
Federated Query Processing over Heterogeneous
Data Sources in a Semantic Data Lake

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

von
Kemele M. Endris

aus
Durbete, Äthiopien

Bonn, 15.11.2019

Dieser Forschungsbericht wurde als Dissertation von der Mathematisch-Naturwissenschaftlichen
Fakultät der Universität Bonn angenommen und ist auf dem Hochschulschriftenserver der ULB Bonn
https://nbn-resolving.org/urn:nbn:de:hbz:5-57937 elektronisch publiziert.

1. Gutachter: Prof. Dr. Sören Auer
2. Gutachter: Prof. Dr. Jens Lehmann

Tag der Promotion: 03.03.2020
Erscheinungsjahr: 2020

https://nbn-resolving.org/urn:nbn:de:hbz:5-57937

Abstract

Data provides the basis for emerging scientific and interdisciplinary data-centric applications with the
potential of improving the quality of life for citizens. Big Data plays an important role in promoting both
manufacturing and scientific development through industrial digitization and emerging interdisciplinary
research. Open data initiatives have encouraged the publication of Big Data by exploiting the decentralized
nature of the Web, allowing for the availability of heterogeneous data generated and maintained by
autonomous data providers. Consequently, the growing volume of data consumed by different applications
raise the need for effective data integration approaches able to process a large volume of data that is
represented in different format, schema and model, which may also include sensitive data, e.g., financial
transactions, medical procedures, or personal data. Data Lakes are composed of heterogeneous data
sources in their original format, that reduce the overhead of materialized data integration. Query
processing over Data Lakes require the semantic description of data collected from heterogeneous
data sources. A Data Lake with such semantic annotations is referred to as a Semantic Data Lake.
Transforming Big Data into actionable knowledge demands novel and scalable techniques for enabling
not only Big Data ingestion and curation to the Semantic Data Lake, but also for efficient large-scale
semantic data integration, exploration, and discovery. Federated query processing techniques utilize
source descriptions to find relevant data sources and find efficient execution plan that minimize the total
execution time and maximize the completeness of answers. Existing federated query processing engines
employ a coarse-grained description model where the semantics encoded in data sources are ignored.
Such descriptions may lead to the erroneous selection of data sources for a query and unnecessary
retrieval of data, affecting thus the performance of query processing engine. In this thesis, we address
the problem of federated query processing against heterogeneous data sources in a Semantic Data Lake.
First, we tackle the challenge of knowledge representation and propose a novel source description
model, RDF Molecule Templates, that describe knowledge available in a Semantic Data Lake. RDF
Molecule Templates (RDF-MTs) describes data sources in terms of an abstract description of entities
belonging to the same semantic concept. Then, we propose a technique for data source selection and
query decomposition, the MULDER approach, and query planning and optimization techniques, Ontario,
that exploit the characteristics of heterogeneous data sources described using RDF-MTs and provide a
uniform access to heterogeneous data sources. We then address the challenge of enforcing privacy and
access control requirements imposed by data providers. We introduce a privacy-aware federated query
technique, BOUNCER, able to enforce privacy and access control regulations during query processing
over data sources in a Semantic Data Lake. In particular, BOUNCER exploits RDF-MTs based source
descriptions in order to express privacy and access control policies as well as their automatic enforcement
during source selection, query decomposition, and planning. Furthermore, BOUNCER implements
query decomposition and optimization techniques able to identify query plans over data sources that
not only contain the relevant entities to answer a query, but also are regulated by policies that allow for
accessing these relevant entities. Finally, we tackle the problem of interest based update propagation and
co-evolution of data sources. We present a novel approach for interest-based RDF update propagation
that consistently maintains a full or partial replication of large datasets and deal with co-evolution.

iii

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement and Challenges . 4
1.3 Research Questions . 7
1.4 Thesis Overview . 8

1.4.1 Contributions . 8
1.4.2 List of Publications . 10

1.5 Thesis Structure . 11

2 Background 13
2.1 Data Integration System . 13

2.1.1 Global-as-View Approach (GAV) . 14
2.1.2 Local-as-View Approach (LAV) . 14
2.1.3 Classification of Data Integration Systems . 14
2.1.4 Data Integration in the era of Big Data . 16

2.2 Semantic Web . 17
2.2.1 The Resource Description Framework (RDF) 18
2.2.2 RDF Schema . 20
2.2.3 The SPARQL Query Language and SPARQL Protocol 20
2.2.4 Rule-based Mapping Languages for Transforming raw data to RDF 23

2.3 Federated Query Processing Systems . 26
2.3.1 Data Source Description . 28
2.3.2 Query Decomposition and Source Selection 28
2.3.3 Query Planning and Optimization . 28
2.3.4 Query Execution . 29

3 Related Work 31
3.1 Materialized Integration Approaches . 32
3.2 Federated Query Processing Systems . 32

3.2.1 Data Source Description and Source Selection Approaches 33
3.2.2 Query Decomposition Techniques . 35
3.2.3 Query Planning and Execution Techniques 36

3.3 Query Processing over Heterogeneous Data Sources 37
3.4 Privacy-aware Federated Query Processing . 37
3.5 Update Propagation and Co-evolution . 38

4 Data Source Description Model 39
4.1 Motivating Example . 40

v

4.2 Source Description Model . 42
4.2.1 RDF-MT: RDF Molecule Templates . 42
4.2.2 Creating RDF Molecule Templates . 43

4.3 Experimental Study . 47
4.3.1 RDF-MT based Characterization of Benchmarks 47
4.3.2 Comparison of Source Descriptions for Query Processing 52

4.4 Summary . 53

5 Query Decomposition and Source Selection 55
5.1 Motivating Example . 56
5.2 Problem Statement and Proposed Solution . 58

5.2.1 Problem Statement . 58
5.2.2 Proposed Solution . 59

5.3 MULDER: A Federated Query Processing Engine . 59
5.3.1 Source Selection and Query Decomposition Technique 59
5.3.2 The MULDER Architecture . 61

5.4 Empirical Evaluation . 61
5.4.1 Comparison of Federated Query Engines . 63
5.4.2 Measuring Continuous Efficiency of MULDER 66

5.5 Summary . 69

6 Query Planning and Optimization 71
6.1 Motivating Example . 72
6.2 Problem Statement and Proposed Solution . 75

6.2.1 Problem Statement . 75
6.2.2 Proposed Solution . 76

6.3 Ontario: Federated Query Processing over Semantic Data Lakes 76
6.3.1 Heuristics . 77
6.3.2 Query Plan Generation . 79
6.3.3 The Ontario Architecture . 79

6.4 Empirical Evaluation . 81
6.4.1 Impact of Star-shaped Group Types . 81
6.4.2 Impact of Considering Heterogeneity . 82
6.4.3 Impact of Heterogeneous Sources . 83
6.4.4 Measuring the Continuous Efficiency . 85

6.5 Summary . 85

7 Privacy-aware Query Processing 87
7.1 Motivating Example . 88
7.2 Problem Statement and Proposed Solution . 90
7.3 BOUNCER: A Privacy-Aware Query Engine . 94

7.3.1 Privacy-Aware Source Selection and Decomposition 94
7.3.2 Privacy-Aware Query Planning Technique . 96
7.3.3 The BOUNCER Architecture . 97

7.4 Empirical Evaluation . 98
7.4.1 Impact of Access Control Enforcement. 99
7.4.2 Impact of Privacy-Aware Query Plans. 99

vi

7.5 Summary . 100

8 Interest-based Update Propagation 101
8.1 Motivation . 103
8.2 Problem Statement and Proposed Solution . 104

8.2.1 Problem Statement . 104
8.2.2 Proposed Solution . 104

8.3 Formalization of Interest-based Update Propagation 105
8.4 Managing Co-evolution . 113

8.4.1 Conflict . 114
8.4.2 Synchronization Strategies . 114
8.4.3 Co-evolution Approach . 115

8.5 iRap: RDF Update Propagation Framework . 117
8.6 Empirical Evaluation . 117

8.6.1 Evaluating iRap Update Propagation . 117
8.6.2 Evaluating Co-evolution Strategies . 119

8.7 Summary . 122

9 Conclusions and Future Directions 123
9.1 Revisiting the Research Questions . 123
9.2 Open Issues and Future Directions . 125
9.3 Closing Remarks . 126

Bibliography 127

A List of Publications 143
A.1 Publications . 143

B Benchmark Queries 147
B.1 BSBM Queries . 147
B.2 LSLOD Queries . 151

List of Figures 155

List of Tables 157

vii

CHAPTER 1

Introduction

In the last decade, the amount of data available has exponentially grown [1, 2] and it is expected a
faster growth rate in the next years as a result of the progress in existing devices for data generation and
ingestion. Furthermore, FAIR principles and open data initiatives have encouraged the publication of
Big Data by exploiting the decentralized nature of the Web and allowing, thus, for the availability of
heterogeneous data generated and maintained by autonomous data providers. Heterogeneity can be on
different levels, i.e., syntactic, semantic, access interface, and data model. The autonomous nature of
data providers generate the heterogeneity of data sources for several reasons. For instance, different
data providers model the same real-world concepts differently, even though, data is represented using
single data model such as relational model [3]. In addition, some applications require certain technical
environments, data models, or features such as performance for different types of queries. The number
of data sources available on the Web presents a wealth of data and, at the same time, a challenge for
processing them in a meaningful way.

A data integration system provides a uniform access to heterogeneous, autonomous, and distributed
data sources. There are two approaches for data integration from disparate data sources, materialized (data
warehousing) and virtual data integration. Traditional data warehouses ingest data from heterogeneous
data sources to a centralized database after transforming them, using Extract-Transform-Load (ETL)
processes following schema-on-write paradigm, into a common structure. Transformation of disparate
data into single data model eventually might degrade the performance of the query processing, suffer from
freshness problem, and may lead eventually to information silos. In virtual data integration approaches
data stay at the sources in their original format; data is accessed at query time allowing on-the-fly
transformation of heterogeneous data. Given a query formulated in a global access interface, a virtual
data integration system extracts and combines results from different sources to answer the query. Data
sources on the Web are autonomous in a way that they evolve independently and may not be available at
anytime or have limited query capabilities. Thus, data integration system should be able to adapt to the
conditions of the data sources. Federated query processing engines are a type of virtual data integration
systems that deal with such autonomous data sources.

Available data sources may have different data structuredness, querying capabilities, and access
interfaces and restrictions. Sensitive data that is restricted to only authorized users, for instance in
biomedical, government, and financial data, must not be revealed. Such regulations should be respected
during data access from these data sources as well as during aggregation of data with other sources. For
these reasons, relevant sources should be selected at query time based on a description about their content
and capabilities. Description of such heterogeneous data sources is crucial for different applications, such
as data source discovery, analysis, and integration. In the context of big data, the role of data source

1

Chapter 1 Introduction

Knowledge
Representation

Big Data

Actionable
Knowledge

Relational Graph Document Flat-file

Data & Knowledge Evolution

Pr
iv

ac
y

an
d

Ac
ce

ss
 C

on
tro

l

Figure 1.1: From Big Data to Actionable Knowledge: At lowest layer, heterogeneous big data distributed in data
sources. Raw data can be in different data models, such as Relational: where data is stored in a structured way via
tables, Graph: where data is stored in terms of nodes and their relationships, Document (JSON-like): where data is
stored in terms of collections, and Flat files: stored in local file system or data lake stores like Hadoop, Azure or
S3. At the middle layer, the raw data at lowest layer is semantically lifted via mapping to domain knowledge via
ontologies and vocabularies. Finally, at the top layer a virtually integrated actionable knowledge can be extracted.
In each layers, privacy and access control policies of the data sources should be respected. Furthermore, data and
knowledge evolves through time. The knowledge extraction should also consider these changes as well

descriptions is important for making heterogeneous data sources interoperable as well as for efficient and
effective integration, and management of data sources.

To provide scalable and flexible knowledge discovery, analysis, and reporting, Data Lakes have been
proposed [4, 5]. Data Lakes compose heterogeneous data sources in their original format, following
schema-on-read paradigm. They reduce the cost of identifying, storing, cleansing, and integrating data
significantly and promote flexibility in data analysis. Data Lakes introduce complexity during query
execution, as data is stored in raw format and different interoperability issues can arise between data
sources. Big Data systems that integrate different data sources need to handle variety, volume, and
volatility of data efficiently and effectively. The publication of a large number of data on the Web fosters
the development of query processing infrastructures to access this data in a federated fashion. Federated
query processing techniques guarantee the freshness of data accessed directly from the data providers.
For instance, SPARQL endpoints provide Web interfaces to access RDF data following SPARQL protocol.
Federated query processing engines are able to merge data extracted from such distributed data sources.
The role of semantic annotation of data sources is important in doing so. Semantic Data Lakes are
proposed to include a semantic layer that provide semantic annotations [6]. The goal of this thesis is to
provide federated query processing technique over heterogeneous data sources in a Semantic Data Lake
while enforcing access control and privacy policies imposed by data providers, and managing the data
and knowledge evolution when a replica or slice of data is created.

1.1 Motivation

Big data plays an important role in promoting both manufacturing and scientific development through
industrial digitization and emerging interdisciplinary research. However, the availability of enormous

2

1.1 Motivation

amount of data generated in scientific and industrial domains demands the development of computational
methods for exploration and analysis, as well as transformation of big data to actionable knowledge.
Although a rich variety of tools and big data collections are available, many challenges need to be
addressed in order to discover insights from which decisions can be taken. For instance, different
interoperability conflicts can exist among data collections, data may be incomplete, and entities may
be dispersed across different datasets. Furthermore, data providers impose privacy and access control
regulations while processing data points. For example, a cancer research center can be allowed to perform
certain operations on specific data points about patients without revealing the identity of the patient.
These issues hinder knowledge exploration and discovery, being thus required data integration in order to
unveil meaningful outcomes.

Consider, for example, a set of data sources about the condition of a lung cancer patient, as well
as typical data integration problem caused as a result of data complexity issues, e.g., variety, volume,
veracity. Electronic health records (EHRs) preserve the knowledge about the conditions of a patient
that need to be considered for effective diagnoses and treatment prescriptions. However, such pieces of
knowledge is usually stored in different formats, e.g., relational tables that store patient demographics,
or flat files stores gnomic analysis, liquid biopsies, or clinical notes. This dispersed data needs to be
integrated in a meaningful way to get the complete information about conditions of a patient. Furthermore,
physicians depend on their experience or available sources of knowledge to predict potential adverse
outcomes, e.g., drug interactions, side-effects or resistance. Diverse repositories and databases make
available crucial knowledge for the complete description of a patient condition and the potential outcome.
Nevertheless, sources are autonomous and utilized diverse formats that range from unstructured scientific
publications to structured data about cancer related mutations. In order to detect facts that can impact on
the effectiveness of a particular treatment, e.g., Docetaxel, a physician will have to search through these
diverse data sources and identify the potential adverse events and interactions. Data complexity issues
like data volume and diversity impede an efficient integration of the knowledge required to predict the
outcomes of a treatment. Transforming big data into actionable knowledge demands novel and scalable
tools for enabling not only big data ingestion and curation, but also for efficient large-scale semantic data
integration, exploration, and discovery.

Semantic data integration approaches allows at generating common representation of concepts and
their relations using domain knowledge formalisms in the form of ontologies and reasoning capabilities
offered by the Semantic Web technologies. Figure 1.1 illustrates the need for semantic data integration
from heterogeneous data sources. Information about a patient, for example, might be spread across
different data sources, such as hospital patient database, drug interactions (DrugBank1) and side effects
(SIDER2) on the Web, and EHRs as flat files. The first layer, Big Data, comprises of data sources that
represent data in its original format and contains implicit facts. Different data models are used to represent
raw data, such as relations, graph, document, and flat files. Different data management systems are
used to store data, which supports different access methods, query language, and processing capabilities.
The second layer, Knowledge Representation, represents knowledge available in the data sources by
explicit semantic labeling of concepts and their relationships. For instance, information dispersed in
different data sources that corresponds to patient information can be represented as a formal concept
onto:Patient. Rule-based mappings can be used to create mappings between the data elements
to ontology concepts, lifting raw data to RDF knowledge representation. Given a formal knowledge
representation, different data integration techniques can be applied to produce actionable knowledge, i.e.,
third layer. Such techniques exploit the semantics encoded in representation of data during processing.

1 https://www.drugbank.ca/
2 http://sideeffects.embl.de/

3

https://www.drugbank.ca/
http://sideeffects.embl.de/

Chapter 1 Introduction

Different applications, such as question answering and data analytic, can make use of such knowledge
which in turn can be applied for decision making. During data retrieval and processing in each layer,
privacy and access control regulations imposed by data providers needs to be respected. For example,
when aggregating data about the patient from hospital database with drug side effects on the Web,
sensitive information about the patient should not be transferred outside the hospital network or revealed
to the user. Finally, data and knowledge evolves through time. Access to fresh data is crucial in most
applications. Knowledge about the concepts and relation between them could be added or removed,
changing the knowledge about the entities, conversely changing the implicit knowledge represented in
them. On the other hand, facts about instances of concepts change. Those changes need to be dealt
with whenever they occur. In order to provide a unified access to heterogeneous, autonomous, and
distributed data sources, challenges in each layer need to be tackled. In the following section, we discuss
the challenges that motivate this thesis.

1.2 Problem Statement and Challenges

The decentralized and autonomous nature of data publishers allows for data being produced and rep-
resented in different forms. Federated query processing techniques integrate data from autonomous,
distributed, and heterogeneous data sources in a uniform way by minimizing query execution time while
maximizing answer completeness. Given a federated query in a formal language, such as SPARQL,
against a federation of heterogeneous data sources, the problem of federated query processing is to: (i)
efficiently and effectively execute queries over data sources, (ii) enforces privacy and access control
policies during query execution, and (iii) collects and merge data from heterogeneous data sources in the
federation. In scenarios where accessing data directly from the provider is not feasible, the datasets can
be replicated, either the entire dataset or subset (slice) of it. In such cases, a replicated (target) data source
need to (co)evolve as the original data source evolves. Given a replica of a data source and an update
interest description, the problem of co-evolution is to propagate only important, i.e., interesting, updates
from source to target, and vice-versa guaranteeing the freshness of data and knowledge. Figure 1.2
illustrates three-layer and two orthogonal dimensions to transform big data to actionable knowledge and
the challenges that motivate this thesis.

Challenge 1: Describe Knowledge available in Heterogeneous Data Sources

Federated query processing techniques rely on descriptions of data sources. Data source descrip-
tions guide the source selection, query decomposition, and planning techniques of the federated query
processing engines to provide an efficient and effective execution plan. Such descriptions facilitate
federated query engines to discover relevant data sources for processing and to interpret them accordingly.
Moreover, these descriptions can be used to analyze data source features and conform design patterns
set during knowledge graph generation. Several data source description vocabularies are adopted by the
Semantic Web community (e.g., DCAT 3, DCMI 4, and VoID 5). Though, these descriptions have been
used for federated query processing over RDF data sources, they are not scalable and expressive enough
to be used in the context of heterogeneous data sources. On the other hand, the database community
adopts view-based data source descriptions by defining global schema (mediated schema). Data source
description can be categorized into content and access level description. Content descriptions represent

3 https://www.w3.org/TR/vocab-dcat/
4 www.dublincore.org/specifications/dublin-core/dces/
5 https://www.w3.org/TR/void/

4

https://www.w3.org/TR/vocab-dcat/
www.dublincore.org/specifications/dublin-core/dces/
https://www.w3.org/TR/void/

1.2 Problem Statement and Challenges

Data & Knowledge Evolution

Knowledge
Representation

Big Data

Pr
iv

ac
y

an
d

Ac
ce

ss
 C

on
tro

lActionable
Knowledge

Relational Graph Document Flat-file

CH4: Managing Data and Knowledge Evolution: Propagation of
changes from sources in a selective and efficient way.

C
H

3:
 E

nf
or

ci
ng

 p
riv

ac
y

an
d

ac
ce

ss
 c

on
tr

ol
po

lic
ie

s:
 D

es
cr

ib
in

g
an

d
en

fo
rc

in
g

pr
iv

ac
y

an
d

ac
ce

ss
 c

on
tro

l r
eg

ul
at

io
n

du
rin

g
qu

er
y

pr
oc

es
si

ng

CH1: Describing knowledge available in heterogeneous data
sources: A description of data sources in a Data Lake that

characterizes the available data and interconnection between them

CH2: Query Processing over heterogeneous data sources in a
Uniform Way: Providing a technique for query processing over

federation of data sources that is effective and efficient.

Figure 1.2: Challenges. To transform big data to actionable knowledge, we need to tackle four main challenges:
CH1 – Describing knowledge available in heterogeneous data sources, CH2 – Query processing over heterogeneous
data sources in a uniform way, CH3 – Enforcing privacy and access control policies, and CH4 – Managing Data
and Knowledge Evolution

the semantic description of entities available in the data sources, while access descriptions represent the
privacy and access policies, access interfaces, and querying mechanisms. The challenges include: extract-
ing the semantics encoded in the data sources, capturing the relationship between concepts (semantic) in
different sources, and enabling representation of other information, such as access restrictions/patterns,
and update expressions. Data source descriptions that are able to express the semantics encoded in
heterogeneous data sources is crucial for efficient and effective processing of queries over the federation
and to handle the evolving nature of data and knowledge.

Challenge 2: Query Processing over Heterogeneous Data Sources in a Uniform Way

Federated query processing techniques need to combine data from variety of data sources in a uniform
way by minimizing query execution time while at the same time maximizing answer completeness.
Approaches that provide a flexible solution to the problem of query processing over a federation of
heterogeneous data sources are crucial. Since the number of potentially relevant data sources for a query
can be very large, one of the major challenges of the query engines is the selection of minimal number of
sources that can provide the data required to answer a query [3]. An efficient big and heterogeneous, data
management, and query processing techniques are crucial. Existing approaches are not able to exploit
knowledge about the main features of the integrated data sources, and produce query plans customized
for sources selected for collecting the data from sources in the federation. Selecting relevant data sources
for a specific query, creating an efficient query execution plan considering data source types (capabilities),
and combining partial results obtained from these sources are the main challenges in query processing
over heterogeneous data sources.

5

Chapter 1 Introduction

Challenge 3: Enforcing Privacy and Access Control Policies during Query Processing

Effective data centric applications demand data management techniques able to process a large volume of
data which may include sensitive data, e.g., financial transactions, medical procedures, or personal data.
Managing sensitive data requires the enforcement of privacy and access control regulations, particularly,
during the execution of queries against datasets that include sensitive and non-sensitive data. The
challenge in enforcing privacy and data access policies are two fold: first the engine has to ensure only
relevant data sources are selected to evaluate the given query, and second it has to guarantee sensitive
data is not revealed while merging data from different data sources that may contain sensitive data. Most
of the existing work focuses on the specification of access control ontologies and their enforcement
on centralized or distributed data stores. Albeit expressive, these approaches are not able to consider
privacy and access control regulations during the whole pipeline of a federated query processing, i.e.,
source selection, query decomposition, planning, and execution. As a consequence, efficient query plans
cannot be devised in a way that privacy-aware policies are enforced. Merging sensitive data requires
the enforcement of privacy and access regulations imposed by the provider at source level as well as
at mediator level, i.e., at the query engine. Data source providers might allow certain operations to
be performed on certain data points either at the premise of the provider or at mediator level without
revealing sensitive content. Such requirements require a more expressive description model for privacy
and access policy specification. Moreover, enforcing privacy and access regulations add an overhead
during execution of queries. Federated query processing approaches need to generate valid plans that
respect the privacy and access policies and minimize execution time. Selecting relevant data sources that
can contribute to answer the query without violating privacy and access regulations imposed by data
providers, generating valid plans by selecting appropriate algorithms that respect privacy and access
regulations set by the data providers, and minimizing execution time and maximize answer completeness
with respect to privacy and access policy restrictions are the main challenges in enforcing privacy and
access policies during federated query processing.

Challenge 4: Managing Evolution of Data and Knowledge

A number of data sources are available on the Web where users can send requests for specific data using
access interfaces provided by the data providers. Many data providers serve large amount of requests
from diverse applications, and many data products and services rely on full or partial data available in
those sources. Due to limited resources to serve a large amount of requests from different applications,
data providers enforce a restriction on the number of results, query patterns, and number of requests
within a period of time. Hence, many products and services rely on full or partial data replications
to ensure reliable federated query processing and overcome those restrictions which do not met their
application requirements. Given the evolving nature of the original and authoritative datasets, to ensure
consistency and freshness, replicas need to be replaced frequently. Such frequent replacement for every
update might become impractical, especially for data sources that have frequent data changes such as
sensor data, social networks, etc. Moreover, all updates of the original data source might not be of
interest for some applications or simply do not have enough resources to replicate the whole dataset by
propagating all updates. Thus, only interesting changes should be retained while propagating updates to
the replicas. On the other hand, the replicas might evolve independently of the original source, which
might lead to inconsistent data between the source and target (i.e., replica) datasets if same data point is
edited. Challenges when propagating updates include the expression of important (interesting) updates,
propagation of updates that the application is interested in, and resolution of conflicts that might arise if
the target dataset is allowed to evolve.

6

1.3 Research Questions

1.3 Research Questions

The following research questions are defined in the scope of this thesis based on the challenges identified
in the previous section.

RQ1: How can we describe the semantics encoded in heterogeneous data sources?

To answer this research question, we investigate the state-of-the-art data source description and
profiling techniques used by federated query processing engines. We adopt the definition of RDF
molecules and their associated semantic types and properties for source description. RDF molecules are
defined as a set of triples that share the same subject. We provide a set of metrics from graph theory to
describe certain features of data sources and demonstrate the applicability by describing state-of-the-art
benchmarks for RDF data federation. Finally, we investigate the effect of different source description
techniques for query processing and evaluate their effect on the performance of a federated query engine.
In the context of this research question, we assume data source are either inherently represented in RDF
data model or the rule-based mapping from non-RDF data model to ontology is available.

RQ2: How can features represented in data source descriptions be employed to guide the federated
query processing over heterogeneous data sources?

In order to address this research question, first we analyze state-of-the-art semantic data integration
techniques, in particular, federated query processing techniques that employ SPARQL as a global querying
language. Based on our analysis, we define query decomposition and source selection techniques that
exploit a novel source description model and evaluate our technique over different benchmarks. We
compare the proposed query decomposition and source selection technique against federation of data
sources with state-of-the-art federated query engines. Then, we investigate the behavior of the optimizer
in the context of heterogeneous data sources and propose query planning and optimization techniques in
the presence of heterogeneity. We evaluate the effectiveness and efficiency of query processing technique
using the source descriptions that represent the semantics encoded in the data sources.

RQ3: How can privacy and access control requirements be encoded in data source descriptions
and be used for enforcement during query processing over federation of data sources?

To answer this research question, we study privacy and access control restriction description methods
in the literature. We investigate different access control requirements that a federated query processing
engine has to respect in a distributed environment where sensitive and non-sensitive open data shared
between different authoritative entities. We investigate the effect of the access control and privacy policy
enforcement on the performance of the federated query engine.

RQ4: How can we define update interests and propagate interesting updates for manage
(co)evolution of data sources?

To answer this research question, we study techniques for update propagation from original data source
to its replica, i.e., target data source. We study different cases of update propagation from source to target,
and vice-versa, and investigate potential problem that might arise during synchronization when the source
and the target are allowed to evolve at the same time. We study the effects of different synchronization
strategies on three data quality metrics the completeness, consistency, and conciseness of datasets.

7

Chapter 1 Introduction

Data & Knowledge Evolution

Knowledge
Representation

Big Data

Pr
iv

ac
y

an
d

Ac
ce

ss
 C

on
tro

l

Actionable
Knowledge

Relational Graph Document Flat-file

iRap: Interest-based update propagation approach and co-evolution

BO
U

N
C

ER
: P

riv
ac

y-
aw

ar
e

fe
de

ra
te

d
qu

er
y

pr
oc

es
si

ng
 a

nd
 P

riv
ac

y
aw

ar
e

R
D

F-
M

Ts

ONTARIO: RDF-MT based
Planning and optimization

approach for Semantic Data Lake

MULDER: RDF-MT based
Decomposition and Source

Selection approach

RDF-MTs: RDF Molecule Templates based Source Description

Figure 1.3: Thesis Contributions: Four main contributions of this thesis including: (1) RDF Molecule Template
(RDF-MT) based source description model, (2) Federated query processing approach over heterogeneous data
sources, specifically the MULDER decomposition and source selection and the Ontario planning and optimization
approaches, (3) Privacy-aware federated query processing technique, and (4) interest-based update propagation and
co-evolution approach

1.4 Thesis Overview

In this section, we present an overview of our main contributions on the research problems investigated
by this thesis and related scientific publications.

1.4.1 Contributions

Figure 1.3 shows the main contributions of this thesis.

‚ Contribution 1: RDF Molecule Template (RDF-MT) based Source Descriptions. To describe
heterogeneous data sources, we propose RDF Molecule Templates (RDF-MTs), an abstract de-
scription of entities in a unified schema and their implementation in the federation of data sources.
RDF-MTs describe a set of entities that belong to same semantic concept and the relationships
between them, i.e., within a data source and between different data sources. In other words,
they are templates that represent a set of RDF molecules that share the same semantic concept.
RDF-MTs provide a way to analyze the properties of a single data source and set of data sources
in a federation, which provide an insight on how dense or sparse the connection of data elements
appear in those data sources and the federation as a whole. We demonstrate the application of
RDF-MTs for describing data sources and perform high level analysis. In addition, we compare the
use of RDF-MTs based query decomposition and optimization with source descriptions computed
based on different graph partitioning techniques. The observed results show that RDF-MT based
source descriptions capture the semantics encoded in heterogeneous data sources and improved the
performance of federated query engine, answering research question RQ1.

8

1.4 Thesis Overview

‚ Contribution 2: Query processing over heterogeneous data sources. We address the problem of
query processing in two parts. First we tackle the problem of query decomposition and source
selection in autonomous, and distributed data sources. We assume these data sources provide a
uniform access interface, i.e., SPARQL endpoints via SPARQL query language. Based on this
assumption, our optimization techniques focus on the properties of the subqueries and the behavior
of data sources during answer generation. We devise MULDER, a federated query processing
engine that exploits the RDF Molecule Template (RDF-MT) based data source description of
SPARQL endpoints. MULDER provides a novel techniques for query decomposition, source
selection, and planning. Then, we generalize these techniques and tackle the problem of plan
generation and optimization for autonomous, heterogeneous, and distributed data sources. In this
case, data sources might have heterogeneous data model, access interface, and query capabilities.
We propose an optimization technique, the Ontario approach, that considers the capabilities of data
sources, described by RDF-MTs, during source selection, decomposition, and planning. Ontario
employs a greedy algorithm that generates an efficient plan considering a set of heuristics defined
based on the characteristics of the query, such as set of star-shaped subqueries, as well as the
capabilities of the selected data sources. Evaluation results of MULDER and Ontario shows
that query decomposition, source selection, and planning techniques that exploit RDF-MT based
source description leads to maximizing answer completeness as well as minimizing execution time,
answering research question RQ2.

‚ Contribution 3: Privacy-aware query processing over a federation of data sources For data
sources that contain sensitive data, data providers specify privacy and access control regulations
at different level of granularity. To describe privacy and access regulations imposed by data
providers we propose privacy-aware RDF-MTs that define privacy and access control policies
at the level of predicates, giving the provider a flexibility to restrict at a smallest data element
level. We propose BOUNCER, a privacy-aware federated query processing approach that produces
a valid plan respecting the privacy and access regulations set by the data provider. BOUNCER
is able to select data sources that are relevant to answer the subqueries and is able to eliminate
data sources that have restrictions on fragments of data at early stage of query processing. In
addition, BOUNCER is able to select operators (algorithms) that respect the privacy and access
control policies and generate an execution plan that minimize execution time. The observed results
show that a privacy-aware RDF-MTs can encode the privacy and access control policies that are
exploited by the privacy-aware federated query engine, BOUNCER, for source selection, query
decomposition, and valid plan generation, answering research question RQ3.

‚ Contribution 4: Interest-based update propagation We propose an interest-based update propaga-
tion technique, when access to data locally by replicating or slicing of an evolving data source
is preferred instead of direct access from the data provider, to avoid query restrictions set by the
provider for performance reasons. Interesting updates are expressed in terms of SPARQL query
expressions encoded in RDF-MTs. A target data source, i.e., replica or slice of an evolving data
source, is described by RDF-MTs, an abstract description of entities that are replicated by the
target data source, and have an interest expressions associated to them. We introduce iRap, an
interest-based data propagation technique, that propagates only important changes that are of
interest to the target data source. iRap is able to propagate updates in a reasonable time without
losing partial updates by keeping potentially interesting fragments locally. In addition, we intro-
duce different synchronization and conflict resolution strategies when both source and replicas are
allowed to co-evolve. Experimental results suggest that our interest expression technique capture

9

Chapter 1 Introduction

the data required by the target data source and reduce the amount of data required by several order
of magnitude, and our co-evolution techniques positively affect the quality of both data sources,
answering research question RQ4.

1.4.2 List of Publications

The entire list of publications produced during the PhD study can be found in Appendix A A.1. The work
in this thesis is based on the following publications:

1. Kemele M. Endris, Sidra Faisal, Fabrizio Orlandi, Sören Auer, Simon Scerri, Interest-based
RDF update propagation, In Proceedings of the 14th International Conference on The Semantic
Web-ISWC 2015-Volume 9366, pp. 513-529. Springer-Verlag, 2015.

2. Kemele M. Endris, Sidra Faisal, Fabrizio Orlandi, Sören Auer, Simon Scerri, iRap-an Interest-
Based RDF Update Propagation Framework. Proceedings of the ISWC 2015 Posters & Demon-
strations Track co-located with the 14th International Semantic Web Conference (ISWC-2015),
Bethlehem, PA, USA, October 11, 2015.

3. Sidra Faisal, Kemele M. Endris, Saeedeh Shekarpour, Sören Auer, Maria-Esther Vidal, Co-
evolution of RDF Datasets, Web Engineering - 16th International Conference, ICWE 2016,
Lugano, Switzerland, June 6-9, 2016. Proceedings, pp. 225–243, 2016. This is a joint work
with Sidra Faisal, an PhD student at the University of Bonn. In this paper, my contributions
includes preparing motivating example, contribution to the problem definition and formalization,
and preparing datasets for experiments.

4. Kemele M. Endris, Mikhail Galkin, Ioanna Lytra, Mohamed Nadjib Mami, Maria-Esther Vidal,
Sören Auer, MULDER: Querying the Linked Data Web by Bridging RDF Molecule Templates. In
International Conference on Database and Expert Systems Applications, pp. 3-18. Springer, Cham,
2017. (Best Paper Award)

5. Kemele M. Endris, Mikhail Galkin, Ioanna Lytra, Mohamed Nadjib Mami, Maria-Esther Vidal,
Sören Auer, Querying Interlinked Data by Bridging RDF Molecule Templates. In Transactions
on Large-Scale Data-and Knowledge-Centered Systems XXXIX, pp. 1-42. Springer, Berlin,
Heidelberg, 2018.

6. Kemele M Endris, Maria-Esther Vidal, Sören Auer, FedSDM: Semantic Data Manager for
Federations of RDF Datasets. In International Conference on Data Integration in the Life Sciences,
pp. 85-90. Springer, Cham, 2018.

7. Kemele M Endris, Zuhair Almhithawi, Ioanna Lytra, Maria-Esther Vidal, Sören Auer, BOUNCER:
Privacy-Aware Query Processing over Federations of RDF Datasets. In International Conference
on Database and Expert Systems Applications, pp. 69-84. Springer, Cham, 2018.

8. Maria-Esther Vidal, Kemele M. Endris, Samaneh Jazashoori, Ahmad Sakor, and Ariam Rivas.
Transforming Heterogeneous Data into Knowledge for Personalized Treatments—A Use Case. In
Datenbank-Spektrum: 1-12, Springer, Cham, 2019.

9. Maria-Esther Vidal, Kemele M. Endris, Samaneh Jozashoori, Farah Karim, and Guillermo Palma.
Semantic data integration of big biomedical data for supporting personalised medicine. In Current
Trends in Semantic Web Technologies: Theory and Practice, pp. 25-56. Springer, Cham, 2019.

10

1.5 Thesis Structure

10. Kemele M Endris, Philipp D. Rohde, Maria-Esther Vidal, Sören Auer, Ontario: Federated
Query Processing against Heterogeneous Data Sources in a Semantic Data Lake. International
Conference on Database and Expert Systems Applications, Springer, Cham, 2019.

11. Lucie-Aimée Kaffee, Kemele M. Endris, Elena Simperl and Maria-Esther Vidal, Ranking Know-
ledge Graphs By Capturing Knowledge about Languages and Labels, Proceedings of the Know-
ledge Capture Conference (K-CAP) 2019, Marina del Rey, California, USA, ACM 2019

12. David Chaves-Fraga, Kemele Endris, Enrique Iglesias, Oscar Corcho and Maria-Esther Vidal,
What are the Parameters that Affect the Construction of a Knowledge Graph?, Proceedings of
the 18th International Conference on Ontologies, DataBases, and Applications of Semantics
(ODBASE) (in OTM) 2019, Rhodes, Greece, Springer 2019.

1.5 Thesis Structure

The remainder of this thesis is organized as follows: Chapter 2 introduces preliminary concepts and
theoretical foundations for the research conducted in this thesis. First, it describes the general data
integration problem and different classifications based on three dimensions; autonomy, distribution, and
heterogeneity. Then, it introduce the Semantic Web as well as main technologies and standards available
to realize its vision. Finally, we discuss the basic sub-problems and components of federated query
processing systems. In Chapter 3, we present related works to this thesis. We first present state-of-the-art
materialized data integration approaches in the Semantic Web community. Then, we give an overview
of federated query processing engines that are specialized for RDF data sources. We dive into each
sub-problems of federated query processing, i.e., source description, decomposition, source selection,
planning, and optimization, specific approaches in the literature. Then, we describe approaches that
consider the heterogeneity of data sources during federated query processing. Next, approaches for
privacy and access control representation and enforcement are discussed. Finally, we present related
works on update propagation and managing co-evolution of datasets that evolve independently to
each other. Chapter 4 presents a novel source description model proposed in the scope of this thesis.
We utilize the semantics encoded in the data sources to describe different characteristics of the data
available in the datasets. We also analyze three different state-of-the-art benchmarks for federated query
processing evaluation, and show the expressiveness of the description model as well as the performance
improvements compared to other type of source descriptions. Chapter 5 presents a query decomposition
and source selection approach, MULDER, utilizing the RDF-MT based source descriptions, presented in
Chapter 4. The MULDER approach takes advantage of the semantic descriptions of each data sources
and the interlink between them to perform query decomposition and source selection. We show the
results of extensive performance evaluation using three different benchmarks that MULDER is able to
significantly reduce the overall query execution time as well as increase answer completeness. In addition,
MULDER has comparable results with other state-of-the-art adaptive query processing engine in terms of
continuous answer generation. Chapter 6 presents query planning and optimization techniques utilizing
the capabilities of data sources and their semantic description available in RDF-MTs. We present the
planning and optimization approach of Ontario, a federated query engine over heterogeneous data sources
in the Semantic Data Lake, that is able to utilize RDF-MT based descriptions that maximize answer
completeness and minimize query execution time. The results of our evaluation provide an evidence
that the optimization technique used by Ontario is able to speed up query execution and enhance
answer completeness with respect to the state-of-the-art SPARQL federated engines. Chapter 7 presents
BOUNCER, a privacy-aware query processing techniques, that is able to consider privacy and access

11

Chapter 1 Introduction

control restriction when the federation contains data sources that contain sensitive and non-sensitive data.
BOUNCER provides privacy-aware query decomposition and planning technique to generate a valid
execution plan according to privacy and access control policy of sources in the federation. We evaluate the
performance of BOUNCER assessing the effectiveness and efficiency of the decomposition and planning
techniques. The results show that BOUNCER effectively enforce access control and privacy regulations
at different level of granularity without impacting the performance of the query processing. Chapter 8
presents an interest-based update propagation technique between evolving data sources. Update interest
expressions are described using a graph pattern and conflict resolution strategy, if the target data source
is allowed to evolve at the same time. We present an RDF synchronization and conflict identification and
resolution approaches. We implemented the RDF synchronization and conflict resolution technique in
the iRap framework and perform a comprehensive evaluation based on the DBpedia Live update. We
proposed different conflict identification and resolution techniques. Chapter 9 concludes the thesis with
a summary of the main results and contributions to the problem of federated query processing against
Semantic Data Lakes and present possible future directions for subsequent research work.

12

CHAPTER 2

Background

In this chapter, we present basic concepts and theoretical foundations for the research conducted in this
thesis. First, in Section 2.1, we define the basic concepts and components of a data integration system,
then, we present the vision and basic concepts of the Semantic Web, as well as standards and technologies
such as Resource Description Framework (RDF), RDF Schema, SPARQL query language, and rule-based
mapping languages in Section 2.2. Finally, we show an overview of federated query processing and basic
components of a federated query engine in Section 2.3.

2.1 Data Integration System

An enormous amount of data is being published on the Web [7]. In addition, different data sources are
being generated and stored within enterprises as well due to technological advances in data collection,
generation, and storage. These data sources are created independently of each other and might belong to
different administrative entities. Hence, they have different data representation format as well as access
interfaces. Such properties of the data sources hinder the usage of data available in them. Data integration
is the process of providing a uniform access to a set of distributed (or decentralised), autonomous, and
heterogeneous data sources [3]. The number of data sources a data integration system integrate can
range from less than a hand full of sources to Web-scale. Data integration systems provide a global
schema (also known as mediated schema) to provide a reconciled view of all data available in different
data sources. Mapping between the global schema and source schema should be established to combine
data residing in data sources considered in the integration process. Generally, data integration system is
formally defined as follows [8]:

Definition 1 (Data Integration System) A data integration system, I, is defined as a tripleă G, S ,M ą,
where:

‚ G is the global schema, expressed in a language LG over an alphabet AG. The alphabet comprises
a symbol for each element of G.

‚ S is the source schema, expressed in a language LS over an alphabet AS . The alphabet AS includes
a symbol for each elements of the sources.

‚ M is the mapping between G and S , constituted by a set of assertions of the forms: qS Ñ qG,
qG Ñ qS ; where qS and qG are two queries of the same arity, respectively over the source schema
S , and over the global schema G. An assertion specify that the connection between the elements of
the global schema and those of the source schema.

13

Chapter 2 Background

Defining schema mapping is one of the main tasks in a data integration system. Schema mapping is the
specification of correspondences between the data at the sources and the global schema. The mappings
determine how the queries posed by the user using the global schema be answered by translating to
the schema of the sources that stores the data. Two basic approaches for specifying such mappings
have been proposed in the literature for data integration systems are Global-as-View(GAV) [9, 10] and
Local-as-View(LAV) [11, 12].

2.1.1 Global-as-View Approach (GAV)

Rules defined using the Global-as-View (GAV) approach define concepts in the global schema as a set of
views over the data sources. Using the GAV approach, the mapping rules in M defines the concepts of
the schema in the sources, S , with each element in the global schema. This means that, a GAV mapping
is a set of assertions of the form [8]: gÑ qS , where g P G and qS is query over sources in S . A query
posed over the global schema, G, needs to be reformulated by rewriting the query with the views defined
in, M. Such rewriting is also known as query unfolding; the process of rewriting the query defined
over global schema to a query that only refers to the source schema. Conceptually, GAV mappings
specify directly how to compute tuples of the global schema relations from tuples in the sources. This
characteristics of GAV mappings makes them easier for query unfolding strategy. However, adding and
removing sources in the GAV approach may involve updating all the mappings in the global schema,
which requires knowledge of all the sources. In this thesis, we define a source description model, RDF
Molecule Template - an abstract description of entities that share the same characteristics, based on
GAV approach. The global schema is defined as a consolidation of RDF-MTs extracted from each data
source in the federation. Rule-based mappings, e.g., RML, are used to define the GAV mappings of
heterogeneous data sources. RDF-MTs are merged based on their semantic descriptions defined by the
ontology, e.g., in RDFS. In Chapter 4 we presents the proposed data source description model in detail.

2.1.2 Local-as-View Approach (LAV)

Mappings specified using the Local-as-View (LAV) approach describe the data sources as views over
the global schema. Using the LAV approach, the mapping rules in M associates a query defined over
the global schema, G, to each elements of source schema, S , i.e., a LAV mapping is a set of assertions
of the form [8]: s Ñ qG, where s P S and qG is a query defined over the global schema, G. Adding
and removing sources in the LAV approach is easier than GAV approach, as data sources are described
independently to each other. In addition, it allows for expressing incomplete information as the global
schema represents a database whose tuples are unknown, i.e., the mapping M defined by LAV approach
might not contain all the corresponding sources for all the elements in thee global schema, G. As
a consequence, query answering in LAV may consist of querying incomplete information, which is
computationally more expensive [3].

2.1.3 Classification of Data Integration Systems

Data integration systems can be classified with respect to the following three dimensions: autonomy,
distribution, and heterogeneity [13], Figure 2.1. Autonomy dimension characterizes the degree to which
the integration system allows each data sources in the integration to operate independently. Autonomy
of data sources could refer to both in terms of control over the data as well as its distribution. Control
over the data can be characterized by their autonomy over their choice of their data model, schema, and
evolution. Based on the requirements defined by the provider different data representation model might

14

2.1 Data Integration System

Heterogeneity

Distribution

Autonomy

Figure 2.1: Dimensions of Data Integration Systems [13]

be used. Furthermore, sources also have an autonomy to join or leave the integration system at any time as
well as to which fragments of data to be accessible by the integration system and its users. Distribution
dimension specifies the data that is physically distributed across computer networks. Such distribution
(or decentralization) can be achieved by controlled distribution or by the autonomous decision of the data
providers. Finally, heterogeneity may occur due to the fact that an autonomous development of systems
yields different solutions, for reasons such as different understanding and modeling of the same real-world
concepts, the technical environment, and particular requirements on the application [13]. Though there
are different types of heterogeneity of data sources, the important ones with respect to data interoperability
are related to data model, semantic, and interface heterogeneity. Data model heterogeneity captures
the heterogeneity created by various modeling techniques such that each data models have different
expressive power and limitations, e.g., relational tables, property graph, RDF, etc. Semantic heterogeneity
concerns the semantic of data and schema in each sources. The semantics of data stored in each source is
defined through the explicit definition of their meanings in the schema element under which they are
represented. Finally, interface heterogeneity exists if data sources in the integration system are accessible
via different query languages, e.g., SQL, Cypher, SPARQL, or API call.

