
target of a JVM compiler [51]. The logic is based on a weakest precondition calculus, whose soundness is reported to
have been proven w.r.t. to the operational semantics of the JVM in [52]. In addition to defining a predicate transformer
for each bytecode, the approach requires the computation of the WP of the whole program using its control flow graph.

In the context of the KeY project [53], Beckert [54] presents a sequent calculus for a version of Dynamic Logic
dedicated to the JavaCard language with judgments of the form I" - (e)¢U, where e is a program, I" encodes
preconditions and U is a state update used to cope with aliasing. Loops are dealt with by unrolling and method calls
by symbolic execution of the body. Soundness and completeness are not proven. This has been integrated with the
KeY interactive prover and applied to security properties by Mostowski [55] (for example JavaCard runtime exception
thrown at top level). An attempt is made to modularize the approach to methods by utilizing pre and post-condition
rather than execution of the body. This approach was also extended to deal with JavaCard transactions by introducing
a trace modality [56].

Also following a dynamic logic approach, the KIV system [57] has been used to formalize operational semantics
and a sound dynamic logic for full JavaCard, based on strongest postconditions [58]. This work treats a language
where expressions and blocks are flattened (a sort of ANF), new instructions are added, for example, to mark the end
of a block; judgments in the logic have the form I' - (H; e)¢p, A, where H is the initial heap. Program rules may be
applicable also on the left hand side of the turnstile, yielding a rich calculus with over 50 rules, best suited to interactive
verification. The encoding is not definitional, but relies on many axioms over operations such as replacement of
variables, flattening of blocks etc.

Intentionally less expressive than program logics, there are several systems orientated towards lightweight static
validation. The main current one is ESC/Java2 [59], a tool that attempts to find common runtime errors (such as null
references) in JML-annotated Java programs by static analysis of the program code and its formal annotations. It
trades off soundness (and completeness) in favour of full automation.

6.2. Pointer logics

A related direction is the verification of pointer programs. Prominent recent work here builds on the ideas of
Separation Logic [60]. We chose not to follow this directly, although our specifications certainly include the encoding
of separation principles. We can speculate that the adoption of Separation Logic’s frame rule may simplify our
specifications in the core logic, as well as the interpretation of the derived assertions. However, given the well-known
issues with completeness and complexity, current efforts in the automation of Separation Logic are geared towards
decision procedures for sub-languages [61]. Our approach instead considers a complete low-level logic, but gets a
handle on automation by considering restricted higher-level encoded logics.

Before Separation Logic, some of the first formal verification of pointer programs in [62] (and later [63]) used
a model where the store is incorporated in the assertion logic. More recent is the verification of several algorithms,
including list manipulating programs and the Schorr-Waite graph-marking algorithm, by Bornat [64] using the Jape
system. This approach employs a Hoare logic for a while-language with components that are semantically modelled as
pointer-indexed arrays. Separation conditions are expressed as predicates on (object) pointers. [65] uses a Hoare logic
in the style of Gordon [66] to reason about pointer programs in a simple while-language, including a declarative proof
of the correctness of the Schorr-Waite algorithm. An Isabelle/HOL implementation of separation logic following the
previous paper is presented in [67], although the author reports proofs (typically in-place reversal) to be slightly more
complicated than in [65].
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6.3. Bytecode logics

Most previous work on bytecode logics work directly on ordinary bytecode (albeit with certain restrictions), rather
than abstracted forms such as our Grail language. Logics are typically based on weakest precondition calculi. Only
two [68,69] have a formalized verification. Bannwart and Miiller [70] present a sound and complete bytecode logic for
a fragment of sequential JVML — 15 instructions, although under some “well-formedness” restrictions, namely only
virtual methods with one parameter are allowed, always yielding a value and ending with a return, which cannot
occur anywhere else. The scenario is proof-transforming compilers, i.e. compilers that modify source-level correctness
proofs. Thus, the system shares the object model and many of the structural rules with [22]. The unstructured nature
of bytecode is dealt with by the notion of instruction specification and its WP calculus, close to the proposals of
Benton [71]. Quigley [68] is mainly concerned with reconstructing high-level control structures such as loops in the
bytecode: hence her Hoare rules are somewhat complex, limited (no method calls) and not appropriate for a PCC
scenario.

In [69], the authors instantiate the PCC framework of [72] to Jinja bytecode (a dozen instructions including
exception handling) and a safety policy concerning arithmetic overflow. Provability is defined semantically and a
generic sound and complete verification condition generator based on flow-graph analysis produces annotations in
a dedicated assertion language, basically first-order arithmetic with stack primitives. As the framework is generic,
other safety policies are possible, provided an appropriate language satisfying certain restrictions is given. The user
is required to provide the invariants, although [73] presents preliminary results to automatically extract annotations
from untrusted static analysers (in this case, interval analysis).

Finally, Moore has used ACL2 to verify the correctness of simple programs in a fragment of the JVM, directly
from the operational semantics, by encoding an interpreter for the byte code as a LISP function [74]. In [75] the same
approach was used to prove some metatheoretical properties of the JVM.

