9 research outputs found

    Publish and subscribe for RDF in enterprise value networks

    Get PDF
    Sharing information securely between business partners and managing large supply chains effciently will be a crucial competitive advantage for enterprises in the near future. In this paper, we present a concept that allows for building value networks between business partners in a distributed manner. Companies are able to publish Linked Data which participants of the network can clone and subscribe to. Subscribers get noticed as soon as new information becomes available. This provides a technical infrastructure for business communication acts such as supply chain communication or master data management. In addition to the conceptual analysis, we provide an implementation enabling companies to create such dynamic semantic value networks

    From Heterogeneous Sensor Networks to Integrated Software Services: Design and Implementation of a Semantic Architecture for the Internet of Things at ARCES@UNIBO

    Get PDF
    The Internet of Things (IoTs) is growing fast both in terms of number of devices connected and of complexity of deployments and applications. Several research studies an- alyzing the economical impact of the IoT worldwide identify the interoperability as one of the main boosting factor for its growth, thanks to the possibility to unlock novel commercial opportunities derived from the integration of heterogeneous systems which are currently not interconnected. However, at present, interoperability constitutes a relevant practical issue on any IoT deployments that is composed of sensor platforms mapped on different wireless technologies, network protocols or data formats. The paper addresses such issue, and investigates how to achieve effective data interoperability and data reuse on complex IoT deployments, where multiple users/applications need to consume sensor data produced by heterogeneous sensor networks. We propose a generic three-tier IoT architecture, which decouples the sensor data producers from the sensor data consumers, thanks to the intermediation of a semantic broker which is in charge of translating the sensor data into a shared ontology, and of providing publish-subscribe facilities to the producers/consumers. Then, we describe the real-world implementation of such architecture devised at the Advanced Research Center on Electronic System (ARCES) of the University of Bologna. The actual system collects the data produced by three different sensor networks, integrates them through a SPARQL Event Processing Architecture (SEPA), and supports two front- end applications for the data access, i.e. a web dashboard and an Amazon Alexa voice service

    Web-oriented Event Processing

    Get PDF
    How can the Web be made situation-aware? Event processing is a suitable technology for gaining the necessary real-time results. The Web, however, has many users and many application domains. Thus, we developed multi-schema friendly data models allowing the re-use and mix from diverse users and application domains. Furthermore, our methods describe protocols to exchange events on the Web, algorithms to execute the language and to calculate access rights

    Proceedings of the 2nd Annual SMACC Research Seminar 2017

    Get PDF
    The Annual SMACC Research Seminar is a forum for researchers from VTT Technical Research Centre of Finland Ltd, Tampere University of Technology (TUT) and industry to present their research in the area of smart machines and manufacturing. The 2nd seminar is held in 7th of November 2017 in Tampere, Finland. The objective of the seminar is to publish results of the research to wider audiences and to offer researchers a forum to discuss their research and to find common research interests and new research ideas. Smart Machines and Manufacturing Competence Centre - SMACC is joint strategic alliance of VTT Ltd and TUT in the area of intelligent machines and manufacturing. SMACC offers unique services for SME`s in the field of machinery and manufacturing - key features are rapid solutions, cutting-edge research expertise and extensive partnership networks. SMACC is promoting digitalization in mechanical engineering and making scientific research with domestic and international partners in several different topics (www.smacc.fi)

    A Distributed Publish/Subscribe System for RDF Data

    Get PDF
    Abstract. The pub/sub communication style is a prevalent messaging pattern for filtering information from distributed and large-scale network (e.g., from the real-time web, sensor networks, etc.) thanks to the decoupling between publishers and subscribers. At the same time, persisting the published information is a prerequisite for any further batch analytics on such big amount of data. As data can be heterogeneous, reliance on format from the semantic web such as RDF is unavoidable. In this paper we introduce two versions of a content-based pub/sub matching algorithm for RDF described events, working on an adapted version of the CAN structured P2P network designed to both store and disseminate RDF events. In contrary to existing pub/sub solutions based upon structured overlay networks that index semantic events several times due to the use of hash functions, we leverage the lexicographic order of the event elements. Thus, only subscriptions and not publications have to be duplicated, which is better given that in real settings, publications may occur more frequently than subscriptions. Furthermore, our system allows to publish events made of any number of elements and the subscription language leverages the SPARQL query language. The first algorithm we introduce initially derives from the ideas discussed by Liarou. et al. based upon rewriting continuous queries along matching RDF elements (CSBV) with the purpose to perform the matching between subscriptions and several RDF elements on multiple nodes. The experimental results discuss the applicability of the presented algorithms to some synthetic scenarios and identify, accordingly, which pub/sub matching algorithm is the more relevant.