Figure 2.2 shows different classification of data integration systems with respect to distribution and
heterogeneity dimensions. The first type of data integration systems, Figure 2.2.(1), loads heterogeneous
data from data sources to a centralized storage after transforming them to a common data representation
format. The second type of data integration systems, Figure 2.2.(2), support data distributed across
networks, however, they only support if the data sources in the system are homogeneous. Data sources
are homogeneous in terms of data model and access methods. However, data sources might have different
hardware platform, schema, and access restrictions. Federated query processing systems fall in this type
when the data sources are autonomous. The third type of data integration systems, Figure 2.2.(3), support
data heterogeneity among data sources in the integration system, however, it is managed in centralized
way and data is stored in a distributed file system (DFS), such as Hadoop 1. Finally, the fourth type of
data integration systems, Figure 2.2.(4), support data distributed across networks as well as heterogeneity
of data sources. Such integration systems utilize special software components to extract data from the
data sources using native query language and access mechanism. They can also transform data extracted
from the sources to data representation defined by the integration system. Data sources in the integration
system might also be autonomous. Federated query processing systems fall in this type if the data sources
are autonomous. Such type of systems are different from the third type by how data is distributed and

1 https://hadoop.apache.org/

15

https://hadoop.apache.org/

Chapter 2 Background

Wrapper Wrapper Wrapper

Autonomy

Heterogeneity

Distribution
Centralized Distributed

Homogeneous

Heterogeneous

Data Integration
System

3
Data Integration

System
4

Data Integration
System

2
Data Integration

System
1

Figure 2.2: Classification of Data Integration Systems

stored. While the fourth type supports any storage management, including DFS, the third type of data
integration systems supports only DFS in a centralized way. Mostly the distribution task is handled by
the file system. For instance, data might be stored in multi-modal data management system or in a Data
Lake storage based only on distributed file system (DFS). In third type of data integration systems, data
is loaded from the original source to the centralized storage for further processing.

Data integration systems also have to make sure data that is current (fresh) is accessed and integrated.
Especially, for the DFS based Data Lakes, Figure 2.2.(2), and the centralized, Figure 2.2.(4), integration
systems, updates of the original data sources should be propagated to guarantee the freshness of data.
Furthermore, when accessing original data source from the provider is restricted or management of data
in a local replica is preferred, integration systems Figure 2.2.(1) and (3), need to guarantee the freshness
of data by propagating changes.

2.1.4 Data Integration in the era of Big Data

In the era of big data, a large amount of structured, semi-structured, and unstructured data is being
generated in a faster rate than before. Big data systems that integrate different data sources need to
handle such characteristics of data efficiently and effectively. Generally, big data is defined as data whose
volume, acquisition speed, data representation, veracity, and potential value overcome the capacity of
traditional data management systems [14]. Big data is characterized by a 5Vs model: Volume denotes
that generation and collection of data are produced at increasingly big scales. Velocity represents that
data is rapidly and timely generated and collected. Variety indicates heterogeneity in data types, formats,
structuredness, and data generation scale. Veracity refers to noise and quality issues in the data. Finally,
Value denotes the benefit and usefulness that can be obtained from processing and mining big data.

There are two data access strategies for data integration: schema-on-write and schema-on-read. In

16

2.2 Semantic Web

schema-on-write strategy, data is cleansed, organized, and transformed according to a pre-defined schema
before loading to the repository. In schema-on-read strategy, raw data is loaded to the repository as-is and
schema is defined only when the data is needed for processing [6]. Data warehouses provide a common
schema and require data cleansing, aggregation, and transformation in advance, hence, following the
schema-on-write strategy. To provide scalable and flexible data discovery, analysis, and reporting, Data
Lakes have been proposed. Unlike data warehouses, where data is loaded to the repository after it is
transformed to a target schema and data representation, Data Lakes store data in its original format, i.e.,
schema-on-read strategy. Data Lakes provide a central repository for raw data that is made available
to the user immediately and defer any aggregation or transformation tasks to the data analysis phase,
thus, addressing the problem of disconnected information silos which is the result of non-integrated
heterogeneous data sources in isolated repositories, with diverse schemas and query languages. Such
central repository may include different data management systems, such as distributed file systems,
relational database management systems, graph data management systems, as well as triple stores for
specialized data model and storage, i.e., preserving the rawness of data and constraints represented in it.
Data Lakes guarantee eventually a common access interface to available data for processing and analysis
task without conveying the development costs of pre-processing and transformations. Along with the raw
data, available metadata describing the data sources can also be extracted during the ingestion phase [15].
Metadata governance plays an important role in Data Lakes to efficient discovery of datasets and avoid
data swamps. In this thesis, we propose a data source description model, RDF Molecule Template, for
Data Lakes, where concepts are described by their shared semantic characteristics. Such descriptions can
be used to integrate heterogeneous data sources in the Data Lake based on their semantic description. We
present our data description model in Chapter 4.

Semantic integration of big data entails data variety by enabling the resolution of several interoperability
conflicts, e.g., structuredness, schematic, representation, completeness, domain, granularity and entity
matching conflicts. These conflicts arise because data sources may have different data models, follow
various schemes for data representation, contain complementary information [3]. Furthermore, a real-
world entity may be represented using diverse properties or at various levels of detail. Thus, data
integration techniques able to solve all the interoperability issues while addressing data complexity
challenges imposed by big data characteristics are demanded. In this thesis, we focus on the first two
dimensions of big data, variety and volume, and resort to a semantic data integration approach that
address the challenges imposed by the variety (heterogeneity) of data sources in a Semantic Data Lake.
In the next section, we introduce the Semantic Web and available technologies that are defined to realize
its vision on solving such interoperability issues.

2.2 Semantic Web

The Semantic Web is an extension of the current Web in which documents on the Web have annotations
that make their meanings explicit, making them machine-readable. According to the W3C, "The Semantic
Web provides a common framework that allows data to be shared and reused across application, enterprise,
and community boundaries" 2. The vision of the Semantic Web is to extend principles of the existing
Web of Document to Web of Data. It provides formalism for representing and accessing data that are
translated to a set of standards and technologies used to create data store, vocabularies, and write rules
for handling data. At the core of these standards is the Resource Description Framework (RDF) for
semantic markup and its associated schema languages, RDF Schema (RDFS) and the Web Ontology
Language (OWL). These standards are built on the principles of knowledge representation languages and

2 https://www.w3.org/2001/sw/

17

Chapter 2 Background

Subject Object
Predicate

Figure 2.3: RDF Graph representing an RDF triple. An RDF triple consisting of a subject a resource
(represented as a node) to which this triple asserts, a predicate as label of a directed edge representing a binary
relation, and an object which is a value of the predicate that relates it to the subject node.

adapt them to the context of the Web, where knowledge is authored in a decentralized fashion by many
participants [3]. Linked Data is a set of best practices for publishing and interlinking machine-readable
data on the Web [16]. Linked Data enables the consumption of semi-structured data sources on the Web
by both human and machines (software agents). To ensure that Linked Data reaches its full potential,
datasets should be released under an open license which does not impede its reuse for free. Linked Open
Data (LOD) is Linked Data which is released under an open licence [16]. The LOD initiate encouraged
data providers to publish a large linked datasets from different domains, which leads to the creation of
semantically interconnected global dataspace known as the Linked Open Data Cloud (LOD Cloud) [17].
Prominent datasets in LOD Cloud includes: DBpedia, Wikidata, YAGO, and Bio2RDF. Different domains
are represented in the LOD Cloud, including Cross Domain, Geography, Government, Life Science,
Linguistics, Social Networking, Media, Publications, and others. During the first release of the LOD
Cloud in 2007, there were only 12 datasets interconnected. During the last decade, the LOD Cloud has
grown considerably, to the total of 1, 239 datasets with 16, 147 links as of March 20193.

2.2.1 The Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a graph-based data model representing information on
the Web4. The RDF data model allows expressing information in the form of three element tuples, called
RDF triples. An RDF triple consists of a subject, a predicate, and an object. A subject of
an RDF triple denotes a resource or entity that is being described, predicate specifies a property or
binary relation that associates the subject with the object of the triple, and an object of a triple denotes
a value of the predicate. A set of RDF triples are called an RDF graph, and a collection of RDF graphs
form an RDF dataset. In this thesis, we use the term dataset and data source interchangeably. Nodes
in RDF graph can be resources or literals, and RDF resources are identified by IRIs (Internationalized
Resource Identifier) or blank nodes (anonymous resources or existential variables). Literals can be
enriched with datatypes (defined by XML Schema [18]) and language tags (specified in BCP 47 [19])
in conformance with the RDF specification [20]. RDF resources can be served via native web access
interfaces such as dereferencing resource identifiers, and SPARQL endpoint via the SPARQL protocol.

Definition 2 (RDF Triple and Dataset [21]) Let U, B, L be disjoint infinite sets of IRIs, blank nodes,
and literals, respectively. A tuple ps, p, oq P pUY Bq X pUq X pUY BY Lq denotes an RDF triple, where
s is called the subject, p the predicate, and o the object. An RDF dataset or RDF graph is a set of RDF
triples. When s P L or p P pBY Lq, then the tuple ps, p, oq is called a generalized RDF triple and the
dataset where it is contained is called a generalized RDF dataset [22].

3 https://lod-cloud.net/
4 https://www.w3.org/TR/rdf11-concepts/

18

https://www.w3.org/TR/rdf11-concepts/

2.2 Semantic Web

dbr:Docetaxel"Docetaxel"@en
dbp:drugName

dbr:Taxotere
dbp:brand

rdf:type

dbo:Drug

"699121PHCA"

dbo:fdaUniiCode

Figure 2.4: RDF Molecule: dbr:Docetaxel

Example 1 The following are examples of RDF triples modeled using DBpedia ontology5.

‚ Docetaxel is a drug.
(dbr:Docetexel, rdf:type, dbo:Drug)

‚ Docetaxel has name "Docetaxel" in English .
(dbr:Docetaxel, dbp:drugName, "Docetaxel"@en)

‚ Docetaxel is sold under the brand Taxotere.
(dbr:Docetaxel, dbp:brand, dbr:Taxotere)

‚ There are 535,061 inhabitants in Hanover.
(dbr:Hanover, dbo:populationTotal, "535061"ˆˆxsd:integer)

Graphically we represent RDF graphs as shown in Figure 2.3. An RDF graph is different from any
(directed labeled) graph in a way that in an RDF graph a label (predicate) can be used as both edge
label as well as a node (subject or object). A set of triples that share same subject value are called RDF
molecules. Formally, RDF molecules are defined as follows:

Definition 3 (RDF Molecule [23]) Given an RDF graph G, an RDF moleculeM Ď G is a set of triples
M “ tt1, t2, . . . , tnu in which subjectpt1q “ subjectpt2q “ ¨ ¨ ¨ “ subjectptnq.

Example 2 The following set of RDF triples represent an RDF molecule for dbr:Docetaxel:

dbr : D o c e t a x e l r d f : t y p e dbo : Drug .
dbr : D o c e t a x e l dbp : drugName " D o c e t a x e l "@en .
dbr : D o c e t a x e l dbp : brand dbr : T a x o t e r e .
dbr : D o c e t a x e l dbo : fdaUni iCode " 699121PHCA" .

Figure 2.4 shows the graphical representation of this molecule.
5 We assume the following prefixes: dbo : <http://dbpedia.org/ontology/>
dbr : <http://dbpedia.org/resource/>
dbp : <http://dbpedia.org/property/>
xsd: <http://www.w3.org/2001/XMLSchema#>
rdf : <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
rdfs: <http://www.w3.org/2000/01/rdf-schema#>

19

Chapter 2 Background

2.2.2 RDF Schema

RDF Schema (RDFS) is part of the W3C Recommendation and provides a language to define se-
mantics of user-defined vocabularies for RDF data. RDFS extends RDF with additional modeling con-
structs that allow to define classes (rdfs:Class), hierarchies between classes (rdfs:subClassOf)
and properties (rdfs:subPropertyOf), restrictions on the domains (rdfs:domain) and ranges
(rdfs:range) of properties (rdf:Property), and membership (rdf:type) of entities in classes.
A class represents a set of entities that represent a real-world (or fictional) concept. A membership of an
entity to a class is defined via rdf:type. Class hierarchies can be specified using the rdfs:subClassOf
construct. Relationships between classes is defined using the rdfs:domain to specify the subject type
of a triple and rdfs:range to specify the type of object part of a triple defined by a particular property
as rdf:Property. Hierarchies between properties are specified using rdfs:subPropertyOf
construct. In addition to these constructs, RDFS provides annotation properties, rdfs:label and
rdfs:comment, to enrich the human-readability of the given resource or entity. The RDF Schema
serves as foundation to building an RDF graph with typed hierarchies of concepts and their relationships
as defined by using rdfs:subClassOf and rdfs:subPropertyOf, as well as the restrictions
specified using rdfs:domain and rdfs:range. RDFS also offers a set of entailment rules that are
used to infer implicit statements from explicit ones6.

2.2.3 The SPARQL Query Language and SPARQL Protocol

In 2008, SPARQL7 query language became a W3C Recommendation for querying RDF data [24].
SPARQL is basically a graph pattern matching query language, as RDF is a directed graph data model.
SPARQL queries can be seen having three parts [25]; pattern matching, solution modifiers, and output
type. The pattern matching part includes several features of pattern matching of graphs, such as optional
parts, union parts, nesting, filtering values, and possibility to choose the data source to be matched by the
pattern. The solution modifiers part allows to modify the values computed by the pattern matching part
by applying operators such as projection, distinct, group, order, and limit. Finally , the output type part
can be yes/no, selections of values of the variables matching the patterns, construction of new RDF data
from these values, and descriptions of resources.

A SPARQL query is the form headÐbody, where the body of the query is a complex RDF graph pattern
expression that may include RDF triples with variables (i.e., triple patterns), conjunctions, optional parts,
and constraints over the values of the variables. The head part of the query is an expression that indicates
how to construct the answer to the query. The evaluation of a SPARQL query against an RDF graph
is done in two steps. First, the body of the query is matched against the RDF graph to obtain a set of
bindings for the variables in the body, then using the information on the head of the query, these bindings
are processed applying classical relational operators to produce the answer to the query.

The SPARQL language considers operators, OPTIONAL, UNION, FILTER, and AND via a point
symbol (.), to construct graph pattern expressions. The syntax of SPARQL graph pattern is defined as:

Definition 4 (SPARQL Graph Pattern Expression [25]) Let V be a set of variables disjoint from U Y
BY L. A SPARQL graph pattern expression is defined recursively as follows:

1. A triple pattern t P pU Y BY Vq ˆ pU Y Vq ˆ pU Y BY LY Vq is a graph expression,
2. If P1 and P2 are graph patterns, then expressions pP1 AND P2q, pP1 OPT P2q, and pP1 UNION

P2q are graph patterns,

6 https://www.w3.org/TR/rdf11-mt/#rdfs-entailment
7 SPARQL is a recursive acronym that stands for The SPARQL Protocol and RDF Query Language

20

2.2 Semantic Web

3. If P is a graph pattern and R is a SPARQL built-in filter condition, then the expression pP FILTER
Rq is a graph pattern.

Example 3 The following expression represents a SPARQL graph pattern composed of a set of triple
patterns, AND (.), FILTER, and OPT operators.

{
? drug r d f : t y p e dbo : Drug .
? drug dbp : drugName ?name .
OPTIONAL {

? drug dbp : brand ? brand .
? drug dbo : fdaUni iCode ? fdaUni iCode .

}
FILTER (lang (? name) = ’EN ’)
}

The SPARQL query language provides four query forms: ASK, SELECT, CONSTRUCT, and DESCRIBE.
In this work, we focus on SPARQL SELECT queries formally defined as follows:

Definition 5 (SPARQL Expression (SELECT Query) [26]) Let V be a set of variables disjoint from
U Y BY L, Q be a SPARQL expression and S Ă V a finite set of variables. A SPARQL SELECT query is
an expression of the form S ELECTS S pQq.

Example 4 The following query represents a SPARQL SELECT query composed of a triple pattern,
AND, FILTER, and OPT operators, that projects the first 1000 values that mapped to all variables, i.e.,
?drug ?name ?brand ?fdaUniiCode, in the graph pattern expression, i.e., in the body of the query.

PREFIX dbo : < h t t p : / / dbped ia . org / o n t o l o g y / >

PREFIX dbp : < h t t p : / / dbped ia . org / p r o p e r t y / >

PREFIX r d f : < h t t p : / / www. w3 . org / 1 9 9 9 / 0 2 / 2 2 ´ r d f´s y n t a x´ns #>

PREFIX r d f s : < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f´schema #>

SELECT ? drug ?name ? brand ? fdaUni iCode
WHERE {

? drug r d f : t y p e dbo : Drug .
? drug dbp : drugName ?name .
OPTIONAL {

? drug dbp : brand ? brand .
? drug dbo : fdaUni iCode ? fdaUni iCode .

}
FILTER (lang (? name) = ’EN ’)
} LIMIT 1000

SPARQL SELECT queries are evaluated over an RDF dataset based on mappings, where each mapping
represents a possible answer of a query. A mapping, µ, is a partial function µ : V Ñ pU ˆ Bˆ Lq, i.e.,
from a binding from a set of variables to RDF terms. The domain of µ, dom(µ), is the subset of V where µ
is defined. Two mappings µ1 and µ2 are compatible, denoted as µ1 „ µ2, when µ1Y µ2 is also a mapping,
i.e., @x P dompµ1q Y dompµ2q, µ1pxq “ µ2pxq. Abusing notation, for a triple pattern t, the triple obtained
by replacing the variables in t according to mapping µ is denoted by µptq [26]. The semantic of SPARQL
graph pattern expression is defined as a function rr.ssD which translates pattern expression into algebraic
operations and returns a set of mappings, formally defined as:

21

Chapter 2 Background

Definition 6 (SPARQL Set Semantics [25, 26]) Let D be an RDF dataset, t a triple pattern, Q, Q1,
and Q2 SPARQL expressions, R a filter condition, and S Ă V a set of variables. Let rr.ssD be a function
that translates SPARQL expressions into SPARQL algebraic operations as follows:

rrtssD “ tµ | dompµq “ varsptq ^ µptq P Du

rrQ1 AND Q2ssD “ rrQ1ssD ’ rrQ2ssD

rrQ1 OPT Q2ssD “ rrQ1ssD d|><| rrQ2ssD

rrQ1 UNION Q2ssD “ rrQ1ssD Y rrQ2ssD

rrQ FILT ER RssD “ σRprrQssDq

rrS ELECTS pQqssD “ πS prrQssDq

The semantics of SPARQL query evaluation defined by help of a compact algebra over such mapping
sets:

Definition 7 (SPARQL Set Algebra [25, 26]) Let Ω, Ω1, and Ω2 be a set of mappings, R denote a filter
condition, and S Ă V be a finite set of variables. SPARQL algebraic operations join (’), union (Y),
minus (z), left outer join (d|><|), projection (π), and selection (σ) are defined as:

Ω1 ’ Ω2 “ tµ1 Y µ2 | µ1 P Ω2, µ2 P Ω2 : µ1 „ µ2u

Ω1 YΩ2 “ tµ | µ P Ω1 or µ P Ω2u

Ω1 z Ω2 “ tµ1 P Ω1 | f or all µ2 P Ω2 : µ1 µ2u

Ω1d|><| Ω2 “ pΩ1 ’ Ω2q Y pΩ1zΩ2q

πS pΩq “ tµ1 | Dµ2 : µ1 Y µ2 P Ω^ dompµ1q Ď S ^ dompµ2q X S “ Hu

σRpΩq “ tµ P Ω | µ (Ru

where µ (R iff µ satisfies SPARQL built-in filter condition R.

SPARQL basic graph pattern (BGP) is a set of triple patterns and filter patterns that are in conjunctive
graph pattern. Formally, BGPs are defines as follows:

Definition 8 (BGP) Let U be the set of all IRIs, B be the set of blank nodes, L be the set of literals and
V be the set of variables. A SPARQL basic graph pattern (BGP) expression is defined recursively as
follows:

1. A triple pattern t P pU Y BY Vq ˆ pU Y Vq ˆ pU Y BY LY Vq is a BGP;
2. The expression (P1 AND P2) is a BGP, where P1 and P2 are BGPs;
3. The expression (P FILTER R) is a BGP, where P is a BGP and R is a SPARQL filter expression

that evaluates to Boolean value.

A BGP in a SPARQL query contains at least one star-shaped subquery (SSQ). An SSQ is a non-empty
set of triple patterns that share the same subject variable (constant).

Definition 9 (Star-shaped Subquery (SSQ) [27]) A star-shaped subquery star(S,?X) on a vari-
able (constant) X is defined as:

1. star(S,X) is a triple pattern t={X p o}, and p and o are different to X.
2. star(S,X) is the union of two stars, star(S1,X) and star(S2,X), where triple patterns

in S1 and S2 only share the variable (constant) X.

22

2.2 Semantic Web

Example 5 The following SPARQL SELECT query is composed of a basic graph pattern (BGP) (com-
posed of five triple patterns, hence four AND operators) and two star-shaped subquery (SSQ) (over
subject variables ?drug and ?brand, respectively).

PREFIX dbo : < h t t p : / / dbped ia . org / o n t o l o g y / >

PREFIX dbp : < h t t p : / / dbped ia . org / p r o p e r t y / >

PREFIX r d f : < h t t p : / / www. w3 . org / 1 9 9 9 / 0 2 / 2 2 ´ r d f´s y n t a x´ns \ #>

PREFIX r d f s : < h t t p : / / www. w3 . org / 2 0 0 0 / 0 1 / r d f´schema \ #>

SELECT DISTINCT *
WHERE {

? drug r d f : t y p e dbo : Drug .
? drug dbp : drugName ?name .
? drug dbp : brand ? brand .
? brand r d f s : l a b e l ?brandName .
? brand dbp : p r i c e ? d r u g p r i c e .
FILTER (lang (? name) = ’EN ’ && l ang (? brandName) = "EN")
}

Complexity of SPARQL

The problem of evaluating SPARQL graph patterns can be considered as a decision problem. The
evaluation problem of SPARQL graph patterns is defined as [21]:

INPUT: An RDF dataset D, a graph pattern P, and a mapping µ.
QUESTION: Is µ P rrPssD

The complexity of evaluating SPARQL query is influenced by the type operators, i.e., AND, FILTER,
UNION, and OPTIONAL, used in the graph pattern. If the graph pattern expression P is constructed by
using only AND (and optionally FILTER) operator, then the evaluation can be solved in PT IME, i.e.,
Op|P|.|D|q time. Similarly, a graph pattern expression, P, constructed using only UNION operator (and
optionally FILTER) the evaluation problem is in PT IME. However, if the graph pattern, P, combines
only the above operators, i.e., AND, UNION, optionally FILTER, then the evaluation problem becomes
NP-complete. Finally, the evaluation problem of SPARQL queries constructed with OPTIONAL in
combination with any of the above operators becomes PSPACE-complete [26].

2.2.4 Rule-based Mapping Languages for Transforming raw data to RDF

Mapping languages defined by the Semantic Web community can be used to transform non-RDF data
source to RDF. The rules represent the GAV mappings that define the concepts of an ontology as a set of
views over heterogeneous data sources. Such transformation can also be used to transform legacy data
bases as well as semi-structured data sources published on the Web. R2RML and RML are exemplar rule-
based languages that are widely used for these tasks. Next, we introduce these two mapping languages in
detail.

R2RML – RDB to RDF Mapping Language

R2RML is a W3C Recommendation [28] for transformation of relational databases to RDF. R2RML is a
language for expressing customized mappings from relational databases to RDF datasets. Such mappings
provide the ability to view existing relational data in the RDF data model, expressed in a structure and

23

Chapter 2 Background

Figure 2.5: Overview of R2RML Triple Maps

target vocabulary of the mapping author’s choice. An R2RML mapping is represented as a Triple Map, a
rule that maps each row in the logical table to a number of RDF triple. A Triple Map have the following
parts (illustrated8 in Figure 2.5):

‚ A Logical Table (rr:logicalTable) refers to a base table, a view, or a valid SQL query to
retrieve from the input database. It comprises the following components:

– SQL Base Table or View (rr:tableName) specifies the table or view name of the base
table or view.

– R2RML View (rr:sqlQuery and rr:sqlVersion) specifies an SQL SELECT query
to be executed against the input database.

‚ A Subject map (rr:subjectMap) defines the subjects of the generated RDF triples. Subjects
can be defined as IRIs or Blank Nodes. Zero or more class type of subjects can also be defined.

‚ Zero or More Predicate-Objece Maps (rr:predicateObjectMap) that in turn consists of:

– Predicate Maps (rr:predicateMap) indicates the predicate of the RDF triple and should
be a valid IRI;

– Object Maps (rr:objectMap) indicate the object of the RDF triple;

– Referencing Object Map (rr:refObjectMap) that indicates the reference to another
Triple Map, if not specified as Object Map.

RML – RDF Mapping Language

RDF Mapping Language (RML) extends R2RML by generalizing to heterogeneous data sources. RML
is a generic mapping language defined for expressing customized mappings from heterogeneous data
sources, e.g., RDB, CSV, XML, JSON, to the RDF data model. Each mapping rule in RML is represented
as a Triple Map which consists of the following parts9, illustrated 10 in Figure 2.6;

‚ A Logical Source (rr:logicalSource) that refers to a data source from where data is
collected; it is composed of the following components:

8 https://www.w3.org/TR/r2rml/images/triples-map.png
9 http://rml.io/RMLmappingLanguage.html

10 http://rml.io/img/RML_R2RML.png

24

https://www.w3.org/TR/r2rml/images/triples-map.png
http://rml.io/RMLmappingLanguage.html
http://rml.io/img/RML_R2RML.png

2.2 Semantic Web

Figure 2.6: RML mapping schema

– Source (rml:source) - is an input source, can be JSON, XML, CSV, or a data management
system such as RDB, NoSQL store;

– Iterator (rml:iterator) - is not required when it comes to tabular input sources, like
relational databases. It is needed in case of hierarchical or structured data sources. The
iterator (rml:iterator) determines the iteration pattern by the input source and specifies
the extraction of the data displayed during each iteration;

– Reference Formulation (rr:referenceFormulation) - as RML deals with different
data serializations with various ways to refer to their elements, RML defines the reference.
Such reference is specified based on the source of the input data file, e.g. in case of a JSON
file, a Reference Formulation would be "JSONPath", in case of an XML file, a Reference
Formulation would be "XPath".

‚ A Subject Map (rr:subjectMap) - defines the subject of the generated RDF triples.

‚ Zero or more Predicate-Object Maps (rr:predicateObjectMap), combining:

– Predicate Maps (rr:predicate) expressing the predicate of the RDF triple and must be
a valid IRIs;

– Object Maps (rr:objectMap) expressing the object of the RDF triple and must be either
IRIs, Blank Nodes or Literals;

– A Referencing Object Map, that indicates the reference to another (existing) Triples Maps
(rr:parentTriplesMap) and can have zero or more join conditions.

Each Predicate-Object Map should have at least one Predicate Map and one either Object Map
or Referencing Object Map.

25

Chapter 2 Background

Listing 2.1: Example RML Mapping
@pref ix r r : < h t t p : / / www. w3 . org / ns / r 2 r m l # > .
@pref ix rml : < h t t p : / / semweb . mmlab . be / ns / rml # > .
@pref ix q l : < h t t p : / / semweb . mmlab . be / ns / q l # > .
@pref ix vocab : < h t t p : / / example . com / vocab / > .
@pref ix xsd : < h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# > .

<# Airpor tMapping >

rml : l o g i c a l S o u r c e [
rml : s o u r c e " h t t p : / / www. example . com / d r u g s . csv " ;
rml : r e f e r e n c e F o r m u l a t i o n q l :CSV

] ;
r r : sub jec tMap [

r r : t e m p l a t e " h t t p : / / example . com / Drug / { name} " ; r r : c l a s s vocab : Drug] ;
r r : p r e d i c a t e O b j e c t M a p [

r r : p r e d i c a t e r d f s : l a b e l ; r r : ob jec tMap [rml : r e f e r e n c e "Name"]
] ;

r r : p r e d i c a t e O b j e c t M a p [
r r : p r e d i c a t e vocab : chemi ca lFo rmu la ;
r r : ob jec tMap [

rml : r e f e r e n c e " Formula " ; r r : d a t a t y p e xsd : s t r i n g]
] ;
r r : p r e d i c a t e O b j e c t M a p [

r r : p r e d i c a t e vocab : avgWeight ;
r r : ob jec tMap [

rml : r e f e r e n c e "Avg Weight " ; r r : d a t a t y p e xsd : d e c i m a l]
] .

Table 2.1: Example drugs.csv

Name, Formula, Avg Weight
Docetaxel, C43H53NO14, 807.8792

Listing 2.2: Example RDF Output
@pref ix r d f : < h t t p : / / www. w3 . org /1999 /02 /22´ r d f´syn t ax´ns # > .
@pref ix vocab : < h t t p : / / example . com / vocab / > .
@pref ix xsd : < h t t p : / / www. w3 . org / 2 0 0 1 / XMLSchema# > .
@pref ix drug : < h t t p : / / example . com / Drug / > .
d rug : D o c e t a x e l r d f : t y p e vocab : Drug ;

r d f s : l a b e l " D o c e t a x e l " ;
vocab : chemic a lFo rmu la "C43H53NO14" ^^ xsd : s t r i n g ;
vocab : avgWeight " 807 .8792 " ^^ xsd : d e c i m a l .

2.3 Federated Query Processing Systems

A federated query processing system11 provides a unified access interface to a set of autonomous,
distributed, and heterogeneous data sources. While distributed query processing systems have control
over each dataset, federated query processing engines have no control over datasets in the federation and
data providers can join or leave the federation at any time and modify their datasets independently. Query
processing in the context of data sources in a federation is difficult than centralized systems, because
of the different parameters involved that affect the performance of the query processing engine [3].
Data sources in a federation might contain fragments of data about an entity, have different processing
capabilities, support different access patterns, access methods, and operators. The role of federated query
processing engine is to transform a query expressed in terms of the global schema, i.e., the federated
query, into an equivalent query expressed in the schema of the data sources, i.e., local query. The local
query represent the actual execution plan of the federated query by the data sources of the federation.
The transformation of the federated query to local query need to be both effective and efficient. It
is effective if the transformed query has the same semantics and able to produce same results as the

11 In this thesis, we use federated query processing engine,federated query engine, and federated query processing system
interchangeably

26

2.3 Federated Query Processing Systems

Query Parsing

Query
Optimization

Query Decomposition
& Source Selection

Result Conciliation

Query Execution

Catalog
Manager

Query Answer

Data SourcesSource Descriptions

Figure 2.7: Federated Query Processing Basic Components

federated query. On the other hand, it is efficient if the execution strategy of the transformed query use
minimum computational resources and communication cost. Producing an efficient execution strategy
is difficult, since many equivalent and correct transformations can be produced and each equivalent
execution strategy leads to different consumption of resources [13].

The main objective of query processing in the federated context is to transform the federated query
posed on the federation of data sources, seen as a single data source by the users, into an efficient
execution plan expressed in schema of the data sources and source query language, if different from
language [13] used by the federated query. An important part of query processing in the context of
federated data sources is query optimization, since many execution plans are correct transformations of
the same federated query, the one that optimize (minimize) resource consumption should be retained.
The performance of query processors can be measured by the total cost that will be used in processing
the query and the response time of the query, i.e., the time elapsed for executing the query.

As an RDF data model continues gaining popularity, publicly available RDF datasets are growing in
numbers and size. One of the challenges emerging from this trend is how to efficiently and effectively
execute queries over a set of autonomous RDF datasets. Saleem et al. [29] study federated RDF
query engines with Web access interfaces. Based on their survey results, the authors divide federation
approaches into three main categories: Query Federation over SPARQL endpoints, Query Federation
over Linked Data (via URI lookups), and Query Federation on top of Distributed Hash Tables. Moreover,
Acosta et. al [30] classified federated RDF query processing engines based on the type of data sources
they support into three categories: Federation of SPARQL endpoints, Federation of RDF Documents, and
Federation of Triple Pattern Fragments.

Conceptually, federated query processing involves four main sub-problems (components): (i) data
source description, (ii) query decomposition and source selection, (iii) query planning and optimization,
and (iv) query execution. Federated query engines also include two additional sub-problems: query
parsing and result conciliation. Query parsing and result conciliation sub-problems deals with syntactic
issues of the given query and formatting the results returned from the query execution, respectively.
Below we provide an overview of the data source description, query decomposition and source selection,
query planning and optimization as well as query execution sub-problems.

27

Chapter 2 Background

2.3.1 Data Source Description

Data source description sub-problem deals with describing the data available in data sources and
managing catalog about data sources that are participating in the federation. Data source descriptions
encode information about available data sources in the federation, types of data in each data source,
access method of data sources, and privacy and access policies of these data sources [3]. The specification
of what data exist in data sources and how the terms used in data sources are related to the global schema
are specified by the schema mapping. Schema mappings also represent privacy and access control
restrictions as well as statistics on the available data in each data sources. Federated query engines rely on
the description of data sources in the federation to select relevant sources that may contribute to answer
a query. Data source descriptions are utilized by the source selection, query decomposition, and query
optimization sub-problems.

Catalog of data source descriptions can be collected offline or during query running-time. Based
on the employed catalog of source descriptions, SPARQL federation approaches can be divided into
three categories [29]: pre-computed catalog assisted, on-the-fly catalog assisted, and hybrid (uses
both pre-computed and on-the-fly) solutions. Most of state-of-the-art pre-computed catalog assisted
federated SPARQL query engines uses three types of catalogs: service descriptions, VoID (Vocabulary
of Interlinked Datasets) description, and list of predicates [31]. The first two catalogs are computed
and published by the data source providers that contains descriptions about set of vocabularies used,
list of classes and predicates, as well as some statistics about the instances such as number of triples
per predicate, class, etc. Specifically in VoID descriptions, information about external linksets that
indicate the existance of owl:sameAs and other linking properties. The third type of catalog, i.e., list
of predicates, are generated by contacting the data source endpoints and issuing SPARQL queries and
extracting predicates from the other two type of catalogs.

2.3.2 Query Decomposition and Source Selection

Selecting the relevant data sources for a given query is one of the sub-problems in federated query
processing. Given a federated query parsed with no syntactic problems, the query is first checked if it
is semantically correct with respect to the global schema. This step eliminates an incorrect query that
yields no results early on. The query is then simplified by, for example, removing redundant predicates.
The task of source selection is to select the actual implementation of subqueries in the federation at
specific data sources. The sources schema and global schema are given by the data source descriptions
as input to this sub-problem. The query decomposition and source selection sub-problem decomposes
the federated query into subqueries associated with data sources in the federation that are selected for
executing the subqueries. The number of data sources considered for selection are bounded by the data
source description given to the federated query processing engine. Each sub-query may be associated
to zero or more data source, thus, if the query contains at least one sub-query with out data source(s)
associated with it, then the global query can be rejected. Source selection task is a critical part of query
optimization. Failure on selecting correct data sources might lead to incomplete answers as well as high
response time and resource consumption. The output of this component is a decomposed query into
subqueries that are associated with the selected data sources in the federation. Identifying the relevant
sources of a query not only leads to a complete answer but also faster execution time.

2.3.3 Query Planning and Optimization

The goal of query planning is to generate an execution plan that represent the steps on how the query is
executed and which algorithms (operators) are used. The task of query plan generation produces query

28

2.3 Federated Query Processing Systems

execution plan, e.g., a tree-based plan where the leaf of the tree corresponds to the sub-queries to be
executed in selected data sources and the internal nodes corresponds to the physical (algebraic) operators,
such as join, union, project, and filter, that perform algebraic operation by the federated query processing
engine. Many semantically equivalent execution plans can be found by permuting the order of operators
and subqueries. However, the cost of executing different ordering of a query is not always the same.
In a federated setting, the number of intermediate results as well as the communication costs impact
the performance of query execution. Federated query processing engines should use an optimization
techniques to select an optimal execution plan that reduce the execution time and resource usage, such as
memory, communication, etc. Optimization of the query execution plan starts from selecting only relevant
sources, decomposition and finally making decision on selection of an appropriate implementation of
join operations. These optimization techniques include making decision on selection of the join methods,
ordering, and adapting to the condition of the sources. The objective of the planning and optimization
sub-problem is to find an execution plan that minimize the cost of processing the given query, i.e., finding
the "best" ordering of operators in the query which is close to optimal solution. Finding an optimal
solution is computationally intractable [32]. Assuming a simplified cost function, it is proven that the
minimization of this cost function for a query with many joins is NP-Complete. To select the ordering of
operators it is necessary to estimate execution costs of alternative candidate orderings. There are two type
of query optimization in the literature: cost-based and heuristics-based query optimization. In cost-based
optimization techniques, estimating the cost of the generated plans, i.e., candidate orderings, requires to
collect statistics on each data sources; either before query executions, static optimization, or during query
execution, dynamic optimization. In a federated settings, where data sources are autonomous, collecting
such statistics might not always be possible. Cost-based approaches often are not possible because the
data source descriptions do not have the needed statistics. Heuristic-based optimization techniques can
be used to estimate the execution cost using minimum information collected from sources as well as the
properties of the operators in the query, such as type of predicates, operators, etc. The output of the query
planning and optimization is an optimized query, i.e., query execution plan, with operations (join, union)
between sub-queries.

2.3.4 Query Execution

Query execution is performed by data sources that are involved in answering sub-query(s) of the given
query. Each sub-query executed in each data source is then optimized using the local schema and index
(if available) of the data source and executed. The physical operator (and algorithms) to perform the
relational operators (join, union, filter) may be chosen. Five different join methods are used in federated
query engines: nested loop join, bound-join, hash join, symmetric join, and multiple join [31]. In
nested-loop join (NLJ) the inner sub-query is execute for every binding of intermediate results from
the outer sub-query of the join. The bindings that satisfy the join condition are then be included in the
join results. Bound-join, like NLJ, executes inner sub-query for the set of bindings, unlike NLJ which
executes the inner sub-query for every single binding, of the intermediate results from the outer sub-query.
This set of binding can be sent as a UNION or FILTER SPARQL operators can be used to send multiple
bindings to the inner sub-query. In hash-join method each sub-queries (operands of the join operation)
are executed in parallel and the join is performed locally using a single hash table at the query engine.
The fourth type of join method, symmetric (hash) join, is non-blocking hash-based join that pipelining
parallel execution of the operands and generates output of the join operation as early as possible. Several
extended versions of this method are available, such as XJoin [33], agjoin [34], and adjoin [34]. Finally,
multiple (hash) join method uses multiple hash tables to join more than two sub-queries running at the
same time.

29

CHAPTER 3

Related Work

In this chapter, we review state-of-the-art approaches related to this thesis. Figure 3.1 shows the topics
identified for the literature review. For each topic, we present an overview of the approaches and their
limitations that are in the scope of the challenges defined by this thesis. Our literature review will
focus on approaches that are proposed to solve the interoperability issues during data integration and
update propagation exploiting the semantic technologies by the Semantic Web community. Section 3.1
discusses state-of-the-art semantic-based materialized (data warehousing) integration approaches in the
literature. Then, Section 3.2 presents a review of approaches in the area of federated query processing
techniques focusing on different sub-problems: source description, source selection, query decomposition,
query planning, and optimization. In Section 3.3, we discuss existing solutions to the problem of query
processing over heterogeneous data sources. Privacy-aware federated query processing techniques in the
reviewed literature are discussed in Section 3.4. Finally, Section 3.5 presents existing works in the area
of update propagation and co-evolution.

Data Integration System

Virtual Data IntegrationMaterialized (Data Warehousing) Update Propagation

Federated Query
Processing

Source
Description

Source Selection
and Decomposition

Planning and
Optimization Privacy-aware

Figure 3.1: Related work topics: We present the works that are related to this thesis in three topics: Materialized
(data warehousing), Federated Query Processing, and Update propagation

31

Chapter 3 Related Work

3.1 Materialized Integration Approaches

Materialized (data warehousing) integration approaches follow schema-on-write paradigm and uses
Extract-Transform-Load (ETL) processes to transform and integrate heterogeneous data to a centralized
store. These approaches aims at producing a consolidated dataset that allows to query and perform
analytic on top of it. Materialized data integration frameworks in the Semantic Web literature includes
Linked Data Integration Framework (LDIF) [35], Information Workbench [36], Semantic Web Pipes [37],
and ODCleanStore [38] which are used to transform heterogeneous data to RDF graph.

LDIF is a framework that translates heterogeneous data from the Web into a homogenized local target,
i.e., RDF data. LDIF maintains an integration pipeline including components for data retrieval, schema
mapping, duplicate detection, quality assessment, and fusion. After retrieving data from the Web, using
the R2R mapping language [39], the schema translation phase translates the source vocabularies to
a local target vocabulary. LDIF uses the SILK [40], identity resolution and linking tool, to discover
URI aliases and replace them with a single target URI (also adding owl:sameAs links to the original
sources). Then, LDIF performs data quality assessment and conflict resolution from different sources
using Sieve [41]. Finally, the output of the integration process as accompanied by provenance information
and written in a quads format, i.e., triples are extended by a fourth component that carries the provenance
information. ODCleanStore [38] supports the management of Linked Data including tasks such as data
cleaning, linking, transformation, and quality assessment. As a first step, ODCleanStore carries out data
cleaning on each source dataset. ODCleanStore, like LDIF, employs SILK for entity resolution and
linking. ODCleanStore uses manually provided trust scores for named graphs and it then computes an
aggregated quality score based on the scores of the sources (as named graphs). Once duplicate quads
have been identified by SILK, ODCleanStore normalizes their subject URIs into a single URI, removes
duplicates and groups quads with conflicts. Then, for each set of conflicting quads, appropriate conflict
resolution policies (e.g., MIN, MAX, BEST, AVG) are applied to a value, considering the trust scores of
their source graph. The output of the pipeline is a set of integrated quads accompanied by provenance
and quality scores of the source. Bischof et al. [42] presented a platform for collecting, integrating, and
enriching open data about cities. Their pipeline collects, cleans, and integrates various open data sources;
then uses statistical regression methods for predicting and filling in the missing values.

Approaches for materialized data integration produces a consolidated dataset extracted, transformed to
RDF and then loaded to a centralized storage, e.g., triple store. However, these approaches could suffer
from different issues on different dimensions of big data, such as volume and variety. Integrating a large
scale data, such as in biomedical domain, into a centralized data also suffers different performance issues
and it might be out of date due to the changes made by the original data sources. The main issues with
materialized data integration includes scalability, volatility (freshness of data), and it could take longer
time to get the infrastructure running.

3.2 Federated Query Processing Systems

The problem of query processing over federations of data sources has been extensively studied by the
database and Semantic Web communities. Existing solutions rely on a global or unified interface that
allows for executing queries on a federation of autonomous, distributed, and potentially heterogeneous
data sources in a way that execution time is minimized while answer completeness is maximized.
Federated query processing engines in the database community employ the relational model to represent
the unified view of the federation [43–47], and the query language SQL is utilized to express queries
against the federation of data sources. On the other hand, federated query processing engines in the

32

3.2 Federated Query Processing Systems

Semantic Web community employ the RDF data model and exploit the semantics encoded in data
sources of the federation to build a catalog of data source descriptions [27, 34, 48–51]. Such data source
descriptions are used to select the sources from the federation where SPARQL (sub-)queries will be
executed. Furthermore, heuristic- and cost-based approaches employ these source descriptions to perform
source selection and query decomposition, query planning, and optimization. Existing federated query
processing engines from the Semantic Web literature include ANAPSID [34], FedX [52], Avalanche [48],
Lusail [53], SPLENDID [51], and Semagrow [49]. Other approaches, like, Linked Data Fragments
(LDF) [54] provide distributed storage and federated querying element as TPF (Triple Pattern Fragments)
client. TPF is optimized for processing triple patterns. In what follows, we discuss the state-of-the-art
approaches for each federated query processing sub-problems in the literature.

3.2.1 Data Source Description and Source Selection Approaches

Federated query processing engines employ a catalog of data source descriptions for selecting relevant
data sources to answer a given query. Such data source descriptions can be extracted at query time or
computed beforehand. FedX [52] does not require a catalog of source descriptions computed beforehand,
but uses triple pattern-wise ASK queries sent to data sources at query time. Triple pattern-wise ASK
queries are SPARQL ASK queries which contain only one triple pattern in the graph expression of
the given query. Lusail [53], like FedX, uses a on-the-fly catalog solution for source selection and
decomposition. Unlike FedX, Lusail takes an additional step to check if pairs of triple patterns can be
evaluated as one subquery over a specific endpoint; this knowledge is exploited by Lusail during query
decomposition and optimization. Posting too many SPARQL ASK queries can be a burden for data
sources that have limited compute resources. which may result in DoS.

Pre-computed catalog of data source descriptions can be used to reduce the number of requests sent to
the data sources. ANAPSID [34] is a federated query processing engine that employs a hybrid solution
and collects a list of RDF predicates of the triple patterns that can be answered by the data sources
and sends ASK queries when required during query time. During the source selection, ANAPSID
parses the SPARQL query into star-shaped subqueries and identifies the SPARQL endpoints for each
subquery by utilizing predicates list computed beforehand. For triple patterns that are not found in the
catalog, ANAPSID sends SPARQL ASK query to data sources if they could be answered by any of the
existing sources in the federation. Similarly, HiBISCuS [55], a source selection approach, uses a hybrid
solution to collect a catalog of data source descriptions that combines service descriptions computed
beforehand with triple-pattern wise ASK queries. The data source description of HiBISCuS includes
additional information on the subject and object values of predicates which relies on authority fragment
of URIs gathered for each endpoint. HiBISCuS source selection approach discards irrelevant sources for
a particular query by modeling SPARQL queries as hypergraphs.

Publicly available dataset metadata are utilized by some federated query processing engines as catalog
of source descriptions. SPLENDID [51] relies on instance-level metadata available as Vocabulary of
Interlinked Datasets (VoID) [56] for describing the sources in a federation. SPLENDID provides a hybrid
solution by combining VoID descriptions for data source selection along with SPARQL ASK queries
submitted to each dataset at run-time for verification. Statistical information for each predicate and types
in the dataset are organized as inverted indices, which will be used for data source selection and join
order optimization. Similarly, Semagrow [49] implements a hybrid solution, like SPLENDID, and triple
pattern-wise source selection method which uses VoID descriptions (if available) and SPARQL ASK
queries. Avalanche [48] is a federated query engine which also identifies relevant sources and plans the
query based on online statistical information published as VoID descriptions. Although VoID allows for
the description of a dataset statistics, this description is limited and lacks details necessary for efficient

33

Chapter 3 Related Work

Approach Catalog ASK Privacy-aware
FedX x X x
ANAPSID Predicates list X x
SPLENDID VoID Desc. X x
Lusail x X x
Semagrow VoID Desc. X x
HiBISCuS Service Desc. + URI auth X x
Avalance VoID Desc. x x
Odyssey FCP x x
DAW Service Desc. + MIPs X x
DARQ Service Desc. x x
FEDRA FEDRA index x x
SAFE Data Cubes X X

Table 3.1: Overview of data source description approaches supported by state-of-the-art federated query processing
engines. While some of the federated query processing engines send only ASK queries to check if triple pattern(s)
can be executed at query time, most of them uses this method only when a description related to a triple pattern
cannot be found in their catalog. Only one federated query processing engine, i.e., SAFE, supports privacy and
access control specifications in their description.

query optimization. For instance, though VoID descriptions provide information about link existence
between datasets via a linking property, it is not clear in which class(es) this property belongs too. In
addition, VoID descriptions could be out-of-date if the dataset updates are very frequent. Odyssey [50]
collects detailed statistics information on datasets that enable cost estimation which may lead to low-cost
execution plans. The optimization is based on a cost model using statistical methods used for centralized
triple stores, i.e., Characteristics Set (CS) [57] and Characteristics Pairs (CP) [57, 58]. Odyssey identifies
CSs and sources using predicates of each star-shaped subquery. Then, it prunes to non-relevant sources
based on links between star-shaped subqueries and by finding Federated Characteristics Pairs (FCPs).
However, unexpected changes and misestimated statistics may conduce to poor query performance.