7. Conclusion

In this article we have presented program logics for a compact representation of the Java Virtual Machine Language,
based on a formalization in Isabelle/HOL. Founded on an operational semantics that includes a flexible notion of
resources, we first defined a sound and complete logic of partial correctness, in which pre- and post-conditions are
combined to yield specifications that are relations over the components of the operational semantics. We presented
derived rules for mutually recursively program fragments and method invocation with parameter adaptation, whose
proofs are based on admissible cut rules. The usefulness of these rules was demonstrated on non-trivial examples,
including the verification of quantitative specifications and other non-functional properties.

In the second part of this article, we exhibited a logic for termination which relies on partial correctness assertions
formulated in the core logic as side conditions of certain rules. Hence we achieve a modular treatment of termination,
which leaves the underlying partial logic unchanged. Noteworthy technical features of the termination logic are
twofold. First, we use a meta-logical management of context stemming from jumps and method invocations, thusly
simplifying the judgement and the proofs. Second, we again have a simplified treatment of mutual recursion, without
needing a special proof system or rule. The completeness proof for the termination logic formally justifies that no
special treatment of mutual recursion is required here either.

7.1. Discussion and future work

Thanks to the formalized proofs of soundness, we know that both of our program logics are trustworthy bases
for a proof-carrying code system such as the one we developed in the Mobile Resource Guarantees project [2]. Our
approach of implementing a hierarchy of logics addresses a critical issue in the design of PCC systems, namely the
trade-off between expressiveness and automation. Indeed, the proofs of the sample programs described in this article
appear difficult to automate, and contain typically hundreds of proof steps. To exploit the structure available in a typed
high-level language, we use a derived proof system that amounts to an interpretation of a high-level type system in
the logic, with respect to a compilation strategy. We demonstrated this technique in [33], which gave an interpretation
of Hofmann—Jost’s LFD system [34]. The soundness proof of a derived logic can hide the complexity of a low-
level direct proof. For example, instantiations of (existential) quantifiers and unfolding of datatype representation
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predicates are performed only once during the derivation of the derived rules. The application of the derived rules is
almost entirely syntax-directed involving side conditions that are generally much easier to discharge. Complementing
the communication of typing derivations, the role of type systems in the process of certificate generation becomes
that of deriving either invariants (in our formalization, method specifications) or other hints that suffice for the prover
to reconstruct proofs. Current and future work in this direction will aim to represent type systems for a variety of
resources, and their modular combination.

The recently started MOBIUS (Mobility, Ubiquity and Security) project, an IST FET Integrated Project’ aims to
develop a PCC infrastructure for properties relating to trust and security in a global computing context. The program
logic component of MOBIUS builds partly on work described here. In particular, MOBIUS plans a similar strategy
of using layers of logics to derive certificates from static analyses and high-level annotations, and ideally, formalized
soundness proofs based on a core logic. MOBIUS aims to cover the whole JVM and treat concurrency. This requires
modelling of an explicit operand stack and adding invariants which are required to hold throughout the execution of
method, whether terminating or not. Like our termination logic, this requires explicit preconditions.

We are generalizing work on the termination logic to formalize other security properties with a novel approach,
which we call “partial termination” [76]. The rationale is that classical termination might be a too strong property
for the purpose of guaranteeing resource-bounded computation. It prohibits, for example, the treatment of demon
processes that are designed to run forever, but should not consume resources. Furthermore, the necessity of defining
a measure in the termination logic complicates automatic proofs of termination. The partial termination approach
proceeds in two stages. First, insecure behaviour is axiomatized. Then a logic for security is defined on top of it.
For example, if a function calls should be restricted to a certain class of functions, possibly under side-conditions of
parameter size, we add an axiom for this case. Other rules in the logic are oblivious to the underlying security policy
and only propagate the information through the program. We envisage that this will be a superior approach, since it
abstracts away from explicit measures.

Regarding resource algebras, we want to explore further ways of structuring the operations and exploiting them,
including formal relations to static notions such as effects; this is started in [13]. There are intriguing connections
with work elsewhere, especially concerning the traces collected by resource algebras such as R and RHPT. For
example, Schneider’s EM policies [18] (security policies that are enforceable by monitoring system execution) and
the associated specification formalism, security automata, appear well-suited to be formulated as (variants of) RInVTr
or other resource algebras, which would yield a program logic in which satisfaction of EM policies can be certified.
Similarly, Skalka’s history effects [77] represent a static way to approximate properties of event histories, i.e. of
abstractions of traces with respect to arbitrary observable properties. Interpreting history effects as labelled transition
systems allows Skalka to employ model checking techniques to (statically) verify assertions modelled as formulae in
a temporal logic.

As another thread of inquiry, Beckert and Mostowski’s throughout modality [78] requires the quantified property
to be satisfied in all intermediate states of a computation. The satisfaction of this modality appears to follow a similar
regime as the validation of the policy that enforces limits of parameter values, as a boolean variable may be used
to signal violation. It thus seems possible that we can capture strong (object) invariants, that is, properties about all
intermediate states of a program such as those described in [56,79].

Finally, we have concentrated in this paper on the expressivity of our logics, so we know they are powerful enough
for arbitrary resource specifications. But, as was touched upon in Section 5, we want to be able to write resource
usage policies in a form that is understandable to the receivers of mobile code, independently of mechanisms such as
high-level type systems used for enforcing those policies. We have made some early investigations in this direction
recently [80].
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