    Federated Query Processing over Heterogeneous Data Sources in a Semantic Data Lake

    Get PDF
    Data provides the basis for emerging scientific and interdisciplinary data-centric applications with the potential of improving the quality of life for citizens. Big Data plays an important role in promoting both manufacturing and scientific development through industrial digitization and emerging interdisciplinary research. Open data initiatives have encouraged the publication of Big Data by exploiting the decentralized nature of the Web, allowing for the availability of heterogeneous data generated and maintained by autonomous data providers. Consequently, the growing volume of data consumed by different applications raise the need for effective data integration approaches able to process a large volume of data that is represented in different format, schema and model, which may also include sensitive data, e.g., financial transactions, medical procedures, or personal data. Data Lakes are composed of heterogeneous data sources in their original format, that reduce the overhead of materialized data integration. Query processing over Data Lakes require the semantic description of data collected from heterogeneous data sources. A Data Lake with such semantic annotations is referred to as a Semantic Data Lake. Transforming Big Data into actionable knowledge demands novel and scalable techniques for enabling not only Big Data ingestion and curation to the Semantic Data Lake, but also for efficient large-scale semantic data integration, exploration, and discovery. Federated query processing techniques utilize source descriptions to find relevant data sources and find efficient execution plan that minimize the total execution time and maximize the completeness of answers. Existing federated query processing engines employ a coarse-grained description model where the semantics encoded in data sources are ignored. Such descriptions may lead to the erroneous selection of data sources for a query and unnecessary retrieval of data, affecting thus the performance of query processing engine. In this thesis, we address the problem of federated query processing against heterogeneous data sources in a Semantic Data Lake. First, we tackle the challenge of knowledge representation and propose a novel source description model, RDF Molecule Templates, that describe knowledge available in a Semantic Data Lake. RDF Molecule Templates (RDF-MTs) describes data sources in terms of an abstract description of entities belonging to the same semantic concept. Then, we propose a technique for data source selection and query decomposition, the MULDER approach, and query planning and optimization techniques, Ontario, that exploit the characteristics of heterogeneous data sources described using RDF-MTs and provide a uniform access to heterogeneous data sources. We then address the challenge of enforcing privacy and access control requirements imposed by data providers. We introduce a privacy-aware federated query technique, BOUNCER, able to enforce privacy and access control regulations during query processing over data sources in a Semantic Data Lake. In particular, BOUNCER exploits RDF-MTs based source descriptions in order to express privacy and access control policies as well as their automatic enforcement during source selection, query decomposition, and planning. Furthermore, BOUNCER implements query decomposition and optimization techniques able to identify query plans over data sources that not only contain the relevant entities to answer a query, but also are regulated by policies that allow for accessing these relevant entities. Finally, we tackle the problem of interest based update propagation and co-evolution of data sources. We present a novel approach for interest-based RDF update propagation that consistently maintains a full or partial replication of large datasets and deal with co-evolution

    Web-oriented Event Processing

    Get PDF
    How can the Web be made situation-aware? Event processing is a suitable technology for gaining the necessary real-time results. The Web, however, has many users and many application domains. Thus, we developed multi-schema friendly data models allowing the re-use and mix from diverse users and application domains. Furthermore, our methods describe protocols to exchange events on the Web, algorithms to execute the language and to calculate access rights

    Semantic search and composition in unstructured peer-to-peer networks

    Get PDF
    This dissertation focuses on several research questions in the area of semantic search and composition in unstructured peer-to-peer (P2P) networks. Going beyond the state of the art, the proposed semantic-based search strategy S2P2P offers a novel path-suggestion based query routing mechanism, providing a reasonable tradeoff between search performance and network traffic overhead. In addition, the first semantic-based data replication scheme DSDR is proposed. It enables peers to use semantic information to select replica numbers and target peers to address predicted future demands. With DSDR, k-random search can achieve better precision and recall than it can with a near-optimal non-semantic replication strategy. Further, this thesis introduces a functional automatic semantic service composition method, SPSC. Distinctively, it enables peers to jointly compose complex workflows with high cumulative recall but low network traffic overhead, using heuristic-based bidirectional haining and service memorization mechanisms. Its query branching method helps to handle dead-ends in a pruned search space. SPSC is proved to be sound and a lower bound of is completeness is given. Finally, this thesis presents iRep3D for semantic-index based 3D scene selection in P2P search. Its efficient retrieval scales to answer hybrid queries involving conceptual, functional and geometric aspects. iRep3D outperforms previous representative efforts in terms of search precision and efficiency.Diese Dissertation bearbeitet Forschungsfragen zur semantischen Suche und Komposition in unstrukturierten Peer-to-Peer Netzen(P2P). Die semantische Suchstrategie S2P2P verwendet eine neuartige Methode zur Anfrageweiterleitung basierend auf Pfadvorschlägen, welche den Stand der Wissenschaft übertrifft. Sie bietet angemessene Balance zwischen Suchleistung und Kommunikationsbelastung im Netzwerk. Außerdem wird das erste semantische System zur Datenreplikation genannt DSDR vorgestellt, welche semantische Informationen berücksichtigt vorhergesagten zukünftigen Bedarf optimal im P2P zu decken. Hierdurch erzielt k-random-Suche bessere Präzision und Ausbeute als mit nahezu optimaler nicht-semantischer Replikation. SPSC, ein automatisches Verfahren zur funktional korrekten Komposition semantischer Dienste, ermöglicht es Peers, gemeinsam komplexe Ablaufpläne zu komponieren. Mechanismen zur heuristischen bidirektionalen Verkettung und Rückstellung von Diensten ermöglichen hohe Ausbeute bei geringer Belastung des Netzes. Eine Methode zur Anfrageverzweigung vermeidet das Feststecken in Sackgassen im beschnittenen Suchraum. Beweise zur Korrektheit und unteren Schranke der Vollständigkeit von SPSC sind gegeben. iRep3D ist ein neuer semantischer Selektionsmechanismus für 3D-Modelle in P2P. iRep3D beantwortet effizient hybride Anfragen unter Berücksichtigung konzeptioneller, funktionaler und geometrischer Aspekte. Der Ansatz übertrifft vorherige Arbeiten bezüglich Präzision und Effizienz
    corecore