Different data sources in a federation could contain duplicated data or can be replicas of a dataset.
DAW [59] is a duplication-aware hybrid solution for triple pattern wise source selection; it uses the
DAW index to identify sources that lead to duplicated results and skip those sources. After making triple
pattern-wise source selection, the selected sources are ranked based on the number of new triples they
provide; those sources that are below a threshold are skipped. Duplicates are detected using Min-Wise
Independent Permutations (MIPs) stored in the DAW index for each triple within the same predicate.
FEDRA [60] is a source selection strategy for sources with a high replication degree. FEDRA relies on
schema-level fragment definitions and fragment containment to detect replication; it exploits replication
information to minimize data redundancy and data transfer by reducing the number of unions, i.e., by
minimizing the number of endpoints selected.

In this thesis, we propose RDF Molecule Template based source descriptions that leverage the
semantics encoded in data sources. We formally define RDF Molecule Templates (RDF-MTs) and devise
techniques for exploiting RDF-MTs during source selection, query decomposition, and planning. Unlike
FedX and Lusail, our approach collects RDF Molecule Templates (RDF-MTs) beforehand, reducing the
number of requests sent to a data source during query time. Our approach describes sources as a set of
RDF-MTs, where each RDF-MT describes a set of RDF molecules that have the same characteristics,
such as rdf:type values, and possible properties associated to them. An RDF-MT also contains a set
of links that exist within the same source and a set of links with other RDF-MTs in different data sources.

34

3.2 Federated Query Processing Systems

Given a SPARQL query, our decomposition and source selection approach parses it into star-shaped
subqueries and creates a query-graph where nodes are star-shaped subqueries and edges are join variables.
Using RDF-MT based source descriptions, for each node in the query-graph, our approach selects the
RDF-MT(s) that contain all or subset of predicates of a star-shaped subquery. Finally, our source selection
approach selects a source for a star-shaped subquery if it is described by a RDF-MT with properties that
appear in the triple patterns of the subquery. Once the RDF-MT(s) are selected for the subqueries of a
query, information about links between RDF-MT(s) is used to prune the RDF-MT(s) and select only the
relevant sources; thus, speeding execution time without impacting query completeness.

3.2.2 Query Decomposition Techniques

Once sources are selected, subqueries are decomposed into a form that will be sent to each selected
source. FedX [52] introduces the concept of Exclusive Groups (EG) by combining a set of triple patterns
that can be sent to the same data source. FedX uses a triple-pattern based source selection, where data
sources are identified using SPARQL ASK queries for each triple patterns in the given query. Then, a set
of triple patterns that matches only to one data source and same source are combined as one sub-query
that can be executed once by the selected data source. This reduces the number of requests sent to the
data sources as well as pushes down join operations, if there are any, to the data sources. One issue
with this approach is that triple patterns are merged regardless of weather they share same variable or
not. Executing disjoint patterns, i.e., patterns that do not share any variable, could be expensive as the
result is the cross-product of the patterns. Lusail [53] is another federated query engine that presents a
locality aware decomposition which uses the concept of Global Join Variable and source descriptions to
decompose queries, similar to Exclusive Groups in FedX. Global Join Variable is a variable that exists at
least in two triple patterns for which the solution should come from more than one SPARQL endpoint.

Semagrow [49] follows heuristics that group multiple triple patterns that could be sent to the same
source into a single query. These heuristics utilize cardinality estimations of combined triple patterns
that reduce the search space of Semagrow optimizer, as it uses cost-based optimizer using dynamic
programming (DP). This step have impact on the optimization time to illuminate possible plans that will
generate unnecessary intermediate results. Additionally, if data sources are known to mirror another
source, then alternative plans are created rather than a single plan. ANAPSID, on the other hand, provides
two heuristics for query decomposition [61]: SSGS (Star-Shaped Group Single endpoint selection)
and SSGM (Star-Shaped Group Multiple endpoint selection). SSGS reduces the number of unions by
selecting only a single source among relevant sources that can answer a star-shaped subquery. That
means, SSGS trade answer completeness for faster execution time. On the other hand, SSGM creates a set
of UNIONs for each subquery that have more than one selected source. Although SSGS performs better
in terms of execution time than SSGM, it could return incomplete results since it only selects at most
one source per subquery. In addition, ANAPSID uses Exclusive Groups (EG) technique before applying
either SSGS or SSGM decomposition techniques. Unlike FedX, ANAPSID combines triple patterns to be
sent to a single source only if they share same variable name, i.e., if they have same join variable either
in the subject or object part of triple patterns. Odyssey [50] uses heuristics similar to ANAPSID, and
further combines star-shaped subqueries to a single SPARQL query to a particular endpoint whenever the
same source for star-shaped subqueries is selected. Such decomposition techniques could be a burden for
endpoints with limited resources [54].

The decomposition technique proposed in this thesis utilizes RDF-MTs for both source selection and
query decomposition. It combines triple patterns in a star-shaped subquery as a single SPARQL query to
be sent to each selected data sources; thus, less source connections are required and query execution is
speed up. Especially for Big Data sources, combining not only triple patterns but also star-shaped groups

35

Chapter 3 Related Work

speed up the execution time, by pushing down the processing near the voluminous data sources of the
federation. The decomposition technique also adopts to the type of data sources selected and the type of
star-shaped groups.

3.2.3 Query Planning and Execution Techniques

Federated query processing engines, such as ANAPSID [34] and FedX [52], follow heuristics-based
optimization techniques, while Semagrow [49], SPLENDID [51], Lusail [53], and Odyssey [50] im-
plement cost-based optimization techniques to find a low cost plan. ANAPSID [34] is an adaptive
federated query engine capable of delivering query results as soon as they arrive from the data sources,
i.e., by implementing non-blocking join operators. On the other hand, FedX [52] is a non-adaptive
federated query processing approach, at the level of query execution, that optimizes query execution
by introducing exclusive groups, i.e., a set of triple patterns that can be executed against only one data
source in the federation. In ANAPSID and FedX, selectivity of subqueries is estimated by counting the
ratio of constants over variables in the subquery. The cost estimation of Semagrow [49] is based on a cost
model over each operator using either statistics provided by source descriptions or estimated cardinality
of sub-expressions. The cost of operators is estimated by applying a communication overhead factor
to the cardinality of the results. The cost of complex expressions is estimated recursively using a cost
model over statistics about sub-expressions as well as distinct subjects and objects appearing in these
results. Dynamic programming is used to enumerate different plans in order to identify the optimal one
with respect to the cost model. Subtrees of a query that consists of triple patterns connected with inner
joins are identified and separately optimized (i.e., find an equivalent join tree with the minimum cost).
The enumeration of all possible plans is exponential, the algorithm prunes in each step the inferior plans
in order to keep the enumeration space as small as possible. Semagrow operates in an asynchronous and
non-blocking way where operators subscribe to a stream and are notified when data becomes available.

Lusail [53] optimizes query execution using subquery ordering based on cardinality estimation on
subqueries and projection list. Cost estimation is based on statistics collected at run-time on each triple
pattern during query analysis. The generated decompositions lead to a set of subqueries with minimal
execution cost. Using cardinality information of individual triple patterns, Lusail estimates the cardinality
of subqueries and projection list. In addition, Lusail optimizes query execution by parallelism via process
scheduling. Odyssey [50] minimizes the number of subqueries that are posed to a source by combining
subqueries that can be evaluated over exactly by the same sources. First, it identifies an ordering of the
triple patterns within each star-shaped subquery using Characteristic Set statistics. Then, cardinality of
each subquery is estimated and a dynamic programming based algorithm is applied to identify a query
plan. The cost function is defined based on the cardinalities of intermediate results and on how many
results need to be transferred from sources during execution. Although in an ideal scenario, Odyssey
may identify efficient query plans, collecting these detailed statistics is nearly impossible in a federated
scenario where datasets are autonomous. Different join methods are used by federated query processing
engines. DARQ [62] and ADERIS [63] are exemplar federated query engines that makes use of NLJ
(Nested-loop Join) method. Bound-join method is used by FedX, ANAPSID, SPLENDID, ADERIS,
and DARQ. While FedX employ SPARQL UNION operator for sending multiple bindings to the inner
sub-queries, ANAPSID, SPLENDID, ADERIS, and DARQ uses SPARQL FILTER operator. In addition
to Bound-join, ANAPSID utilizes agjoin [34] method. Most optimization techniques used by the reviewed
state-of-the-art federated query processing engines disregard the heterogeneity of data sources in the
federation and assumes sources are homogeneous in terms of data model, access interface, privacy and
access policies, and query languages. Disregarding such characteristics of data sources may lead to an
execution plans that are increase execution time as well as producing incomplete answers. Furthermore,

36

3.3 Query Processing over Heterogeneous Data Sources

especially if the federation is composed of data sources that contain sensitive data, the generated plan
may violate the privacy and access regulation set by the data providers, as a result produces incomplete
results. In this thesis, we follow a heuristic-based optimization technique that utilizes the RDF-MT based
source descriptions to generate an execution plan that consider the heterogeneity of data sources and
generate a valid plan that respects the privacy and access policies.

3.3 Query Processing over Heterogeneous Data Sources

Existing solutions to the problem of query processing over federated data sources rely on a unified
interface that allows for executing queries on a federation of homogeneous data sources in a way that
execution time is minimized while query completeness is maximized. Federated database engines utilize
relational model to represent the unified view of the federation and used SQL query language to express
queries against the federation. Data sources in the federation have different level of heterogeneity, such
as technical, data model, access method, data processing capabilities, query language, etc. Multidatabase
systems have been proposed to overcome technical heterogeneity. They differ from distributed database
systems in a higher degree of autonomy. Dealing with different kinds of data sources introduces new
challenges to query processing. The capabilities of the DBMSs may be different, e.g. some systems
may support complex queries including joins and aggregations while others do not. Traditional Data
Warehouses, unlike Data Lakes, are centralized data stores that ingest data from heterogeneous data
sources after transforming them in a common predefined structure. Since this kind of data integration
may lead eventually to information silos, more flexible data integration approaches have been introduced
in recent years. To tackle the data integration problem of heterogeneous data, a few Data Lake systems
have been proposed, mainly with focus on data ingestion and metadata extraction and management. For
instance, GEMMS (Generic and Extensible Metadata Management System) [64] for Data Lakes extracts
metadata from heterogeneous sources, stores it in an extensible metamodel, and enriches it with semantic
annotations in order to provide basic querying support. A few other approaches like SeBiDA [65] and
Personal Data Lakes [66] propose to keep data from various data sources in raw format in the Data Lake
after serializing them in a common data format. PolyWeb [67] and BigDAWG [68] keep data sources
in raw format, i.e., without serializing them in a common data format. In PolyWeb, SPARQL queries
are translated to the native query language of the sources. PolyWeb indexes each data source predicates
for query decomposition and creates left-deep plans. Albeit efficient, existing approaches are not able
to exploit knowledge about the main features of the integrated data sources, and produce query plans
customized for sources selected for collecting the data from the Data Lake.

3.4 Privacy-aware Federated Query Processing

The data privacy control problem has received extensive attention by the database community; approaches
by De Capitani et al. [69] and Bater et al. [70] are exemplars that rely on an authority network to produce
valid plans. Albeit relevant, these approaches are not defined for federated query processing systems;
thus, the tasks of source selection and query decomposition are not addressed. The Semantic Web
community has also explored access control models for SPARQL query engines; RDF named graphs
[71–73] and quad patterns [74] are used to enforce access control policies. Most of the work focuses
on the specification of access control ontologies and enforcement on RDF data [71, 73] stored in a
centralized RDF store, while others explore access control specification and enforcement on distributed
RDF stores [75, 76] and federated query processing [72, 77] scenarios. Costabello et al. [71] present
SHI3LD, an access control framework for RDF stores accessed on mobile devices; it provides a pluggable

37

Chapter 3 Related Work

filter for generic SPARQL endpoints that enforces context-aware access control at named graph level.
Kirrane et al. [74] propose an authorization framework that relies on stratified Datalog rules to enforce
access control policies; RDF quad patterns are used to model permissions (grant or deny) on named
graphs, triples, classes, and properties. Ubehauen et al. [73] propose an access control approach at the
level of named graphs; it binds access control expressions to the context of RDF triples and uses a query
rewriting method on an ontology for enabling the evaluation of privacy regulations in a single query.
SAFE [72] is designed to query statistical RDF data cubes in distributed settings and also enables graph
level access control. In this thesis, we proposed a privacy-aware federated engine where policies are
defined over a privacy-aware RDF-MTs (PRDF-MTs). It enables access control statements to be defined
at different level of granuality, i.e., at the source level as well as at the mediator level. Our approach
generates execution plans that both enforce privacy regulations set by the data sources and speed up
execution time.

3.5 Update Propagation and Co-evolution

Many data products and services rely on full or partial local replications of data sources to ensure
faster query processing. Most related work on dataset update propagation focuses on distributed pub-
lish/subscribe systems [78, 79], resource link maintenance [80, 81], target synchronization [82], partial
replicas [83], data-shipping [84], lazy updates [85], and real-time update notification [81, 86]. In [78], the
authors propose a peer-to-peer publish/subscribe system for events described in RDF. By avoiding the use
of multiple indexes for the same publication, they manage to reduce storage space. Similarly, [79] provide
an implementation with publish/subscribe capabilities in an RDF-based peer-to-peer system to manage
digital resources. As for resource link maintenance, DSNotify [80] offers a change-detection framework
to detect and fix broken links between resources in two datasets while, Semantic Pingback [81] proposes
a notification system for the creation of new links between Web resources. To note that this approach is
suitable for relatively static resources, i.e., RDF documents or RDFa annotated Web pages. In contrast,
SparqlPuSH [86] offers a real-time notification framework for data updates in a RDF store using a
semantic PubSubHubbub-based protocol (PuSH). SparqlPuSH allows users to subscribe for changes
updates of a subset of content in a RDF store using SPARQL. However, notification and broadcasting are
only available as RSS and Atom feeds. As regards target synchronization, RDFSync [82] performs update
synchronization by merging source and target graphs to get the updated target RDF graph. Alternatively,
[83] has designed an approach to replicate, modify, and write-back parts of an RDF graph on devices
with low computing power. However, this approach does not resolve conflicts arising with concurrent
modifications on both the base graph and the partial replicas. Bleiholder et.al., [87] classifies conflict
resolution strategies and presents a catalog of resolution functions. They divide the conflict resolution
strategies into three classes: ignorance, avoidance, and resolution. Conflict ignorance strategies are not
aware of conflicts in the data. Conflict avoidance strategies are aware of whether and how to handle
inconsistent data. Conflict resolution strategies may use metadata to resolve conflicts. These can be
divided into deciding and mediating; deciding strategy chooses value from already existing values
whereas a mediating strategy may compute a new value. In distributed databases, where data is replicated
on different sites, Lazy update protocols [85] disseminate updates to replicas to ensure consistency. These
protocols guarantee serializable execution as well as high performance.

38

CHAPTER 4

Data Source Description Model

This chapter addresses the challenge of describing heterogeneous data sources in a Semantic Data Lake
by capturing the semantics encoded in them. Different data sources provide different data structuredness,
querying capabilities, access interfaces, and restrictions. Federated query processing systems need to
consider these differences while executing queries. Describing such heterogeneity helps to understand
data source capabilities and to help different applications, especially federated query processing systems,
discover relevant sources for processing and interpret them accordingly. The content of this chapter
is based on the publications [88–91]. Figure 4.1 shows the challenge we tackled in this chapter: i.e.,
describe knowledge represented in a federation of heterogeneous data sources in a Semantic Data Lake.
The result of this chapter provide an answer to the following research question:

RQ1: How can we describe the semantics encoded in heterogeneous data sources?

To represent knowledge that exist in heterogeneous data sources, a data source description model
that describe the semantics, i.e., the meaning of data points, represented in those sources is crucial.
The Semantic Web community provide several standards and specifications to represent a piece of data,
such as RDF data model and ontology definition language such as RDFS and OWL. Our data source
description model is based on RDF data model. Our assumption is that data sources are either inherently
represented in RDF data model or the mapping from non-RDF data model to RDF is available. Creating
mappings for non-RDF data is out of scope of this thesis.

We summarize the contributions of this chapter as follows:

‚ A novel data source description model that exploits the semantics encoded in heterogeneous data
sources.

‚ A novel algorithm to create RDF-Molecule Template based description of heterogeneous data
sources.

‚ A detailed analysis of different benchmarks of federation of data sources using RDF-Molecule
Template based descriptions.

‚ An empirical evaluation of impact of data source descriptions computed using different graph
partition methods for query processing.

This chapter is structured as follows: First, in Section 4.1, we present a motivating example illustrating
the problem of data source description and the effect of, or lack there of, expressiveity in federated

39

Chapter 4 Data Source Description Model

Knowledge
Representation

Data Lake

Relational Graph Document Flat-file

Challenge 1: Describing heterogeneous data sources in a Data
Lake

Contribution 1: RDF Molecule Templates based Data Source
Description Model

Figure 4.1: Challenges and Contributions.This chapter focuses on the problem of describing heterogeneous data
sources for data integration, and propose RDF Molecule Templates based data source description for federated
query processing

query processing. Next, in Section 4.2, we describe our proposed data source description model. To
address research question RQ1, we propose RDF Molecule Templates, an abstract representation of
entities that belong to same semantic concepts and their relationships, that represent the knowledge in the
heterogeneous data sources to be exploited by different sub-problems of a federated query processing
system. An analysis of three benchmarks for federation of data sources using RDF-MT based data source
description and comparison of data source descriptions computed using different graph partitioning
methods is presented in Section 4.3. Observed results suggest that RDF-MT based data source description
are able to unveil patterns that represent the semantic knowledge represented in each data sources of a
federation as well as the connectivity between concepts in each data source and with other data sources
in the federation. In addition, such knowledge representation model present an opportunity to provide
services such as exploration and extraction of fragments of knowledge. Furthermore, the RDF-MT based
source descriptions improved the performance of federated query processing system compared to the data
sources computed using graph partitioning methods. Finally, Section 4.4 presents the closing remarks of
this chapter.

4.1 Motivating Example

The discovery of relevant datasets for different application such as federated query processing, question
answering, and entity linking has becoming challenging, due to growth in the amount of available big
data sources. Such applications must be aware of the available data sources, the content of each data
source, their capabilities, and access mechanism of the sources in order to select relevant sources, process
query over them, and interpret the results. For federated query processing, data source description is
used for selecting relevant data sources that can contribute to answering a query posed by the user. Such
description may also contain a mapping between source schema to some ontology terms, if the data
sources do not naively support RDF data model. These mappings guide the system to automatically
select and semantify the available data on-the-fly.

Consider, for example, the data sources presented in Figure 4.2. The first data source, S 1 in Figure 4.2a,
shows information stored in a hospital database about patients demography, diagnosis, treatment and
prognosis represented in relational model. Data is stored in a relation data management system (RDBMS),

40

4.1 Motivating Example

ID Name DoB Age disorder smoker treatment alive

1 Alice 12-03-1954 76 NSCLC N Docetaxel N

2 Bob 25-10-1974 56 NSCLC Y Paclitaxel Y

Patient

ID Patient Mutation targetTotal sampleDate gene

55 1 p.T790M 0.61% 01-10-2000 EGFR

56 2 del19 0.06% 03-01-2009 EGFR

Biopsy

(a) S 1: Relational Tables

:Gefitinib

:2
:Docetaxel

:GIO

Serum concentration of
Docetxel increased

Gefitinib

Docetaxel

Avoid fresh grapefruit
and its juice during

therapy

Cytochrome P450
3A4

:Drug

:foodInteraction
rdf:type

rdf
:ty

pe

:Enzyme

rdf:type

:enzyme

:enzyme
:interaction

:drug

:desc

rdfs:label

rdfs:label
rdfs:label

:DrugInteraction

rdf:type

:DIP
:interaction

:target

:EGFR

rdf:type

:Paclitaxel

:drug

(b) S 2: RDF Data

ID Gene Mutation Drug PubMedID SampleID Histology Somatic Status

1 EGFR p.T790M Gefitinib 19381876 10 carcinoma Confirmed somatic

2 EGFR p.C797S Osimertinib 28625641 11 carcinoma Variant of unknown origin

3 EGFR p.T790M Erlotinib 20146086 12 carcinoma Previously Reported

4 EGFR p.T790M Afatinib 26862733 13 carcinoma Previously Reported

5 BTK p.C481S Ibrutinib 28235842 14 neoplasm Confirmed Somatic

6

DrugResistanceMutations.tsv

ID Gene Label HGNC ID NCBI ID Name

1 EGFR 3236 1956 epidermal growth factor receptor

2 BTK 1133 695 Bruton tyrosine kinase

3

Genes.tsv

(c) S 3: Flat Files

Figure 4.2: Motivating Example. Heterogeneous data sources that are connected to each other via drug information.
a) data source that contain information about patients demography, diagnosis, treatment, and prognosis stored
in relational database. b) a data source that contains information about drug chemical properties, interactions,
enzymes and targets stored in RDF data store, aka Triple Store. c) data source contains information about genomic
analysis, specifically gene names, mutations, information about whether these mutations are resistant to specific
drugs, and reference to scientific publications from PubMed stored as a tab-separated flat file. The challenge tackled
in this chapter focus on describing these data sources to represent the knowledge encoded in them semantically to
facilitate an efficient data integration and exploration.

e.g., MySQL, that is optimized to handle this type of data model. To access this data, one should write
SQL queries over the given relations. Furthermore, since the data is highly sensitive, only authorized
users can access such data especially patient’s Name, SSN, and date of birth. The second data source,
Figure 4.2b, provide data in RDF (graph) data model about drugs, enzymes, and drug-drug interactions.
Data is stored in a triplestore, e.g., Virtuoso, that is optimized to handle data in triples (subject, predicate,
object) form. Triplestores provide a SPARQL endpoint service that allow users to access the data by
writing SPARQL queries. Finally, the third data source, Figure 4.2c, shows genomic analysis data stored
in a tab-separated flat file about tumor samples, mutations, genes, and whether mutation confers drug
resistance reported in scientific publications in PubMed1. Since the data is not stored in a database
management system, there is no querying mechanism available inherently. Thus, special software
component is needed to parse and extract data from it.

Though the data sources in Figure 4.2 have different data representation model, they contain inter-
related information. For instance, Alice was diagnosed with non-small cell lung cancer (NSCLC) where
biopsy results show that EGFR mutated and p.T790M mutation was found; treated with Docetaxel
chemotherapy drug. One can verify that the mutation type found, i.e., p.T790M, is not resistant to the
treatment drug, i.e., Docetaxel. On the other hand, this tumor type was reported to be resistant to Gefitinib
drug, in S 3 (Figure 4.2c). In addition, these two drugs should not be administered at the same time since
they interact with each other, i.e., the serum concentration of Docetaxel can be increased when it is
combined with Gefitinib, in S 2 (Figure 4.2b). Performing such analysis manually is not feasible in the
context of big data, automated systems are needed to discover and integrate data. To access these data
sources in a federated fashion, they should first be described in a way that facilitate the integration of
disparate data to a common knowledge representation model. Semantic Web technologies can be utilized
to describe the knowledge represented in disparate data sets.

1 https://www.ncbi.nlm.nih.gov/pubmed/

41

https://www.ncbi.nlm.nih.gov/pubmed/

Chapter 4 Data Source Description Model

4.2 Source Description Model

Source descriptions specify information about available data points, capabilities, and access methods.
Available data points can be described using a shared semantic concept and set of predicates associated
to them. Our data source description model is composed of three basic components: schema mapping,
privacy and access control policies, and access methods of data sources. Schema mapping describes
the mapping between the source schema to global schema [3]. We follow the global-as-view (GAV)
approach and propose RDF Molecule Templates (RDF-MTs) that are considered as the global schema of
the federation, and each data source schema is mapped with set of RDF Molecule Templates, as described
in Section 4.2.1. Privacy and access control policies define the restriction on data points and who can
and cannot access as well as what kind of operations can be performed on them. Such policies are
embedded in RDF Molecule Templates, as defined in Definition 27. Details on how privacy and access
control policy description are used by privacy-aware federated query processing techniques is presented
in Chapter 7. Finally, the third component, access methods of data sources, provides information about
the access URL, query language, and method to be used while contacting the sources via the given URL.

4.2.1 RDF-MT: RDF Molecule Templates

Our source description model is based on the concept of RDF molecules; a set of triples that share same
subject values are called RDF Molecules. Formally, RDF molecules are defined as follows:

Definition 10 (RDF Molecule [23]) Given an RDF graph G, an RDF molecule µ Ď G is a set of triples
µ “ tt1, t2, . . . , tnu in which subjectpt1q “ subjectpt2q “ ¨ ¨ ¨ “ subjectptnq.

Given a set of heterogeneous data sources, F “ tS 1, S 2, S 3u, and a set of mapping files, M “

tMS 1 ,MS 3u, for each non-RDF data source, Figure 4.2 presents example of RDF molecules: Patient
and Biopsy RDF molecules from relational data source S 1, Drug and DrugInteraction RDF
molecules from RDF data source S 2, and finally Mutation and Gene RDF molecules extracted from
flat (TSV) files S 3 are shown in Figure 4.2.

In this thesis, we tackle the problem of source descriptions for federated query processing using
the concept of RDF molecule templates that encode an abstract description of a set of data points that
share similar characteristics such as semantic type of entities. An RDF molecule template (RDF-MT) is
formally defined as follows:

Definition 11 (RDF Molecule Template (RDF-MT)) An RDF Molecule Template (RDF-MT) is a 5-
tuple=ăM,C,DTP,IntraL,InterLą, where:
‚ M – is a set of mappings from source schema to molecule predicates, DT P;
‚ C – is an RDF class such that the triple pattern (?s Tp C) is true in G, where Tp is a typing

predicate such as rd f : type, or wdt : P31;
‚ DTP – is a set of pairs (p, T) such that p is a property with domain C and range T, and the triple

patterns (?s p ?o), and (?s Tp C) are true in G;
‚ IntraL – is a set of pairs (p,C j) such that p is an object property with domain C and range C j, and

the triple patterns (?s p ?o) and (?o Tp C j) and (?s Tp C) are true in G;
‚ InterL – is a set of triples (p,Ck,SW) such that p is an object property with domain C and range Ck;

SW is a URL that provides access to an dataset K, the triple patterns (?s p ?o) and (?s Tp C) are
true in G, and the triple pattern (?o Tp Ck) is true in K.

Privacy-aware RDF Molecule Templates can be employed for describing and enforcing privacy policies.
Privacy and access control policies can be encoded in RDF-MTs at level of the predicates or RDF-MTs

42

4.2 Source Description Model

:Patient1Alice
:name

:Biopsy55
:biopsy

:Patient

rdf
:typ

e:treatment

:Docetaxel

:NSCLC

:disorder

76

:ag
e

(a) Patient Molecule

:DocetaxelDocetaxel
rdfs:label

:2:DIP

:enzyme

:in
ter
ac
tio
n

:Drug
rdf:type

:target

:EGFR

(b) Drug Molecule

:pT790Mp.T790M
:mutation_aa

:Sample10:Gefitinib

:sample

:re
sis
ten
tD
rug

:Mutation
rdf:type

:gene

:EGFR :PID19381876

:Pu
bM
ed
ID

(c) Mutation Molecule

:Biopsy55
:gene

:Biopsy
rdf:type

01-10-2000

:date

0.61

:to
tal
Pe
r

:mutation

:pT790M

:EGFR

(d) Biopsy Molecule

:Docetaxel :GIO

Serum concentration of
Docetxel increased

:drug

:desc

:DrugInteraction
rdf:type

(e) Drug Interaction Molecule

:EGFR :Gene
rdf:type

EGFR
:name

:hgncID

3236

epidermal growth factor
receptor

1956

:ncbiID:de
sc

(f) Gene Molecule

Figure 4.3: Example RDF Molecules. RDF molecules represent a set of triples that share the same subject, hence
represented as star-shaped RDF graphs. a) Presents :Patient1 RDF molecule that represent (semantically) the
first row of Patient table in Figure 4.2a. b) :Docetaxel RDF molecule in Figure 4.2b. c) :pT790M RDF
molecule that represent (in RDF) the first row of DrugResistnceMutation.tsv file in Figure 4.2c.

Algorithm 1 Create RDF Molecule Templates: WI: Set of pairs (ws, M), and WAI: hash map of ws P WI
to RDF Molecule Templates

1: procedure CreateMoleculeTemplates(WI)
2: WAI Ð tu Ź WAI - a map of ws and MT Ls
3: for wsi,M P WI do
4: WAIpwsiq Ð CollectRDFMoleculeTemplatespwsi,Mq Ź Algorithm 2
5: end for
6: for pwsi, rpCi,Pi,Liqsq P WAI do
7: for pwsk, rpCk,Pk,Lkqsq P WAI and wsk ‰ wsi do
8: Li Ð Li ` ppi,Ckq such that Dpi P Pi ^ rangeppiq “ Ck

9: end for
10: end for
11: saveRDFMT(WAI)
12: end procedure

by using different access control theory operators. Details on available access control theory operators
and privacy-aware RDF Molecule Templates is presented in Chapter 7.

4.2.2 Creating RDF Molecule Templates

Given a set of data sources in a federation, Algorithms 1 and 2 create RDF Molecule Template based
source description. Given a set of pairs (ws, M) where ws is access interface of a data source and M is
a set of mapping rules, Algorithm 2 extracts RDF-MTs by either executing queries against a SPARQL
endpoints of RDF datasets or parsing the given mapping rules of a non-RDF data source. First, RDF

43

Chapter 4 Data Source Description Model

Algorithm 2 Collect RDF Molecule Templates: ws: data access URL, and M: mapping rules, if available

1: procedure CollectRDFMoleculeTemplates(ws, M)
2: MT L Ð r s Ź MT L - list of molecule templates
3: CP Ð getClassesWithPropertiespwsq
4: for pCi,Piq P CP do Ź Ci - class axioms
5: Li Ð Li ` ppi,C jq|Dpi P Pi, prangeppiq “ C jq ^ ppC j,P jq P CPq
6: RDF-MTi Ð pCi,Pi,Liq

7: MT L Ð MT L` RDF-MTi

8: end for
9: return MT L

10: end procedure

classes and their corresponding properties are collected (Line 3), i.e., pairs pCi,Piq, where Ci is a class
and Pi is a set of predicates of Ci. RDF class typing predicate is defined in access method description
as input to the algorithm. Then, for each RDF class Ci and their corresponding object properties in Pi

(i.e., properties that have URI as values), intra-dataset links (IntraL) are generated (Line 4–8). Intra-links
represent links between RDF-MTs within the same data source.

Algorithm 1 first collect a list of RDF-MTs and their intra-dataset links within each data sources by
calling Algorithm 2 (Line 3–5). Then it iterates over each RDF-MT in each Web access interface (WAI)
and finds inter-dataset links between them (InterL) (Line 6–10). Inter-dataset links represented by links
between RDF-MTs in two or more data sources. Finally, RDF-MTs are stored to as a file (Line 11).

Given data sources S 1, S 2, and S 3 in Figure 4.2 and RML mappings MS 1 and MS 3 for non-RDF data
sources, Figure 4.4 and 4.5 illustrates the RDF molecule template creation process using the algorithms
described above. Figure 4.4 shows six RDF molecule templates and their associated predicates identified
using Algorithm 2. We set the typing predicate in all three sources as rdf:type. :Patient and
:Biopsy RDF-MTs are created from the first source and contains a maximum of five, respectively four,
properties associated with them. Since this data source is a non-RDF source, mapping rules (MS 1) are
used to represent the semantic meaning of tables and column names. A snippet of these mapping rules is
shown in Listing 4.1. Using this mapping rules, the algorithm contact the data sources to find the links if
not already represented by the rules. For instance, the range of :treatment and :disorder properties are
not defined by the rule, hence the algorithm has to execute query to find internal as well as external links
with other RDF molecule templates 2. Notice that at this stage of the algorithm there is only one (intra-)
link identified in this data source, i.e., :Patient to :Biopsy. Unknown links are illustrated with
nodes without name, e.g., object type of :treatment and :disorder predicates of the :Patient
RDF molecule template are not known.

Three RDF molecule templates, :Drug, :Enzyme and :DrugInteraction, are created from the
second source, S 2, each contain five, two and one predicates, respectively. Unlike S 1 which store relation
tables, S 2 provide RDF data and the algorithm executes SPARQL queries to extract RDF molecule
template predicates and intra-links within the data source. Consequently, three intra-dataset links are
identified, i.e., bidirectional link between :Drug and :DrugInteraction via :interaction
and :drug, respectively, and from :Drug to :Enzyme. From the third data source, S 3, :Gene and
:Mutation RDF molecule templates are created, each contains a maximum of four predicates. There
is only one intra-dataset link identified in this source, i.e., from :Mutation to :Gene. Note that,
information about the Sample where the mutation is studied which contains the Histology and
Somatic Status is not represented by the given mapping rules, hence no RDF molecule template is

2 For consistency reasons of the illustrations, we omitted prefix onto

44

4.2 Source Description Model

:Patient :Biopsyxsd:string
:name

:treatment

:disorder

:biopsy

:Biopsy
:gene

xsd:date
:date

xsd:decimal

:totalPer

:mutation

xsd:integer

:ag
e

(a) S 1: RDF Molecule Templates

:Drugxsd:string
rdfs:label

:DrugInteraction

Enzyme

:enzyme

:interaction
:target

:Drug

:DrugInteraction

xsd:string

:drug
:desc

xsd:string

:foo
dIn
tera

ctio
n

xsd:string

rdfs:label

Enzyme

(b) S 2: RDF Molecule Templates

:Genexsd:string
:name

:hgncID

xsd:integer

xsd:integer
:ncbiID

:desc

xsd:string

:Mutationxsd:string
:mutation_aa :sample

:resistentDrug

:gene

:Gene

(c) S 3: RDF Molecule Templates

Figure 4.4: RDF Molecules Templates per Data Source. a) Shows RDF-MTs created from S 1 and intra-link
from :Patient RDF-MT to :Biopsy RDF-MT via :biopsy property. b) Shows RDF-MTs created from
S 2 and intra-links from :Drug RDF-MT to :DrugInteraction RDF-MT via :interaction property,
from :DrugInteraction RDF-MT to :Drug RDF-MT via :drug property, and from :Drug RDF-MT
to :Enzyme RDF-MT via :enzyme property. c) Presents RDF-MTs created from S 3 and intra-link from
:Mutation RDF-MT to :Gene RDF-MT via :gene property.

created for it.

Listing 4.1: MS 1 RML Mapping
: DB_source d2rq : jdbcDSN " p a t i e n t D B " ;

d2rq : j d b c D r i v e r "com . mysql . c j . j d b c . D r i v e r " ;
d2rq : username " r o o t " ; d2rq : password " " .

<#TM1> rml : l o g i c a l S o u r c e [
rml : s o u r c e : DB_source ; r r : s q l V e r s i o n r r : SQL2008 ; r r : tab leName " P a t i e n t

"] ;
r r : sub jec tMap [

r r : t e m p l a t e " h t t p : / / hsp1 . o rg / P a t i e n t / { ID} " ;
r r : c l a s s on to : P a t i e n t] ;

r r : p r e d i c a t e O b j e c t M a p [
r r : p r e d i c a t e on to : name ;
r r : ob jec tMap [rml : r e f e r e n c e "Name"]] ;

r r : p r e d i c a t e O b j e c t M a p [
r r : p r e d i c a t e on to : age ;
r r : ob jec tMap [rml : r e f e r e n c e " Age "]] ;

r r : p r e d i c a t e O b j e c t M a p [
r r : p r e d i c a t e on to : t r e a t m e n t ;
r r : ob jec tMap [rml : t e m p l a t e " h t t p : / / example . o rg / d r u g s / { t r e a t m e n t } "]] ;

r r : p r e d i c a t e O b j e c t M a p [
r r : p r e d i c a t e on to : d i s o r d e r ;
r r : ob jec tMap [rml : t e m p l a t e " h t t p : / / example . o rg / d i s e a s e / { d i s o r d e r } "

]] ;
r r : p r e d i c a t e O b j e c t M a p [

r r : p r e d i c a t e on to : b i o p s y ;
r r : ob jec tMap [r r : p a r e n t T r i p l e s M a p <#TM2> .

45

Chapter 4 Data Source Description Model

:Patient :Biopsy
:biopsy

:Drug:DrugInteraction

Enzyme

:enzyme

:interaction
:target

:drug
:Mutation

:gene
:Gene

:treatment :gene

:mutation

Intra-dataset links

Intra-dataset links

:Drug

:resistentDrug

repeated

Figure 4.5: Intra- and Inter-dataset Links: Each data source is represented by oval shapes that contains each
RDF-MTs and Intra-dataset links between them within the same data source (represented by solid line). Inter-
dataset links represent links between RDF-MTs that identified in different data sources (represented in dashed
links).

r r : j o i n C o n d i t i o n [r r : c h i l d " ID " ; r r : p a r e n t " P a t i e n t "
]]] .

<#TM2> rml : l o g i c a l S o u r c e [
rml : s o u r c e : DB_source ; r r : s q l V e r s i o n r r : SQL2008 ; r r : tab leName " Biopsy "

] ;
r r : sub jec tMap [

r r : t e m p l a t e " h t t p : / / hsp1 . o rg / Biopsy / { ID} " ;
r r : c l a s s on to : Biopsy] ;

r r : p r e d i c a t e O b j e c t M a p [
r r : p r e d i c a t e on to : m u t a t i o n ;
r r : ob jec tMap [rml : t e m p l a t e " h t t p : / / example . o rg / m u t a t i o n / { M u t a t i o n } "

]] ;
.

Figure 4.5 shows inter-links between RDF-MTs of different data sources. As can be seen, there is
an external link from :Patient molecules in S 1 data source to :Drug molecules in S 2 data source
via :treatment predicate. Additionally, there are two external links from :Biopsy molecules in S 1
data source to :Gene molecules via :gene predicate and to :Mutation molecules via :mutation
predicate in S 3 data source. There is a bidirectional link between S 2 and S 3 data sources. :Drug
molecules in S 2 are connected to :Gene molecules in S 3 via :target predicate and :Mutation
molecules in S 3 are connected to :Drug molecules in S 2 via :resistentDrug predicate. These
links represent the existence of joins between a set of RDF molecules in one dataset to another dataset in
the federation. In our running example, there are three data sources that are members of the federation.
We can observe that the description of data sources not only describe the schema of each data sources
and their mapping to the global schema, RDF-MTs in this case, but also the existence of connections
between data sources at the level of RDF molecule templates.

46

4.3 Experimental Study

4.3 Experimental Study

We analyze three different benchmarks for federated query processing to show case the expressiveness of
RDF Molecule Template based data source descriptions. Furthermore, we assess the performance of a
federated query engine utilizing RDF Molecule Templates and templates generated using different graph
partitioning algorithms. The following research questions are evaluated: Q1) Do RDF-MTs characterize
the semantics represented within and between data sources? Q2) Do different source descriptions impact
on federated query processing in terms of efficiency and effectiveness?

4.3.1 RDF-MT based Characterization of Benchmarks

Three benchmarks are utilized to assess our research questions: i) BSBM - The Berlin SPARQL
Benchmark; ii) FedBench; and iii) LSLOD. For each RDF dataset in the benchmarks, the RDF-MTs
are computed; furthermore, graph analytics are utilized to describe the properties of these datasets
in terms of the RDF-MTs and the connection between them. We generated all RDF-MTs and their
interconnections considering both intra-dataset and inter-dataset links, as defined in Algorithm 2 and
Algorithm 1, respectively. We use graph density, connected components, transitivity, and average
clustering coefficient to analyze the main properties of the graph that model the RDF-MTs of each
federation. Clustering coefficient measures the tendency of nodes who share same connections in a
network to become connected. If the neighborhood is fully connected, the clustering coefficient is 1 and a
value close to 0 means that there are no connections in the neighborhood. Average clustering coefficient
assigns higher scores to low degree nodes, while the transitivity ratio places more weight on the high
degree nodes. The average connectivity of a graph is the average of local node connectivity over all
pairs of nodes of the graph. We model a graph of RDF-MTs as undirected a multi-graph (MultiGraph
in networkx3) where the predicates that connect each RDF-MTs are used as labels of the edges. A
multi-graph is used to compute the number of nodes, edges, average number of neighbors, connected
components, and average node connectivity. Finally, we model the graph as undirected single network
graph, where a link between RDF-MTs is represented as unlabelled edges. Using single network graphs,
transitivity and average clustering coefficient are computed.

BSBM - The Berlin SPARQL Benchmark

The Berlin SPARQL Benchmark [92] is a synthetic dataset focusing on an e-commerce use case where a
set of products are offered by different vendors and consumers and reviewers have posted reviews about
these products on various review sites. The data model contains eight classes: Product, ProductType,
ProductFeature, Producer, Vendor, Offer, Review, and Person.

The first benchmark for our experiment, and the smallest in number of RDF-MTs, is the Berlin
SPARQL Benchmark (BSBM). In BSBM benchmark, there are only eight RDF-MTs and eight links
between them. For our experiment we treated each RDF-MT as a single dataset by creating a separate
endpoint for them. Therefore, there are in total eight datasets and since each dataset contains only one
RDF-MT, there are no intra-dataset links for this benchmark. Figure 4.6 illustrates all RDF-MTs in BSBM
where each contained in a single dataset (hence different colors) and their inter-dataset connections4. In
addition, in order to study the characteristics of the generated BSBM molecule template graph, we report
on a graph analysis in Table 4.1. We observed a strong connection between RDF-MTs - 0.285 density

3 https://networkx.github.io/
4 The graph visualization was generated using the open source software platform cytoscape – http://www.cytoscape.
org/

47

https://networkx.github.io/
http://www.cytoscape.org/
http://www.cytoscape.org/

Chapter 4 Data Source Description Model

Num of nodes 8
Num of edges 8
Graph density 0.285
Avg. num of neighbors 2
Connected components 1
Avg. node connectivity 1.0
Transitivity 0.0
Clustering coefficient 0.0

Table 4.1: FedBench RDF-MT Graph Metrics. Clustering coefficient (0.0) suggests that there is no connectivity
in the neighborhood of the network.

Review

Producer

ProductType

ProductFeature

Person

Offer

Vendor

Product

Figure 4.6: Analysis of RDF-MTs of BSBM. The graph comprises 8 RDF-MTs and 8 inter-dataset links. Each
dot represents an RDF-MT stored in each endpoint. A line between dots corresponds to inter-dataset links. There
is only one RDF-MT in each endpoint, hence no intra-dataset links.

Figure 4.7: Frequency of BSBM RDF-MTs Per Number of Properties. Majority of Molecule Templates contain
from five to seven properties.

and 1.0 average node connectivity. In particular, the connections concentrated on a single RDF-MT
(hence, a single dataset), Product, with 6 out of 8 links to or from this RDF-MT (hence, dataset). A
histogram of frequencies of RDF-MTs per numeber of properties distributed from six (two RDF-MTs) to
18 (one RDF-MT) is shown in Fig. 4.7.

48

4.3 Experimental Study

 Sider

Figure 4.8: Analysis of RDF-MTs of LSLOD. The graph comprises 56 RDF-MTs and 197 intra- and inter-dataset
links; dots in each circle represent RDF-MTs. A line between dots in the same circle shows intra-dataset links,
while a line between dots in different circles corresponds to an inter-dataset link. There are nine datasets: Drugbank,
Dailymed, Sider, Affymetrix, KEGG, LinkedCT, TCGA-A, ChEBI, and Medicare; they have six, three, two, three,
four, 13, 23, one, and one RDF-MTs, respectively.

Num of nodes 57
Num of edges 197
Graph density 0.205
Avg. num of neighbors 11.474
Connected components 3
Avg. node connectivity 1.648
Transitivity 0.634
Clustering coefficient 0.375

Table 4.2: LSLOD RDF-MT Graph Metrics. Clustering coefficient (0.375) suggests high number of intra- &
inter-dataset links.

LSLOD: Life Science Linked Open Data

LSLOD [93] is a benchmark composed of 10 real-world datasets of the Linked Open Data (LOD)
cloud from life sciences domain. The federation includes: ChEBI (the Chemical Entities of Biological
Interest), KEGG (Kyoto Encyclopedia of Genes and Genomes), DrugBank, TCGA-A (subset of The
Cancer Genome Atlas), LinkedCT (Linked Clinical Trials), Sider (Side Effects Resource), Affymetrix,
Diseasome, DailyMed, and Medicare. Compared to FedBench, LSLOD datasets contain rather small
number of RDF-MTs. Figure 4.8 shows the connectivity of all RDF-MTs associated with LSLOD
datasets. In total, there are 57 RDF-MTs with 197 links between them. TCGA-A dataset contains
the majority of RDF-MTs (23). There are no shared RDF-MTs between the LSLOD datasets. Fig-
ure 4.9 shows that most of the RDF-MTs have between three and 55 properties. Some RDF-MTs
from TCGA-A have a large number of properties, e.g., tcga:clinical_omf has 197 properties;
tcga:normal_control, tcga:tumor_sample, and tcga:clinical_nte have 246 proper-
ties; and tcga:clinical_cqcf, tcga:biospecimen_cqcf, and tcga:patient have 247
properties. Graph analysis in Table 4.2 shows that there is medium connectivity (stronger than FedBench)
of RDF-MTs, with 0.123 density, 6.912 average number of neighbors, and 3 connected components.

49

Chapter 4 Data Source Description Model

Figure 4.9: Frequency of LSLOD RDF-MTs Per Number of Properties. Majority of Molecule Templates
contain from three to 30 properties.

FedBench

FedBench [94] is a benchmark suite for analyzing both the efficiency and effectiveness of federated query
processing techniques for different use cases on semantic data. It includes three collections of datasets:
cross-domain, life-science, and SP2Bench collections. The cross-domain collection is composed of
datasets from different domains: DBpedia has linked structured data extracted from Wikipedia; Geonames
is composed of geo-spacial entities such as countries and cities; Jamendo includes music data such as
artists, records; LinkedMDB maintains linked structured data about movies, actors; the New York Times
dataset contains about 10,000 subject headings about people, organizations, and locations; finally, the
Semantic Web Dog Food (SWDF) dataset includes data about Semantic Web conferences, papers, and
authors. Furthermore, Life-science collection contains datasets from the life-sciences domain: Kyoto
Encyclopedia of Genes and Genomes (KEGG) has chemical compounds and reactions data in Drug,
Enzyme Reaction and Compound modules; the Chemical Entities of Biological Interest (ChEBI) contains
information about molecular entities on “small” chemical compounds, such as atoms, molecules, ions;
and DrugBank maintains drug data with drug target information. In addition to these three datasets in
the life-sciences collection, a subset of DBpedia dataset that includes data about drugs is added in this
collection. Finally, SP2Bench collection contains a synthetic dataset generated by the SP2Bench data
generator [95], that mirrors characteristics observed in the DBLP database. For our experiments, we have
used datasets from the first two collections from this benchmark, i.e., cross-domain and life-science
collections, which contain real-world datasets.

In FedBench, RDF-MTs that have more than 100 properties correspond to classes with multiple pre-
dicates and subclasses, such as dbo:Person, dbo:Organisation, and dbo:Place. In addition,
in order to study the characteristics of the generated FedBench RDF-MT graph, we report on a graph
analysis which is documented in Table 4.3. In particular, we observe a rather medium connectivity of
the graph nodes (i.e., RDF-MTs) – 0.081 – with 31.9 average number of neighbors and 9 connected
components5. Finally, the clustering coefficient (0.602) indicates that we do not have only links between
the RDF-MTs that come from the same dataset, but also many inter-dataset connections. Figure 4.10
illustrates all RDF-MTs in FedBench associated with the dataset they come from with all intra-dataset
and inter-dataset connections. In total, 387 RDF-MTs (396 including shared RDF-MTs) with 6, 317 links

5 A lower number of connected components indicates a stronger connectivity.

50

4.3 Experimental Study

DBpedia

Drugbank

KEGG

Chebi Jamendo

Geonames

NYTimes

SWDF

LinkedMDB

Shared

Figure 4.10: Analysis of RDF-MTs of FedBench. The graph comprises 387 RDF-MTs and 6, 317 intra- and
inter-dataset links. The dots in each circle represent RDF-MTs. A line between dots in the same circle shows
intra-dataset links, while a line between dots in different circles corresponds to inter-dataset links. In numbers,
there is only one RDF-MT in ChEBI, 234 in DBpedia, six in Drugbank, one in Geonames, 11 in Jamendo, four in
KEGG, 53 in LinkedMDB, two in NYTimes, and 80 in SWDF dataset. Four of these RDF-MTs belong to at least
two FedBench datasets, modeled as separate circular dots.

Figure 4.11: Frequency of FedBench RDF-MTs Per Number of Properties. Majority of Molecule Templates
contain from one to 20 properties.

are generated. While the majority of the RDF-MTs (230) are related to a single dataset, quite a few (4)
are shared between two or more datasets. Most of the RDF-MTs have between three and 20 properties,
as can be seen in the histogram of Figure 4.11.

From the reported analysis, it can be observed that RDF-MTs can be used to describe characteristics
of datasets in terms of connectivity between RDF types represented in each dataset with other datasets

51

Chapter 4 Data Source Description Model

Num of nodes 396
Num of edges 6,317
Graph density 0.081
Avg. num of neighbors 31.904
Connected components 9
Avg. node connectivity 10.624
Transitivity 0.395
Clustering coefficient 0.602

Table 4.3: FedBench RDF-MT Graph Metrics. Clustering coefficient (0.602) suggests high number of intra- &
inter-dataset links.

in the federation. This answers Q1 positively in a sense that datasets can be characterized not only by
ontology types (RDF types) and predicates, but also using the characteristics of the network between
ontology types within the same dataset and with other datasets in a federation.

4.3.2 Comparison of Source Descriptions for Query Processing

We study the impact of RDF-MT on query processing, and compare the effect of computing molecule
templates using two existing graph partitioning methods: METIS and SemEP. We name Fed-SemEP and
Fed-METIS, the version of Federated query engine where molecule templates have been computed using
SemEP and METIS, respectively. Co-occurrences of predicates in the RDF triples of a dataset D are
computed. Given predicates p and q in D, co-occurrence of p and q (co(p,q,D)) is defined as follows:

copp, q,Dq “
|sub jectpp,Dq X sub jectpq,Dq|
|sub jectpp,Dq Y sub jectpq,Dq|

(4.1)

Where subject(q,D) corresponds to the set of different subjects of q in D. A graph GPD where nodes
correspond to predicates of D and edges are annotated with co-occurrence values is created, and given as
input to SemEP and METIS. The number of communities determined by SemEP is used to create the
corresponding partitions for METIS. METIS- and SemEP-based molecule templates are composed of
predicates with similar co-occurrence values. Each predicate is assigned to only one community. For this
experiment, we use the following metrics: i) Execution Time: Elapsed time between the submission of a
query to an engine and the delivery of the answers. Time corresponds to absolute wall-clock system time
as reported by the Python time.time() function. Timeout is set to 300 seconds. ii) Cardinality:
Number of answers returned by the query.

We employ the decomposition and source selection technique described in the next chapter on top of
ANAPSID query engine and compare the effect of source descriptions. Figure 4.12 reports on execution
time and answer cardinality of the BSBM queries. The observed results suggest that knowledge encoded
in RDF-MTs allows Fed-RDF-MT to identify query decomposition that speed up query processing by up
to two orders of magnitude, while answer completeness is not affected. Specifically, Fed-RDF-MTs is
able to place in star-shaped subqueries non-selective triple patterns, while Fed-SemEP and Fed-METIS
group non-selective triple patterns alone in subqueries. Thus, the size of intermediate results is larger
in Fed-SemEP and Fed-METIS plans, impacting execution time. Fed-RDF-MTs is able to provide a
complete answers for all queries, while Fed-METIS fails to provide answers for queries B5, B10, B11,
and B12, respectively, for queries B8 and B10 Fed-SemEP fails. In terms of execution time, Fed-RDF-
MTs performs better than both Fed-METIS and Fed-SemEP on all queries. The observed results allow us
to positively answer Q2, and conclude that RDF-MTs based source descriptions improve the performance

52

4.4 Summary

FED-METIS FED-RDF-MTFED-SemEP

Figure 4.12: BSBM: Performance of different source descriptions. RDF molecules are computed using: Al-
gorithm 2, SemEP, and METIS. RDF-MTs allows to identify query decompositions and plans that speed up query
processing by up to two orders of magnitude, without affecting completeness.

of query processing, compared to state-of-the-art graph partitioning methods.

4.4 Summary

Data source descriptions provide crucial information that enable federated query processing systems to
select relevant sources and optimize queries. RDF molecule templates provide a fine-grained description
of heterogeneous data sources as well as connection between them. We analyse the characteristics of three
different benchmarks (BSBM, LSLOD, and FedBench) using RDF Molecule Template based descriptions
and show that RDF-MTs give not only characteristics of each data sources but also characteristics of the
federation as a whole. Apart from out analysis, our experiment showed that logical partitioning of the
RDF data using RDF-MTs is more effective and efficient than using state-of-the-art graph partitioning
algorithms; SemEP and METIS.

53

CHAPTER 5

Query Decomposition and Source Selection

Federated query processing systems provide a flexible solution to the problem of query processing
over a federation of data sources that are logically integrated as a single data source. This problem has
been extensively studied by the database [47, 53, 96–98] and semantic web [34, 49–52, 55] research
communities. Chapter 4 discussed the problem of data source description for federation of heterogeneous
data sources and propose RDF Molecule Template (RDF-MT) based descriptions. RDF-MT based source
description approach is one of the key building block for tackling different sub-problem of federated
query processing. In this chapter, we focus on the problem of query processing over a federated of data
sources, specifically on the query decomposition and source selection sub-problems. The content of
this chapter is based on the publications [89, 90]. The result of this chapter provides an answer to the
following research question:

RQ2: How can features represent in data source descriptions be employed to guide the query
processing over heterogeneous data sources?

To answer this research question we focus on the decomposition and source selection sub-problem
of federated query processing. One of the major sub-problem of federated query processing engines
is the selection of the minimal number of relevant sources that can contribute the data required to
answer the query completely, as the number of potentially relevant data sources for a query can be very
large. Current approaches resort to different source description approaches for identifying the relevant
sources of a query. However, the majority of existing approaches only collect coarse-grained source
descriptions, e.g., vocabularies or schema utilized in the dataset for modeling the data, and ignore fine-
grained characteristics, e.g., classes, properties, and relations. Nevertheless, we deem that fine-grained
source descriptions represent building blocks not only for effectively selecting relevant sources, but
also for identifying query execution plans that collect the query answers efficiently. We proposed a
query decomposition and source selection technique that utilize RDF-MT based source descriptions. We
compare the proposed technique with state-of-the-art federated query processing engines over RDF data
sources. Figure 5.1 shows the challenge tackled in this chapter with respect to the problem defined in this
thesis and the contribution of this chapter.

The contributions in this chapter can be summarized as follows:

‚ A thorough formalization accompanied by an implementation for federated query processing em-
ploying RDF Molecule Templates (RDF-MTs) for selecting relevant sources, query decomposition,
and execution.

55

Chapter 5 Query Decomposition and Source Selection

Knowledge
Representation

Actionable
Knowledge

Challenge 2: Query Processing over Heterogeneous Data Sources
in a Uniform Way

Contribution 2.1: MULDER: RDF Molecule Template based Query
Decomposition and Source Selection Technique

Figure 5.1: Challenges and Contributions.This chapter focuses on the problem of describing heterogeneous data
sources for data integration, and propose RDF Molecule Templates based data source description for federated
query processing

‚ A federated query processing engine, MULDER, that is able to utilize RDF-MT based descriptions
to maximized answer completeness and minimize query execution time.

‚ An empirical evaluation assessing the performance of RDF-MT based query decomposition and
source selection, i.e., the MULDER approach, in terms of query execution time and query answer
completeness. The reported results provide evidence that the MULDER approach is able to speed
up query execution and enhance answer completeness with respect to the state-of-the-art.

‚ An experimental study of the continuous efficiency of MULDER in terms of novel metrics
are reported; observed results suggest that MULDER performance increases gradually and is
competitive to the state-of-the-art adaptive federated query engine ANAPSID [34].

This chapter is structured as follows: first, we motivate the problem of query decomposition and
data source selection against a set of data sources in Section 5.1. To address research question RQ2,
we devise MULDER, a federated query processing engine that utilize RDF-MT based description for
decomposition and source selection as well as query plan generation over a federation of RDF data
sources. In Section 5.2, we formally define the problem of query decomposition and execution over a set
of data sources in a federation. Our technique is based on basic graph patterns (BGPs) of a SPARQL query
composed of star-shaped subqueries (SSQs). Then, we present the proposed solution, the MULDER
query engine, including algorithms and architecture in Section 5.3. Section 5.4 presents a thorough
evaluation of the proposed approach. Finally, Section 5.5 presents the closing remarks of this chapter.

5.1 Motivating Example

We motivate our work by comparing the performance of state-of-the-art federated SPARQL query engines
on a federation of RDF data sources from the FedBench benchmark [94]. FedBench is a benchmark for
evaluating federated query processing approaches (described in section 4.3.1). Although datasets in this
benchmark are from different domains, some RDF vocabularies are utilized in more than one dataset.
For instance, foaf properties are used in DBpedia, GeoNames, SWDF, LinkedMDB, and NYTimes,
while RDF triples with the owl:sameAs property are present in all the FedBench datasets. Federated

56

5.1 Motivating Example

SELECT DISTINCT ?s WHERE {
 ?s foaf:page ?page .
 ?s owl:sameAs ?sameas .
 ?s geonames:inCountry ?inCountry . }

t1

t2

t3

(a) SPARQL Query

Geonames

t1

t2

32,581
117,915

NYTimes

t2 31,763
1,761t3

t1

t2

319
1,112

SWDF

(b) Relevant FedBench RDF Data Sources

Figure 5.2: Motivating Example. (a) SPARQL query over FedBench RDF data sources. (b) FedBench data
sources able to execute the query triple patterns. Each triple pattern can be executed in more than one RDF data
source.

SPARQL query engines, e.g., ANAPSID [34] and FedX [52], provide a unified view of the federation of
datasets, and support query processing over this unified view.

Figure 5.2a presents a SPARQL query on a federation of three data sources: SWDF, Geonmaes, and
NYTimes. The query comprises three triple patterns: t1 can be answered on SWDF and Geonames;
NYTimes can answer t3, while t2 can be executed over SWDF, Geonames, and NYTimes respectively.
Figure 5.2b reports on the number of answers of t1, t2, and t3 over SWDF, Geonames, and NYTimes.
Federated query engines rely on source descriptions to select relevant sources for a query. For instance,
based on the vocabulary properties utilized in each of the data sources, ANAPSID decides that SWDF,
Geonames, and NYTimes are the relevant sources, while FedX contacts each of the federation SPARQL
endpoints to determine where t1, t2, and t3 will be executed. Furthermore, different criteria are
followed to decompose the query into the subqueries that will be posed over the relevant sources to
collect the data required to answer the query. As presented in Figure 5.3a, FedX identifies that t3
composes an exclusive group and can be executed over NYTimes; while t1 is executed over SWDF
and Geonames, and t2 on all the three datasets. Thus, FedX produces a complete answer by joining
the results obtained from executing these three subqueries. Nevertheless, FedX requires 239.4 secs. to
execute the query. ANAPSID offers two query decomposition methods: SSGS and SSGM (Figure 5.3a).
ANAPSID SSGS only selects one relevant source per triple pattern; execution time is reduced to 0.338
secs., but sources are erroneously selected and the query execution produces empty results. Finally,
ANAPSID SSGM builds a star-shaped subquery that includes t2 and t3. The star-shaped subquery is
executed on NYTimes, while t1 is posed over SWDF and Geonames. Execution time is reduced, but
only 19 answers are produced, i.e., results are incomplete.

Based on the values of join cardinality reported in Figure 5.3b, the decomposition that produces all

ANAPSID SSGS ANAPSID SSGMFedX
t1

t2

t3 NYTimes

t1 SWDFt2

t3 NYTimes

t1

t2 NYTimest3

sec
triples

239.4
20

0.338
0

88.9
19

SWDF, Geo SWDF, Geo

SWDF, Geo, NYTimes

@

@

@

@

@

@

@

(a) Query Decompositions

t1 t2

t2 t3

371

1,249

Join # triples

t1 t2 524
swdf swdf

geo geo

nyt nyt

[
t1 t2 t3

t1 t2 t3

t1 t2 t3t2

geo

nyt

geo nyt

8
19
20

nyt

nyt

nyt

geo

geo

geo

(b) Join Cardinality

Figure 5.3: Motivating Example. (a) Query Decompositions by FedX and ANAPSID. (b) Cardinality of Joins of
triple patterns over relevant RDF data sources. FedX decomposition produces complete answers, but at the cost of
execution time. ANAPSID decompositions run faster, but produce incomplete results.

57

Chapter 5 Query Decomposition and Source Selection

the results requires that t2 is executed over NYTimes and Geonames, while t1 and t3 should be only
executed in Geonames and NYTimes, respectively. However, because of the lack of source description,
neither FedX nor ANAPSID is capable of finding this decomposition. On the one hand, to ensure
completeness, FedX selects irrelevant sources for t1 and t2, negatively impacting execution time. On
the other hand, ANAPSID SSGS blindly prunes the relevant sources for t1 and t2, and does not collect
data from Geonames and NYTimes required to answer the query. Similarly, ANAPSID SSGM prunes
Geonames from t2, while it is unable to decide irrelevancy of Geonames in t1.

5.2 Problem Statement and Proposed Solution

In this section, we define the problem of query decomposition and execution around basic graph patterns
(BGPs) of a given SPARQL query Q posed over a federation of data sources.

Given a query Q and a set of data sources, D, in a federation F, the problem of federated query
processing is to find a plan that is correct (effective) and efficient. A plan is effective if the results
produced by the plan is the same as results that are generated by running the original query Q over union
of data sources (as a single dataset). A plan is efficient if the cost of running the plan is minimized. To
tackle the problem of federated query processing over a set of data sources in a Semantic Data Lake, we
propose a query decomposition and source selection technique, MULDER, that utilized RDF-MT based
source descriptions (Chapter 4).

5.2.1 Problem Statement

Our decomposition and source selection technique is based on basic graph patterns (BGPs) and star-
shaped subqueries (SSQs), defined in Chapter 2. In this section, we formalize the query decomposition
and execution problem over a federation of data sources.

Definition 12 (Query Decomposition) Given a basic graph pattern BGP of triple patterns {t1,. . . ,tn}
and datasets D={D1,. . . ,Dm}, a decomposition P of BGP in D, γpP|BGP,Dq, is a set of service graph
patterns SGP=(S Q,S D), where S Q is a subset of triple patterns in BGP and S D is a subset of D.

Definition 13 (Query Execution over a Decomposition) The evaluation of γpP|BGP,Dq in D,
rrγpP|BGP,DqssD, is defined as the join of the results of evaluating S Q over RDF datasets Di in S D:

rrγpP|BGP,DqssD “ JOINpS Q,S DqPγpP|BGP,DqpUNIONDiPS DrrS QssDiq (5.1)

After we defined what a decomposition of a query is and how such a decomposed query can be
evaluated, we can define the problem of finding a suitable decomposition for a query and a given set of
data sources.

Definition 14 (Query Decomposition Problem) Given a SPARQL query Q and RDF datasets
D={D1,. . . ,Dm}, the problem of decomposing Q in D is defined as follows. For all BGPs, BGP={t1,. . . ,tn}
in Q, find a query decomposition γpP|BGP,Dq that satisfies the following conditions:

‚ The evaluation of γpP|BGP,Dq in D is complete, i.e., if D˚ represents the union of datasets in D,
then the results of evaluating BGP in D˚ and the results of evaluating decomposition γpP|BGP,Dq
in D are the same, i.e.,

rrBGPssD˚ “ rrγpP|BGP,DqssD (5.2)

58

5.3 MULDER: A Federated Query Processing Engine

‚ γpP|BGP,Dq has the minimal execution cost, i.e., if costpγpP1|BGP,Dqq represents the execution
time of a decomposition P1 of BGP in D, then

γpP|BGP,Dq “ argmin
γpP1|BGP,Dq

costpγpP1|BGP,Dqq (5.3)

db:drug_interaction

db:reference db:drugs

db:target

db:interactionDrug1
db:interactionDrug2

db:target
db:drugReference

(a) RDF-MTs

SELECT ?drug ?target ?ref ?Int WHERE {
 ?drug db:genericName ?name .
 ?drug db:target ?target .
 ?target db:drugReference ?ref .
 ?target db:proteinSequence ?ps .
 ?ref rdfs:label ?refLabel .
 ?ref foaf:page ?page .
 ?Int db:interactionDrug1 ?drug .
 ?Int db:interactionDrug2 ?intd. }

t1

t2

t3
t4
t5
t6
t7
t8

(b) SPARQL Query

?drug

?Int

db:drug_interaction

db:drugs
db:target

?ref

db:reference

t1
t2

t3 t4

t5
t6

t7
t8

?target

(c) Star-shaped Subqueries

Figure 5.4: Query Decomposition. (a) RDF-MTs about db:drug_interaction, db:drugs, db:target,
db:reference. (b) SPARQL query composed of eight triple patterns that can be decomposed into four
star-shaped subqueries. (c) Four star-shaped subqueries associated with four RDF-MTs in (a).

5.2.2 Proposed Solution

To solve the query decomposing problem, we devise MULDER, a federated query engine for RDF datasets
accessible through Web access interfaces, e.g., SPARQL endpoints. The MULDER Decomposition
& Source Selection creates a query decomposition with service graph patterns (SGPs) of star-shaped
subqueries built according to RDF molecule template (RDF-MT) based data source descriptions. Once
the star-shaped subqueries (SSQs) are identified, a bushy plan is built by the MULDER Query Planning;
where the plan leaves correspond to star-shaped subqueries.

5.3 MULDER: A Federated Query Processing Engine

In this section, we first present the MULDER source selection and query decomposition technique and
plan generation approach. Then, we present the MULDER architecture as a federated query processing
engine over RDF data sources.

5.3.1 Source Selection and Query Decomposition Technique

Given a SPARQL query MULDER parses the query into star-shaped subqueries and create a query-graph
where nodes are star-shaped subqueries and edges are join variables. Using RDF-MT based source
description, for each node in the query-graph, MULDER selects RDF-MT(s) that contain all predicates
of a star-shaped subquery. Finally, MULDER selects a source(s) for each star-shaped subquery, if the
source contains an RDF-MT(s) with matching properties in a star-shaped subquery, MULDER applies
pruning using the actual links that are known between RDF-MTs. MULDER combines triple patterns in
a star-shaped subquery as a single SPARQL query to be sent to a single source.

Figure 5.4 shows an example of query decomposition and source selection. The example query
in Figure5.4b, contains eight triple patterns. The first step of query decomposition is to identify the
star-shaped subqueries (SSQ). In our example, four subqueries which contain two triples patterns each,

59

Chapter 5 Query Decomposition and Source Selection

?drug

?Int

db:drug_interaction

db:drugs

db:interactionDrug1

db:target

?ref

db:reference

t1
t2

t3 t4

t5
t6

t7
t8

db:target

db:drugReference

?target

(a) Graphs of Joinable SSQs

?ref

t5
t6t3 t4

?target?drug

t1
t2

?Int

t7
t8

db:referencedb:targetdb:drugs
db:drug_
interaction

(b) Bushy Plan of Joinable SSQs

Figure 5.5: Query Planning. (a) Joinable Graph of Star-shaped Subqueries (SSQs) represents joins between SSQs.
(b) Bushy plan of joinable Star-shaped Subqueries (SSQs). Graph of Joinable SSQs is utilized by MULDER Query
Planner to create a bushy plan of SSQs where joins between SSQs are maximized.

Algorithm 3 Molecule template based SPARQL query decomposition: BGP: Basic Graph Pattern, WIT :
set of RDF-MTs

1: procedure DECOMPOSE(BGP,WIT)
2: CM Ð tu Ź CM - Candidate RDF-MTs
3: S S Qs “ getS tarS hapedS ubqueriespBGPq Ź Subject stars
4: for s P S S Qs do
5: for RDFMT P WIT do
6: if predicatesInpsq Ď predicatesInpRDFMT q then
7: CMrss.appendpRDFMT q

8: end if
9: end for

10: end for
11: JS S Q “ getJS S QspS S Qsq Ź Query-graph of Joinable SSQs
12: conn “ connectedRDFMT spS S Qs, JS S Q,CMq Ź selected RDF-MTs graph
13: DQ “ prunepS S Qs, JS S Q, connq
14: return DQ Ź decomposed query
15: end procedure

are identified, i.e., ?drug (t1, t2), ?target (t3, t4), ?ref (t5, t6), and ?Int (t7, t8), named after the
shared subject variable of star-shaped subqueries. Each of SSQs are then associated with RDF-MTs that
contain predicates in SSQs, as shown in Figure 5.4c.

The MULDER query decomposer is sketched in Algorithm 3. Given a BGP and a set of RDF-MTs
(WIT), SSQs are first identified (Line 3). Then, RDF-MTs which contain all predicates in SSQ are
determined from WIT as candidate RDF-MTs (Line 4–10). Furthermore, linked candidate RDF-MTs
with respect to Joinable SSQs (Line 11) are identified (Line 12). Finally, candidate RDF-MTs are pruned,
i.e., candidate RDF-MTs that contain all predicates in SSQ but are not linked to any RDF-MT that
matches Joinable SSQ are excluded (Line 13). SSQs that have more than one matching RDF-MT from
the same Web access interface will be decomposed as one service graph pattern. However, if matching
RDF-MTs are from different Web access interfaces, then MULDER decomposes them; the UNION
operator is used during query execution to collected the data from each Web access interface.

Figure 5.5a shows joinable star-shaped subqueries (SSQ) that share at least one variable, i.e., ?Int
is joinable with ?drug via predicate db:interactionDrug1, while ?drug is joinable with

60

5.4 Empirical Evaluation

Figure 5.6: The MULDER Client-Server Architecture. MULDER query processing client receives SPARQL
queries, creates query decompositions with star-shaped subqueries, and identifies and executes bushy plans.
MULDER query processing server collects both RDF-MT metadata about RDF datasets and results of executing
queries over Web access interfaces, e.g., SPARQL endpoints.

?target via db:target. Furthermore, ?target is joinable with ?ref through
db:drugReference property. Finally, MULDER query planner generates bushy plans combining
SSQs (Figure 5.5b). The problem of identifying a bushy plan from conjunctive queries is known to be
NP-complete [99]. MULDER planner implements a greedy heuristics based approach to generate a bushy
plan, where the leaves correspond to SSQs, and the number of joins between SSQs is maximized while
the plan height is minimized. The heuristics used by MULDER planner are discussed in section 6.3.1.

5.3.2 The MULDER Architecture

The MULDER architecture is depicted in FigureFigure 5.6. The MULDER Query Processing Client
receives a SPARQL query, decomposes it, performs source selection based on RDF-MT metadata, and,
afterwards, identifies a bushy plan against the selected RDF datasets. The MULDER Query Engine
executes the bushy plan and contacts the MULDER query processing server to evaluate Service Graph
Patterns over the Web access interfaces. Further, the MULDER Query Processing Server receives
requests from the MULDER client to retrieve RDF-MT metadata about RDF datasets, e.g., metadata
about properties of RDF molecules contained in these RDF datasets.

5.4 Empirical Evaluation

We empirically study the efficiency and effectiveness of MULDER query decomposition and source
selection techniques. We compare MULDER with the federated query engines ANAPSID and FedX
for three well-established benchmarks – BSBM, FedBench, and LSLOD. Furthermore, we evaluate
the continuous efficiency of MULDER compared to ANAPSID. The following research questions are
evaluated: Q1) Is the effectiveness and efficiency of the query processing process impacted by the
MULDER query decomposition and source selection technique? Q2) Is the continuous efficiency of
the answer generation process impacted by the MULDER query decomposition and source selection
technique?

61

Chapter 5 Query Decomposition and Source Selection

Query B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12
#BGPs 1 1 2 5 1 2 1 1 1 1 1 1

#TP 4 6 12 17 8 10 8 4 5 11 25 21
#SSQs 1 1 2 7 2 4 2 2 2 3 4 4

UNION X
OPTIONAL X X
DISTINCT X X X X X X X X

Table 5.1: BSBM queries characteristic.

Query S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
#BGPs 2 1 1 1 2 1 1 1 1 1

#TP 4 7 6 5 5 3 4 3 8 8
#SSQs 2 3 4 2 3 2 3 2 2 2

UNION
OPTIONAL X
DISTINCT X X

Table 5.2: LSLOD queries characteristic.

The MULDER1 decomposition and source selection, and query planning components are implemented
in Python 2.7.10. MULDER plans are executed using ANAPSID [34] physical operators. Experiments
are executed on two Dell PowerEdge R805 servers, AMD Opteron 2.4GHz CPU, 32 cores, 256GB RAM.
BSBM (The Berlin SPARQL Benchmark), FedBench, and LSLOD datasets are deployed on one machine
as SPARQL endpoints using Virtuoso 6.01.3127, where each dataset resides in a dedicated Virtuoso
docker container.

Benchmarks

Three benchmarks are utilized to assess our research questions: i) BSBM - The Berlin SPARQL
Benchmark; ii) FedBench; and iii) LSLOD.
BSBM - The Berlin SPARQL Benchmark. The Berlin SPARQL Benchmark [92] is a synthetic dataset
focusing on an e-commerce use case where a set of products are offered by different vendors and
consumers and reviewers have posted reviews about these products on various review sites. We use
BSBM to generate 12 SELECT queries (with 20 instantiations each) over a generated dataset containing
200 million triples2; characteristics of these queries are presented in Table 5.1. We partitioned the dataset
using rdf:type classes and created eight SPARQL endpoints, one per each class and one endpoint which
contains the whole dataset.
FedBench. FedBench [94] is a benchmark suite for analyzing both the efficiency and effectiveness of
federated query processing strategies for different use cases on semantic data. We run 25 FedBench
queries3, including cross-domain queries (CD), linked data queries (LD), and life science queries (LS).
Additionally, 10 complex queries (C) proposed by [27] are considered. The queries are executed against
the FedBench datasets from cross-domain and life-science collections. A SPARQL endpoint able to

1 https://github.com/SDM-TIB/Mulder
2 BSBM queries can be found in the Appendix B.1
3 FedBench queries can be found in http://fedbench.fluidops.net/resource/Queries

62

https://github.com/SDM-TIB/Mulder
http://fedbench.fluidops.net/resource/Queries

5.4 Empirical Evaluation

●

●
●

●
●

●●
●

● ● ●
●

●
●●

●

●
●

● ●

●● ●● ●●●● ● ● ● ●● ●● ●●●● ●

●● ●
●

●●●● ● ● ● ●
●

●● ●●●●
●

●

●
●

●

●

●

●

●
● ●

●

●
●

●

● ●●
●

●
●

0.01

0.10

1.00

20 40 60
cardinality

Query B1

●

● ●● ● ●●●
●●

●●
●●

● ●

●●
●

●

●● ●● ● ●

●

●
●●

●

●
●●

● ●

●
●

●●

●●
●

● ● ●●
●

●
●

●
● ●

●

●
●

●
●

●●

●

●
●

●
● ●

●●
●●

●

●

●
●

●

●

●●

●●

0.1

1.0

100 200 300 400
cardinality

Query B2

●●

●

● ●

●
●

●

●
●

●

●

● ●

●
●● ●

● ●

●●
●

● ● ● ●●● ●● ●
● ●● ●● ●

●

●

●●

●
● ● ●

●●
● ●●

●
● ●● ●● ●● ●

●

●
●

● ●
●

●
●

● ●
●

●
●

●
● ●●

●● ●

0.1

1.0

5 10 15 20
cardinality

Query B3

● ● ●● ● ●●●●●●●●
●

● ●●● ● ●

●

●
●
●

● ●

●

●
●●
●

●●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●●●

●

●
●

●

●

●

●
●

●

●

●

●
●
●

●

●

●

●
●

●●
●

●

●

●

●

●

●
●

●

1

10

0 100 200 300
cardinality

Query B4

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

1

10

5000 10000
cardinality

Query B5

●
●

●

● ●●● ●● ●● ●●● ●●● ● ●●

●
● ●●

●●
●

●● ●●
●●● ●●● ● ●●

●
●

●

●
●

●●
●● ●

●
●●● ●●● ● ●●

●

●

●

●

●●

●

●
●

●
●

●

●●
●●

●

●

●
●0.1

1.0

10.0

5 10 15
cardinality

Query B6

●

●

●●●● ●

●
●

● ●●● ● ●

●

● ● ● ●

● ●●●●●

●

●●

●
●●

●
● ●●●

●
● ●

●

●

●
●

●●

●

●●

●

●●

●

●
●

●●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●

●

0.1

1.0

10 20 30
cardinality

Query B7

●
●● ● ●●

● ●●●●
●●●●

●

●●
●

●

● ●

●
● ●●● ●●

●●

●●●

●
● ●●● ●

0.01

0.10

80 100 120 140
cardinality

Query B8

●
●●●●●●●●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●
●
●●●●●●
●
●●●●●●●●

●●
●
●●●●●●●●●●●●●●●●●

0.01

0.10

1.00

1
cardinality

Query B9

●
●

●

● ●

●

●

●
●

●

●

●

● ●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●● ●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

1

100 200 300 400
cardinality

Query B10

● ● ● ●● ●● ● ●●●● ●●● ●● ●● ●

●

●

● ●● ●

● ●

●

●
●

●

●

●●

●

●

●

●

●

●●●●●●●●●●●●●●●●●●●●
● ● ● ●● ●●

●
●●

●
● ●

●
● ●● ●● ●

10

0 5 10 15 20
cardinality

Query B11

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●●

●

●
●

●
●

●

●
●●●●●●●
●
●●●●●●●
●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●
●

●●

●

0.1

1.0

10.0

0 1000 2000
cardinality

Query B12

Figure 5.7: BSBM: Performance of Federated Engines. MULDER and ANAPSID outperform FedX in terms of
query execution time, while MULDER overcomes ANAPSID in terms of completeness. Direct represents a unified
SPARQL endpoint over one dataset with all the federation RDF triples.

access a unified view of all the FedBench datasets (i.e., the RDF dataset D˚ in Equation 5.2) serves as
gold standard and baseline.
LSLOD. LSLOD [93] is a benchmark composed of 10 real-world datasets of the Linked Open Data
(LOD) cloud from life sciences domain. We run 10 simple queries4 provided for LSLOD datasets in [93],
characteristics of these queries are presented in Table 5.2.

5.4.1 Comparison of Federated Query Engines

We evaluate the efficiency and effectiveness (in terms of execution time and answer completeness,
respectively) of RDF-MT query processing technique implemented in MULDER compared with the
state-of-the-art federated query engines, FedX and ANAPSID. We created a unified view of all datasets

4 LSLOD queries can be found in Appendix B.1

63

Chapter 5 Query Decomposition and Source Selection

Direct ANAPSID FedX MULDER

1

0 50 100 0 50 100 0 50 100 0 50 100
Completeness (%)

Ex
ec

ut
io

n
Ti

m
e

(E
T)

 s
ec

 −
 lo

g
sc

al
e

Cross Domain (CD) Linked Data (LD) Life Science (LS) Complex (C)

III

III IV

0 7 III

III IV

0 11 III

III IV

4 23 III

III IV

1 16

0 0 18 0 0 027 14

Figure 5.8: FedBench: Execution Time and Completeness of Federated Engines. Plots are divided into four
quadrants: Incomplete results and slower execution time are reported in Quadrant I; results in Quadrant II
correspond to complete results with lower performance; Quadrant III reports faster execution time but incomplete
results; Quadrant IV indicates complete results and faster execution time. ANAPSID, FedX and MULDER manage
to answer 29, 27, and 31 queries, respectively. Direct represents a unified SPARQL endpoint that is able to answer
34 of the 35 benchmark queries before timing out.

in a benchmark via a direct SPARQL endpoint as a baseline. For this experiment, we compare federated
query processing techniques using the following metrics: i) Execution Time: Elapsed time between
the submission of a query to an engine and the delivery of the answers. Time corresponds to absolute
wall-clock system time as reported by the Python time.time() function. Timeout is set to 300 seconds.
ii) Cardinality: Number of answers returned by the query. iii) Completeness: Query result percentage
with respect to the answers produced by the unified SPARQL endpoint created as the union of all datasets
in the benchmark.

Performance of BSBM Queries. Figure 5.7 reports on the throughput of the federated engines
ANAPSID, FedX, and MULDER for all BSBM queries. In many queries, MULDER and ANAPSID
exhibit similar query execution times. FedX is slower than the two federated engines by at least one
order of magnitude. ANAPSID returns query answers fast but at the cost of completeness, as can be
observed in the queries B4, B7, B11, and B12. In addition, FedX and ANAPSID fail to answer B8 which

64

5.4 Empirical Evaluation

1.0

1.5

2.0

2.5

3.0

0.0 0.5 1.0 1.5 2.0
Time (sec)

#A
ns

w
er

s
P

ro
du

ce
d

A−SSGM A−SSGS MULDER

S2

0

100

200

300

400

1 2 3 4 5
Time (sec)

#A
ns

w
er

s
P

ro
du

ce
d

A−SSGM A−SSGS MULDER

S3

0

10

20

0 1 2 3 4 5
Time (sec)

#A
ns

w
er

s
P

ro
du

ce
d

A−SSGM A−SSGS MULDER

S4

0

500

1000

1500

1 2
Time (sec)

#A
ns

w
er

s
P

ro
du

ce
d

A−SSGM A−SSGS MULDER

S5

0

10

20

0.06 0.07 0.08 0.09 0.10 0.11
Time (sec)

#A
ns

w
er

s
P

ro
du

ce
d

A−SSGM A−SSGS MULDER

S7

−0.50

−0.25

0.00

0.25

0.50

0.00 0.01 0.02 0.03 0.04
Time (sec)

#A
ns

w
er

s
P

ro
du

ce
d

A−SSGM A−SSGS MULDER

S8

Figure 5.9: LSLOD: Answer traces. Continuous query performance. Y-axis shows the number of answers
produced, and x-axis shows time in seconds (time.time()).

is completely answered by MULDER.

Performance of FedBench Queries. Figure 5.8 visualizes the results of the four FedBench groups of
queries (CD, LD, LS, C) in terms of answer completeness and query execution time. Measurements that
are located in Quadrants I and III indicate bad performance and incomplete results, points in Quadrant
IV are the best in terms of execution time and completeness, i.e., they correspond to a solution to the
query decomposition problem; finally, points in Quadrant II show complete results but slower execution
times. MULDER outperforms ANAPSID and FedX with regard to the number of queries it manages to
answer: ANAPSID answers 29, FedX 27, and MULDER 31 out of 35 queries (Query C9 could not be
answered by any of the engines). In particular, MULDER delivers answers to queries C1, C3, C4, LS4,
LS5, and LS6 for which FedX fails and CD6 and LD6 for which ANAPSID fails. FedX returns complete
and partially complete results for 20 and 7 queries respectively, exhibiting high execution times though
(>1s). In comparison to ANAPSID, MULDER achieves in general higher completeness of results, but at
the cost of query execution time. For instance, C2, C8, and LD1 are answered by ANAPSID faster by
almost one order of magnitude. Results observed in both benchmarks, i.e., BSBM and FedBench, allow
us to positively answer Q1 and Q2, and conclude that RDF-MTs enable MULDER decomposition and
planning methods to identify efficient and effective query plans.

65

Chapter 5 Query Decomposition and Source Selection

Figure 5.10: LSLOD: Answer traces. continuous query performance. y-axis shows the number of answers
produced, and x-axis show time in seconds (time.time()).

5.4.2 Measuring Continuous Efficiency of MULDER

In this experiment, we evaluate the efficiency of MULDER in terms of continuous generation of answers
of a query. A continous efficiency (diefficiency) of query engine is measured using metrics proposed
in [100]. A continuous efficiency (diefficiency) of a query engine can be analyzed from the answer
traces. Answer traces are a sequence of pairs (ti, µi) where ti is the time-stamp that the ith answer, µi, is
produced. Two methods proposed to measure the continuous effect of the engine are die f @t and die f @k.
Values of these metrics correspond to the number of answers produced in function of time, also known as
Answer Distribution Function. Diefficiency at time t, die f @t, measures the continuous efficiency of an
engine in the first t time units of query execution, while diefficiency at k answers, die f @k, measures the
diefficiency of an engine while producing the first k answers of a query after the first answer is produced.

Die f @t metrics computes AUC (area-under-the-curve) of answer distribution until time t. Given an
approach ρ, a query Q, and answer distribution function Xρ,Q while ρ executes Q, die f @t is computed
as:

die fρ,Q@t :“
ż t

0
Xρ,Qpxqdx (5.4)

Die f @k metrics computes AUC of answer distribution until the point in time tk when the engine
produces the kth answer, as recorded in the answer trace. Given an approach ρ, a query Q, and answer
distribution function Xρ,Q while ρ executes Q, die f @k is computed as:

die fρ,Q@k :“
ż tk

0
Xρ,Qpxqdx (5.5)

where tk P R is the point in time when ρ produces the kth answer of Q.
Since both ANAPSID and MULDER generate results incrementally, we compared the two heuristics

techniques of ANAPSID, i.e., SSGS and SSGM, with MULDER using diefficiency metrics. Figure 5.9
shows answer traces and continuous query performance, of the three approaches for S2, S3, S4, S5, S7,
and S8 LSLOD benchmark queries. As shown in Figure 5.9, for these queries MULDER outperforms
both ANAPSID heuristics techniques. On S2, the answer trace shows that MULDER produced more
results faster in the first 0.05 secs of overall execution than other both ANAPSID approaches. All

66

5.4 Empirical Evaluation

S1

(TFFF)^−1

(ET)^−1

Comp T

dief@t

A−SSGM
A−SSGS
MULDER

S2

(TFFF)^−1

(ET)^−1

Comp T

dief@t

A−SSGM
A−SSGS
MULDER

S3

(TFFF)^−1

(ET)^−1

Comp T

dief@t

A−SSGM
A−SSGS
MULDER

S4

(TFFF)^−1

(ET)^−1

Comp T

dief@t

A−SSGM
A−SSGS
MULDER

S5

(TFFF)^−1

(ET)^−1

Comp T

dief@t

A−SSGM
A−SSGS
MULDER

S6

(TFFF)^−1

(ET)^−1

Comp T

dief@t

A−SSGM
A−SSGS
MULDER

S7

(TFFF)^−1

(ET)^−1

Comp T

dief@t

A−SSGM
A−SSGS
MULDER

S9

(TFFF)^−1

(ET)^−1

Comp T

dief@t

A−SSGM
A−SSGS
MULDER

S10

(TFFF)^−1

(ET)^−1

Comp T

dief@t

A−SSGM
A−SSGS
MULDER

Figure 5.11: LSLOD: Efficiency and Completeness Metrics. Performance per LSLOD benchmark query of
ANAPSID-SSGS (A-SSGS), ANAPSID-SSGM (A-SSGM) and MULDER query approaches. Axes correspond
to: Inverse of Time for the first tuple (T FFT ´1), Inverse of Total execution time (ET ´1), Number of answers
produced (Comp), Throughput (T), and die f @t. Interpretation of all metrics (axes): ‘higher is better’.

approaches return 0 results for query S8, none of the data sources in the benchmark is able to answer the
query. Even though, the result is empty, MULDER produces the empty answer earlier than ANAPSID
and without contacting any source. Therefore, we excluded query S8 from the reported results on the
continuous efficiency of approaches in this section. Figure 5.10 shows answer traces for S1, S6, S9, and
S10 LSLOD benchmark queries where all approaches produced answers in a uniform way. On these
queries, MULDER produced answers faster than both ANAPSID approaches. For queries S1 and S6,
MULDER is able to produce the first answer (row) earlier than ANAPSID-SSGS and ANAPSID-SSGM.
For query S6 though, all approaches produce results continuously, MULDER produces slightly higher
number of answers faster than others until the first sec. Finally, on query S10, the versions of ANAPSID
produced results continuously compared to MULDER. However, MULDER produces more answers
faster than other approaches.

In Figure 5.11 reports the performance of approaches using multiple metrics to evaluate the overall
performance, completeness and continuous efficiency in time t, i.e., Inverse of Time for the first tuple
(T FFT´1), Inverse of Total execution time (ET´1), Number of answers produced (Comp), Throughput
(T), and die f @t, using radar plots. In this plot, the interpretation of the metrics in each axis is ‘higher is
better’. As clearly shown, MULDER outperforms ANAPSID-SSGS and ANAPSID-SSGM in almost all
metrics and is able to continuously produce results faster. For queries, S1, S6, and S10, all approaches
show uniform behavior for all metrics. On the other hand, the performance of both ANAPSID-SSGS

67

Chapter 5 Query Decomposition and Source Selection

S1

k=25%

k=50%

k=75%

k=100%

MULDER
A−SSGS
A−SSGM

S2

k=25%

k=50%

k=75%

k=100%

MULDER
A−SSGS
A−SSGM

S3

k=25%

k=50%

k=75%

k=100%

MULDER
A−SSGS
A−SSGM

S4

k=25%

k=50%

k=75%

k=100%

MULDER
A−SSGS
A−SSGM

S5

k=25%

k=50%

k=75%

k=100%

MULDER
A−SSGS
A−SSGM

S6

k=25%

k=50%

k=75%

k=100%

MULDER
A−SSGS
A−SSGM

S7

k=25%

k=50%

k=75%

k=100%

MULDER
A−SSGS
A−SSGM

S9

k=25%

k=50%

k=75%

k=100%

MULDER
A−SSGS
A−SSGM

S10

k=25%

k=50%

k=75%

k=100%

MULDER
A−SSGS
A−SSGM

Figure 5.12: LSLOD: Comparison of Diefficiency. Diefficiency while producing a portion of k of answers per
LSLOD benchmark query of ANAPSID-SSGS (A-SSGS), ANAPSID-SSGM (A-SSGM), and MULDER query
approaches. Performance is measured with die f @k, with k “ 25%, k “ 50%, k “ 75%, k “ 100%. Interpretation
of the axes: ‘lower is better’.

and ANAPSID-SSGM on queries, S2, S3, S4, S5, and S7 is almost the same. This is because, LSLOD
benchmark datasets do not have sources that share the same RDF-MTs; therefore, the source selection of
SSGM is mostly the same as SSGS heuristics. MULDER performs better in all metrics.

We analyze the diefficiency (continuous efficiency) achieved by the two heuristics of ANAPSID and
MULDER approach while producing the first k results for LSLOD benchmark queries. Figure 5.12
reports on the die f @k values while producing 25%, 50%, 75%, and 100% of the query results. The value
of k is selected by taking the minimum number of results returned from the evaluated approaches. In this
plot, the interpretation of the metrics is ‘lower is better’. All approaches perform similar efficiency on
the first query, S1. On queries S3, S6, S9, and S10 approaches show different behaviour in different values
of k. For instance, on S3 MULDER is able to deliver results faster than ANAPSID-SSGS and ANAPSID-
SSGM during the last quarter of overall results, but while k is 25%, 50%, and 75% of the overall results
both ANAPSID heuristics delivers faster than MULDER. Even though MULDER performed better on
die f @t metrics, as shown in Figure 5.11, it produces results slower on k value at 25%, 50%, and 75% on
query S3, 50% on S6, 25% on S9, and 75% and 100% of the query results than ANAPSID. On 25%,
75% and 100% of S6 overall query results, 50%, 75%, and 100% of S7 overall query results, 50%, 75%,
and 100% of S9 overall query results, and 50% of S10 overall query results all approaches have similar
performance of die f @k metrics. For S2, S4, S5, and S7 queries MULDER is able to continuously deliver
results faster on all values of k, i.e., 25%, 50%, 75%, and 100% of the overall results and 100% for query

68

5.5 Summary

S3. In this experiment, we evaluate the continuous efficiency of MULDER compared to ANAPSID. The
observed results for both die f @t and die f @k metrics allow us to positively answer Q3 and conclude
that RDF-MTs based query decomposition and planning techniques implemented in MULDER enable
for a continuous performance during the answer generation process.

5.5 Summary

MULDER is federated query processing engine that provide solutions to the problems of source selection,
query decomposition and planning, in order to achieve both efficiency in terms of execution time and
completeness of results. MULDER resorts to RDF Molecule Templates for describing the structure
of RDF data sources and guiding the decomposition of queries. It also provides a query engine for
federated access to SPARQL endpoints, able to bridge between parts of a query to be executed in a
federated way. We showed through an extensive evaluation using three different benchmarks (BSBM,
FedBench, and LSLOD) that MULDER is significantly reducing query execution time and increasing
answer completeness in comparison to the state-of-the-art federated engines. In fact, MULDER has
comparable results with ANAPSID, however, the latter may deliver more incomplete results. Furthermore,
the analysis of the continuous efficiency of MULDER as an adaptive federated engine demonstrated that
it is able to continuously deliver results equal or faster than the ANAPSID adaptive query engine.

69

CHAPTER 6

Query Planning and Optimization

The need for efficient big and heterogeneous data management, and query processing techniques has
been gaining attention, as the growing amount of heterogeneous data became available through various
platforms [1, 2]. Data Lakes that integrate different data sources need to handle the variety and volume
of data efficiently and effectively. Contrary to existing SPARQL federated query engines, federated
query processing over Data Lakes demands the integration and semantic description of data collected
from heterogeneous data sources. Previous chapters, Chapter 4 and Chapter 5 present, respectively, data
source description and query decomposition and source selection sub-problems. Chapter 5, presents the
MULDER approach that employs an optimization technique for federated query processing assuming
autonomous and homogeneous data sources in a federation. This chapter deals with the query planning
and optimization sub-problem of federated query processing considering not only autonomy but also
the heterogeneity of data sources in the Semantic Data Lake. The content of this chapter is based on the
publication [91]. The result of this chapter aims to answer the following research question at the level of
query planning and optimization sub-problem of federated query processing:

RQ2: How can features represent in data source descriptions be employed to guide the query
processing over heterogeneous data sources?

To address this research question, we focus on the query plan generation utilizing the capabilities and
semantic description of heterogeneous data sources. We propose a set of source specific heuristics that
guide the plan generation approach. The proposed optimization techniques considers the RDF-MT based
data source descriptions to generate an efficient execution plan. Figure 6.1 shows the challenges tackled
in this chapter and the contribution of this chapter.

The contributions of this chapter can be summarized as follows:

‚ A formalization of federated query processing employing RDF Molecule Templates (RDF-MTs)
for selecting relevant sources, query decomposition, planning, and execution.

‚ A set of source specific heuristics that utilize the available source descriptions to optimize the
query execution plan.

‚ A federated query engine, Ontario, that is able to utilizes RDF-MT based descriptions which
maximize answer completeness and minimize query execution time against heterogeneous data
sources in a Semantic Data Lake.

‚ An empirical evaluation assessing the performance of RDF-MT based query decomposition and
source selection, i.e., the Ontario approach, in terms of query execution time and query answer

71

Chapter 6 Query Planning and Optimization

Knowledge
Representation

Actionable
Knowledge

Challenge 2: Query Processing over Heterogeneous Data Sources
in a Uniform Way

Contribution 2.2: ONTARIO: RDF-MT based Planning and
optimization approach for Semantic Data Lake

Figure 6.1: Challenges and Contributions.This chapter focuses on the problem of federated query processing
at the level of query planning and execution over heterogeneous data sources for data integration, and propose
Ontario federated query processing against a Semantic Data Lake

completeness. The reported results provide evidence that the Ontario approach is able to speed up
query execution and enhance answer completeness with respect to the state-of-the-art.

This chapter is structured as follows: Section 6.1 motivate the problem of plan generation in a
federation of heterogeneous data sources. In Section 6.2, we formally define the problem of federated
query processing against heterogeneous data sources in Semantic Data Lake. Then, we present the
proposed solution, Ontario query processing engine in Section 6.3. Section 6.4 reports the results of an
empirical evaluation of the proposed optimization techniques. Finally, Section 6.5 presents the closing
marks of this chapter.

6.1 Motivating Example

In the biomedical domain, frequently complex queries need to be answered with multiple data sources
and data models. Especially in this domain, flexible data management and integration techniques are
required due to the variety of tools and formats data is collected, generated, and processed. To provide a
unified view over these heterogeneous data sources, mapping rules are utilized to describe the required
transformations from raw data into the unified schema. These mappings enable the translation of queries
from the unified schema into queries against the sources using native access interfaces.

We motivate our work by comparing the performance of federated SPARQL query engines over a
federation of data sources that provide a SPARQL-based access interface. For instance, a SPARQL query
in Figure 6.2a requires to collect the name of possible drug targets, chemical formula, and side effects of
drugs labeled by FDA that have the active substance Simvastatin. To answer this query, four (4) datasets
(Figure 6.2b) need to be accessed. Dailymed1 publishes FDA label information about marketed drugs in
the United States; Diseasome2 makes availabe a network of disorders and disease genes; DrugBank3

reports information about drugs and drug targets, and SIDER4 presents information on drug side effects.

1 https://dailymed.nlm.nih.gov
2 https://old.datahub.io/dataset/fu-berlin-diseasome
3 https://www.drugbank.ca
4 http://sideeffects.embl.de/

72

https://dailymed.nlm.nih.gov
https://old.datahub.io/dataset/fu-berlin-diseasome
https://www.drugbank.ca
http://sideeffects.embl.de/

6.1 Motivating Example

SELECT DISTINCT ?drug ?disName ?drugformula ?sename
WHERE {
 ?drug dailymed:activeIngredient dailymed:Simvastatin .
 ?drug dailymed:genericDrug ?dbdrug .
 ?drug dailymed:possibleDiseaseTarget ?disease .
 ?drug owl:sameAs ?sadrug .
 ?disease rdfs:label ?disName
 ?sadrug sider:sideEffect ?seffect .
 ?seffect sider:sideEffectName ?sename .
 ?dbdrug drugbank:chemicalFormula ?drugformula
}

t1
t2
t3
t4
t5

t7
t6

t8

(a) SPARQL Query: Find targets, and side effects of drugs with active ingredient
Simvastatin.

SIDERDailymed DrugBankDiseasome

RDF

(b) Data Sources in a Data
Lake

Figure 6.2: Motivating Example. (a) A SPARQL query composed of four star-shaped groups accessing four
data sources, Dailymed, Diseasome, SIDER, and DrugBank. (b) Data Sources: Dailymed (RDF in Virtuoso),
Diseasome (Local JSON File), SIDER (TSV in HDFS), DrugBank (XML in MySQL)

A snippet of sample raw data and relations is depicted in Figure 6.3. Our running query comprises eight
(8) triple patterns (identified with t1 to t8 in the Figure 6.2a). Dailymed can answer the triple patterns
t1 ´ t4, while triple pattern t5 can be answered by Diseasome. Further, SIDER can answer t6 ´ t7,
and t8 can be answered by DrugBank. The data access services of each datasets are implemented by
different backends and provide different capabilities. For instance, the endpoint services for SIDER and
Diseasome are Spark-based query processors that translate queries from SPARQL to SQL, where the raw
data need to be loaded in memory to evaluate the query in these data sources. Similarly, the endpoint
for DrugBank translates SPARQL to SQL and execute the translated query in MySQL, which provides
efficient indexing and query optimization for relational data.

Federated query engines, FedX [52] and MULDER [90], provide a unified view over a set of data
sources that respect SPARQL protocol. They rely on source descriptions to select relevant sources for
a given query and for finding an efficient query execution plan. For instance, FedX contacts the data
sources to decide where the triple patterns will be executed, while MULDER requires RDF Molecule
Temaplates (RDF-MTs) to be collected in advance. FedX decomposes the query, in Figure 6.2a, into five
(5) sub-queries; t1´ t3, t6´ t7, and t8 that are sent to Dailymed, SIDER, and Drugbank, respectively,
and t4 and t5 sent to all four (4) data sources, respectively. FedX creates a left linear tree plan with nested
loop join operator, an operator that pushes down the join operation to the data sources by binding the join
variables of the right operand with values extracted from the left operand, as shown in Figure 6.4a. FedX
planner assumes the underlying data model is in RDF and triples are materialized in a triple store that is
optimized for this data model. However, since the data sources have different data models and capabilities,
pushing down join operations to the data sources would result in a higher execution time, 20min and
incomplete results. On the other hand, MULDER decomposes the query into five (5) sub-queries; t1´ t4
executed in Dailymed, t8 executed in Drugbank, Diseasome executes t5, while t6 and t7 executed in
SIDER, respectively. MULDER creates a bushy-tree plan with nested hash join and GJoin [34] operators
based on the selectivity of operands to decide the type of operator. MULDER, like FedX, assumes RDF
as an underlying data model and uniform querying capabilities of the given data sources. Based on these
assumption, MULDER selects a nested hash join operator for the first two joins, between sub-queries
(t1´ t4) vs (t8) vs (t5). Despite, creating an efficient bush-tree plan that helps to parallelize the query
execution, the selection of join operator ignores the data source capabilities and underlying data model,
which results in higher execution time, 4.6min. In this chapter, we devise optimization techniques guided
by heuristics that enable the creation of source-dependent query plans. First, the Ontario query optimizer

73

Chapter 6 Query Planning and Optimization

Figure 6.3: Example raw data in each data sources

t1t3 t4

t5

@SIDER

@drugbank U

t6t7

@SIDER U
@dailymed U

@dailymed

t8

@drugbank

@diseasome

@drugbank U
@SIDER U
@dailymed U
@diseasome

(a) FedX Query Plan

t1t4 t8 t6

@SIDER@SIDER@drugbank
t7

@dailymed

t5

@diseasome

(b) MULDER Query Plan

Figure 6.4: Motivating Example. (a) FedX created a left-linear plan and used nested loop joins (arrows on top of
join) (b) MULDER identifies a bushy-tree for star-shape groups.

resorts to data source descriptions in terms of RDF Molecule Templates to select the sources that will
evaluate the query. Then, the query is decomposed into subqueries that can be executed in the selected
sources. Finally, a plan that composes the subqueries is generated; physical operators are selected in
order to minimize execution time and maximize answer completeness.

We tackle the problem of federated query processing over heterogeneous data sources in a Semantic
Data Lake and propose Ontario, a query engine able to efficiently interoperate among heterogeneous data-
sets. Ontario implements novel query processing methods, i.e., source selection, query decomposition,
and query planning; they are capable of exploiting knowledge about the sources and the query to generate
plans customized for the sources in a Semantic Data Lake. Ontario resorts to RDF Molecule Templates

74

6.2 Problem Statement and Proposed Solution

in order to identify the star-shaped-group subqueries of an input query. Differently to state-of-the-art
approaches, Ontario is able to classify star-shaped-group subqueries according to type of instantiations
and joins. Additionally, star-shaped-group subqueries are characterized in terms of the data engines
where they will be executed. Ontario exploits these meta-data to identify efficient query plans.

6.2 Problem Statement and Proposed Solution

Our formalization is based on RDF Molecule Templates, which represent an abstract description of
entities stored in heterogeneous data sources that have the same semantic type.

Definition 15 (Semantic Data Lake) A Semantic Data Lake (SDL) is a tuple S DL “ xψ,S,My where,
ψ is a set of RDF Molecule Templates, S is a set of sources in raw formats (stored either in a file system or
DBMS) in the Data Lake, M is a set of conjunctive rules that associate sources in S with RDF Molecule
Templates in ψ.

Definition 16 (Instantiation of an RDF-MT) Instantiation of an RDF-MT, rσs, is defined as a set of
RDF molecules, σ˚, that are the instances of a class from data source(s) as described in the template.

rσs “ tσ˚|@p P σ˚, p Ď γ, where γ Ď σu (6.1)

Definition 17 (Virtual Knowledge Graph) Given a Semantic Data Lake S DL “ xψ “ tσ1, . . . , σku,

S “ tS 1, . . . , S nu,My, a Virtual Knowledge Graph (KG˚) for SDL is a virtual RDF graph that corres-
ponds to the union of all the RDF Molecules instantiations, σ˚, that are created by applying rules in M
to the data sources in S:

KG˚ “
n

ď

i“1

k
ď

j“1

rσ jsS i (6.2)

In order to efficiently query the resulting Virtual Knowledge Graph, SPARQL queries need to be
rewritten into queries operating on the data sources. SPARQL language is based on matching graph
patterns; a basic graph pattern (BGP) is a set of triple patterns and (optional) filter clauses. A BGP in a
SPARQL query contains at least one star-shaped subquery (SSQ), a non-empty set of triple patterns that
share the same subject variable (constant). In order to efficiently query the resulting Virtual Knowledge
Graph, SPARQL queries need to be rewritten into queries operating on the data sources.

Definition 18 (Query Rewriting) Let Q and β(Q) be a SPARQL query and the set of Basic Graph
Patterns (BGPs) in Q, respectively. Let S DL “ xψ,S,My be a Semantic Data Lake. A rewriting Q1 of Q
over sources in S corresponds to a SPARQL query, composed of BGPs in β(Q1) that meet the following
conditions:

‚ β(Q) has the same number of triple patterns as β(Q’), i.e., τpQq “ τpQ1q

‚ there is a function µ: β(Q)Ñ β(Q’) that maps BGPs in β(Q) to its corresponding rewriting in the
sources of SDL. µxBGPiy=txBGPi j, S y|BGPi j Ă BGPi, S is a non-empty set and S Ă Su

6.2.1 Problem Statement

Given a SPARQL query Q, a Semantic Data Lake S DL “ xψ,S,My, and a Virtual Knowledge Graph
KG˚ of SDL. The problem of federated query processing against heterogeneous data sources in a
Semantic Data Lake (SDL) is defined as follows. Given a set of BGPs in Q, find a query Q1 that satisfies
the following conditions:

75

Chapter 6 Query Planning and Optimization

‚ The evaluation of Q over heterogeneous data source in SDL is complete, i.e., the evaluation of Q
in KG˚ is equivalent to the evaluation of Q1 in SDL

rrQ1ssS DL “ rrQssKG˚ (6.3)

‚ The cost of executing Q in SDL has a minimal execution cost, i.e., if costprrQ1ssS DLq represents
the execution time of Q1 in SDL, then

rrQssS DL “ argmin
rrQ1ssS DL

costprrQ1ssS DLq (6.4)

6.2.2 Proposed Solution

To tackle the problem of federated query processing against heterogeneous data sources in a Semantic
Data Lake, we propose Ontario, a federated query processing engine over heterogeneous data sources in
a Semantic Data Lake. Ontario utilizes the SPARQL query language as a unified query language and, its
decomposition and source selection technique, similar to the MULDER approach (Chapter 5), is based on
RDF Molecule Templates which describes set of entities which share similar semantic types (Chapter 4).
The Ontario approach tackles the query planning and optimization sub-problem of federated query
processing, aims to generate an execution plan that maximizes answer completeness and minimize the
execution time. Given a SPARQL query, Ontario creates a set of star-shaped groups that matches RDF
Molecule Templates in the Semantic Data Lake. Furthermore, Ontario is able to distinguish different
types of star-shaped groups and decide which of them are more appropriate to be run in a given engine.
The type of the star-shaped groups are further considered to decide the shape of the query plan tree,
the more suitable join operators, and the location of the selections and projections in the plan. Ontario
utilizes a greedy algorithm to find an efficient plan that minimized execution time and maximize answer
completeness.

6.3 Ontario: Federated Query Processing over Semantic Data Lakes

Different subqueries, i.e., star-shaped subqueries, behave differently depending on the data source
capabilities. Ontario is able to differentiate the following star-shaped groups:

1. CI: In this category, the star-shaped group do not have a constant object (instantiation) or a filter
clause on object variables in any of triple patterns.

2. CII: Star-shaped groups in this category do not have a constant object or a filter clause in any of
triple patters. Further, these star-shaped groups are defined over RDF-MTs described in terms of
joins of two or more relations in the Data Lake.

3. CIII: Star-shaped groups in this category are composed of triple patterns with constant objects or
contains filter clauses on object variables.

4. CIV: In addition to constant objects or filter clause, the star-shaped groups in this category are
defined over RDF-MTs described in terms of joins of two or more relations in the Data Lake.

As to be shown in subsection 6.4.1, existing database engines (e.g., RDF or relational engines) may
exhibit diverse performance during the execution of these star-shaped groups. For example, RDF engines
will have expensive executions of star-shaped group in CI and CII, while relational engines will perform

76

6.3 Ontario: Federated Query Processing over Semantic Data Lakes

Algorithm 4 Query Plan Generation: Φ - query decomposition, Q - SELECT query

1: procedure CreatePlan(Φ, Q)
2: αÐ rs

3: for S Q P Φ do
4: orderTriples(SQ)
5: α.push(SQ)
6: end for
7: P Ð Q.pro jspq Ź Q.projs() - list of join and projected variables
8: αÐ OrderSSQs(α, P)
9: while lenpαq > 1 do

10: S Qi Ð α.poppq
11: δÐ rs

12: βÐ rS Q j f or S Q j P α if shareVarspS Qi, S Q jqs

13: βÐ OrderSSQs(β, P)
14: for S Q j P β do
15: JÐ join(S Qi, S Q j)
16: α.remove(S Q jq

17: α.push(J)
18: break
19: end for
20: if |β| “ 0 then
21: δ.push(S Qiq

22: end if
23: end while
24: if lenpδq > 0 then
25: αÐjoin(α, δq
26: end if
27: return α
28: end procedure

badly on subqueries in CIII and CIV if no indexes exist over the instantiated or joined attributes. Contrary,
since RDF engines always create indexes over the subject, predicates, and objects of the triples in an
RDF graph [101], subqueries in CIII and CIV will be sped up in RDF engines.

6.3.1 Heuristics

Once the star-shaped groups and the sources where they will be executed are identified, the Ontario
optimizer uses a set of heuristics to build query plans. These heuristics are guided by the general
characteristics of the star-shaped groups, the type of star-shaped group, and the type of selected data
sources.

General Heuristics

Ontario optimizer first consider the general characteristics of the star-shaped groups, referred to as
general heuristics, while generating the execution plan of a given query. The general heuristics includes:
percentage of constants in the star-shaped groups, ordering of triple patterns within a star-shaped group,

77

Chapter 6 Query Planning and Optimization

number of projected variables within a star-shaped group, ordering of star-shaped groups based on
selected data source types, and capability of storage engines for a selected data source.

Ordering between Star-Shaped Groups. Triple patterns with the highest number of constants at
any part of the triple pattern are more selective. When ordering two star-shaped groups, a star-shaped
group with the highest percentage of constants have higher precedence. Especially if bound join physical
operators is selected, executing the more selective star-shaped group first could significantly reduces the
size of intermediate results and minimize the execution time.

Triple Pattern Ordering within Star-Shaped Groups. The order of triple patterns in star-shaped
group could affect the performance of the execution engine, e.g., triple stores. A set of triple patterns in
a star-shaped group are ordered as follows: spo ą sp ą s ą po ą o ą p. That is, a triple pattern with
constants in all parts precedes a triple pattern with constants in subject and predicate. Similarly, a triple
pattern with constants at subject and predicate precedes a triple pattern with a constant at subject part
only, and so on.

Number of Projected Variables in Star-Shaped Groups. Given two star-shaped groups that have
the same number of constant percentages, a star-shaped group with less number of projected variables
have higher precedence. Star-shaped groups that project more values could consume more memory. This
heuristics makes sure that such subqueries have a matching data with the rest of star-shaped groups to
reduce memory usage.

Ordering based on Data Source Type. SSQs that are executed in endpoints with efficient indexes
by a database management system (DBMS) are more selective than non-indexed raw file systems. For
example, TripleStore ą“ RDBMS ą“ Graph ą Document ą HDFS ą LOCAL_FILE.

Source Capabilities. A sub-query evaluated by a data source with capabilities to push down join and
filter operation precedes a sub-query to be evaluated in a data source with less capabilities. Capabilities
include, indexes, optimization, join operators, filters, etc. For example, MongoDB supports a poor join
operation between documents.

Star-Shaped Group Based Heuristics

The second type of heuristics the Ontario optimizer uses is based on the type of star-shaped groups in a
subquery. These heuristics are defined by both the category of star-shaped group and storage engine of
the selected data source. They enable the transformation of subqueries in one category into subqueries in
another category.

Pushing down instantiations into a Star-Shaped Group. This rule is performed whenever a star-
shaped group S S Qi of type CI is executed over an RDF engine in a query Q. If S S Qi is part of a join in
Q, S S Qi is selected as the inner subquery of the join; a nested loop join is chosen as the physical operator.
Additionally, if variables in triple patterns of S S Qi are part of a filter in Q, the filter is represented as an
instantiation of S S Qi. Thus, this rule transforms subqueries in CI into subqueries in CIII.

Breaking up joins in Star-Shaped Groups This rule is performed whenever a star-shaped group
S S Qi of type CII is executed over an RDF engine in a query Q. In this case, S S Qi is divided into as
many subqueries as joins are defined in the corresponding RDF-MT and the attributes used in S S Qi.
These subqueries are connected by nested loop join operators that will be executed at Ontario level.
Thus, this rule enables for transforming subqueries in CII into subqueries in CIV.

Pushing up instantiations into a Star-Shaped Group This rule is performed whenever a star-shaped
group S S Qi of type CIII is executed over an RDB engine in a query Q and the instantiation is not over
an indexed attribute. If S S Qi is part of a join in Q, hash join (or gjoin [34]) is chosen as the physical
operator. Further, the selection is represented as a filter which is performed at Ontario level. Thus, this
rule enables for transforming subqueries in CIII and CIV into subqueries in CI and CII, respectively.

78

6.3 Ontario: Federated Query Processing over Semantic Data Lakes

RDF-MT
Catalysts

Data Lake
Relational Graph Document Raw File

Data
Catalyst

Lake
Catalyst

Molecule
Synthesizer

Data Lake

Atomic
Synthesizer

Graph
Synthesizer

Figure 6.5: Semantic Data Lake Basic Components: Lake Catalyst catalyzes a SPARQL query into a set of
star-shaped groups and select RDF-MTs matching each sub-query. RDF-MT Catalysts catalyze star-shaped groups
into subqueries that can be executed in different Data Catalysts. Finally, Data Catalysts execute a sub-query in a
data source by translating a given SPARQL query to native query language of the data source. Conversely, the
results returned from each these components need to be synthesized (by Atomic, Molecule, and Graph Synthesizers)
and passed to the upper layer.

Combining joins into a Star-Shaped Group This rule is performed whenever two star-shaped groups
S S Qi and S S Q j of type CI are executed over an RDB engine, and there is a join between them over
an indexed attribute. S S Qi and S S Q j are merged into one star-shaped group S S Qi, j, transforming
subqueries in CI into subqueries in CII.

6.3.2 Query Plan Generation

Given a SPARQL query, Ontario produces a decomposition composed of star-shaped groups (SSQs).
Using RDF-MT descriptions, Ontario finds a matching RDF-MT for each SSQs. An RDF-MT matches
an SSQ if it contains the same predicates as in SSQ. The selected SSQs composed a decomposition, Φ,
which represents the input for the optimizer sketched in Algorithm 4. The optimizer is guided by the
heuristics in section 6.3.1 and subsection 6.3.1. The planner first performs triple ordering within each
SSQs, Line 3-5. The planner then orders SSQs in Φ based on their selectivity, categories, and the data
sources, Line 7. Then, iteratively, it picks an S S Qi (Line 9) and joinable S S Q js (Line 11), i.e., that share
same join variable and create join between them, Line 13-16. Joins are selected and SSQs are ordered
according to the heuristics in subsection 6.3.1. Figure 6.6 illustrates the Ontario architecture.

6.3.3 The Ontario Architecture

In this section, we present the architecture of Ontario. First, we present an overview of basic components
in a Semantic Data Lake architecture, then we describe the Ontario architecture with respect to these
components. Figure 6.5 shows an overview of the Semantic Data Lake components. The top layer
catalyzes, i.e., via the Lake Catalyst, a given SPARQL query into a set of star-shaped groups and selects
matching RDF Molecule Templates. The Lake Catalyst passes the sub-queries to the respective RDF-MT
Catalysts that are responsible for specific RDF Molecule Templates. It dispatches the decomposed query
and coordinates the global query planing and optimization. In addition, once the results are returned
from lower layer, i.e., from Molecule Synthesizers, the Graph Synthesizer combines (synthesizes) the
molecules and generate the final result. The second layer catalyzes, i.e., via RDF-MT Catalysts, the
star-shaped groups into a set of API calls to the Data Catalysts, which then transform the raw data

79

Chapter 6 Query Planning and Optimization

Document

Graph

RDB

HDFS
File

File

File

File

Data Sources

Data Integration and Semantification via mappings

Wrapper Wrapper Wrapper Wrapper Wrapper

Source Selection
and Query
Decomposition

Query Planning Query Execution Result
conciliation

SPARQL Query Results

TripleStore

Multi-mode
Local Flat-file

P
riv

ac
y

an
d

A
cc

es
s

C
on

tro
l

Figure 6.6: The Ontario Architecture

on-the-fly and synthesize results, i.e., via Molecule Synthesizer, returned from Atomic Synthesizers.
RDF-MT Catalysts are specialized components that deal with only one specific RDF Molecule Template,
and provide decomposition, planning and execution of a particular star-shaped group. The third layer
provide access to a specific data source by translating queries from global querying mechanism, e.g.,
SPARQL, to the underlying native query mechanism of the data sources via Data Catalysts. Atomic
Synthesizers, on the other hand, transform raw data to RDF on demand by applying mapping rules, e.g.,
defined by RML or R2RML mapping languages. They are specialized to a specific data model and
system interface. Atomic Synthesizers perform transformation of the results from native data sources to
RDF based on transformation rules. The bottom layer, Data Lake, provides an infrastructure to store raw
data and access interface to a set of heterogeneous data sources. These data sources can be characterized
with different properties, such as autonomy (sources can be autonomous), data format heterogeneity
(provides different data formats), access interface heterogeneity (various query languages), semantic
heterogeneity (different representation of same data points), volume (different sizes from small to large
data sets), access restrictions, etc.

In Figure 6.6, the Ontario architecture is presented. Given a SPARQL query, Ontario decomposes into
a set of star-shaped groups with matching relevant RDF Molecule Templates. For each sub-query the set
of RDF-MT Catalysts that can evaluate each matching RDF-MT are selected. Given a set of star-shaped
groups and relevant data sources for matching RDF-MTs, Ontario query planner creates a bushy-tree
plan utilizing the heuristics described in Section 6.3.1. The query optimizer, optimizes the generated
plan and selects the appropriate operators based on the source capability and source type heuristics. The
corresponding RDF-MT Catalysts then execute each sub-query, which internally contacts the appropriate
Data Catalysts to synthesize the (sub-graph of) RDF Molecule Templates. Finally, the Ontario Lake
Catalyst merges the results to synthesize the final results and return back to the user. During the catalysis
of the given SPARQL query in the Lake Catalyst, RDF-MT Catalysts as well as Data Catalysts, the
privacy and access rules set by each data sources must be respected. Privacy and access control constrains
must be checked as well during synthesis of results by Atomic Synthesizer, Molecule Synthesizer, and

80

6.4 Empirical Evaluation

Data Model Data Sources
RDF KEGG, ChEBI, Diseasome, LinkedCT, Dailymed
RDB DrugBank, SIDER, Medicare, Affymetrix, TCGA

Table 6.1: Distribution of Data Sources over Data Formats

Graph Synthesizer.

6.4 Empirical Evaluation

We empirically study the behavior of Ontario; it is compared with the state-of-the-art RDF federated
engines FedX [52] and MULDER [90]. We study the following research questions: Q1) What is the
overhead of considering heterogeneity during federated query processing? Q2) Can RDF-MT based
source descriptions be effectively applied for source selection, query decomposition, and optimization for
non-RDF data sources? Q3) Are Ontario optimization techniques able to generate effective and efficient
query plans for heterogeneous data sources? The experimental configuration to evaluate these research
questions is as follows:
Benchmark: LSLOD [93] is a benchmark composed of ten real-world datasets of the Linked Open
Data (LOD) cloud from the life sciences domain. The RDF version of LSLOD datasets are transformed
into RDB tables. Initially, all the RDF triples that correspond to an RDF-MT are included in one table,
but functional and multivalue dependencies between the attributes of a table are utilized to produce
normalized version of the table in 3NF. Thus, attributes containing multiple values for one subject are
stored in a separate table. Tables and RDF graphs of each of the LSLOD datasets are uploaded in a
dedicated Docker container. RDB tables are loaded into MySQL 5.7.24 and indexes are created for the
primary key of each table. We study the LSLOD simple queries [93].
Metrics: We report on the following metrics: a) Execution Time: Elapsed time between the submission
of a query to an engine and the delivery of the answers. Time corresponds to absolute wall-clock system
time as reported by the Python time.time() function. Timeout is set to 300 seconds. b) Cardinality:
Number of answers returned by a query. c) Completeness: Query result percentage with respect to the
answers produced by the unified SPARQL endpoint created as the union of all datasets in the benchmark.
d) die f@t: measures the continuous efficiency of an engine in the first t time units of query execution.
Implementation: Ontario 5 is implemented in Python 3.6. Currently, Ontario employs wrappers for
MySQL, PostgreSQL, MongoDB, Neo4j, and wrappers for flat files (TSV, CSV, JSON, and XML) stored
either in HDFS or local file system. Two versions of Ontario are compared: i) RDF version for federated
queries against RDF graphs accessible via SPARQL endpoints; and ii) RDF+RDB version for federated
queries against RDF graphs accessible via both SPARQL endpoints and RDB tables stored in MySQL.

6.4.1 Impact of Star-shaped Group Types

In this experiment, we analyze the impact of different star-shaped groups (SSQs) on the performance of
the query engine. This analysis allows us to understand the behaviors of the engines while evaluating
sub-queries and adopt in the planning and execution strategy. Figure 6.7 shows the performance of
Ontario Semantic Data Lake query engine while performing semantification on-demand, compared to
execution over materialized version of the same dataset in RDF for selected star-shaped groups in each
category. The behaviour of the engine on SSQs in categories CI (SSQ1,1, SSQ1,2, and SSQ10,2) and CII
(i.e., SSQ6,1, and SSQ8,1), is presented in Figure 6.7a. As can be observed, star-shaped groups in these

5 https://github.com/SDM-TIB/Ontario

81

https://github.com/SDM-TIB/Ontario

Chapter 6 Query Planning and Optimization

Query Sub-query Category Source Type Source(s)
SQ1 SSQ1,1 CI RDB DrugBank

SSQ1,2 CI RDF Dailymed
SQ2 SSQ2,1 CI RDF KEGG

SSQ2,2 CII RDF KEGG
SSQ2,3 CIV RDB DrugBank

SQ3 SSQ3,1 CI RDB DrugBank
SSQ3,2 CI RDF ChEBI
SSQ3,3 CIV RDF KEGG

SQ4 SSQ4,1 CIV RDB DrugBank
SSQ4,2 CIII RDF KEGG

SQ5 SSQ5,1 CIV RDB DrugBank
SSQ5,2 CIV RDF KEGG Y ChEBI
SSQ5,3 CI RDB DrugBank

SQ6 SSQ6,1 CII RDB DrugBank
SSQ6,2 CI RDF Diseasome

SQ7 SSQ7,1 CIV RDF Dailymed
SSQ7,2 CI RDB SIDER
SSQ7,3 CII RDB SIDER

SQ8 SSQ8,1 CII RDB DrugBank
SSQ8,2 CI RDF Diseasome

SQ9 SSQ9,1 CIV RDF LinkedCT
SSQ9,2 CII RDF Dailymed

SQ10 SSQ10,1 CIV RDF LinkedCT
SSQ10,2 CI RDB DrugBank

Table 6.2: Characteristics of SSQs of the LSLOD benchmark Queries. LSLOD queries are described in terms
of categories of star-shaped-groups (SSGs). Categories are as follows: CI with no instantiations of properties; CII
with no instantiations and joins at the RDF-MT definition; CIII with instantiations, and no joins at the RDF-MT
definition; and CIV with instantiations with joins at the RDF-MT definition.

categories are more expensive in RDF than RDB. RDF engines have indexes over combination of subject,
predicate, and object. When a triple pattern do not have instantiation ether in subject or object part of any
triple patterns, then the engine scan all available data for each predicate in the subquery. On the other
hand, relational engine create indexes on primary keys (and optionally any other columns). In RDB even
if triple patterns do not have instantiations, they only scan a relation or a set of relation, unlike RDF triple
stores that scan over all data. This leads to RDB engines perform better in these categories than RDF
engines. Figure 6.7b presents SSQs in category CIII and CIV, where there are triple patterns with object
instantiations. The behaviour of the engines in this category shows that, RDF engine performs faster than
RDB. This entails, RDB engine performs slower than RDF when the instatiations are not on the indexed
predicates, and allows for answering Q1.

6.4.2 Impact of Considering Heterogeneity

In this experiment, we evaluate the performance of Ontario in federation of RDF data sources and an
overhead introduced while considering heterogeneity during query execution compared to FedX and
MULDER. Figure 6.8 presents the results of executing LSLOD queries over RDF data source. Figure 6.8a

82

6.4 Empirical Evaluation

(a) Category I and II (b) Category III and IV

Figure 6.7: Star-Shaped group types. The impact of Star-Shaped group types is reported.

(a) Same plan by Ontario and MULDER (b) Queries with improved performance

Figure 6.8: Efficiency of Ontario on homogeneous data sources. Ontario is compared with existing SPARQL
federation engines, MULDER and FedX. (a) Ontario outperform FedX in all queries. (b) Ontario overcomes both
FedX and MULDER by generating efficient plans and using optimization rules tailored for RDF sources.

suggests that Ontario outperforms FedX on queries S Q4, S Q5, S Q9, and S Q10. Even though, Ontario
generates same plan as MULDER for these queries, it pays a price for considering heterogeneous data
sources compared to MULDER for S Q4 and S Q5 queries. On the other hand, Ontario outperform both
FedX and MULDER by generating efficient plans and using optimization rules tailored for RDF sources
on the rest of the queries, as shown in Figure 6.8b. These results also allow for answering Q1.

6.4.3 Impact of Heterogeneous Sources

The performance of Ontario over heterogeneous source, i.e., RDF and RDB, is evaluated and analyzed
with respect to the SSQ categories. Figure 6.9 presents the results of executing LSLOD queries over
two versions of Ontario: RDF only and RDF+RDB. For queries that are composed of SSQs in CIII and
CIV, i.e., sub-queries with object intantiations, the RDF version performs better than RDF+RDB, as

83

Chapter 6 Query Planning and Optimization

(a) Queries composed of SSQs in CIII or CIV (b) Queries composed of SSQs in CI or CII

Figure 6.9: Performance of Ontario engine on heterogeneous sources. Executing queries composed of SSQs in
Category III or IV are expensive in RDF+RDB data sources, whereas SSQs in Category I and II are expensive in
RDF only data sources.

SQ1 SQ3 SQ5

SQ6 SQ8 SQ9

Figure 6.10: Queries where RDF+RDB is better. pT FFFq´1 - inverse time for first result, ET ´1 - inverse
execution time, Comp - Completeness, T - throughput, and die f @t continuous efficiency in time t

shown in Figure 6.9a. This is expected, as we have observed in the Experiment I, star-shaped groups with
instatiations are cheaper in RDF than RDB. On the other hand, for queries that are composed of SSQs
in CI and CII, the RDF+RDB version performs faster than the RDF version, as shown in Figure 6.9b.
These results also allow for answering Q2 and Q3.

84

6.5 Summary

SQ2 SQ4 SQ7 SQ10

Figure 6.11: Queries where RDF only is better. pT FFFq´1 - inverse time for first result, ET ´1 - inverse
execution time, Comp - Completeness, T - throughput, and die f @t continuous efficiency in time t

6.4.4 Measuring the Continuous Efficiency

Figure 6.10 and Figure 6.11 report on the performance of Ontario in producing continuous answers. The
continuous efficiency in time t, i.e., die f @t, Inverse of Time for the first tuple (T FFF´1), Inverse of
Total Execution (T E´1), Number of answers produced (Comp), and Throughput (T), are presented in
Figure 6.10 and Figure 6.11 using radar plots. The interpretation of these metric in each axes is ’higher is
better’. For all queries, the completeness (Comp) of the queries is 100%, but the throughput varies as it
correlates with the overall execution time. As clearly shown, the continuous efficiency of the RDF+RDB
version is better in S Q1, S Q3, S Q5, S Q6, S Q8, and S Q9, while it is lower in S Q2, S Q4, and S Q7 than
the RDF version. These results are aligned with the previous experiments and answer Q2 and Q3.

6.5 Summary

We presented Ontario, a federated query processing engine over heterogeneous data sources in a Data
Lake. Ontario relies on RDF Molecule Templates to describe heterogeneity of data sources; it is also
able to decompose a SPARQL query into a set of star-shaped groups that can be efficiently executed.
Ontario also identifies bushy-tree plans which are able to reduce execution time and increase answer
completeness. The Ontario optimizer is guided by a set of heuristics defined at the level of star-shaped
groups and the data engines where they will be executed. We showed through our empirical analysis
that, even though, data engines behave differently on diverse types of star-shaped groups, Ontario is
able to create efficient and effective plans where physical operators are selected accurately. Thus, our
work expands the series of techniques available for federated query processing, and we hope that our
techniques will provide scalable solutions in real-world settings.

85

CHAPTER 7

Privacy-aware Query Processing

In recent years, the amount of both open data available on the Web and private data exchanged across
companies and organizations has been constantly increasing. To address this new challenge of effective
and efficient data-centric applications built on top of this data, i.e., data management techniques targeting
sensitive data such as financial transactions, medical procedures, or various other personal data must
consider various privacy and access control regulations and enforce privacy constraints once data is being
accessed by data consumers. Existing works suggest the specification of access control ontologies for
RDF data [71, 73] and their enforcement on centralized or distributed RDF stores (e.g., [75]) or federated
RDF sources (e.g., [72]). Albeit expressive, these approaches are not able to consider privacy-aware
regulations during the whole pipeline of a federated query processing engine; during source selection,
query decomposition, planning, and execution. As a consequence, efficient query plans cannot be devised
in a way that privacy and access policies are enforced. Previous chapters tackles the problem of federated
query processing at the level of query decomposition and source selection,Chapter 5, as well as the
level of query planning and optimization, Chapter 6, sub-problems. However, these techniques assumed
the data is open without any restrictions. In this chapter, we tackle the problem of enforcing privacy
and access control regulations during query processing and propose BOUNCER, a privacy-aware query
engine over federations of data sources. The content of this chapter is based on the publication [102].
The result of this chapter provides an answer to the following research question:

RQ3: How can privacy and access control requirements be encoded in data source descriptions
and be used for enforcement during query processing over federation of data sources?

To answer this research question, we propose a privacy-aware RDF Molecule Template based source
description that define the type of operations allowed at the different level of granularity. Furthermore,
we propose a privacy-aware federated query processing engine, BOUNCER, that is able to select relevant
data sources respecting the privacy and access policies defined by the data source providers described
in RDF-MTs and generate a valid execution plan that minimize execution time and maximize answer
completeness without revealing sensitive information restricted by the privacy and access policies.
Figure 7.1 shows the challenge tackled in this chapter and the contribution of in this chapter.

The contributions of this chapter can be summarized as follows:

‚ A thorough formalization of privacy-aware query processing problem over federation of autonom-
ous data sources.

‚ A privacy-aware query decomposition and planning algorithms that generate a valid plan according
to privacy and access control policy of data sources in the federation.

87

Chapter 7 Privacy-aware Query Processing

Data & Knowledge Evolution

Knowledge
Representation

Data Lake

Pr
iv

ac
y

an
d

Ac
ce

ss
 C

on
tro

lActionable
Knowledge

Relational Graph Document Flat-file

C
ha

lle
ng

e
3:

 E
nf

or
ci

ng
 p

riv
ac

y
an

d
ac

ce
ss

 c
on

tro
l p

ol
ic

ie
s

C
on

tri
bu

tio
n

3:
 B

O
U

N
C

ER
: P

riv
ac

y-
aw

ar
e

fe
de

ra
te

d
qu

er
y

pr
oc

es
si

ng
 a

nd
Pr

iv
ac

y
aw

ar
e

R
D

F-
M

Ts

Figure 7.1: Challenges and Contributions.This chapter focuses on the problem of privacy and access control
federated query processing.

‚ An empirical evaluation assessing the effectiveness and efficiency of the proposed privacy-aware
query processing technique. The observed results suggest that BOUNCER can effectively enforce
access control regulations at different granularity without impacting the performance of query
processing.

This chapter is structured as follows: Section 7.1 we motivate the problem of privacy-aware query
processing over a federation of data sources using a real case scenario from medical domain. In
Section 7.2, we formally define the problem of privacy-aware query decomposition and planning over
a federation of data sources. Then, we present BOUNCER privacy-aware query processing engine in
Section 7.3. Section 7.4 presents the results of an empirical evaluation of the proposed privacy-aware
query processing techniques. Finally, Section 7.5 presents the closing marks of this chapter.

7.1 Motivating Example

We motivate our work using a real-world use case from the biomedical domain where data sources from
clinical records and genomics data have been integrated into an RDF graph. For instance, Figure7.2

:Patient1

:LiqBiopsy1

'True' 'Female' '03/03/1923'

'Einstein str.
38, 11089,
Germany'

'False'

'0.63%' 'p.T790M'

:biopsy

:mutation_aa

:address

:birthdate
:gender:eg

fr_m
uta
ted

:smoking

:targetTotal

'John Smith' :name

Figure 7.2: Hospital Data (S1). An RDF molecule representing a lung cancer patient; thicker arrows correspond
to controlled properties.

88

7.1 Motivating Example

Figure 7.3: Research Institute Data (S2).An RDF molecule representing the results of a liquid biopsy of a patient.
Servers at the hospital can perform join operations.

and Figure7.3 depicts two RDF subgraphs or RDF molecules. One RDF molecule represents a patient
and his/her clinical information provided by source (S1), Figure7.2, while the other RDF molecule
models the results of liquid biopsy available in a research institute (S2), Figure7.3. The privacy policy
enforced at the hospital data source states that projection (view) of values is not permitted. Properties
name, date of birth, and address of a patient (thicker arrows in Figure7.2) are controlled, i.e., query
operations are not permitted. Furthermore, it permits a local join operation (on premises of the hospital
data server) of properties, such as ex:mutation_aa - peptide sequence changes that are studied for
a patient, ex:targetTotal - percentage of circulating tumor DNA in the blood sample of liquid
biopsy, ex:egfr_mutated - whether the patient has mutations that lead to EGFR over-expression,
and ex:smoking - whether the patient is a smoker or not. Suppose a user requires to collect the
Pubmed ID, mutation name, the genomic coordinates of the mutation and accession numbers of the genes
associated with non-smoking lung cancer patients whose liquid biopsy has been studied for somatic
mutations that involve EGFR gene amplification (over-expression). Figure7.4a depicts a SPARQL query
that represents this request; it is composed of 11 triple patterns. The first five triple patterns are executed
against S1 while the last six triple patterns are evaluated over S2.

Existing federated query engines are able to generate query plans over these data sources. Figure7.4b
shows a query execution plan generated by FedX [52] federated query engine for the given query. FedX
decomposes the query into two subqueries that are sent to each data source. FedX uses a nested loop
join operator to join results from both sources. This operator pushes down the join operation to the
data sources by binding the join variables of the right operand of the operator with values extracted
from the left operand. First, triple patterns from t1 ´ t5 are executed on S1, extracting values for the
variables ?mutation_aa, ?lbiop, ?targetTotal, and ?patient. Then, the shared variable,
?mutation_aa, is bound and the triple patterns t6´ t11 are executed over S2. However, executing this
plan yields no answer since the privacy-policy of the hospital does not allow projection of values from the
first subquery. Figure7.4c shows the query execution plan generated by ANAPSID [34] federated query
engine. ANAPSID creates a bushy plan where join operation is performed using GJoin operator (special
type of symmetric hash join operator). This operator executes the left and right operands and makes join
on the federated engine. In order to check whether the results returned from the subqueries on the left
and right operand can be joined, the values of shared variables from both operands have to be checked by
ANAPSID, which requires extracting all values for all variables in both sources. This ignores the privacy
policy enforced which yields no answer for the given query. The MULDER [89] federated query engine
generates a bushy plan and decomposes the query by identifying matching RDF Molecule Templates
(PRDF-MTs) as a subquery, as shown in Figure7.4d. PRDF-MT is a template that represents a set of RDF
molecules that share the same RDF type (rdf:type). MULDER assigns nested hash join operator to join

89

Chapter 7 Privacy-aware Query Processing

(a) SPARQL Query (b) FedX Query Plan

t10-t11

t1-t5 t6-t10
@s2

@s1 @s2

(c) ANAPSID Query Plan

t6-t9t10-t11t3-t5 t1-t2

@s2@s1 @s1 @s2

(d) MULDER Query Plan

Figure 7.4: Motivating Example. (a) A SPARQL query composed of four star-shaped subqueries accessing
controlled and public data from S1 and S2. (b) FedX generates a plan with two subqueries. (c) ANAPSID
decomposed the query into three subqueries. (d) MULDER identifies a plan with four star-shape subqueries. None
of the query plan respects privacy policies of S1 and S2.

triple patterns t3´ t5 associated with Patient PRDF-MT and triple patterns t1´ t2 that are associated
with Liquid_Biopsy PRDF-MT. Like in FedX, this operator extracts values for join and projection
variables from the left operand, and then binds them to the same variables of the right operand. Like
FedX and ANAPSID plans, the MULDER plan also ignores the privacy policy enforced at the hospital
data source, which would yield an empty query answer. All of these federated engines fail to answer the
query, because they ignore the privacy policy of the data sources during query decomposition as well
as query execution plan generation (e.g., wrong join ordering). Also, MULDER ignores the privacy
policy of the hospital during query decomposition and splits the triple patterns from this source. This
leads to trying to extract results on the federation system which is not possible because of the restrictions
enforced by the hospital. In addition to the join order problem, ANAPSID selects a wrong join operator
which requires data from S1 to be projected for the restricted properties, i.e., t1 ´ t5. In this chapter,
we present BOUNCER a privacy-aware federated query engine able to identify plans that respect the
above-mentioned privacy and access control policies.

7.2 Problem Statement and Proposed Solution

In this section, we formalize the problem of privacy-aware query decomposition over a federation of
RDF data sources. First we define a set of privacy-aware predicates that represent the type of operations
that can be performed over an RDF dataset according to the access regulations of the federation.

90

7.2 Problem Statement and Proposed Solution

Definition 19 (Privacy-Aware Operations) Given a federated query engineM, a federation F of RDF
datasets D, and a dataset Di in D. Let pi j be an RDF property with domain the RDF class Ci j. The set of
operations to be executed byM against F is defined as follows:

‚ join_local(Di, pi j, Ci j) - this predicate indicates that the join operation on property pi j can be
performed on the dataset Di.

‚ join_fed(Di, pi j, Ci j) - this predicate indicates that the join operation on property pi j can be
performed byM. The truth value of join_fed(Di, pi j, Ci j) implies to the truth value of join_local(Di,
pi j, Ci j).

‚ project(Di, pi j, Ci j) - this predicate indicates that the values of the property pi j can be projected
from dataset Di. The truth value of project(Di, pi j, Ci j) implies to the truth value of join_fed(Di,
pi j, Ci j).

Definition 20 (Access Control Theory) Given a federated query engine M, a set of RDF datasets
D “ tD1, ..,Dnu of a federation F . An Access Control Theory is defined as the set of privacy-aware
operations that can be performed on property pi j of RDF class Ci j over dataset Di in D.

The access control theory for the federation described in our running example of Figure7.4a can be
defined as a conjunction of the following operations:

‚ join_local(s1, ex:mutation_aa, Liquid_Biopsy),

‚ join_local(s1, ex:biopsy, Patient), project(s2, ex:located_in, Mutation),

‚ join_local(s1, ex:targetTotal, Liquid_Biopsy), project(s2, ex:acc_num, Gene),

‚ join_local(s1, ex:smoking, Patient), join_local(s1, ex:egfr_mutated, Patient),

‚ project(s2, ex:mutation_aa, Mutation),project(s2, ex:gene_name, Gene),

‚ project(s2,ex:mutation_loci,Mutation),project(s2,ex:mentioned_in,Mutation).

Note that the RDF properties :name, :gender, :address, and :birthdate of the Patient
RDF class do not have operations defined in the access control theory. In our approach this fact indicates
that these properties are controlled and any operation on these properties performed by the federated
engine is forbidden.

Definition 21 Given a property pi j of an RDF class Ci from a dataset Di in a federation F and an access
control theory T . If there is no privacy-aware predicate in T that includes pi j, then pi j is a controlled
property and no federation engine can perform operations over pi j against Di.

A basic graph pattern (BGP) in a SPARQL query is defined as a set of triple patterns tt1, . . . , tnu. A
BGP contains one or more triple patterns that involve a variable being projected from the original SELECT
query. We call these triple patterns projected triple patterns, denoted as PT P “ tt1, . . . , tmu such that
PT P Ď BGP. A BGP includes at least one star-shaped subquery (SSQ), i.e., BGP “ tS S Q1, . . . , S S Qnu.
A star-shaped subquery is a set of triple patterns that share the same subject variable or object [103].
Furthermore, an SSQ may contain zero or more triple patterns that involve a variable which is being
projected from the original SELECT query. We call these triple patterns projected triple patterns of an
SSQ, denoted as PTS “ tt1, . . . , tku where PTS i Ď S S Qi. Let PRJ be a set of triple patterns that involve

91

Chapter 7 Privacy-aware Query Processing

a variable being projected from the original SELECT query, then projected triple patterns of a BGP, is a
subset of PRJ, i.e., PT P Ď PRJ and a projected triple pattern of S S Qi is a subset of PT P, i.e., PTS i Ď

PT P. For example, in our running example, there is only one BGP, BGP1 “ tt1, . . . , t11u, for which
projected variables belong to triple patterns, PRJ “ tt6, t7, t8, t11u. Projected triple patterns of BGP1 are
the same as PRJ, PT PBGP1 “ tt6, t7, t8, t11u, since there is only one BGP. Furthermore, BGP1 can be
clustered into four start-shaped subqueries, S S QsBGP1 “ tS S Q1“tt1´t2u, S S Q2“tt3´t5u, S S Q3“tt6´t9u,

S S Q4“tt10´t11uu. Out of four S S Qs of BGP1, only the last two S S Qs have triple patterns that are
also in the projected triple patterns, i.e., PTS S S Q1 “ H, PTS S S Q2 “ H,PTS S S Q3 “ tt6, t7, t8u,
PTS S S Q4 “ tt11u.

Definition 22 Given a SPARQL query Q such that a variable ?v is associated with a property p of a triple
pattern t in a BGP and ?v is projected in Q. Suppose an access control theory T regulates the access
of the datasets in D of the federation F . A federation engineM accepts Q iff there is a privacy-aware
operation pro jectpDi, p,Cq in T for at least an RDF dataset Di in D.

A privacy-aware query decomposition on a federation is defined. This formalization states the
conditions to be met by a decomposition in order to be evaluated over a federation by enforcing their
access regulations.

Definition 23 (Privacy-Aware Query Decomposition) Let BGP be a basic graph pattern, PT P a set
of projected triple patterns of a BGP, T an access control theory, and D “ tD1, . . . ,Dnu a set of RDF
datasets of a federation F . A privacy-aware decomposition P of BGP in D, γpP|BGP,D,T, PT Pq, is a
set of decomposition elements, Φ “ tφ1, .., φku, such that φi is a four-tuple, φi “ pS Qi, S Di, PS i, PTS iq,
where:

‚ S Qi is a subset of triple patterns in BGP, i.e., S Qi Ď BGP, and S Qi ‰ H, such that there is no
repetition of triple patterns, i.e., If ta P S Qi, then !Dta P S Q j : S Q j Ă BGP^ i ‰ j,

‚ S Di is a subset of datasets in D, i.e, S Di Ď D, and S Di ‰ H,

‚ PS i is a set of privacy-aware operations that are permitted on triple patterns in S Qi to be performed
on datasets in S Di and PS i Ď T, and PS i ‰ H,

‚ PTS i is a set of triple patterns in S Qi that contains variables being projected from the original
SELECT query, i.e., PTS i Ď S Qi ^ PTS i Ď PT P,

‚ The set composed of S Qi in the decompositions φi P Φ corresponds to a partition of BGP and

‚ The selected RDF datasets are able to project out the attributes in the project clause of the query,
i.e., @ta P S Qi : ta P PT P, then pro jectpDa, pa j,Ca jq P PS i where ta “ ps, pa j, oq, Da P S Di, and
S Qi P φi.

After defining what is a decomposition of a query, we state the problem of finding a suitable decom-
position for a query and a given set of data sources.

Privacy-Aware Query Decomposition Problem. Given a SPARQL query Q, RDF datasets
D={D1,. . . ,Dm} of a federation F , and access control theory T . The problem of decomposing Q in D
restricted by T is defined as follows. For all BGPs, BGP={t1,. . . ,tn} in Q, find a query decomposition
γpP|BGP,D,T, PT Pq that satisfies the following conditions:

92

7.2 Problem Statement and Proposed Solution

‚ The evaluation of γpP|BGP,D,T, PT Pq in D is complete according to the privacy-aware policies
of the federation in T . Suppose D˚ represents the maximal subset of D where the privacy policies
of each RDF dataset Di P D˚ allow for projecting and joining the properties from Di that appear in
Q1. Then the evaluation of BGP in D˚ is equivalent to the evaluation of γpP|BGP,D,T, PT Pq and
the following expression holds:

rrBGPssD˚ “ rrγpP|BGP,D,T, PT PqssD

‚ The cost of executing the query decomposition γpP|BGP,D,T, PT Pq is minimal. Suppose the
execution time of a decomposition P1 of BGP in D is represented as costpγpP1|BGP,D,T, PT Pqq,
then

γpP|BGP,D,T, PT Pq “ argmin
γpP1|BGP,D,T,PT Pq

costpγpP1|BGP,D,T, PT Pqq

To solve this problem, we present BOUNCER, a federated query engine able to identify query
decompositions for SPARQL queries and query plans that efficiently evaluate SPARQL queries over a
federation. Two definitions are presented for a query plan over a decomposition. The next two functions
are presented in order to facilitate the understanding of the definition of a query plan.

Definition 24 (The property function prop(*)) Given a set of triple patterns, T PS , the function
proppT PS q is defined as follows:

proppT PS q “ tp | ps, p, oq P T PS ^ p is constant u

Definition 25 (The variable function var(*)) Given a privacy-aware decomposition, Φ, the function
varpΦq is defined inductively as follows:

1. Base case: Φ “ tφ1u, then varpΦq “ t?x | ps, p, oq P S Q1, where φ1 “ pS Q1, S D1, PS 1, PTS 1q,

?x “ s^ s is a variable _ ?x “ o^ o is a variableu

2. Inductive case: Let Φ1 and Φ2 be disjoint decompositions such that Φ=Φ1 YΦ2 then, varpΦq =

varpΦ1q Y varpΦ2q.

Definition 26 (A Valid Plan over a Privacy-Aware Decomposition) Given a privacy-aware decom-
position γpP|BGP,D,T, PT Pq: Φ “ tφ1, . . . , φnu, a valid query plan, αpΦq, is defined inductively
as follows:

1. Base Case: If only one decomposition φ1 belongs to Φ, i.e., Φ “ tφ1u, the plan unions all the ser-
vice graph patterns over the selected RDF sources. Thus, αpΦq “ UNIONdiPS D1pS ERVICE di S Q1q

is a valid plan23, where:

‚ φ1 “ pS Q1, S D1, PS 1, PTS 1q is a valid privacy-aware decomposition;

‚ All the variables projected in the query have the permission to be projected, i.e., @pi1 P

proppPTS 1q, pro jectpDi, pi1,Ci1q P PS 1.

2. Inductive Case: Let Φ1 and Φ2 be disjoint decompositions such that Φ=Φ1 Y Φ2. Then, αpΦq “
pαpΦ1q ˚ αpΦ2qq is a valid plan, where:

1 Predicates pro jectpDi, pi j,Ci jq, join_ f edpDi, pi j,Ci jq and join_localpDi, pi j,Ci jq are part of T for all properties in triple
patterns in Q that can be answered by Di.

2 For readability, UNIONdiPS D`i represents SPARQL UNION operator
3 S ERVICE corresponds to the SPARQL SERVICE clause

93

Chapter 7 Privacy-aware Query Processing

a) αpΦ1q and αpΦ2q are valid plans.

b) The join variables appear jointly in the triple patterns of Φ1 and Φ2, i.e., joinVars “
varpΦ1q X varpΦ2q.

c) J is a set of joint triple patterns involving join variables in BGP:

‚ J “ tt|variableptq Ď joinVars, pt P Φ1pS Qq _ t P Φ2pS Qqqu

‚ Φ1pS Qq “ tS Qi|@φi P Φ1, φi “ pS Qi, S Di, PS i, PTS iqu, and

‚ Φ2pS Qq “ tS Q j|@φ j P Φ2, φ j “ pS Q j, S D j, PS j, PTS jqu.

d) The operator * is a JOIN operator, i.e., αpΦq “(αpΦ1q JOIN αpΦ2q) is a valid plan, iff
@pi j P proppJq, join_ f edpDi, pi j,Ci jq P pΦ1pPS qXΦ2pPS qq, Φ1pPS q “ tPS i|@φi P Φ1, φi “

pS Qi, S Di, PS i, PTS iqu, and Φ2pPS q “ tPS j|@φ j P Φ2, φ j “ pS Q j, S D j, PS j, PTS jqu.

e) The operator * is a DJOIN operator, i.e., αpΦq “(αpΦ1q DJOIN αpΦ2q) is a valid plan iff
@pi j P proppJq, join_ f edpDi, pi j,Ci jq P Φ1pPS q and join_localpDi, pi j,Ci jq P Φ2pPS q

4.

Next, we define the BOUNCER architecture and the main characteristics of the query decomposition and
execution tasks implemented by BOUNCER.

7.3 BOUNCER: A Privacy-Aware Query Engine

This section presents the privacy-aware techniques implemented by BOUNCER. They rely on the
description of the RDF datasets of a federation in terms of privacy-aware RDF molecule templates
(PRDF-MTs) to identify query plans that enforce data access control regulations. More importantly, these
techniques are able to generate query execution plans whose operators force the execution of queries at
the dataset sites in case data cannot be transferred or accessed.

Definition 27 (Privacy-Aware RDF Molecule Template(PRDF-MT)) A privacy-aware RDF molecule
template (PRDF-MT) is a 5-tuple=ăWebI, C, DTP, IntraL, InterLą, where:
‚ WebI – is a Web service API that provides access to an RDF dataset G via SPARQL protocol;
‚ C – is an RDF class such that the triple pattern (?s rdf:type C) is true in G;
‚ DTP – is a set of triples (p, T, op) such that p is a property with domain C and range T, the triple

patterns (?s p ?o) and (?o rdf:type T) and (?s rdf:type C) are true in G, and op is an access control
operator that is allowed to be performed on property p;

‚ IntraL – is a set of pairs (p,C j) such that p is an object property with domain C and range C j, and
the triple patterns (?s p ?o) and (?o rdf:type C j) and (?s rdf:type C) are true in G;

‚ InterL – is a set of triples (p,Ck,SW) such that p is an object property with domain C and range Ck;
SW is a Web service API that provides access to an RDF dataset K, and the triple patterns (?s p
?o) and (?s rdf:type C) are true in G, and the triple pattern (?o rdf:type Ck) is true in K.

7.3.1 Privacy-Aware Source Selection and Decomposition

The BOUNCER privacy-aware source selection and query decomposition is sketched in Algorithm Al-
gorithm 5. Given a BGP in a SPARQL query Q, BOUNCER first decomposes the query into star-shaped
subqueries (SSQs), (Line 2). For instance, our running example query, in Figure7.4a, is decomposed into

4 DJOIN- is a dependent JOIN [47].

94

7.3 BOUNCER: A Privacy-Aware Query Engine

?lbiop
(t1,t2)

?patient
(t3t5)

?cmut
(t6t9)

?gene
(t10t11)

ex:biopsy

ex:located_in

Liquid_Biopsy Patient

GeneMutation

(a) Initial query decomposition

?lbiop & ?patient
(t1,t5)

?cmut & ?gene
(t6t11)

?mutation

(b) Privacy-aware Query Decomposition

Figure 7.5: Example of Privacy-Aware Decompositions. Decompositions for SPARQL query in the motivating
example. Nodes represent SSQs and colors indicate datasets where they are executed; edges correspond to join
variables. a) Initial query decomposed into four SSQs. b) Decomposition result where the subqueries ?lbiop-SSQ
and ?patient-SSQ are composed into a single subquery to comply with the privacy policy of data source S1,
while ?cmut-SSQ and ?gene-SSQ are also composed to push down the join operation to the data source S2.

four SSQs, as shown in Figure7.5, i.e., SSQs around the variables ?lbiop, ?patient, ?cmut, and
?gene, respectively. The first SSQ (denoted ?lbiop-SSQ) has two triple patterns, t1-t2, the second
SSQ (?patient-SSQ) is composed of three triple patterns, t3-t5, the third SSQ (?cmut-SSQ) includes
four triple patterns, and the fourth SSQ (?gene-SSQ) is composed of two triple patterns, t10-t11.

Figure7.5a presents an initial decomposition with the selected PRDF-MTs for each SSQs. The
subquery ?patient-SSQ is joined to the subquery ?lbiop-SSQ via ex:biopsy property. Similarly,
?cmut-SSQ is joined to ?gene-SSQ via the ex:located_in property. Given the set of properties
in each SSQ and the joins between them, BOUNCER finds a matching PRDF-MT for each SSQs (Line
3), i.e., it matches the subqueries ?patient-SSQ, ?lbiop-SSQ, ?cmut-SSQ, and ?gene-SSQ to
the PRDF-MTs Patient, Liquid_Biopsy, Mutation, and Gene, respectively. Once the PRDF-
MTs are identified for the SSQs, BOUNCER verifies the access control policies associated with them
(Line 4). A subquery SSQ associated with an PRDF-MT(s) that grants the project() permission
to all of its properties is called Independent SSQ; otherwise, it is called Dependent SSQ. An SSQ in a
SPARQL query Q is called dependent iff a property of at least one triple pattern in SSQ is associated
with the privacy-aware operation join_local(). On the other hand, an SSQ is independent iff the
privacy-aware operation project() is true for the properties of the triple patterns in SSQ.

If the value of the controlled property is in the projection list, i.e., if the property of a triple pattern in
an SSQ have join_local() or join_fed() predicate, then the decomposition process exits with
empty result (Line 6). Once the SSQs are associated with PRDF-MTs, the next step is to merge the SSQs
with the same source and push down the join operation to the data source. To comply with access control
policies of a dataset, i.e., when the properties of an SSQ have only the join_local() permission, the

Figure 7.6: Example of Privacy-aware RDF Molecule Templates (PRDF-MTs). Two PRDF-MTs for the
SPARQL query in the motivating example. According to the privacy regulations the properties :name, :birthdate,
and :addresss are controlled; they do not appear in the PRDF-MTs.

95

Chapter 7 Privacy-aware Query Processing

Algorithm 5 Privacy-Aware Query Decomposition: BG - Basic Graph Pattern, Q - Query, PRMT -
Access-aware RDF Molecule Templates

1: procedure Decompose(BGP, Q, PRMT)
2: S S Qs Ð getS S QspBGPq Ź Partition the BGP to SSQs
3: RES Ð selectS ourcepPRMT, PRMT q Ź RES=[(SSQ, PRMT, DataSource)]
4: A Ð getAccessPoliciespRES q; Φ Ð r s; DR Ð t u Ź access control statements
5: for pS S Q,RMT, p, ds, predq P A do
6: if p P Query.PRJ ^ pred ! “ pro jectpds, p,RMT.typeq then return []
7: DRrS S QsrPTS s.appendptq | t “ ps, p, oq ^ t P S S Q | p P Query.PRJ
8: DRrS S QsrS Ds.appendpdsq ^ DRrS S QsrPS s.appendppredq
9: end for

10: for pS S Qi, S Di, PS i, PTS iq P DR do
11: φi “ pS Qi, S Di, PS i, PTS iq | S Qi Ð S S Qi

12: if join_localpq P PS i then Ź If S S Qi contains restricted property
13: for pS S Q j, S D j, PS j, PTS jq P DR do
14: if S Di X S D j ı H then
15: φi.extendpS S Q j, S D j, PS j, PTS jq

16: DR.removeppS S Q j, S D j, PS j, PTS jqq ^ done Ð True
17: end for
18: if NOT done then return []
19: end if
20: Φ.appendpφiq

21: end for
22: return Φ Ź decomposed query
23: end procedure

join operation with this SSQ should be done at the data source. Hence, if two SSQs can be executed at the
same source, then BOUNCER decomposes them as a single subquery (SQ) (Line 10-21). This technique
may also improve query execution time by performing join operation at the source site. Figure7.5b shows
a final decomposition for our running example. ?lbiop-SSQ and ?patient-SSQ are merged because
they are dependent and the join operation can be executed at the source.

7.3.2 Privacy-Aware Query Planning Technique

Algorithm 6 sketches the BOUNCER privacy-aware query planing technique. Given a privacy-aware
decomposition Φ of a query Q, BOUNCER finds a valid plan that respects the privacy-policy of the
data sources. For each subquery in φi a service-graph pattern is created (Line 4 & 6) and the SPARQL
UNION operator is used whenever the subquery can be executed over more than one data source. Then,
BOUNCER selects another subquery, φ j that is joinable with φi (Line 5). If φi is composed of dependent
SSQ(s) (resp., independent SSQ(s)) and φ j is composed of an independent SSQ(s) (resp., dependent
SSQ(s)), then a dependent join operator (DJOIN) is selected (Line 9-12). If both φi and φ j are merged
of an independent SSQ(s), then any JOIN operator can be chosen (Line 13-14). Finally, otherwise, an
empty plan is returned indicating that there is no valid plan for the input query (Line 16).

96

7.3 BOUNCER: A Privacy-Aware Query Engine

Algorithm 6 Query Planning over Privacy-Aware Decomposition: Φ - Privacy-Aware query decomposi-
tion, Q - SELECT query

1: procedure makePlan(Φ, Q)
2: αÐ rs

3: for φi P Φ do
4: σ1 Ð UNIONdiPS Di^S DiPφipS ERVICE di S Qiq

5: for φ j P Φ | φi ‰ φ j ^ varpS Qiq X varpS Q jq ı H do Ź If joinable
6: σ2 Ð UNIONd jPS D jpS ERVICE d j S Q jq

7: J Ð t t | variptq Ď rvarpS Qiq X varpS Q jqs ^ t P rS Qi Y S Q jsu

8: ρÐ proppJq Ź Properties of join variables
9: if D join_localpq P PS i ^ @predpPρ P PS j | predpPρ ñ join_ f edpq then

10: α.appendppσ2 DJOIN σ1qq; joined Ð True Ź Dependent JOIN
11: if D join_localpq P PS j ^ @predpPρ P PS i | predpPρ ñ join_ f edpq then
12: α.appendppσ1 DJOIN σ2qq; joined Ð True Ź Dependent JOIN
13: if @predpPρ P rPS i Y PS js | predpPρ ñ join_ f edpq then
14: α.appendppσ1 JOIN σ2qq; joined Ð True Ź Independent JOIN
15: end for
16: if D join_localpq P PS i ^ NOT joined then return [] Ź No valid plan
17: end for
18: return α
19: end procedure

7.3.3 The BOUNCER Architecture

Figure7.7 depicts BOUNCER architecture. Given a SPARQL query, the source selection and query
decomposition component solves the problem of identifying a privacy-aware query decomposition;
they select PRDF-MTs for subqueries (SSQs) by consulting PRDF-MT metadata store and the access
control evaluator component. The source selection and decomposition component is privacy-aware
decomposition; it is given to the query planning component for creating a valid plan, i.e., access policies
of the selected data sources should be respected. The valid plan is executed in a bushy-tree fashion by the
query execution.

BOUNCER
Query Engine

Source Selection &
Decomposition

Query
Planning

Query
Execution Engine

SPARQL
Query

RDF Datasets
Query
Answer

Privacy-aware
Decomposition

Valid Query Plan

PRDF-MT Metadata

Access Control
Evaluator

Figure 7.7: BOUNCER Architecture. BOUNCER receives a SPARQL query and outputs the results of executing
the SPARQL query over a federation of SPARQL endpoints. It relies on PRDF-MT descriptions and privacy-aware
policies to select relevant sources, and perform query decomposition and planning. The query engine executes a
valid plan against the selected sources.

97

Chapter 7 Privacy-aware Query Processing

Figure 7.8: Decomposition and Planning Time. BOUNCER decomposition and planning are more expensive
than baseline (MULDER)

Figure 7.9: Overall Execution Time. BOUNCER generates more efficient plans and overall execution time is
reduced.

7.4 Empirical Evaluation

We study the efficiency and effectiveness of BOUNCER. First, we assess the impact of access-control
policies enforcement and BOUNCER is compared to ANAPSID, FedX, and MULDER. Then, the
performance of BOUNCER is evaluated. For our evaluation the following research questions are studied:
Q1) Does privacy-aware enforcement employed during source selection, query decomposition, and
planning impact query execution time? Q2) Can privacy-aware policies be used to identify query plans
that enhance execution time and answer completeness?
Benchmarks: The Berlin SPARQL Benchmark (BSBM) generates a dataset of 200M triples and 14
queries; answer size is limited to 10,000 per query.
Metrics: i) Execution Time: Elapsed time between the submission of a query to an engine and the
delivery of the answers. Timeout is set to 300 seconds. ii) Throughput: Number of answers produced
per second; this is computed as the ratio of the number of answers to execution time in seconds.

98

7.4 Empirical Evaluation

Figure 7.10: Efficiency of Query Plans. Existing engines are compared based on throughput. ANAPSID plans are
efficient but no valid. FedX and MULDER generate valid plans (by chance) but some are not efficient. BOUNCER
generates both valid and efficient plans and overall execution time is reduced.

Implementation: BOUNCER privacy-aware techniques are implemented in Python 3.5 and integrated
into the ANAPSID query engine. The BSBM dataset is partitioned into 8 parts (one part per RDF type)
and deployed on one machine as SPARQL endpoints using Virtuoso 6.01.3127, where each dataset
resides in a dedicated Virtuoso docker container. Experiments are executed on a Dell PowerEdge R805
server, AMD Opteron 2.4GHz CPU, 64 cores, 256GB RAM.

7.4.1 Impact of Access Control Enforcement.

The impact of privacy-aware processing techniques is studied, as well as the overhead on source selection,
decomposition, and execution. In this experiment, the privacy-aware theory enables all the operations
over the properties of the federation, i.e., all the operations are defined for each property and dataset.
MULDER and BOUNCER are compared; Figure7.8 and Figure7.9 reports on decomposition, planning,
and execution time per query. Both engines generate the same results and BOUNCER consumes more
time in query decomposition and planning. However, the overall execution time is lower in almost all
queries. These results suggest that even there is an impact on query processing, BOUNCER is able to
exploit privacy-aware polices, and generates query plans that speed up query execution.

7.4.2 Impact of Privacy-Aware Query Plans.

The privacy-aware query plans produced by BOUNCER are compared to the ones generated by state-
of-the-art query engines. In this experiment, the privacy-aware theory enables local joins for Person,
Producer, Product, and ProductFeature, and projections of the properties of Offer, Review,
ProductType, and Vendor. Figure7.10 reports on the throughput of each query engine. As observed,
the query engines produced different query plans which allow for high performance. However, many of
these plans are not valid, i.e., they do not respect the privacy-aware policies in the theory. For instance,

99

Chapter 7 Privacy-aware Query Processing

ANAPSID produces bushy tree plans around gjoins; albeit efficient, these plans violate the privacy
policies. FedX and MULDER are able to generate some valid plans–by chance– but fail in producing
efficient executions. On the contrary, BOUNCER generates valid plans that in many cases increase the
performance of the query engine. Results observed in two experiments suggest that efficient query plans
can be identified by exploiting the privacy policies; thus, Q1 and Q2 can be positively answered.

7.5 Summary

We presented BOUNCER, a privacy-aware federated query engine for SPARQL endpoints. BOUNCER
relies on privacy-aware RDF Molecule Templates (RDF-MTs) for source description and guiding query
decomposition and plan generation. Privacy-aware RDF-MTs are able to encode different privacy-aware
operations that are allowed to be performed at different level of processing. The proposed privacy-aware
query decomposition and planning algorithms are able to generate a valid plan according to the allowed
operations that can be performed either at the local sources, federation engine, or projected to users.
Efficiency of BOUNCER was empirically evaluated and results suggest that it is able to reduce query
execution time and increase answer completeness by producing query plans that comply with the privacy
policies of the data sources.

100

CHAPTER 8

Interest-based Update Propagation

In recent years, there has been an increasing number of structured data published on the Web as a Linked
Open Data (LOD). As of March 2019, the LOD cloud1 comprises of 1,239 datasets with 16,147 links
between them. Many of these datasets, such as DBpedia and Wikidata, are voluminous and process large
amount of requests from diverse applications. Providing services on top of these datasets is becoming a
challenge due to the lack of service levels regarding the availability of datasets [104] and restrictions
imposed by the publisher on the type of query forms and number of results2. Many data products and
services rely on full or partial local LOD replications to ensure faster querying and processing. While
such replicas enhance the flexibility of information sharing and integration infrastructures, they also
introduce data duplication with all the associated undesirable consequences. Given the evolving nature of
the original and authoritative datasets, to ensure consistent and up-to-date replicas, frequent replacements
are required at a great cost. In this chapter, we tackle one of the challenges maintaining the freshness of
data sources in a Semantic Data Lake by propagating updates from original data provider in a selective
and efficient way. The content of this chapter is based on the publications [105–107]. The result of this
chapter provides answer to the following research question:

RQ4: How can we define update interests and propagate interesting updates for manage
(co)evolution of data sources?

To answer this research question, we study the techniques for propagating updates from original to
target data source and the synchronization problems that may be generated if target data source are also
allowed to evolve over time. The target data sources might be a replica of the whole dataset or only a slice
of the dataset that the application is interested in. We introduce an approach for interest-based update
propagation, which propagates only interesting parts of updates from the original to the target data source
and vice-versa. Effectively, this enables remote applications to ’subscribe’ to relevant data sources and
consistently reflect the necessary changes locally without the need to frequently replace the entire dataset
(or a relevant subset) as well as they can also offer their updates propagated back to the original data
source. In this chapter, we use the terms data source and dataset interchangeable. Our approach is based
on a formal definition for graph-pattern-based interest expressions that is used to filter interesting parts
of updates from the source. We define a technique to describe an interest for update propagation based
on basic graph pattern (BGP) expressions of the SPARQL query. Such interest expressions extend the
source description model, RDF Molecule Template (Chapter 4).

1 https://lod-cloud.net/
2 https://lists.w3.org/Archives/Public/public-lod/2011Aug/0028.html

101

https://lod-cloud.net/
https://lists.w3.org/Archives/Public/public-lod/2011Aug/0028.html

Chapter 8 Interest-based Update Propagation

Data & Knowledge Evolution

Data Lake

Relational Graph Document Flat-file

Challenge 4: Managing Data and Knowledge Evolution

Knowledge
Representation

Contribution 4: iRap: Interest-based update propagation
approach and co-evolution

Figure 8.1: Challenges and Contributions.This chapter focuses on the problem of privacy and access control
federated query processing.

We propose a co-evolution approach comprises of the following components: (a) an RDF data
synchronization component, and (b) a component for conflict identification and resolution. We implement
the approach in the iRap framework and perform a comprehensive evaluation based on DBpedia Live
updates, to confirm the validity and value of our approach. Our approach relies on the assumption that
either the data source provider provides a tool to compute a changeset at real-time or third party tools
can be used for this purpose. Another assumption is that slices of the RDF data from the source dataset
are replicated, i.e., target datasets, where a slice3 corresponds to an RDF subgraph of the source RDF
graph [59]. Our evaluation shows, that the data required to be transferred and handled by applications
can be reduced by several orders of magnitude thus substantially lowering the re-usage barrier for Linked
Data. In addition, experimental results suggest that our synchronization, and conflict identification
and resolution techniques positively affect the quality of the data in both the source and target datasets.
Figure 8.1 shows the challenge tackled in this chapter and the contribution of in this chapter.

The contribution of this chapter can be summarized as follows:

‚ A thorough formalization of interest-based update propagation approach.

‚ An RDF update propagation framework, iRap.

‚ A conflict detection and resolution strategy

‚ An empirical evaluation based on DBpedia Live updates to confirm the validity and value of our
approach. The results show that the data required to be transferred and handled by applications
can be reduced by several orders of magnitude thus substantially lowering the re-usage barrier for
Linked Data.

The article is structured as follows: First, in Section 8.1 we motivate the problem of update propagation
and co-evolution. Section 8.3 extensively describes the formalization for our framework. Section 8.5

3 An RDF slice is also known as a fragment in the approaches proposed by Ibañez et al. [108], Montoya et al. [60], and
Verborgh et al. [104].

102

8.1 Motivation

Figure 8.2: Live mirror based changeset propagation approach

and Section 8.6 discusses the implementation and evaluation of the iRap framework in detail. Finally,
Section 8.7 present closing remarks of this chapter.

8.1 Motivation

Replication of Linked Data datasets enhances flexibility of information sharing and integration infrastruc-
tures. Since hosting a replica of large datasets is costly, organizations might want to host only a relevant
subset of the data, for example, using approaches such as RDFSlice [109]. However, due to the evolving
nature of these datasets in terms of content and ontology, maintaining a consistent and up-to-date replica
of the relevant data is a major challenge. Resources in a dataset might be added, updated, or removed.
Applications consuming these datasets should be capable of dealing with such updates to keep their local
copies consistent.

Let us assume a mobile application which requires information of restaurants (i.e., name, rating,
chef, description, and depiction) nearby users’ location. DBpedia dataset can be used to find such
information. A mirror (replica) of the dataset need to be created as the application requires a high query
performance without restrictions imposed by DBpedia public endpoint 4. The replicated dataset might
undergo changes as the mobile application supports features such as allowing users to give reviews about
their experience in those restaurants. At the same time, DBpedia dataset also evolves by adding new
restaurants information or updating the existing ones. As a result, the target dataset might be out of date
and need to be synchronized with DBpedia. Typically, dataset mirror applications propagate updates
published by the source dataset to a target dataset. For instance, the DBpedia Live mirror tool5 propagates
all changes to a target dataset, so that at any point of time the target dataset contains the same triples as
the DBpedia Live dataset. However, for example, an application interested in only restaurants uses only
1, 950 out of 6.6M instances of the English DBpedia 2016 dataset6. As a result, the target dataset will
grow as the source dataset, even though, the fragment of data the application is interested in have not
changed as much as other fragments in the data source.

Figure 8.2 shows the propagation of unfiltered data from a source to a target, referred to as Live
Replica). This approach propagates all the updates irrespective of the relevance or usefulness of the data
for the target application. As can be seen, using the Live Replica initially it contains 200K triples, same

4 http://dbpedia.org/sparql
5 https://github.com/dbpedia/dbpedia-live-mirror
6 https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10

103

http://dbpedia.org/sparql
https://github.com/dbpedia/dbpedia-live-mirror
https://wiki.dbpedia.org/develop/datasets/dbpedia-version-2016-10

Chapter 8 Interest-based Update Propagation

as the source dataset, even though the target application is interested only 5K triples. Additionally, the
Live Replica grows by 220K more triples while the interesting updates only grows by 4K triples. In
addition, if the target dataset is allowed to evolve, synchronization of updates between the source and
target might become even more challenging, as different inconsistency (data conflicts) might occur.

In this chapter, we present an approach for interest-based update propagation, which is based on the
specification of data interests by a target application. Based on such interest expressions all updates are
evaluated and only those changes satisfying target applications’ interest are shipped to the target dataset.
An interest-based update propagation could significantly reduce the amount of data to be shipped and
managed at the application side and thus lower the barrier for the deployment of Linked Data applications.
In addition, we tackle the problem of co-evolution when the target dataset is allowed to evolve and device
an approach for conflict resolution during synchronization.

8.2 Problem Statement and Proposed Solution

In this section, we define the co-evolution problem when a slice or replica of original source dataset is
created and only updates for a selected parts of a slice or replica is required to co-evolve with the original
data sources. We present our proposed solution to solve the co-evolution problem.

8.2.1 Problem Statement

The core of the co-evolution concept relies on the mutual propagation of changes between the source and
target datasets in order to keep the datasets in sync. Thus, from time to time, the source and target datasets
have to exchange the changesets and then update the local repositories. Issues are about how changes
shWe propose a two-fold co-evolution approach, comprised of the following components: i) an RDF
data synchronization component, and ii) a component for conflict identification and resolution. ould be
propagated and in case of inconsistencies or data conflicts, how these conflicts should be resolved. Thus,
our main research problem is to develop a co-evolution process able to exploit the properties of RDF data
and solve conflicts generated by the propagation of changes among source datasets and replicas.

Given source dataset, S , target dataset, T , and (interest) query expression, I, the problem of co-
evolution of target dataset T with respect to source dataset, S , under query expression, I, is defined as
follows. For all BGPs in I, find a synchronization strategy that satisfies the following requirements:

‚ Initial Inclusion: At the initial time, t0, the target dataset, T , is a subset of the source dataset, S ,
under restriction query, I, Tt0 ĎI S t0 , i.e., rrIssTt0

“ rrIssS t0
;

‚ Inclusion after Synchronization: At any time, ti, after initial synchronization, the target dataset
should be a subset of the source dataset, Tti ĎI S ti , i.e., rrIssTti

“ rrIssS ti
.

8.2.2 Proposed Solution

To solve the co-evolution problem, we propose an interest-based update propagation, that propagates
only selected set of triple from source to target dataset or vice-versa. We propose a two-fold co-evolution
approach, comprised of the following components: i) an RDF data synchronization component, and ii) a
component for conflict identification and resolution. We propose different synchronization strategies
based on the type of requirements by the target application. To resolve any conflicts that might occur
during synchronization, we propose different conflict identification and resolution policies and functions.
We implement our proposed solution in iRap update propagation framework and integrated the conflict
identification and resolution policies.

104

8.3 Formalization of Interest-based Update Propagation

Figure 8.3: Formalization overview of the interest-based update propagation.

8.3 Formalization of Interest-based Update Propagation

In this section, we present the formal description of our interest-based update propagation approach.
Figure 8.3 illustrates the overall interest-based Update Propagation approach; summarizing the concepts
defined through the formalization. Interest evaluation takes place over the input set of deleted (Dt1´t0)
and added (At1 ´ t0) triples from the source dataset (Vt1) in between time interval pt0, t1q. Since updates
do not only contain interesting and uninteresting parts, but also triples which can become potentially
interesting along with subsequent updates. We have to compute and store these sets of potentially
interesting triples and take them in subsequent update assessments into account.

For our formalization we will use the notations U, B, L and Var for the disjoint sets of all IRIs, blank
nodes, literals (typed and untyped) and variables respectively. An RDF graph V is a finite set of RDF
triples, i.e, V Ă (UYB) ˆ U ˆ (UYBYL). In what follows, we use the terms RDF graph, RDF dataset,
and dataset interchangeably. An evolving dataset, Vg, is a dataset identified using the persistent IRI,
g, whose content changes over time. Vg

t denotes a specific revision of Vg at a particular time t. For
simplicity, we will just refer to Vt instead of Vg

t .

Definition 28 (Non-disjoint BGP) A non-disjoint BGP is a BGP that represents a connected graph.

An optional graph pattern (OGP) is syntactically specified with the OPTIONAL keyword applied to
a graph pattern. A set of triple patterns in a BGP must match for there to be a solution whereas triple
patterns in OGP may extend the solution but their non-binding nature means that they cannot reject
it [110].

Definition 29 (Partial Matches) Partial matches are a set of triples that does not fully match the BGP
but matches at least one triple pattern in BGP or OGP of a query.

105

Chapter 8 Interest-based Update Propagation

dbr:Marcel dbp:goals 1 .
dbr:Marcel dbo:team dbr:FNFT .
dbr:Tim_Berners-Lee foaf:name

"Tim Berners-Lee" .
dbr:Cristiano_Ronaldo dbo:goals 96.

Listing 8.1: File 000001.removed.nt

dbr:Cristiano_Ronaldo dbo:goals 216 .
dbr:Barack_Obama foaf:name

"Barack Obama" .
dbr:Barack_Obama foaf:homepage

"http://www.barackobama.com/" .
dbr:Rio_Ferdinand a foaf:Person .
dbr:Rio_Ferdinand a dbo:Athlete .
dbr:Rio_Ferdinand dbp:goals 2 .
dbr:Arvid_Smit a dbo:Athlete .

Listing 8.2: File 000001.added.nt

Triples added to, and removed from, an evolving dataset within a time-frame are called changeset for
a dataset within that time-frame.

Definition 30 (Changeset) Let Vt1 be an evolving dataset at time t1. A changeset ∆pVt1´t0q, between Vt0
and Vt1 , where t0 ă t1, is defined as:

∆pVt1´t0q “ xDt1´t0 , At1´t0y

where:

‚ Dt1´t0 is a set of removed triples from Vt0 between time-points t0 and t1, and

‚ At1´t0 is a set of added triples to Vt0 between time-points t0 and t1.

Changesets can be computed using the difference between two versions of the RDF dataset. The
result of this computation gives the removed triples, Dt1´t0 “ V0zV1, and added triples, At1´t0 “ V1zV0,
between given dataset revisions Vt0 and Vt1 . Datasets can be accompanied with a tool that publishes
changesets at real-time, so that users can download these changesets and synchronize their local replicas.
For instance, DBpedia publishes updates in a public changesets folder 7.

Example 6 Let us assume two files (Listing 8.1 and Listing 8.2) are being published by the DBpedia
Live extractor for the changes made on Feb 06, 2015 between 05:00 PM (t0) and 05:02 PM (t1).

A changeset ∆pVt1´t0q for the DBpedia Live dataset between t0 and t1, contains D05:02´05:00 “

000001.removed.nt and A05:02´05:00 “ 000001.added.nt.
That is, ∆pV05:02q “ x000001.removed.nt, 000001.added.nty.

Definition 31 (Changeset Propagation) A changeset propagation is a function υ that transforms a
given dataset Vt0 to a new dataset Vt1 by applying a changeset, ∆pVt1´t0q. That is: υpVt0 ,∆pVt1´t0qq “

pVt0zDt1´t0qY At1´t0 “ Vt1

The changeset propagation function υ, for example, deletes the triples in 000001.removed.nt from
the target dataset and then inserts all triples from 000001.added.nt. This order of operation (deleted
first) ensures that inserted triples are not removed again immediately. If an organization maintaining a
replica wants to host only a subset of the original dataset, it needs to obtain only relevant updates for this
subset. For that purpose, we specify interests to subscribe to ‘interesting’ changes only. During interest

7 http://live.dbpedia.org/changesets/

106

 http://live.dbpedia.org/changesets/

8.3 Formalization of Interest-based Update Propagation

registration, an organization provides information about the source dataset to synchronize with, a target
dataset endpoint that supports SPARQL Update to propagate interesting changes, and an interest query to
select relevant parts of a changeset.

Definition 32 (Interest Expression) An interest expression over an evolving dataset, Vt, is defined as:
ig “ xτ, b, opy where g is an IRI identifying an evolving RDF dataset Vt, τ is an IRI identifying the target
dataset endpoint, b is a non-disjoint BGP, and op is an optional graph pattern (OGP) connected to b.

Example 7 An interest expression for a list of an athlete with information about goals scored, and
optionally their homepage, is expressed as follows:
‚ g = http://live.dbpedia.org/changesets
‚ τ = http://localhost:3030/target/sparql
‚ b = { ?a a dbo:Athlete . ?a dbp:goals ?goals . }
‚ op = { ?a foaf:homepage ?page . }

The equivalent interest expression SPARQL query will be:

CONSTRUCT
WHERE {

?a a dbo : A t h l e t e .
?a dbp : g o a l s ? g o a l s .
OPTIONAL { ?a f o a f : homepage ? page . }

}

Evolving data sources are composed of RDF molecules that can change over time. Interest expression
can be embedded in descriptions of evolving data sources, referred as Evolving RDF Molecule Templates
defined as follows:

Definition 33 (Evolving RDF Molecule Template (ERDF-MT)) An Evolving RDF Molecule Template
(ERDF-MT) is a 5-tuple=ăDS,C,DTP,IntraL,InterLą, where:

‚ DS – is a set of tuples (WebI, M, iG) such that WebI is a URL that provide access to the dataset
G, M is a set of mappings from source schema to molecule predicates, DT P, and iG is an interest
expression iG “ xτ, b, opy in which the BGP, b, is grounded by the RDF Class and predicates of
this RDF-MT, i.e., C and DT P, respectively;

‚ C – is an RDF class such that the triple pattern (?s Tp C) is true in G, where Tp is a typing
predicate such as rd f : type, or wdt : P31;

‚ DTP – is a set of pairs (p, T) such that p is a property with domain C and range T, and the triple
patterns (?s p ?o), and (?s Tp C) are true in G;

‚ IntraL – is a set of pairs (p,C j) such that p is an object property with domain C and range C j, and
the triple patterns (?s p ?o) and (?o Tp C j) and (?s Tp C) are true in G;

‚ InterL – is a set of triples (p,Ck,SW) such that p is an object property with domain C and range Ck;
SW is a URL that provides access to an dataset K, the triple patterns (?s p ?o) and (?s Tp C) are
true in G, and the triple pattern (?o Tp Ck) is true in K.

In order to initialize a local data store, i.e., the target dataset, SPARQL CONSTRUCT queries can
be used by employing the interest expression’s BGPs to extract and load a subset of the source dataset.
Then interest expressions are registered with our iRap framework to retrieve interesting updates from
the source dataset. iRap evaluates interest expressions over changesets being published along with the
source dataset. Without a restriction of generality, we assume interest expressions here to be static for the
lifetime of a target dataset, since an evolution of interest expressions can be simulated by removal and

107

Chapter 8 Interest-based Update Propagation

addition. The result of executing an interest evaluation for an interest expression against a changeset are
three sets or triples: 1. interesting, 2. potentially interesting, and 3. uninteresting triples.

Definition 34 (Interesting Triples) Interesting triples are all triples comprised in full matches of the
BGP and possibly OGP of an interest expression, ig, against the sets of added or deleted triples of
a changeset. Interesting triples originating from the first element (i.e., removed triples (Dt1´t0)) of a
changeset, ∆pVt1´t0q, are called interesting-removed triples. Interesting triples originating from the
second element (i.e., added triples (At1´t0)) of a changeset, ∆pVt1´t0q, are called interesting-added triples.

In addition to parts of an changeset for which the ‘interestingness’ can be immediately decided,
there might also be parts, which are potentially interesting since, i) the missing parts to render them as
interesting are already contained in the target knowledge base or ii) they will be propagated in subsequent
updates.

Definition 35 (Potentially Interesting Triples) Potentially interesting triples are triples comprised in
partial matches of the BGP or in OGP of interest expression, ig:
‚ Potentially interesting triples originating from the first element (i.e., removed triples (Dt1´t0)) of a

changeset ∆pVt1´t0q, are called potentially interesting-removed triples.
‚ Potentially interesting triples originating from the second element (i.e., added triples (At1´t0)) of a

changeset, ∆pVt1´t0q, are called potentially interesting-added triples.

Potentially interesting triples can become interesting if triples missing in the changeset, but required for a
full BGP match, are found in the target dataset or in subsequent changesets. Finally, there are triples in
the changeset that are neither interesting nor potentially interesting.

Definition 36 (Uninteresting Triples) Uninteresting triples are triples that do not match any triple
pattern in a BGP or OGP of any interest expression, ig, against the sets of added or deleted triples of a
changeset.

Uninteresting triples are not interesting at the moment and can never become interesting with sub-
sequent changesets. iRap uses an interest query to select candidate triples from a changeset and to assert
from a target dataset. These candidates are retrieved in decreasing order of number of matching BGP
triple patterns of interest expressions and triples that match any part of optional graph patterns.

Definition 37 (Interest Candidate Generation) An interest candidate generation is the extraction of
matching triples from a changeset for a non-disjoint combination of triple patterns in BGP of an interest
expression, ig. The result of this extraction is an pn` 1q-tuple with decreasing order of matching:

πpig,Mq “
@

c0, c1, ..., cn´1, cop
D

where:
‚ M is a set of removed (respectively added) triples in a changeset,
‚ n is the number of triple patterns in the BGP of interest expression, ig,
‚ ck is a set of candidate triples in M that match n´ k p0 ď k ă nq triple patterns of the BGP of the

interest expression, ig, and
‚ cop is a set of candidate triples in M that match at least one triple pattern in the OGP of interest

expression, ig, but none of the triple patterns in the BGP.

Example 8 An interest candidate generation for the interest expression ig from Example 7 over the
changeset from Example 6 gives the following result:

108

8.3 Formalization of Interest-based Update Propagation

1. πpig,D05:02´05:00q “
@

c0, c1, cop
D

where:
c0 “ H

c1 = dbr:Marcel dbp:goals 1. dbr:Cristiano_Ronaldo dbo:goals 96.
cop “ H

2. πpig, A05:02´05:00q “
@

c0, c1, cop
D

where:
c0 = dbr:Rio_Ferdinand a dbo:Athlete . dbr:Rio_Ferdinand dbp:goals

10.
c1 = dbr:Cristiano_Ronaldo dbp:goals 216 .

dbr:Arvid_Smit a dbo:Athlete.
cop = dbr:Barack_Obama foaf:homepage "http://www.barackobama.com".

Now an interest candidate assertion verifies candidate triples with respect to all triple patterns in the
BGP of an interest expression.

Definition 38 (Interest Candidate Assertion) The candidate assertion function extracts missing triples
for the candidate, ci of πpig,Mq of an interest expression ig from the target dataset, τt0:

π1pig,Mq “
@

c1op, c
1
n´1, ..., c

1
1, c

1
0

D

where:

‚ M is a set of removed (respectively added) triples in a changeset,

‚ n is the number of triple patterns in the BGP of interest expression, ig,

‚ c1op is a set of triples from target dataset, τ, that matches the missing optional graph patterns for
candidate c0, of πpig,Mq,

‚ c1k is a set of triples from target dataset, τ, that matches the missing triple patterns for candidate
cn´k, where 0 ă k ă n, of πpig,Mq, and

‚ c10 is a set of triples from target dataset, τ, that matches all triple patterns in BGP of interest
expression for candidate cop, of πpig,Mq.

Example 9 Let the target dataset, τt0 , at time t0 contains the following triples:

#Target dataset at time t0 = 05:00 PM Feb 06, 2015
dbr:Marcel a dbo:Athlete .
dbr:Marcel dbp:goals 1 .
dbr:Cristiano_Ronaldo a dbo:Athlete .
dbr:Cristiano_Ronaldo dbo:goals 96 .
dbr:Cristiano_Ronaldo foaf:homepage "http://cristianoronaldo.com" .

An interest candidate assertion for interest candidates generated in Example 8 yields the following result:
1. π1pig,D05:02´05:00q “

@

c1op, c
1
1, c

1
0

D

where:

c1op “ H

c1
1

= dbr:Marcel a dbo:Athlete .
dbr:Cristiano_Ronaldo a dbo:Athlete .
dbr:Cristiano_Ronaldo foaf:homepage
"http://cristianoronaldo.com" .

109

Chapter 8 Interest-based Update Propagation

c1
0
“ H

2. π1pig, A05:02´05:00q “
@

c1op, c
1
1, c

1
0

D

where:

c1op “ H

c1
1

= dbr:Cristiano_Ronaldo a dbo:Athlete .
dbr:Cristiano_Ronaldo foaf:homepage
"http://cristianoronaldo.com" .

c1
0
“ H

The interest evaluation over a changeset ∆pVt1´t0q is performed in two steps. First, interest expres-
sions are evaluated against removed triples of a changeset as dpig,Dt1´t0q, see Definition 39. Second,
interest expressions are evaluated against added triples of a changeset as αpig, At1´t0q, see Definition 40.
During interest evaluation, added triples are combined with potentially interesting triples from previous
changesets (i.e., It1´t0 “ At1´t0 Y ρt0) to check their potential promotion to interesting triples.

Definition 39 (Interest Evaluation over Deleted Triples) Interest evaluation over deleted triples is a
function, dpig,Dt1´t0q, that returns a 3-element tuple8:

dpig,Dt1´t0q “ πpig,Dt1´t0q Y
˚ π1pig,Dt1´t0q “

@

rt1´t0 , ript1´t0q, r
1
t1´t0

D

where:
‚ πpig,Dt1´t0q is an interest candidate generation against deleted triples,
‚ π1pig,Dt1´t0q is an interest candidate assertion against deleted triples,
‚ rt1´t0 “ tc0 Y ck Y cop| c0, ck, cop P πpig,Dt1´t0q and Dc1n´k, c

1
0 P π1pig,Dt1´t0qu is the set of

interesting removed triples, i.e., no longer interesting,
‚ ript1´t0q “ tck Y cop|ck, cop P πpig,Dt1´t0q and Ec1n´k, c

1
0 P π

1pig,Dt1´t0qu is the set of potentially
interesting removed triples (existing only in removed triples of a changeset) and

‚ r1t1´t0 “ tc
1
0 Y c1k Y c1op|c

1
0, c

1
k, c

1
op P π

1pig,Dt1´t0q and Dcop, cn´k, c0 P πpig,Dt1´t0q} is the set of
triples that become potentially interesting after removing rt1´t0 .

Example 10 An interest evaluation over deleted triples in our running example (using the results of
Example 8 and Example 9, respectively) is as follows:

dpig,D05:02´05:00q “ πpig,D05:02´05:00q Y
˚ π1pig,D05:02´05:00q

“
@

r05:02´05:00, rip05:02´05:00q, r
1
05:02´05:00

D

1. r05:02´05:00 = c1 (in Example 8)

dbr:Marcel dbp:goals 1 .
dbr:Cristiano_Ronaldo dbo:goals 96 .

2. rip05:02´05:00q “ H (Since all the potentially interesting removed triples of c1 in Example 8 becomes
interesting and no other triples in co p)

3. r105:02´05:00 = c11

8 Note: Y˚ indicates that after the component-wise union of the two sets the results are combined to three categories of the
resulting 3-tuple, namely, (i) elements from left that have matching right elements, (ii) elements from left that do not have
matching right elements, and (iii) element from right that have a match left.

110

8.3 Formalization of Interest-based Update Propagation

dbr:Marcel a dbo:Athlete .
dbr:Cristiano_Ronaldo a dbo:Athlete .
dbr:Cristiano_Ronaldo foaf:homepage "http://cristianoronaldo.com" .

Definition 40 (Interest Evaluation over Added Triples) Interest evaluation over added triples is a
function, αpig, At1´t0q, that returns 3 element tuple as:

αpig, At1´t0q “ πpig, It1´t0q Y
˚ π1pig, It1´t0q “

@

at1´t0 , aipt1´t0q, a
1
t1´t0

D

where:
‚ It1´t0 “ At1´t0 Y ρt0 is a set of added triples and potentially interesting triples dataset,
‚ πpig, It1´t0q is an interest candidate generation over It1´t0 ,
‚ π1pig, It1´t0q is an interest candidate assertion over It1´t0 ,
‚ at1´t0 “ tc0 Y ck Y cop| c0, ck, cop P πpig, It1´t0q and Dc1n´k, c

1
0 P π1pig, It1´t0qu is the set of

interesting added triples,
‚ aipt1´t0q “ tck Y cop|ck, cop P πpig, It1´t0q and Ec1n´k, c

1
0 P π

1pig, It1´t0qu is the set of potentially
interesting added triples that do not have related triples in target dataset, and

‚ a1t1´t0 “ tc
1
0 Y c1k Y c1op|c

1
0, c

1
k, c

1
op P π

1pig, It1´t0q and Dcop, cn´k, c0 P πpig, It1´t0q respectively} is
the set of triples from target dataset that are related to aipt1´t0q.

Example 11 An interest evaluation over added triples in our running example (using the results of
Example 8 and Example 9, respectively) is as follows:

αpig, A05:02´05:00q “ πpig, I05:02´05:00q Y
˚ π1pig, I05:02´05:00q

“
@

a05:02´05:00, aip05:02´05:00q, a
1
05:02´05:00

D

1. a05:02´05:00 = c1 Y c11 Y c0

dbr:Cristiano_Ronaldo dbo:goals 216 .
dbr:Cristiano_Ronaldo a dbo:Athlete .
dbr:Cristiano_Ronaldo foaf:homepage "http://cristianoronaldo.com" .
dbr:Rio_Ferdinand a dbo:Athlete .
dbr:Rio_Ferdinand dbp:goals 10 .

2. aip05:02´05:00q =

dbr:Arvid_Smit a dbo:Athlete .
dbr:Barack_Obama foaf:homepage "http://www.barackobama.com" .

3. a105:02´05:00 “ H

Now, we will use the results from Definiton 39 and Definition 40 to compute interesting and potentially
interesting changesets.

Definition 41 (Interest Evaluation) An interest evaluation over a changeset ∆pVt1´t0q at time t1 is
a function epig,∆pVt1´t0qq that combines the results from an interest evaluation over deleted triples,
dpig,Dt1´t0q, and an interest evaluation over added triples, αpig, It1´t0q, to return an interesting changeset
and potentially interesting changeset as follows:

epig,∆pVt1´t0qq “ dpig,Dt1´t0q χ αpig, It1´t0q “ x∆pτt1´t0q,∆pρt1´t0qy

111

Chapter 8 Interest-based Update Propagation

where ig is an interest expression over an evolving dataset, ∆pτt1´t0q is an interesting changeset (see
Definition 42), and ∆pρt1´t0q is potentially interesting changeset (see Definition 43).

Definition 42 (Interesting Changeset) Let τt0 be a target dataset at time t0. An interesting changeset,
∆pτt1´t0q, for τt0 at time t1 is defined as:

∆pτt1´t0q “
@

prt1´t0 Y r1t1´t0q, at1´t0
D

where:
‚ rt1´t0 is the set of interesting removed triples, interesting removed optional triples and poten-

tially interesting removed triples with match found in target dataset during candidate generation,
πpig,Dt1´t0q,

‚ r1t1´t0 is the set of triples from target dataset that are related to potentially interesting removed
triples computed by π1pig,Dt1´t0q, and

‚ at1´t0 is the set of interesting added triples, interesting optional triples and potentially interesting
added triples with match found in target dataset during candidate generation, πpig, At1´t0q.

Example 12 An interesting changeset for our running example is as follows: ∆pτ05:02q “
A

pr05:02´05:00 Y r105:02´05:00q, a05:02´05:00

E

1. interesting removed triples – pr05:02´05:00 Y r105:02´05:00q :

dbr:Marcel a dbo:Athlete .
dbr:Marcel dbp:goals 1 .
dbr:Cristiano_Ronaldo dbo:goals 96 .
dbr:Cristiano_Ronaldo a dbo:Athlete .
dbr:Cristiano_Ronaldo foaf:homepage "http://cristianoronaldo.com" .

2. interesting added triples – a05:02´05:00 :

dbr:Cristiano_Ronaldo dbo:goals 216 .
dbr:Cristiano_Ronaldo a dbo:Athlete .
dbr:Cristiano_Ronaldo foaf:homepage "http://cristianoronaldo.com" .
dbr:Rio_Ferdinand a dbo:Athlete .
dbr:Rio_Ferdinand dbp:goals 10 .

Triples that were interesting will be downgraded to potentially interesting and stored in ρt1 , if deletion
involves triples matching at least one triple pattern from interest expression BGP.

Definition 43 (Potentially Interesting Changeset) Let ρt0 be a potentially interesting dataset for in-
terest expression ig at time t0. A changeset, ∆pρt1´t0q, for ρt0 at time t1 is defined as:

∆pρt1´t0q “
@

ript1´t0q, paipt1´t0q Y r1t1´t0q
D

where:
‚ ript1´t0q is a set of potentially interesting removed triples,
‚ aipt1´t0q is a set of potentially interesting added triples computed on added triples of a changeset

and related triples extracted from target while removing potentially interesting removed triples,
and

‚ r1t1´t0 is the set of triples from target dataset that are related to potentially interesting removed
triples computed by π1pig,Dt1´t0q.

112

8.4 Managing Co-evolution

Example 13 Potentially interesting changeset for our running example is as follows: ∆pρ05:02q “
A

rip05:02´05:00q, paip05:02´05:00q Y r105:02´05:00q

E

1. Potentially interesting removed triples – rip05:02´05:00q “ H

2. Potentially interesting added triples – paip05:02´05:00q Y r105:02´05:00q

dbr:Arvid_Smit a dbo:Athlete .
dbr:Barack_Obama foaf:homepage "http://www.barackobama.com" .
dbr:Marcel a dbo:Athlete .

Note: since all triples in r105:02´05:00 are added back to target dataset, they are no longer stored in the
potentially interesting dataset.

Definition 44 (Interesting Update Propagation) An interesting changeset propagation is an update
operation that transforms the target dataset τt0 to the new dataset τt1 and ρt0 to new dataset ρt1 by
applying the result of interest evaluation, epig,∆pVt1´t0qq. That is:

Υpig,∆pVt1´t0qq “ υpτt0 ,∆pτt1´t0qq ^ υpρt0 ,∆pρt1´t0qq “ τt1 ^ ρt1

‚ ∆pVt1´t0q is a changeset at time t1,
‚ υpτt0 ,∆pτt1´t0qq “ pτt0zrrt1´t0 Y r1t1´t0sqY at1´t0 is changeset propagation of interesting changeset,

and
‚ υpρt0 ,∆pρt1´t0qq “ pρt0zript1´t0qq Y paipt1´t0q Y r1t1´t0q is changeset propagation of potentially

interesting changeset.

Example 14 Propagation of an interesting changeset of Example 12 to the target dataset, τt0 and
potentially interesting changeset of Example 13 to the potentially interesting datasetρt0 transforms the
datasets to:

dbr:Cristiano_Ronaldo dbo:goals 216 .
dbr:Cristiano_Ronaldo a dbo:Athlete .
dbr:Cristiano_Ronaldo foaf:homepage

"http://cristianoronaldo.com" .
dbr:Rio_Ferdinand a dbo:Athlete .
dbr:Rio_Ferdinand dbp:goals 10 .

Listing 8.3: Resulting target dataset

dbr:Arvid_Smit a dbo:Athlete .
dbr:Barack_Obama foaf:homepage

"http://www.barackobama.com" .
dbr:Marcel a dbo:Athlete .

Listing 8.4: Potentially interesting dataset after
change propagation

8.4 Managing Co-evolution

Figure8.4 illustrates the co-evolution between two RDF datasets. Initially, a slice of source dataset is
used to create a target dataset, i.e., the target dataset Tt0 is sliced from the source dataset S t0 of dataset S
at time t0. Both the source and target datasets evolve themselves with the passage of time, e.g., these
datasets evolve to S t j and Tt j during timeframe ti ´ t j, while ti ă t j. Changes from S t j , denoted by
∆pS t j´tiq, are propagated to the target and vice versa by the RDF data synchronization component. For
synchronization, changes from both source and target datasets are compared to identify conflicts. The
resolved conflicts are applied on the source and target datasets to vanish inconsistencies, for example,

113

Chapter 8 Interest-based Update Propagation

1. A dataset slice
(subgraph of S)

Source dataset S
(e.g., DBpedia)

Target dataset
(extracted from DBpedia)

evolve evolve

2. Pull changes

Synchronized datasets

to

tj

time

Co-evolution
manager

 (S
ti-tj

)δ

S
to

T
to

S
tj

T
tj

3. Apply strategy
4. Apply changes

T
tj

S
tj

5. Propagate changes

ti

Dataset Provider Client

target changes

Figure 8.4: Co-evolution of linked datasets

at time point t j, the co-evolution manager identifies the conflicts and resolves them. The conflicts are
resolved and final changes are merged in both datasets.

8.4.1 Conflict

Our co-evolution strategy aims at dealing with changesets from either the source or target dataset and
provide a suitable reconciliation strategy. Various strategies can be employed for synchronizing datasets.
When we synchronize the target Tti with source S ti , there may exist triples which have been changed in
both datasets. These changed triples may be conflicting.

Definition 45 (Potential Conflict) Let us assume that a synchronization is required for a given time
slot ti ´ t j. ∆pS t j´tiq is the changeset of the source dataset and ∆pTt j´tiq is the changeset of the target
dataset. A potential conflict is observed when there are triples x1 “ ps, p, o1q P S t j ^ x2 “ ps, p, o2q P

∆pTt j´tiq ^ x2 R S t j “ S ti Y ∆pS t j´tiq with o1 ı o2.

Taking o1 ı o2 as an indication for a conflict is subjective; in the sense that the characteristics of
the involved property p influences the decision. Consider two triples ps, p, o1q and ps, p, o2q. If p is
a functional data type property, two triples are conflicting iff the object values o1 and o2 are not equal.
However, if the property p is a functional object property, these two triples are conflicting if the objects
are or can be inferred to be different (e.g. via owl:differentFrom). Another property which needs
special consideration is rdf:type. For this property it is necessary to check whether o1 and o2 belong
to disjoint classes. Only then these triples would be conflicting. For example, s1 rdf:type Person
and s1 rdf:type Athlete are not conflicting if Athlete is a subclass of Person (i.e. not
disjoint). Thus, the process of detecting conflicts is considering the inherent characteristics of the
involved property.

8.4.2 Synchronization Strategies

In the following, we list possible strategies for synchronization. We consider the time frame ti´ t j, where
in the time ti, the source and target datasets are synchronised and until time t j, both source and target

114

8.4 Managing Co-evolution

datasets have been evolving independently. Before applying synchronization, the state of the source
dataset is S t j “ S ti Y ∆pS t j´tiq and the target dataset is Tt j “ Tti Y ∆pTt j´tiq.

Strategy I: This synchronization strategy prefers the source dataset and ignores all local changes on the
target dataset; thus, the following requirement is necessary. Therefore, the target dataset ignores all triples
tx | x R ∆pS t j´tiq ^ x P ∆pTt j´tiqu and adds only the triples ty | y P ∆pS t j´tiqu. After synchronization,
the state of source dataset is S t j “ S tiY∆pS t j´tiq and the state of the target dataset is Tt j “ TtiY∆pS t j´tiq.
Thus, the inclusion requirement is met and Tt j Ď S t j . A special case of this strategy is when the target is
not evolving.

Strategy II: With this strategy, the target dataset is not synchronized with the source dataset and keeps
all its local changes. Thus, the target dataset is not influenced by any change from the source dataset and
evolves locally. After synchronization, at time t j, the state of the target dataset is Tt j “ Tti Y ∆pTt j´tiq,
and the state of the source dataset is S t j “ S ti Y ∆pS t j´tiq. It allows for synchronized replicas only if
data is deleted. There is no synchronization if triples in the target dataset are updated or new triples are
included.

Strategy III: This synchronization strategy respects the changesets of both source and target datasets
except that it ignores conflicting triples. Here, the set of triples in which conflicts occur is X “ tx1 “

ps, p, o1q P S t j ^ x2 “ ps, p, o2q P ∆pTt j´tiq ^ x2 R S t j with o1 ı o2u
9. With Strategy III, the set of

conflicting triples X is removed from the target dataset while the source changeset ∆pS t j´tiq and the
target changeset ∆pTt j´tiq are added. After synchronization, the state of the source dataset is S t j “

pS ti Y∆pS t j´tiqY∆pTt j´tiqqzX and the state of the target dataset is Tt j “ pTti Y∆pTt j´tiqY∆pS t j´tiqqzX.
Thus, the inclusion requirement is met.
Strategy IV: This synchronization strategy also respects the changesets of both source and target datasets.
In addition, it includes conflicting triples after resolving the conflicts. Here, we consider the set of triples
in which conflict occurs as X “ tx1 “ ps, p, o1q P S t j ^ x2 “ ps, p, o2q P ∆pTt j´tiq ^ x2 R S t j with
o1 ı o2u. The conflicts over these triples should be resolved. It can be resolved using some resolution
policy as described in [87]. Table 8.1 shows a list of various policies for resolving the conflicts. Conflict
resolution results in a new set of triples called Y whose triples are originated from X but their conflicts
have been resolved. Then, this new set (i.e. Y) is added to the both source and target datasets. After
synchronization, the state of the source dataset is S t j “ ppS ti Y ∆pS t j´tiq Y ∆pTt j´tiqqzXq Y Y and the
state of target dataset is Tt j “ ppTti Y ∆pTt j´tiq Y ∆pS t j´tiqqzXq Y Y . Thus, the inclusion requirement is
met.

8.4.3 Co-evolution Approach

Our approach allows a user to choose a synchronization strategy defined in Section 8.4.2. Below, we
describe the status of the source and target datasets after applying each synchronization strategy.

We define a function CDR (Conflict Detection and Resolution), which (i) identify conflicts for the case
of strategy III and strategy IV, and then (ii) resolve conflicts only in case of strategy IV. Our approach
considers triple-based operations, explained below using seven cases, to identify conflicts. Consider
three triples x1 “ ps, p, o1q, x2 “ ps, p, o2q, and x3 “ ps, p, o3q which are in conflict with each other
x1 P ∆pS t j´tiq ^ x2 P ∆pTt j´tiq ^ x3 P t∆pS t j´tiq ^ ∆pTt j´tiqu ^ o1 ı o2 ı o3. In the following we
present seven cases of evolution causing conflicts. For the first three cases (I-III), the conflict resolution is
straightforward. But for the cases IV-VII, we have to employ a conflict resolution policy to decide about
triples x1 and x2 (DS and AS refers to the deleted and added triples from source dataset, respectively.
Similarly, DT and AT refers to the deleted and added triples from target dataset):

9 Set of conflicting triples selected after considering the inherent characteristics of the involved property. In rest of the chapter,
we say potential conflict a conflict, unless otherwise specified.

115

Chapter 8 Interest-based Update Propagation

Category Policy Function Type Description

Deciding

Roll the dice Any A Pick random value.
Reputation Best Source A Select the value from the preferred dataset.

Cry with the wolves Global vote A
Select the frequently occurring value for the respective
attribute among all entities.

Keep up-to-date First* A Select the first value in order.
Latest* A Select the most recent value.

Filter
Threshold* A

Select the value with a quality score higher than a
given threshold.

Best* A Select the value with highest quality score.
TopN* A Select the N best values.

Mediating Meet in the Middle

Standard deviation,
variance N Apply the corresponding function to get value.

Average, median N Apply the corresponding function to get value.
Sum N Select the sum of all values as the resultant.

Conflict
Ignorance Pass It On Concatenation A Concatenate all the values to get the resultant.

Conflict
Avoidance

Take the Information

Longest S, C, T Select the longest (non-NULL) value.
Shortest S, C, T Select the shortest (non-NULL) value.
Max N Select the maximum value from all.
Min N Select the minimum value from all.

Trust Your Friends
Choose Depending* A

Select the value that belongs to a triple having a specific
given value for another given attribute.

Choose Corresponding A
Select the value that belongs to a triple whose value is
already chosen for another given attribute.

Most Complete* A
Select the value from the dataset (source or target) that has
fewest NULLs across all entities for the respective attribute.

* - requires metadata

Table 8.1: Conflict resolution policies and functions: A - All, S - String, C - Category (i.e., domain values have no
order), T - Taxonomy (i.e., domain values have semi-order), N - Numeric.

‚ Case I: x1 is added to Tt j if x1 is added by the source dataset and x2 is deleted from the target
dataset: x1 P ∆pAS

t j´tiq ^ x2 P ∆pDT
t j´tiq.

‚ Case II: x1 is added to Tt j if x1 is modified by the source dataset and x2 is deleted from the target
dataset: x1 P ∆pAS

t j´tiq ^ x2 P ∆pDS
t j´tiq ^ x2 P ∆pDT

t j´tiq.

‚ Case III: x2 is added to S t j if x1 is deleted from the source dataset and x2 is modified in the target
dataset: x1 P ∆pDS

t j´tiq ^ x2 P ∆pAT
t j´tiq ^ x1 P ∆pDT

t j´tiq.

‚ Case IV: if the triple x1 is added to the source dataset and x2 is added to the target dataset:
x1 P ∆pAS

t j´tiq _ x2 P ∆pAT
t j´tiq.

‚ Case V: if x3 is modified by both source and target datasets: x2 P ∆pAS
t j´tiq

`^x3 P ∆pDS
t j´tiq^x1 P

∆pAT
t j´tiq ^ x3 P ∆pDT

t j´tiq.

‚ Case VI: if x1 is modified by the target dataset: x1 P ∆pAS
t j´tiq ^ x2 P ∆pAT

t j´tiq ^ x1 P ∆pDT
t j´tiq.

‚ Case VII: if x1 is modified by the source dataset: x2 P ∆pAS
t j´tiq ^ x1 P ∆pDS

t j´tiq ^ x1 P ∆pAT
t j´tiq.

As we discussed earlier, whether a conflict between two triple exists depends heavily on the type of
property. Consider two triples ps, p, o1q and ps, p, o2q, if p is rdfs:label, we measure the similarity
between o1 and o2 using the Levenshtein distance. We pick both values of rdfs:label if their
similarity is below a certain threshold otherwise we treat them as conflicting.

116

8.5 iRap: RDF Update Propagation Framework

Figure 8.5: Architecture of the iRap interest-based RDF update propagation framework.

8.5 iRap: RDF Update Propagation Framework

In this section we describe the architecture of our interest-based update propagation framework, iRap,
and its implementation. iRap is implemented in Java using Jena-ARQ. It is available as open-source10

and consists of three modules: (1) Interest Manager (IM), (2) Changeset Manager (CM) and (3) Interest
Evaluator (IE), each of which can be extended to accommodate new or improved functionality.

Changeset evaluation starts after a user registers an interest expression using the IM service, as shown
in Figure 8.5. The CM module fetches a list of changeset folders from interest expressions and regularly
(configurable) checks for new changesets. After downloading and decompressing new changesets, the
CM notifies the IE, which then imports a list of interest expressions registered for this particular changeset
through the IM and initiates the evaluation. Resulting interesting triples are propagated to the target
dataset whereas potentially interesting triples are stored in the potentially interesting dataset (ρ).

8.6 Empirical Evaluation

In this section, we empirically evaluate our proposed approach in two parts. First, we evaluate the interest-
based update propagation approach to confirm the validity and performance of the iRap framework in
propagation of updates where the target dataset is not allowed to evolve over time. In the second part of
the evaluation, we assess the synchronization and conflict resolution strategies. We also study the effect
of conflict identification and resolution strategies on the quality of the datasets using different quality
metrics.

8.6.1 Evaluating iRap Update Propagation

To evaluate the interest-based update propagation approach, we performed experiments on the iRap
framework using changesets published by DBpedia and compared the results with the DBpedia Live

10 https://github.com/EIS-Bonn/iRap

117

https://github.com/EIS-Bonn/iRap

Chapter 8 Interest-based Update Propagation

Date Oct 01 Oct 02 Oct 03 Oct 04-12 Oct 13 Oct 14 Oct 15
Total Changesets 0 1,621 1,755 0 5,352 751 2,578

Table 8.2: Distribution of DBpedia Live changesets published October 01-15, 2014.

CONSTRUCT WHERE {
? f o o t b a l l e r a dbo : S o c c e r P l a y e r .
? f o o t b a l l e r f o a f : name ?name .
? f o o t b a l l e r dbo : team ? team .
? team r d f s : l a b e l ? teamName .

}

Listing 8.5: I1 – Football interest query

CONSTRUCT WHERE {
? l o c a t i o n a ? t y p e .
? l o c a t i o n wgs : l ong ? long .
? l o c a t i o n wgs : l a t ? l a t .
? l o c a t i o n r d f s : l a b e l ? l a b e l .
? l o c a t i o n dbo : a b s t r a c t ? a b s t r a c t .
OPTIONAL {
? l o c a t i o n d c t e r m s : s u b j e c t ? s u b j e c t

}
}

Listing 8.6: I2 – Location interest query

Mirror tool. The comparison considers two cases: using iRap to update a previously-established local
replica of i) an entire remote dataset ii) a subset of a remote dataset. These two cases simulate two ways
in which iRap can be used: i) using interest-based changeset propagation for future updates of a local
copy of a large dataset or ii) starting with a new subset of the large dataset. Both cases will only consider
strategy I, in Section 8.4.2.

Experimental Setting

In order to test our approach we used the DBpedia dump11 of September 30, 2014 for the initial setup
of the target datasets for two different application domains, namely, Location and Football datasets.
Changesets published between October 01 and October 15, 2014 were used for evaluation (see Table 8.2).
Changesets are not sequential with modified date but with extraction from DBpedia Live, as discussed
in the DBpedia mailing list. Initially we set up two Jena TDB datasets for each target dataset from the
DBpedia dump. We loaded all triples from the dump to the Location dataset, whereas for the Football
dataset we only loaded a slice corresponding to interesting triples matching Listing 8.5. Initially, the
Location dataset contains all triples from DBpedia yielding a total of 3 billion triples, whereas the
Football dataset contains only 265,622 triples. A total of 12,057 changesets (pairs of removed and added
.nt.gz files) have been published in the evaluation timeframe. The evaluation comprises two interest
expressions, I1 and I2. I1 comprises a non-disjoint BGP containing 4 triple patterns with a maximum
of two variables per triple pattern (object-subject join), Listing 8.5. I2 comprises a non-disjoint BGP
containing 5 triple patterns with a maximum of two variables per triple pattern (subject-subject joins) and
one an OGP containing one triple pattern, Listing 8.6.

We set up two target datasets and potentially interesting dataset using Jena TDB and jena-fuseki for
each dataset. The potentially interesting dataset stores potentially interesting triples for each interest
expression within a named graph. All experiments were carried out on a 64-bit machine with Windows 7,
Intel(R) Core i7-4770 CPU, 16GB RAM and 1TB HD.

11 http://live.dbpedia.org/dumps/dbpedia_2014_09_30_00_00.fixed.ttl.gz

118

http://live.dbpedia.org/dumps/dbpedia_2014_09_30_00_00.fixed.ttl.gz

8.6 Empirical Evaluation

Day Total Interesting Total Interesting Potentially Elapsed
Removed Removed Added Added Interesting (in minutes)

1 1,895,179 9,065 2,051,976 184 169,554 15.18
2 1,748,511 4,865 2,384,232 155 168,856 20.85
3 1,716 0 10,728,855 45,429 684,491 69.86
4 449 0 1,522,939 7,970 97,300 10.17
5 1,677 0 5,234,788 19,598 333,232 60.06

Table 8.3: Comparison of results for Football App

Day Total Interesting Total Interesting Potentially Elapsed
Removed Removed Added Added Interesting (in minutes)

1 1,895,179 77,377 2,051,976 7,093 430376 166.59
2 1,748,511 82,461 2,384,232 7,301 509,972 242.62
3 1,716 0 10,728,855 259,587 2,002,271 417.87
4 449 0 1,522,939 27,292 280,718 64.41
5 1,677 0 5,234,788 100,073 972,284 176.78

Table 8.4: Comparison of results for Location App

Results and Discussion

Figure 8.6 and Figure 8.7 summarizes our experimental results for two target datasets shows the growth of
the potentially interesting dataset. Results of the interest evaluation for the Football dataset are presented
in Table 8.3. From the overall changesets considered for this evaluation, in Table 8.2, only 0.38% of
the removed and 0.335% of the added triples were identified as interesting for the Football dataset. The
average changeset publication interval was 18.81s and average time required for a changeset evaluation
is 0.87s. This shows that iRap efficiently performs changeset propagations way before the next changeset
is published.

Results of the interest evaluation for the Location dataset are shown in Table 8.4. From the overall
changesets considered for this evaluation, in Table 8.2, only 4.38% of the removed and 1.81% of the
added triples were interesting for the Location dataset. The average time spent for a changeset evaluation
is 5.31s. The interest evaluation for the Location dataset takes longer than Football dataset, because of
the number of triples in the target dataset was the full DBpedia. Figure 8.6a shows the number of triples
published per day and the number of interesting triples and potentially interesting triples found from
interest evaluation for Football dataset. Figure 8.6b shows the dataset growth comparison between iRap
and a full mirror approach. As the figure clearly shows, iRap managed datasets are almost two orders of
magnitude smaller and grow much slower than with a mirror approach. Note that the growth for each
datasets is calculated by subtracting the number of removed triples from and adding the number of added
triples to the total number of triples in the dataset.

We observed a logarithmic growth of the potentially interesting dataset for Location and Football
datasets. This is due to the number of variables used in triple patterns, and the number and type of triple
patterns in interest expression. For example, the Football dataset interest query contains the common
predicates foaf:name and rdfs:label which are used in almost all resources and thus result in
many potentially interesting triples. Again, the average processing time per changeset is always way
below the average time between two changesets. The correctness of the resulting triples from the first
changesets, for Football dataset interest expression, was checked by manual inspection.

8.6.2 Evaluating Co-evolution Strategies

In order to assess the co-evolution approach for synchronization and conflict identification/resolution, we
prepare a testbed based on a slice of DBpedia using the following Interest Expression, I, query:

CONSTRUCT WHERE {

119

Chapter 8 Interest-based Update Propagation

(a) Changes per day (b) Dataset growth

Figure 8.6: Evaluation results for Football dataset.

(a) Changes per day (b) Dataset growth

Figure 8.7: Evaluation results for Location dataset.

? s a P o l i t i c i a n ;
f o a f : name ?name ;
dbo : n a t i o n a l i t y ? n a t i o n a l i t y ;
dbo : a b s t r a c t ? a b s t r a c t ;
dbp : p a r t y ? p a r t y ;
dbp : o f f i c e ? o f f i c e

OPTIONAL { ? s f o a f : d e p i c t i o n ? d e p i c t i o n }
}

The extracted dataset is used as the initial source and target dataset. Then, we collect a series of
changesets from DBpedia-live published from September 01, 2015 to October 31, 2015 using iRap [106].
We found a total of 304 changesets. These changesets are leveraged to simulate updates of the source
and target datasets. We randomly select a total of 91 addition parts of changesets and altered values
of their triples. Table 8.5 provides the number of triples of initial target, source and their associated
changesets before synchronization. Initially, we have 200082 triples with 163114 unique objects in Tti
where ti “ S eptember01, 2015.

120

8.6 Empirical Evaluation

St i Tt i ∆pSt j´t i q
` ∆pSt j´t i q

´ ∆pTt j´t i q
` ∆pTt j´t i q

´

200082 200082 948 160 11725 81

Table 8.5: Number of triples in the source, target, and changesets for a given time frame

Results and Discussion

Given a timeframe ti ´ t j
12, the goal is to synchronize source and target datasets. To do that, we define

five different scenarios. In four scenarios, we apply subsequently the strategy (I-IV) over all predicates
of the changesets and measure the performance. For the last scenario, we apply two strategies in a
combined form on the changesets where we select strategy IV for predicate dbp:office, and strategy I for
predicates dbp:party, dbo:nationality, rdf:type, foaf:name, dbo:abstract, and foaf:depiction. For all
predicates using strategy IV, we select the resolution function ’any’. Table 8.6 provides the number of
triples produced as a result of synchronizing S ti and Tti in each scenario. The updated changesets are
sent back to the source and target for synchronization purpose. The number of conflicting triples found
in scenarios 3, 4, and 5 are shown in Table8.6.

Scenario ∆pSt j´t i q
` ∆pSt j´t i q

´ ∆pTt j´t i q
` ∆pTt j´t i q

´ Conflicting triples RunTime (seconds)
1 0 0 948 160 - 0.0
2 0 0 11725 81 - 0.0
3 11682 81 12060 81 343 0.5
4 11800 195 12186 81 343 2.0
5 5227 131 6081 121 186 0.2

Table 8.6: Results of synchronization

The running time of the five different scenarios is also shown in Table 8.6 (These times are recorded
only for the execution of synchronization part and do not include data loading time). Evaluation showed
that strategy IV (performed in scenario IV) needs more time even from strategy III (performed in scenario
III) where all conflicts were detected but not resolved.

Synchronization influences data quality specially in terms of data consistency. To evaluate the
usefulness of the synchronization approach, we use three data quality metrics i.e. (1) completeness, (2)
conciseness, and (3) consistency described as follows:

1. Completeness refers to the degree to which all required information is present in a dataset [111].
We measure it for source and target changesets to identify which helps more in completeness. We
measure it using

Number o f unique triples in synchronised dataset
Number o f unique triples in pinitial dataset Y changesetq

2. Consistency states that the values should not be conflicting. We measure it using

Number o f non-con f licting triples in synchronized dataset
Number o f triples in pinitial dataset Y source and target changesetsq

3. Conciseness measures the degree to which the dataset does not contain redundant information
using

Number o f unique triples in dataset
Number o f all triples in dataset

12 09/01/2015-10/31/2015.

121

Chapter 8 Interest-based Update Propagation

Conciseness (before synchronization) is computed using initial target dataset and source and target
changesets. We compute these metrics for all the assumed scenarios, the results are shown in Table 8.7.
For our sample case study, we found almost equal contribution of both source and target changesets
in reducing the missing information. However, we found minimum 163,191 number of unique objects
using strategy II and maximum 163,591 number of unique objects using strategy IV. Note that strategy
1 and strategy II may not necessarily increase the number of unique triples as they do not consider
about conflicts. It can be observed by analyzing the scenario 1 where the role of source changesets in
completeness is 99% which is less than the target contribution. Through evaluation, we found significant
increase in conciseness for all strategies.

Scenario Completeness
(source)

Completeness
(target) Consistency

Conciseness
(before synchron-
ization)

Conciseness (after
synchronization)

1 99% 100% - 77% 81%
2 99% 99% - 77% 81%
3 99% 100% 94% 77% 81%
4 99% 100% 94% 77% 81%
5 99% 100% - 77% 81%

Table 8.7: Synchronization effect on completeness, consistency, and conciseness

8.7 Summary

In this chapter, we present a novel approach for interest-based RDF update propagation that consistently
maintains a full or partial replication of large LOD datasets and to deal with co-evolution, which refers to
mutual propagation of the changes between a replica and its origin dataset. We demonstrate the validity
of the approach through detailed formalization and their application in a reference implementation of
the iRap Framework. Furthermore, we demonstrate the approach using formal definitions of all the
concepts required for realizing co-evolution of RDF datasets and implemented it using different strategies.
Using the co-evolution process, we address synchronization and conflict resolution issues. A thorough
evaluation of the approach is performed using large-scale real-world data dumps and changesets regularly
provided by a renowned LOD dataset. The results of the evaluation indicates that our method can
significantly cut down on both the size of the data updates required to consistently maintain a localized
dataset replication up-to-date, as well as the speed by which such updates can take place. We evaluate the
co-evolution approach using data quality metrics completeness, conciseness, and consistency. The results
of the evaluation indicates that our method can significantly improve the quality of dataset.

122

CHAPTER 9

Conclusions and Future Directions

In this thesis, we study the problem of federated query processing over autonomous, distributed, and
heterogeneous data sources in a Semantic Data Lake. We also study the problem of data update
propagation and co-evolution of datasets when data need to be synchronized between the original and
target sources. Different techniques and frameworks that can help transform Big Data to actionable
knowledge are presented. In particular, we propose a model to describe data sources that are member of
the federation, i.e., part of the Semantic Data Lake, as well as techniques to express update interests and
strategies for conflict resolution between co-evolving data sources. Furthermore, we propose techniques
for data source selection, query decomposition, and execution plan generation considering the variety
dimension of the underlying data sources as well as their privacy and access control policies.

9.1 Revisiting the Research Questions

RQ1: How can we describe the semantics encoded in heterogeneous data sources?

Chapter 4 present the proposed data source description model, i.e., RDF Molecule Template (RDF-
MT), for autonomous, distributed, and heterogeneous data sources. RDF-MTs are an abstract description
of entities in the Semantic Data Lake that represent the same semantic concept. RDF-MTs also describe
implementation of different parts of the RDF molecules that is stored in each data sources in the federation.
We present a high-level analysis of different state-of-the-art benchmarks using RDF-MTs and provide
a birds-eye view of different characteristics of each federation. We evaluate the performance of a
query engine using RDF-MT based source description compared to descriptions generated using other
graph partitioning techniques. The results show that RDF-MT based source descriptions improve the
performance of the federated query engine in terms of total execution time as well as answer completeness.
Therefore, we can conclude that RDF-MT based source descriptions capture the semantics encoded in
heterogeneous data sources and improved the performance of federated query processing.

RQ2: How can features represent in data source descriptions be employed to guide the query
processing over heterogeneous data sources?

To answer this research question, we employ the proposed data source description model, i.e., RDF-
MTs, and devise techniques for query decomposition, source selection, and planning and optimization.
First, in Chapter 5, we present the source selection and query decomposition technique, the MULDER

123

Chapter 9 Conclusions and Future Directions

approach, that exploit the RDF Molecule Template based source description model. We evaluate the
MULDER approach over three different benchmarks for evaluating federated SPARQL query engine, thus,
focusing on the source selection and query decomposition sub-problem of federated query processing.
MULDER also employ RDF-MTs for query planning and optimization over RDF data sources in
the federation. We compare the MULDER federated query engine against state-of-the-art federated
SPARQL query engines; the observed results show that MULDER is able to minimize execution time
and maximize answer completeness compared to the state-of-the-art federated query engines. Then,
in Chapter 6, we present the query planning and optimization technique, the Ontario approach, in the
presence of heterogeneous data sources in the federation. The Ontario approach exploits the RDF-MT
based source description model to guide the optimization of execution plan. Ontario employs a heuristic
based optimizer that considers the heterogeneity of data sources as described by the RDF-MTs and
the characteristics of the star-shaped groups to find an efficient execution plan. The evaluation results
show that even though, data sources behave differently on different characteristics of star-shaped groups,
Ontario is able to create efficient and effective plans where physical operators are selected correctly.
Both MULDER, as federated query engine over homogeneous data sources, and Ontario, as a federated
query engine over heterogeneous data sources, are able to exploit the features represented in RDF-MT
based data source descriptions to maximize answer completeness and minimize execution time. Hence,
we can conclude that the proposed techniques outperform state-of-the-art techniques by employing the
RDF-MT based source descriptions to guide the query processing against distributed, autonomous, and
heterogeneous data sources in a Semantic Data Lake.

RQ3: How can privacy and access control requirements be encoded in data source descriptions
and be used for enforcement during query processing over federation of data sources?

Chapter 7 present the privacy-aware data source descriptions and federated query processing techniques.
The privacy and access control policies of each data sources in a federation are encoded in a privacy-
aware RDF-MTs; i.e., RDF-MTs are able to encode privacy and access control requirements. We
present a privacy-aware federated query processing engine, the BOUNCER approach, that is able to
employ the privacy-aware RDF-MTs during source selection, query decomposition, and execution
plan generation. We empirically evaluate the effectiveness and efficiency of BOUNCER; the results
showed that BOUNCER is able to minimize execution time as well as maximize answer completeness by
selecting the data sources correctly and generating valid query plans that enforce the privacy and access
control requirements of the data sources. We show that the RDF-MT based source descriptions can
encode the privacy and access control requirements set by data providers at different level of granularity.
Privacy-aware RDF-MT based source description enables a privacy-aware federated query processing
technique to select relevant data sources as well as to generate a valid execution plan that can provide
results to answer the given query without violating the such requirements within a reasonable time.

RQ4: How can data source descriptions be used for propagation of updates for managing
(co)evolution of data sources?

In Chapter 8, we present the interest-based update propagation and co-evolution approach. We
propose a graph-pattern based technique to define update interests and formalize the problem of interest-
based update propagation. We show that RDF-MTs can encode such interest expression for updates,
hence, called evolving RDF-MTs. We implement an update propagation framework, iRap, based on
our formal definition of the problem of update propagation that propagates updates from the original
data source to its replicas by filtering on interesting parts of updates. When mutual propagation of

124

9.2 Open Issues and Future Directions

updates between original and replica data sources is allowed, i.e., co-evolution of data sources, different
conflicts may arise. We propose different synchronization strategies to manage co-evolution of data
source and employ different types of conflict resolution policies and functions. The evaluation results
show that the interest-based update propagation approach reduced the amount of data required to be
transferred and handled by application in several order of magnitude. Furthermore, synchronization
and conflict resolution techniques are able to improve the quality of data sources evaluated in three
data quality metrics; completeness, conciseness, and consistency. We also show that RDF-MT based
source descriptions can encode update interest expression to describe interest in propagating updates for
evolving RDF-MTs. We argue that the proposed technique enables applications to access only interesting
and up-to-date data stored locally, in their premises, and be able to co-evolve with the original data source
without compromising data quality.

9.2 Open Issues and Future Directions

In this section, we describe open issues and future direction of this work. The first open challenge to be
tackled is the creation of mappings from raw data to ontology concepts. Though creating such mappings
manually leads to higher accuracy, it could become unmanageable when the number of documents
grows. Machine learning based techniques can be used to aid this process by suggesting concepts to
label and filter possible equivalences between data points. Furthermore, our source description approach
performs no further processing on RDF-MTs when equivalent semantic concepts are expressed in
different ontologies. We are aware that there are some existing approaches with regard to ontology
alignment. Another open challenge lies on privacy and access control enforcement over a set of queries.
As some pieces of data can be derived by combing other data points, our approach is limited to only
single query request, i.e., only privacy and access policies for a given query is enforced. We consider this
as a limitation of scope which can further be extended to consider multiple requests and definition of
policies over combination of predicates. We envision the following future works:

‚ Replication-aware federated query processing. Extend the techniques to be replication aware
when selection data sources and generating efficient query execution plan. The replications can
be at level of RDF-MTs or data source as a whole. RDF molecules can be replicated across data
sources in the Semantic Data Lake. In such cases, the federated query processing technique should
be able to utilize this during source selection, decomposition and planning.

‚ Selective knowledge graph materialization. As the increase in number of heterogeneous data
sources and their volume could negatively affect the performance of query processing, material-
ization of the knowledge graph can be an option for applications that require high latency. The
Ontario approach can be extended to generate a materialized knowledge graph on-demand from a
set of RDF-MTs in the data source description. RDF-MTs can encode required predicates and data
sources to materialize the knowledge graph.

‚ Semantic labeling for mapping generation. As the data sources in the Semantic Data Lake
comprises heterogeneous data sources, semantic labeling of entities and predicates is very important
to make data sources interoperable. In this thesis, we assume such labeling is already defined and
represented by a rule-based mappings. This could become cumbersome, when the number of data
sources are large. Semantic Data Lakes could contains thousands to hundreds of thousands of
documents, data files, and tables, automatic labeling with human in the loop becomes the way to
ease the semantic labeling creation process.

125

Chapter 9 Conclusions and Future Directions

‚ Efficient wrappers for heterogeneous sources. Especially for big volume data sources, wrappers
are the main bottlenecks for federated query processing engines. Specifically for data sources that
have inefficient local execution engines and insufficient resources for processing queries, efficient
wrappers can play an important role in minimizing the overall execution time. They could be
adaptive to the conditions of the sources and communicate the status with the federated query
engine, so that the execution plan can exploit this information and adopt its plan accordingly.

‚ Efficient RDF-MT creation and updates for frequently evolving data sources. RDF-MT based
source descriptions should be maintained and up-to-date when data sources change. Efficient
RDF-MT creation and maintenance is important.

‚ Question answering over federation of data sources. The RDF-MT based source descriptions
can be exploited for query translation over a federation of data sources. Current state-of-the-art
query generation techniques for question answering employs a walk over a centralized knowledge
graph [112]. Albeit effective, these techniques suffer from high latency of the query generation and
execution. The RDF-MT based source descriptions can be extended to encode information that can
be exploited for generating a query which can then be executed over a federation of data sources.

‚ Extend the Ontario approach to support streaming data sources. Data in motion can be part
of the federation of data sources. In this thesis, we address some of the challenges in transforming
Big Data to actionable knowledge mainly focusing on variety and volume. Another interesting
direction for the Ontario approach to address in the future would be the velocity dimension, data
in motion, of Big Data.

9.3 Closing Remarks

The growing amount of data being available on the Web demands efficient data integration approaches
able to transform Big Data into actionable knowledge on which decisions can be made. Transforming
Big Data into actionable knowledge demands novel and scalable techniques for enabling not only Big
Data ingestion and curation, but also for efficient large-scale semantic data integration, exploration, and
discovery. In this thesis, we have shown the proposed semantic description of data sources positively
impacted federated query processing techniques, and allows for improving both answer completeness and
query execution time. Moreover, we showed that RDF-Molecule Templates based source descriptions
allows to define a higher granularity of privacy and access control policies over sensitive data and for
describing update interest over an evolving datasets. Finally, the approaches presented in this thesis and
the pieces of software produced are being applied to different application domains and taking part in
European research projects, e.g., WDAqua1, iASiS2, QualiChain3, and BigDataEurope4.

1 http://wdaqua.eu
2 http://project-iasis.eu
3 http://qualichain-project.eu
4 https://www.big-data-europe.eu

126

http://wdaqua.eu
http://project-iasis.eu
http://qualichain-project.eu
https://www.big-data-europe.eu

Bibliography

[1] A. Oussous, F.-Z. Benjelloun, A. A. Lahcen and S. Belfkih, Big Data technologies: A survey,
Journal of King Saud University - Computer and Information Sciences 30 (2018) 431,
issn: 1319-1578, url: http:
//www.sciencedirect.com/science/article/pii/S1319157817300034
(cit. on pp. 1, 71).

[2] A. Gandomi and M. Haider, Beyond the hype: Big data concepts, methods, and analytics,
Int J. Information Management 35 (2015) 137,
url: https://doi.org/10.1016/j.ijinfomgt.2014.10.007 (cit. on pp. 1, 71).

[3] A. Doan, A. Y. Halevy and Z. G. Ives, Principles of Data Integration, Morgan Kaufmann, 2012,
isbn: 978-0-12-416044-6, url: http://research.cs.wisc.edu/dibook/
(cit. on pp. 1, 5, 13, 14, 17, 18, 26, 28, 42).

[4] P. Sawadogo, E. Scholly, C. Favre, E. Ferey, S. Loudcher and J. Darmont,
Metadata Systems for Data Lakes: Models and Features, CoRR abs/1909.09377 (2019),
arXiv: 1909.09377, url: http://arxiv.org/abs/1909.09377 (cit. on p. 2).

[5] F. Ravat and Y. Zhao, “Data Lakes: Trends and Perspectives”,
Database and Expert Systems Applications - 30th International Conference, DEXA 2019, Linz,
Austria, August 26-29, 2019, Proceedings, Part I,
ed. by S. Hartmann, J. Küng, S. Chakravarthy, G. Anderst-Kotsis, A. M. Tjoa and I. Khalil,
vol. 11706, Lecture Notes in Computer Science, Springer, 2019 304, isbn: 978-3-030-27614-0,
url: https://doi.org/10.1007/978-3-030-27615-7%5C_23 (cit. on p. 2).

[6] S. Auer, S. Scerri, A. Versteden, E. Pauwels, A. Charalambidis, S. Konstantopoulos, J. Lehmann,
H. Jabeen, I. Ermilov, G. Sejdiu, A. Ikonomopoulos, S. Andronopoulos, M. Vlachogiannis,
C. Pappas, A. Davettas, I. A. Klampanos, E. Grigoropoulos, V. Karkaletsis, V. de Boer,
R. Siebes, M. N. Mami, S. Albani, M. Lazzarini, P. Nunes, E. Angiuli, N. Pittaras,
G. Giannakopoulos, G. Argyriou, G. Stamoulis, G. Papadakis, M. Koubarakis, P. Karampiperis,
A. N. Ngomo and M. Vidal,
“The BigDataEurope Platform - Supporting the Variety Dimension of Big Data”,
Web Engineering - 17th International Conference, ICWE 2017, Rome, Italy, June 5-8, 2017,
Proceedings, ed. by J. Cabot, R. D. Virgilio and R. Torlone, vol. 10360,
Lecture Notes in Computer Science, Springer, 2017 41, isbn: 978-3-319-60130-4,
url: https://doi.org/10.1007/978-3-319-60131-1%5C_3 (cit. on pp. 2, 17).

[7] M. K. Saggi and S. Jain,
A survey towards an integration of big data analytics to big insights for value-creation,
Inf. Process. Manage. 54 (2018) 758,
url: https://doi.org/10.1016/j.ipm.2018.01.010 (cit. on p. 13).

127

http://dx.doi.org/https://doi.org/10.1016/j.jksuci.2017.06.001
http://www.sciencedirect.com/science/article/pii/S1319157817300034
http://www.sciencedirect.com/science/article/pii/S1319157817300034
http://dx.doi.org/10.1016/j.ijinfomgt.2014.10.007
https://doi.org/10.1016/j.ijinfomgt.2014.10.007
http://research.cs.wisc.edu/dibook/
http://arxiv.org/abs/1909.09377
http://arxiv.org/abs/1909.09377
https://doi.org/10.1007/978-3-030-27615-7%5C_23
https://doi.org/10.1007/978-3-319-60131-1%5C_3
http://dx.doi.org/10.1016/j.ipm.2018.01.010
https://doi.org/10.1016/j.ipm.2018.01.010

Bibliography

[8] M. Lenzerini, “Data Integration: A Theoretical Perspective”,
Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, June 3-5, Madison, Wisconsin, USA,
ed. by L. Popa, S. Abiteboul and P. G. Kolaitis, ACM, 2002 233, isbn: 1-58113-507-6,
url: https://doi.org/10.1145/543613.543644 (cit. on pp. 13, 14).

[9] M. Friedman, A. Y. Levy and T. D. Millstein, “Navigational Plans for Data Integration”,
Proceedings of the IJCAI-99 Workshop on Intelligent Information Integration, Held on July 31,
1999 in conjunction with the Sixteenth International Joint Conference on Artificial Intelligence
City Conference Center, Stockholm, Sweden, vol. 23, CEUR Workshop Proceedings,
CEUR-WS.org, 1999,
url: http://ceur-ws.org/Vol-23/friedman-ijcai99-iii.ps (cit. on p. 14).

[10] A. Y. Halevy, Answering queries using views: A survey, VLDB J. 10 (2001) 270,
url: https://doi.org/10.1007/s007780100054 (cit. on p. 14).

[11] A. Y. Levy, A. Rajaraman and J. J. Ordille,
“Querying Heterogeneous Information Sources Using Source Descriptions”,
VLDB’96, Proceedings of 22th International Conference on Very Large Data Bases, September
3-6, 1996, Mumbai (Bombay), India,
ed. by T. M. Vijayaraman, A. P. Buchmann, C. Mohan and N. L. Sarda, Morgan Kaufmann, 1996
251, isbn: 1-55860-382-4, url: http://www.vldb.org/conf/1996/P251.PDF
(cit. on p. 14).

[12] J. D. Ullman, “Information Integration Using Logical Views”, Database Theory - ICDT ’97, 6th
International Conference, Delphi, Greece, January 8-10, 1997, Proceedings,
ed. by F. N. Afrati and P. G. Kolaitis, vol. 1186, Lecture Notes in Computer Science,
Springer, 1997 19, isbn: 3-540-62222-5,
url: https://doi.org/10.1007/3-540-62222-5%5C_34 (cit. on p. 14).

[13] M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems, Second Edition,
Prentice-Hall, 1999 (cit. on pp. 14, 15, 27).

[14] M. Chen, S. Mao and Y. Liu, Big Data: A Survey, MONET 19 (2014) 171,
url: https://doi.org/10.1007/s11036-013-0489-0 (cit. on p. 16).

[15] I. G. Terrizzano, P. M. Schwarz, M. Roth and J. E. Colino,
“Data Wrangling: The Challenging Yourney from the Wild to the Lake”,
CIDR 2015, Seventh Biennial Conference on Innovative Data Systems Research, Asilomar, CA,
USA, January 4-7, 2015, Online Proceedings, www.cidrdb.org, 2015,
url: http://cidrdb.org/cidr2015/Papers/CIDR15%5C_Paper2.pdf
(cit. on p. 17).

[16] T. Berners-Lee, Linked Data,
https://www.w3.org/DesignIssues/LinkedData.html,
[Online; accessed 19-July-2019], 2006 (cit. on p. 18).

[17] C. Bizer, T. Heath and T. Berners-Lee, Linked Data - The Story So Far,
Int. J. Semantic Web Inf. Syst. 5 (2009) 1,
url: https://doi.org/10.4018/jswis.2009081901 (cit. on p. 18).

[18] David Peterson, Shudi (Sandy) Gao, Ashok Malhotra, C. M. Sperberg-McQueen, Henry S.
Thompson, W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes., (2012),
url: https://www.w3.org/TR/xmlschema11-2/. (cit. on p. 18).

128

https://doi.org/10.1145/543613.543644
http://ceur-ws.org/Vol-23/friedman-ijcai99-iii.ps
http://dx.doi.org/10.1007/s007780100054
https://doi.org/10.1007/s007780100054
http://www.vldb.org/conf/1996/P251.PDF
https://doi.org/10.1007/3-540-62222-5%5C_34
http://dx.doi.org/10.1007/s11036-013-0489-0
https://doi.org/10.1007/s11036-013-0489-0
http://cidrdb.org/cidr2015/Papers/CIDR15%5C_Paper2.pdf
https://www.w3.org/DesignIssues/LinkedData.html
http://dx.doi.org/10.4018/jswis.2009081901
https://doi.org/10.4018/jswis.2009081901
https://www.w3.org/TR/xmlschema11-2/.

Bibliography

[19] M. D. A. Phillips, Tags for Identifying Languages,
https://tools.ietf.org/html/rfc5646, [Online; accessed 19-July-2019], 2009
(cit. on p. 18).

[20] P. F. P.-S. Patrick J. Hayes, RDF 1.1 Semantics., (2014),
url: http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/. (cit. on p. 18).

[21] J. Pérez, M. Arenas and C. Gutiérrez, Semantics and complexity of SPARQL,
ACM Trans. Database Syst. 34 (2009) 16:1,
url: https://doi.org/10.1145/1567274.1567278 (cit. on pp. 18, 23).

[22] P. Hayes and P. Patel-Schneider, RDF 1.1 semantics., (2014),
url: http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/. (cit. on p. 18).

[23] J. D. Fernández, A. Llaves and Ó. Corcho,
“Efficient RDF Interchange (ERI) Format for RDF Data Streams”,
The Semantic Web - ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda,
Italy, October 19-23, 2014. Proceedings, Part II, ed. by P. Mika, T. Tudorache, A. Bernstein,
C. Welty, C. A. Knoblock, D. Vrandecic, P. T. Groth, N. F. Noy, K. Janowicz and C. A. Goble,
vol. 8797, Lecture Notes in Computer Science, Springer, 2014 244, isbn: 978-3-319-11914-4,
url: https://doi.org/10.1007/978-3-319-11915-1%5C_16 (cit. on pp. 19, 42).

[24] A. S. E. Prud’hommeaux, SPARQL Query Language for RDF., (2008),
url: http://www.w3.org/TR/rdf-sparql-query/. (cit. on p. 20).

[25] M. Arenas, C. Gutiérrez and J. Pérez, “Foundations of RDF Databases”,
Reasoning Web. Semantic Technologies for Information Systems, 5th International Summer
School 2009, Brixen-Bressanone, Italy, August 30 - September 4, 2009, Tutorial Lectures, ed. by
S. Tessaris, E. Franconi, T. Eiter, C. Gutiérrez, S. Handschuh, M. Rousset and R. A. Schmidt,
vol. 5689, Lecture Notes in Computer Science, Springer, 2009 158, isbn: 978-3-642-03753-5,
url: https://doi.org/10.1007/978-3-642-03754-2%5C_4 (cit. on pp. 20, 22).

[26] M. Schmidt, M. Meier and G. Lausen, “Foundations of SPARQL query optimization”,
Database Theory - ICDT 2010, 13th International Conference, Lausanne, Switzerland, March
23-25, 2010, Proceedings, ed. by L. Segoufin, ACM International Conference Proceeding Series,
ACM, 2010 4, isbn: 978-1-60558-947-3,
url: https://doi.org/10.1145/1804669.1804675 (cit. on pp. 21–23).

[27] M. Vidal, S. Castillo, M. Acosta, G. Montoya and G. Palma,
On the Selection of SPARQL Endpoints to Efficiently Execute Federated SPARQL Queries,
Trans. Large-Scale Data- and Knowledge-Centered Systems, Lecture Notes in Computer Science
25 (2016) 109, ed. by A. Hameurlain, J. Küng and R. R. Wagner,
url: https://doi.org/10.1007/978-3-662-49534-6%5C_4
(cit. on pp. 22, 33, 62).

[28] R. C. Souripriya Das Seema Sundara, R2RML: RDB to RDF Mapping Language., (2012),
url: http://www.w3.org/TR/2012/REC-r2rml-20120927/. (cit. on p. 23).

[29] M. Saleem, Y. Khan, A. Hasnain, I. Ermilov and A. N. Ngomo,
A fine-grained evaluation of SPARQL endpoint federation systems, Semantic Web 7 (2016) 493,
url: https://doi.org/10.3233/SW-150186 (cit. on pp. 27, 28).

129

https://tools.ietf.org/html/rfc5646
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/.
http://dx.doi.org/10.1145/1567274.1567278
https://doi.org/10.1145/1567274.1567278
http://www.w3.org/TR/2014/REC-rdf11-mt-20140225/.
https://doi.org/10.1007/978-3-319-11915-1%5C_16
http://www.w3.org/TR/rdf-sparql-query/.
https://doi.org/10.1007/978-3-642-03754-2%5C_4
https://doi.org/10.1145/1804669.1804675
http://dx.doi.org/10.1007/978-3-662-49534-6_4
http://dx.doi.org/10.1007/978-3-662-49534-6_4
https://doi.org/10.1007/978-3-662-49534-6%5C_4
http://www.w3.org/TR/2012/REC-r2rml-20120927/.
http://dx.doi.org/10.3233/SW-150186
https://doi.org/10.3233/SW-150186

Bibliography

[30] M. Acosta, O. Hartig and J. F. Sequeda, “Federated RDF Query Processing”,
Encyclopedia of Big Data Technologies. Ed. by S. Sakr and A. Y. Zomaya, Springer, 2019,
isbn: 978-3-319-63962-8,
url: https://doi.org/10.1007/978-3-319-63962-8%5C_228-1 (cit. on p. 27).

[31] D. Oguz, B. Ergenc, S. Yin, O. Dikenelli and A. Hameurlain,
Federated query processing on linked data: a qualitative survey and open challenges,
Knowledge Eng. Review 30 (2015) 545,
url: https://doi.org/10.1017/S0269888915000107 (cit. on pp. 28, 29).

[32] T. Ibaraki and T. Kameda, On the Optimal Nesting Order for Computing N-Relational Joins,
ACM Trans. Database Syst. 9 (1984) 482,
url: https://doi.org/10.1145/1270.1498 (cit. on p. 29).

[33] T. Urhan and M. J. Franklin, XJoin: A Reactively-Scheduled Pipelined Join Operator,
IEEE Data Eng. Bull. 23 (2000) 27,
url: http://sites.computer.org/debull/A00JUN-CD.pdf (cit. on p. 29).

[34] M. Acosta, M. Vidal, T. Lampo, J. Castillo and E. Ruckhaus,
“ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints”,
The Semantic Web - ISWC 2011 - 10th International Semantic Web Conference, Bonn, Germany,
October 23-27, 2011, Proceedings, Part I, ed. by L. Aroyo, C. Welty, H. Alani, J. Taylor,
A. Bernstein, L. Kagal, N. F. Noy and E. Blomqvist, vol. 7031,
Lecture Notes in Computer Science, Springer, 2011 18, isbn: 978-3-642-25072-9,
url: https://doi.org/10.1007/978-3-642-25073-6%5C_2
(cit. on pp. 29, 33, 36, 55–57, 62, 73, 78, 89).

[35] A. Schultz, A. Matteini, R. Isele, P. Mendes, C. Bizer and C. Becker,
“LDIF-A Framework for Large-Scale Linked Data Integration”,
21st International World Wide Web Conference (WWW2012), 2012 (cit. on p. 32).

[36] P. Haase, M. Schmidt and A. Schwarte,
“The Information Workbench as a Self-Service Platform for Linked Data Applications”,
Proceedings of the Second International Workshop on Consuming Linked Data (COLD2011),
Bonn, Germany, October 23, 2011, ed. by O. Hartig, A. Harth and J. F. Sequeda, vol. 782,
CEUR Workshop Proceedings, CEUR-WS.org, 2011,
url: http://ceur-ws.org/Vol-782/HaaseEtAl%5C_COLD2011.pdf
(cit. on p. 32).

[37] C. Morbidoni, D. L. Phuoc, A. Polleres, M. Samwald and G. Tummarello,
“Previewing Semantic Web Pipes”,
The Semantic Web: Research and Applications, 5th European Semantic Web Conference, ESWC
2008, Tenerife, Canary Islands, Spain, June 1-5, 2008, Proceedings,
ed. by S. Bechhofer, M. Hauswirth, J. Hoffmann and M. Koubarakis, vol. 5021,
Lecture Notes in Computer Science, Springer, 2008 843, isbn: 978-3-540-68233-2,
url: https://doi.org/10.1007/978-3-540-68234-9%5C_70 (cit. on p. 32).

[38] J. Michelfeit and T. Knap, “Linked Data Fusion in ODCleanStore”, Proceedings of the ISWC
2012 Posters & Demonstrations Track, Boston, USA, November 11-15, 2012,
ed. by B. Glimm and D. Huynh, vol. 914, CEUR Workshop Proceedings, CEUR-WS.org, 2012,
url: http://ceur-ws.org/Vol-914/paper%5C_37.pdf (cit. on p. 32).

130

https://doi.org/10.1007/978-3-319-63962-8%5C_228-1
http://dx.doi.org/10.1017/S0269888915000107
https://doi.org/10.1017/S0269888915000107
http://dx.doi.org/10.1145/1270.1498
https://doi.org/10.1145/1270.1498
http://sites.computer.org/debull/A00JUN-CD.pdf
https://doi.org/10.1007/978-3-642-25073-6%5C_2
http://ceur-ws.org/Vol-782/HaaseEtAl%5C_COLD2011.pdf
https://doi.org/10.1007/978-3-540-68234-9%5C_70
http://ceur-ws.org/Vol-914/paper%5C_37.pdf

Bibliography

[39] C. Bizer and A. Schultz,
“The R2R Framework: Publishing and Discovering Mappings on the Web”, Proceedings of the
First International Workshop on Consuming Linked Data, Shanghai, China, November 8, 2010,
ed. by O. Hartig, A. Harth and J. F. Sequeda, vol. 665, CEUR Workshop Proceedings,
CEUR-WS.org, 2010,
url: http://ceur-ws.org/Vol-665/BizerEtAl%5C_COLD2010.pdf
(cit. on p. 32).

[40] J. Volz, C. Bizer, M. Gaedke and G. Kobilarov,
“SILK - A Link Discovery Framework for the Web of Data”, Proceedings of the WWW2009
Workshop on Linked Data on the Web, LDOW 2009, Madrid, Spain, April 20, 2009.
Ed. by C. Bizer, T. Heath, T. Berners-Lee and K. Idehen, vol. 538,
CEUR Workshop Proceedings, CEUR-WS.org, 2009,
url: http://ceur-ws.org/Vol-538/ldow2009%5C_paper13.pdf (cit. on p. 32).

[41] P. N. Mendes, H. Mühleisen and C. Bizer, “Sieve: linked data quality assessment and fusion”,
Proceedings of the 2012 Joint EDBT/ICDT Workshops, Berlin, Germany, March 30, 2012,
ed. by D. Srivastava and I. Ari, ACM, 2012 116, isbn: 978-1-4503-1143-4,
url: https://doi.org/10.1145/2320765.2320803 (cit. on p. 32).

[42] S. Bischof, C. Martin, A. Polleres and P. Schneider,
“Collecting, Integrating, Enriching and Republishing Open City Data as Linked Data”,
The Semantic Web - ISWC 2015 - 14th International Semantic Web Conference, Bethlehem, PA,
USA, October 11-15, 2015, Proceedings, Part II,
ed. by M. Arenas, Ó. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. T. Groth,
M. Dumontier, J. Heflin, K. Thirunarayan and S. Staab, vol. 9367,
Lecture Notes in Computer Science, Springer, 2015 57, isbn: 978-3-319-25009-0,
url: https://doi.org/10.1007/978-3-319-25010-6%5C_4 (cit. on p. 32).

[43] D. Florescu, A. Y. Levy and A. O. Mendelzon,
Database Techniques for the World-Wide Web: A Survey, SIGMOD Record 27 (1998) 59,
url: https://doi.org/10.1145/290593.290605 (cit. on p. 32).

[44] A. Y. Halevy, Answering queries using views: A survey, VLDB J. 10 (2001) 270,
url: https://doi.org/10.1007/s007780100054 (cit. on p. 32).

[45] A. Y. Halevy, A. Rajaraman and J. J. Ordille, “Data Integration: The Teenage Years”,
Proceedings of the 32nd International Conference on Very Large Data Bases, Seoul, Korea,
September 12-15, 2006, ed. by U. Dayal, K. Whang, D. B. Lomet, G. Alonso, G. M. Lohman,
M. L. Kersten, S. K. Cha and Y. Kim, ACM, 2006 9, isbn: 1-59593-385-9,
url: http://dl.acm.org/citation.cfm?id=1164130 (cit. on p. 32).

[46] Z. G. Ives, A. Y. Halevy, P. Mork and I. Tatarinov,
Piazza: mediation and integration infrastructure for Semantic Web data,
J. Web Semant. 1 (2004) 155,
url: https://doi.org/10.1016/j.websem.2003.11.003 (cit. on p. 32).

[47] V. Zadorozhny, L. Raschid, M. Vidal, T. Urhan and L. Bright,
“Efficient evaluation of queries in a mediator for WebSources”,
Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data,
Madison, Wisconsin, USA, June 3-6, 2002, ed. by M. J. Franklin, B. Moon and A. Ailamaki,

131

http://ceur-ws.org/Vol-665/BizerEtAl%5C_COLD2010.pdf
http://ceur-ws.org/Vol-538/ldow2009%5C_paper13.pdf
https://doi.org/10.1145/2320765.2320803
https://doi.org/10.1007/978-3-319-25010-6%5C_4
http://dx.doi.org/10.1145/290593.290605
https://doi.org/10.1145/290593.290605
http://dx.doi.org/10.1007/s007780100054
https://doi.org/10.1007/s007780100054
http://dl.acm.org/citation.cfm?id=1164130
http://dx.doi.org/10.1016/j.websem.2003.11.003
https://doi.org/10.1016/j.websem.2003.11.003

Bibliography

ACM, 2002 85, isbn: 1-58113-497-5,
url: https://doi.org/10.1145/564691.564702 (cit. on pp. 32, 55, 94).

[48] C. Basca and A. Bernstein, Querying a messy web of data with Avalanche,
J. Web Semant. 26 (2014) 1,
url: https://doi.org/10.1016/j.websem.2014.04.002 (cit. on p. 33).

[49] A. Charalambidis, A. Troumpoukis and S. Konstantopoulos,
“SemaGrow: optimizing federated SPARQL queries”, Proceedings of the 11th International
Conference on Semantic Systems, SEMANTICS 2015, Vienna, Austria, September 15-17, 2015,
ed. by A. Polleres, T. Pellegrini, S. Hellmann and J. X. Parreira, ACM, 2015 121,
isbn: 978-1-4503-3462-4, url: https://doi.org/10.1145/2814864.2814886
(cit. on pp. 33, 35, 36, 55).

[50] G. Montoya, H. Skaf-Molli and K. Hose,
“The Odyssey Approach for Optimizing Federated SPARQL Queries”,
The Semantic Web - ISWC 2017 - 16th International Semantic Web Conference, Vienna, Austria,
October 21-25, 2017, Proceedings, Part I, ed. by C. d’Amato, M. Fernández, V. A. M. Tamma,
F. Lécué, P. Cudré-Mauroux, J. F. Sequeda, C. Lange and J. Heflin, vol. 10587,
Lecture Notes in Computer Science, Springer, 2017 471, isbn: 978-3-319-68287-7,
url: https://doi.org/10.1007/978-3-319-68288-4%5C_28
(cit. on pp. 33–36, 55).

[51] O. Görlitz and S. Staab,
“SPLENDID: SPARQL Endpoint Federation Exploiting VOID Descriptions”,
Proceedings of the Second International Workshop on Consuming Linked Data (COLD2011),
Bonn, Germany, October 23, 2011, ed. by O. Hartig, A. Harth and J. F. Sequeda, vol. 782,
CEUR Workshop Proceedings, CEUR-WS.org, 2011,
url: http://ceur-ws.org/Vol-782/GoerlitzAndStaab%5C_COLD2011.pdf
(cit. on pp. 33, 36, 55).

[52] A. Schwarte, P. Haase, K. Hose, R. Schenkel and M. Schmidt,
“FedX: Optimization Techniques for Federated Query Processing on Linked Data”,
The Semantic Web - ISWC 2011 - 10th International Semantic Web Conference, Bonn, Germany,
October 23-27, 2011, Proceedings, Part I, ed. by L. Aroyo, C. Welty, H. Alani, J. Taylor,
A. Bernstein, L. Kagal, N. F. Noy and E. Blomqvist, vol. 7031,
Lecture Notes in Computer Science, Springer, 2011 601, isbn: 978-3-642-25072-9,
url: https://doi.org/10.1007/978-3-642-25073-6%5C_38
(cit. on pp. 33, 35, 36, 55, 57, 73, 81, 89).

[53] I. Abdelaziz, E. Mansour, M. Ouzzani, A. Aboulnaga and P. Kalnis,
Lusail: A System for Querying Linked Data at Scale, PVLDB 11 (2017) 485,
url: http://www.vldb.org/pvldb/vol11/p485-abdelaziz.pdf
(cit. on pp. 33, 35, 36, 55).

[54] R. Verborgh, M. V. Sande, O. Hartig, J. V. Herwegen, L. D. Vocht, B. D. Meester,
G. Haesendonck and P. Colpaert,
Triple Pattern Fragments: A low-cost knowledge graph interface for the Web,
J. Web Semant. 37-38 (2016) 184,
url: https://doi.org/10.1016/j.websem.2016.03.003 (cit. on pp. 33, 35).

132

https://doi.org/10.1145/564691.564702
http://dx.doi.org/10.1016/j.websem.2014.04.002
https://doi.org/10.1016/j.websem.2014.04.002
https://doi.org/10.1145/2814864.2814886
https://doi.org/10.1007/978-3-319-68288-4%5C_28
http://ceur-ws.org/Vol-782/GoerlitzAndStaab%5C_COLD2011.pdf
https://doi.org/10.1007/978-3-642-25073-6%5C_38
http://www.vldb.org/pvldb/vol11/p485-abdelaziz.pdf
http://dx.doi.org/10.1016/j.websem.2016.03.003
https://doi.org/10.1016/j.websem.2016.03.003

Bibliography

[55] M. Saleem and A. N. Ngomo,
“HiBISCuS: Hypergraph-Based Source Selection for SPARQL Endpoint Federation”,
The Semantic Web: Trends and Challenges - 11th International Conference, ESWC 2014,
Anissaras, Crete, Greece, May 25-29, 2014. Proceedings,
ed. by V. Presutti, C. d’Amato, F. Gandon, M. d’Aquin, S. Staab and A. Tordai, vol. 8465,
Lecture Notes in Computer Science, Springer, 2014 176, isbn: 978-3-319-07442-9,
url: https://doi.org/10.1007/978-3-319-07443-6%5C_13 (cit. on pp. 33, 55).

[56] K. Alexander, R. Cyganiak, M. Hausenblas and J. Zhao, “Describing Linked Datasets”,
Proceedings of the WWW2009 Workshop on Linked Data on the Web, LDOW 2009, Madrid,
Spain, April 20, 2009. Ed. by C. Bizer, T. Heath, T. Berners-Lee and K. Idehen, vol. 538,
CEUR Workshop Proceedings, CEUR-WS.org, 2009,
url: http://ceur-ws.org/Vol-538/ldow2009%5C_paper20.pdf (cit. on p. 33).

[57] T. Neumann and G. Moerkotte,
“Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins”,
Proceedings of the 27th International Conference on Data Engineering, ICDE 2011, April 11-16,
2011, Hannover, Germany, ed. by S. Abiteboul, K. Böhm, C. Koch and K. Tan,
IEEE Computer Society, 2011 984, isbn: 978-1-4244-8958-9,
url: https://doi.org/10.1109/ICDE.2011.5767868 (cit. on p. 34).

[58] A. Gubichev and T. Neumann,
“Exploiting the query structure for efficient join ordering in SPARQL queries”,
Proceedings of the 17th International Conference on Extending Database Technology, EDBT
2014, Athens, Greece, March 24-28, 2014. Ed. by S. Amer-Yahia, V. Christophides,
A. Kementsietsidis, M. N. Garofalakis, S. Idreos and V. Leroy, OpenProceedings.org, 2014 439,
url: https://doi.org/10.5441/002/edbt.2014.40 (cit. on p. 34).

[59] M. Saleem, A. N. Ngomo, J. X. Parreira, H. F. Deus and M. Hauswirth,
“DAW: Duplicate-AWare Federated Query Processing over the Web of Data”,
The Semantic Web - ISWC 2013 - 12th International Semantic Web Conference, Sydney, NSW,
Australia, October 21-25, 2013, Proceedings, Part I, ed. by H. Alani, L. Kagal, A. Fokoue,
P. T. Groth, C. Biemann, J. X. Parreira, L. Aroyo, N. F. Noy, C. Welty and K. Janowicz,
vol. 8218, Lecture Notes in Computer Science, Springer, 2013 574, isbn: 978-3-642-41334-6,
url: https://doi.org/10.1007/978-3-642-41335-3%5C_36
(cit. on pp. 34, 102).

[60] G. Montoya, H. Skaf-Molli, P. Molli and M. Vidal,
“Federated SPARQL Queries Processing with Replicated Fragments”,
The Semantic Web - ISWC 2015 - 14th International Semantic Web Conference, Bethlehem, PA,
USA, October 11-15, 2015, Proceedings, Part I,
ed. by M. Arenas, Ó. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. T. Groth,
M. Dumontier, J. Heflin, K. Thirunarayan and S. Staab, vol. 9366,
Lecture Notes in Computer Science, Springer, 2015 36, isbn: 978-3-319-25006-9,
url: https://doi.org/10.1007/978-3-319-25007-6%5C_3 (cit. on pp. 34, 102).

[61] G. Montoya, M. Vidal and M. Acosta,
“A Heuristic-Based Approach for Planning Federated SPARQL Queries”,
Proceedings of the Third International Workshop on Consuming Linked Data, COLD 2012,
Boston, MA, USA, November 12, 2012, ed. by J. F. Sequeda, A. Harth and O. Hartig, vol. 905,
CEUR Workshop Proceedings, CEUR-WS.org, 2012,

133

https://doi.org/10.1007/978-3-319-07443-6%5C_13
http://ceur-ws.org/Vol-538/ldow2009%5C_paper20.pdf
https://doi.org/10.1109/ICDE.2011.5767868
https://doi.org/10.5441/002/edbt.2014.40
https://doi.org/10.1007/978-3-642-41335-3%5C_36
https://doi.org/10.1007/978-3-319-25007-6%5C_3

Bibliography

url: http://ceur-ws.org/Vol-905/MontoyaEtAl%5C_COLD2012.pdf
(cit. on p. 35).

[62] B. Quilitz and U. Leser, “Querying Distributed RDF Data Sources with SPARQL”,
The Semantic Web: Research and Applications, 5th European Semantic Web Conference, ESWC
2008, Tenerife, Canary Islands, Spain, June 1-5, 2008, Proceedings,
ed. by S. Bechhofer, M. Hauswirth, J. Hoffmann and M. Koubarakis, vol. 5021,
Lecture Notes in Computer Science, Springer, 2008 524, isbn: 978-3-540-68233-2,
url: https://doi.org/10.1007/978-3-540-68234-9%5C_39 (cit. on p. 36).

[63] S. J. Lynden, I. Kojima, A. Matono and Y. Tanimura,
“ADERIS: An Adaptive Query Processor for Joining Federated SPARQL Endpoints”,
On the Move to Meaningful Internet Systems: OTM 2011 - Confederated International
Conferences: CoopIS, DOA-SVI, and ODBASE 2011, Hersonissos, Crete, Greece, October 17-21,
2011, Proceedings, Part II,
ed. by R. Meersman, T. S. Dillon, P. Herrero, A. Kumar, M. Reichert, L. Qing, B. C. Ooi,
E. Damiani, D. C. Schmidt, J. White, M. Hauswirth, P. Hitzler and M. K. Mohania, vol. 7045,
Lecture Notes in Computer Science, Springer, 2011 808, isbn: 978-3-642-25105-4,
url: https://doi.org/10.1007/978-3-642-25106-1%5C_28 (cit. on p. 36).

[64] C. Quix, R. Hai and I. Vatov,
“GEMMS: A Generic and Extensible Metadata Management System for Data Lakes”,
Proceedings of the CAiSE’16 Forum, at the 28th International Conference on Advanced
Information Systems Engineering (CAiSE 2016), Ljubljana, Slovenia, June 13-17, 2016.
Ed. by S. España, M. Ivanovic and M. Savic, vol. 1612, CEUR Workshop Proceedings,
CEUR-WS.org, 2016 129, url: http://ceur-ws.org/Vol-1612/paper17.pdf
(cit. on p. 37).

[65] M. N. Mami, S. Scerri, S. Auer and M. Vidal,
“Towards Semantification of Big Data Technology”,
Big Data Analytics and Knowledge Discovery - 18th International Conference, DaWaK 2016,
Porto, Portugal, September 6-8, 2016, Proceedings, ed. by S. Madria and T. Hara, vol. 9829,
Lecture Notes in Computer Science, Springer, 2016 376, isbn: 978-3-319-43945-7,
url: https://doi.org/10.1007/978-3-319-43946-4%5C_25 (cit. on p. 37).

[66] C. Walker and H. H. Alrehamy, “Personal Data Lake with Data Gravity Pull”,
Fifth IEEE International Conference on Big Data and Cloud Computing, BDCloud 2015, Dalian,
China, August 26-28, 2015,
ed. by K. Li, H. Qi, J. Gaudiot, J. Kishigami, H. Wu, K. Li and Y. Wu,
IEEE Computer Society, 2015 160, isbn: 978-1-4673-7183-4,
url: https://doi.org/10.1109/BDCloud.2015.62 (cit. on p. 37).

[67] Y. Khan, A. Zimmermann, A. Jha, V. Gadepally, M. d’Aquin and R. Sahay,
One Size Does Not Fit All: Querying Web Polystores, IEEE Access 7 (2019) 9598,
url: https://doi.org/10.1109/ACCESS.2018.2888601 (cit. on p. 37).

[68] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner, S. Madden,
D. Maier, T. Mattson and S. B. Zdonik, The BigDAWG Polystore System,
SIGMOD Record 44 (2015) 11, url: https://doi.org/10.1145/2814710.2814713
(cit. on p. 37).

134

http://ceur-ws.org/Vol-905/MontoyaEtAl%5C_COLD2012.pdf
https://doi.org/10.1007/978-3-540-68234-9%5C_39
https://doi.org/10.1007/978-3-642-25106-1%5C_28
http://ceur-ws.org/Vol-1612/paper17.pdf
https://doi.org/10.1007/978-3-319-43946-4%5C_25
https://doi.org/10.1109/BDCloud.2015.62
http://dx.doi.org/10.1109/ACCESS.2018.2888601
https://doi.org/10.1109/ACCESS.2018.2888601
http://dx.doi.org/10.1145/2814710.2814713
https://doi.org/10.1145/2814710.2814713

Bibliography

[69] S. D. C. di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi and P. Samarati,
Authorization enforcement in distributed query evaluation,
Journal of Computer Security 19 (2011) 751,
url: https://doi.org/10.3233/JCS-2010-0413 (cit. on p. 37).

[70] J. Bater, G. Elliott, C. Eggen, S. Goel, A. N. Kho and J. Rogers,
SMCQL: Secure Query Processing for Private Data Networks, PVLDB 10 (2017) 673,
url: http://www.vldb.org/pvldb/vol10/p673-rogers.pdf (cit. on p. 37).

[71] L. Costabello, S. Villata and F. Gandon, “Context-Aware Access Control for RDF Graph Stores”,
ECAI 2012 - 20th European Conference on Artificial Intelligence. Including Prestigious
Applications of Artificial Intelligence (PAIS-2012) System Demonstrations Track, Montpellier,
France, August 27-31 , 2012,
ed. by L. D. Raedt, C. Bessière, D. Dubois, P. Doherty, P. Frasconi, F. Heintz and P. J. F. Lucas,
vol. 242, Frontiers in Artificial Intelligence and Applications, IOS Press, 2012 282,
isbn: 978-1-61499-097-0,
url: https://doi.org/10.3233/978-1-61499-098-7-282 (cit. on pp. 37, 87).

[72] Y. Khan, M. Saleem, M. Mehdi, A. Hogan, Q. Mehmood, D. Rebholz-Schuhmann and R. Sahay,
SAFE: SPARQL Federation over RDF Data Cubes with Access Control,
J. Biomedical Semantics 8 (2017) 5:1,
url: https://doi.org/10.1186/s13326-017-0112-6 (cit. on pp. 37, 38, 87).

[73] J. Unbehauen, M. Frommhold and M. Martin,
“Enforcing scalable authorization on SPARQL queries”,
Joint Proceedings of the Posters and Demos Track of the 12th International Conference on
Semantic Systems - SEMANTiCS2016 and the 1st International Workshop on Semantic Change &

Evolving Semantics (SuCCESS’16) co-located with the 12th International Conference on
Semantic Systems (SEMANTiCS 2016), Leipzig, Germany, September 12-15, 2016.
Ed. by M. Martin, M. Cuquet and E. Folmer, vol. 1695, CEUR Workshop Proceedings,
CEUR-WS.org, 2016, url: http://ceur-ws.org/Vol-1695/paper38.pdf
(cit. on pp. 37, 38, 87).

[74] S. Kirrane, A. Abdelrahman, A. Mileo and S. Decker, “Secure Manipulation of Linked Data”,
The Semantic Web - ISWC 2013 - 12th International Semantic Web Conference, Sydney, NSW,
Australia, October 21-25, 2013, Proceedings, Part I, ed. by H. Alani, L. Kagal, A. Fokoue,
P. T. Groth, C. Biemann, J. X. Parreira, L. Aroyo, N. F. Noy, C. Welty and K. Janowicz,
vol. 8218, Lecture Notes in Computer Science, Springer, 2013 248, isbn: 978-3-642-41334-6,
url: https://doi.org/10.1007/978-3-642-41335-3%5C_16 (cit. on pp. 37, 38).

[75] M. Amini and R. Jalili,
Multi-level authorisation model and framework for distributed semantic-aware environments,
IET Information Security 4 (2010) 301,
url: https://doi.org/10.1049/iet-ifs.2009.0198 (cit. on pp. 37, 87).

[76] P. A. Bonatti and D. Olmedilla,
“Rule-Based Policy Representation and Reasoning for the Semantic Web”, Reasoning Web, Third
International Summer School 2007, Dresden, Germany, September 3-7, 2007, Tutorial Lectures,
ed. by G. Antoniou, U. Aßmann, C. Baroglio, S. Decker, N. Henze, P. Patranjan and R. Tolksdorf,
vol. 4636, Lecture Notes in Computer Science, Springer, 2007 240, isbn: 978-3-540-74613-3,
url: https://doi.org/10.1007/978-3-540-74615-7%5C_4 (cit. on p. 37).

135

http://dx.doi.org/10.3233/JCS-2010-0413
https://doi.org/10.3233/JCS-2010-0413
http://dx.doi.org/10.14778/3055330.3055334
http://www.vldb.org/pvldb/vol10/p673-rogers.pdf
https://doi.org/10.3233/978-1-61499-098-7-282
http://dx.doi.org/10.1186/s13326-017-0112-6
https://doi.org/10.1186/s13326-017-0112-6
http://ceur-ws.org/Vol-1695/paper38.pdf
https://doi.org/10.1007/978-3-642-41335-3%5C_16
http://dx.doi.org/10.1049/iet-ifs.2009.0198
https://doi.org/10.1049/iet-ifs.2009.0198
https://doi.org/10.1007/978-3-540-74615-7%5C_4

Bibliography

[77] H. Mühleisen, M. Kost and J.-C. Freytag, SWRL-based Access Policies for Linked Data,
Proceedings of the 2nd Workshop on Trust and Privacy on the Social and Semantic Web
(SPOT-2010) 80 (2010) (cit. on p. 37).

[78] L. Pellegrino, F. Huet, F. Baude and A. Alshabani,
“A Distributed Publish/Subscribe System for RDF Data”,
Data Management in Cloud, Grid and P2P Systems - 6th International Conference, Globe 2013,
Prague, Czech Republic, August 28-29, 2013. Proceedings,
ed. by A. Hameurlain, J. W. Rahayu and D. Taniar, vol. 8059,
Lecture Notes in Computer Science, Springer, 2013 39, isbn: 978-3-642-40052-0,
url: https://doi.org/10.1007/978-3-642-40053-7%5C_4 (cit. on p. 38).

[79] P. Chirita, S. Idreos, M. Koubarakis and W. Nejdl,
“Publish/Subscribe for RDF-based P2P Networks”,
The Semantic Web: Research and Applications, First European Semantic Web Symposium, ESWS
2004, Heraklion, Crete, Greece, May 10-12, 2004, Proceedings,
ed. by C. Bussler, J. Davies, D. Fensel and R. Studer, vol. 3053,
Lecture Notes in Computer Science, Springer, 2004 182, isbn: 3-540-21999-4,
url: https://doi.org/10.1007/978-3-540-25956-5%5C_13 (cit. on p. 38).

[80] N. Popitsch and B. Haslhofer,
DSNotify - A solution for event detection and link maintenance in dynamic datasets,
J. Web Semant. 9 (2011) 266,
url: https://doi.org/10.1016/j.websem.2011.05.002 (cit. on p. 38).

[81] S. Tramp, P. Frischmuth, T. Ermilov and S. Auer,
“Weaving a Social Data Web with Semantic Pingback”,
Knowledge Engineering and Management by the Masses - 17th International Conference, EKAW
2010, Lisbon, Portugal, October 11-15, 2010. Proceedings, ed. by P. Cimiano and H. S. Pinto,
vol. 6317, Lecture Notes in Computer Science, Springer, 2010 135, isbn: 978-3-642-16437-8,
url: https://doi.org/10.1007/978-3-642-16438-5%5C_10 (cit. on p. 38).

[82] G. Tummarello, C. Morbidoni, R. Bachmann-Gmür and O. Erling,
“RDFSync: Efficient Remote Synchronization of RDF Models”,
The Semantic Web, 6th International Semantic Web Conference, 2nd Asian Semantic Web
Conference, ISWC 2007 + ASWC 2007, Busan, Korea, November 11-15, 2007.
Ed. by K. Aberer, K. Choi, N. F. Noy, D. Allemang, K. Lee, L. J. B. Nixon, J. Golbeck, P. Mika,
D. Maynard, R. Mizoguchi, G. Schreiber and P. Cudré-Mauroux, vol. 4825,
Lecture Notes in Computer Science, Springer, 2007 537, isbn: 978-3-540-76297-3,
url: https://doi.org/10.1007/978-3-540-76298-0%5C_39 (cit. on p. 38).

[83] B. Schandl, “Replication and Versioning of Partial RDF Graphs”,
The Semantic Web: Research and Applications, 7th Extended Semantic Web Conference, ESWC
2010, Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings, Part I, ed. by L. Aroyo,
G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt, L. Cabral and T. Tudorache,
vol. 6088, Lecture Notes in Computer Science, Springer, 2010 31, isbn: 978-3-642-13485-2,
url: https://doi.org/10.1007/978-3-642-13486-9%5C_3 (cit. on p. 38).

[84] K. Voruganti, M. T. Özsu and R. C. Unrau,
An Adaptive Data-Shipping Architecture for Client Caching Data Management Systems,
Distributed and Parallel Databases 15 (2004) 137,
url: https://doi.org/10.1023/B:DAPD.0000013069.97679.62 (cit. on p. 38).

136

https://doi.org/10.1007/978-3-642-40053-7%5C_4
https://doi.org/10.1007/978-3-540-25956-5%5C_13
http://dx.doi.org/10.1016/j.websem.2011.05.002
https://doi.org/10.1016/j.websem.2011.05.002
https://doi.org/10.1007/978-3-642-16438-5%5C_10
https://doi.org/10.1007/978-3-540-76298-0%5C_39
https://doi.org/10.1007/978-3-642-13486-9%5C_3
http://dx.doi.org/10.1023/B:DAPD.0000013069.97679.62
https://doi.org/10.1023/B:DAPD.0000013069.97679.62

Bibliography

[85] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri and A. Silberschatz,
“Update Propagation Protocols For Replicated Databases”,
SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data,
June 1-3, 1999, Philadelphia, Pennsylvania, USA.
Ed. by A. Delis, C. Faloutsos and S. Ghandeharizadeh, ACM Press, 1999 97,
isbn: 1-58113-084-8, url: https://doi.org/10.1145/304182.304191
(cit. on p. 38).

[86] A. Passant and P. N. Mendes,
“sparqlPuSH: Proactive Notification of Data Updates in RDF Stores Using PubSubHubbub”,
Proceedings of the Sixth Workshop on Scripting and Development for the Semantic Web, Crete,
Greece, May 31, 2010, ed. by G. A. Grimnes, S. Auer and G. T. Williams, vol. 699,
CEUR Workshop Proceedings, CEUR-WS.org, 2010,
url: http://ceur-ws.org/Vol-699/Paper6.pdf (cit. on p. 38).

[87] J. Bleiholder, Data fusion and conflict resolution in integrated information systems,
PhD thesis: University of Potsdam, 2010, url: http://d-nb.info/101910807X
(cit. on pp. 38, 115).

[88] K. M. Endris, M. Vidal and S. Auer,
“FedSDM: Semantic Data Manager for Federations of RDF Datasets”,
Data Integration in the Life Sciences - 13th International Conference, DILS 2018, Hannover,
Germany, November 20-21, 2018, Proceedings, ed. by S. Auer and M. Vidal, vol. 11371,
Lecture Notes in Computer Science, Springer, 2018 85, isbn: 978-3-030-06015-2,
url: https://doi.org/10.1007/978-3-030-06016-9%5C_8 (cit. on p. 39).

[89] K. M. Endris, M. Galkin, I. Lytra, M. N. Mami, M. Vidal and S. Auer,
“MULDER: Querying the Linked Data Web by Bridging RDF Molecule Templates”,
Database and Expert Systems Applications - 28th International Conference, DEXA 2017, Lyon,
France, August 28-31, 2017, Proceedings, Part I, 2017 3,
url: https://doi.org/10.1007/978-3-319-64468-4%5C_1
(cit. on pp. 39, 55, 89).

[90] K. M. Endris, M. Galkin, I. Lytra, M. N. Mami, M. Vidal and S. Auer,
Querying Interlinked Data by Bridging RDF Molecule Templates,
T. Large-Scale Data- and Knowledge-Centered Systems, Lecture Notes in Computer Science 39
(2018) 1, ed. by A. Hameurlain, R. R. Wagner, D. Benslimane, E. Damiani and W. I. Grosky,
url: https://doi.org/10.1007/978-3-662-58415-6%5C_1
(cit. on pp. 39, 55, 73, 81).

[91] K. M. Endris, P. D. Rohde, M. Vidal and S. Auer,
“Ontario: Federated Query Processing Against a Semantic Data Lake”,
Database and Expert Systems Applications - 30th International Conference, DEXA 2019, Linz,
Austria, August 26-29, 2019, Proceedings, Part I,
ed. by S. Hartmann, J. Küng, S. Chakravarthy, G. Anderst-Kotsis, A. M. Tjoa and I. Khalil,
vol. 11706, Lecture Notes in Computer Science, Springer, 2019 379, isbn: 978-3-030-27614-0,
url: https://doi.org/10.1007/978-3-030-27615-7%5C_29 (cit. on pp. 39, 71).

[92] C. Bizer and A. Schultz, The Berlin SPARQL Benchmark,
Int. J. Semantic Web Inf. Syst. 5 (2009) 1,
url: https://doi.org/10.4018/jswis.2009040101 (cit. on pp. 47, 62).

137

https://doi.org/10.1145/304182.304191
http://ceur-ws.org/Vol-699/Paper6.pdf
http://d-nb.info/101910807X
https://doi.org/10.1007/978-3-030-06016-9%5C_8
https://doi.org/10.1007/978-3-319-64468-4%5C_1
http://dx.doi.org/10.1007/978-3-662-58415-6_1
http://dx.doi.org/10.1007/978-3-662-58415-6_1
https://doi.org/10.1007/978-3-662-58415-6%5C_1
https://doi.org/10.1007/978-3-030-27615-7%5C_29
http://dx.doi.org/10.4018/jswis.2009040101
https://doi.org/10.4018/jswis.2009040101

Bibliography

[93] A. Hasnain, Q. Mehmood, S. S. e Zainab, M. Saleem, C. N. W. Jr., D. Zehra, S. Decker and
D. Rebholz-Schuhmann, BioFed: federated query processing over life sciences linked open data,
J. Biomedical Semantics 8 (2017) 13:1,
url: https://doi.org/10.1186/s13326-017-0118-0 (cit. on pp. 49, 63, 81).

[94] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte and T. Tran,
“FedBench: A Benchmark Suite for Federated Semantic Data Query Processing”,
The Semantic Web - ISWC 2011 - 10th International Semantic Web Conference, Bonn, Germany,
October 23-27, 2011, Proceedings, Part I, ed. by L. Aroyo, C. Welty, H. Alani, J. Taylor,
A. Bernstein, L. Kagal, N. F. Noy and E. Blomqvist, vol. 7031,
Lecture Notes in Computer Science, Springer, 2011 585, isbn: 978-3-642-25072-9,
url: https://doi.org/10.1007/978-3-642-25073-6%5C_37
(cit. on pp. 50, 56, 62).

[95] M. Schmidt, T. Hornung, M. Meier, C. Pinkel and G. Lausen,
“SP2Bench: A SPARQL Performance Benchmark”,
Semantic Web Information Management - A Model-Based Perspective,
ed. by R. D. Virgilio, F. Giunchiglia and L. Tanca, Springer, 2009 371, isbn: 978-3-642-04328-4,
url: https://doi.org/10.1007/978-3-642-04329-1%5C_16 (cit. on p. 50).

[96] C. Chen, B. Golshan, A. Y. Halevy, W. Tan and A. Doan,
BigGorilla: An Open-Source Ecosystem for Data Preparation and Integration,
IEEE Data Eng. Bull. 41 (2018) 10,
url: http://sites.computer.org/debull/A18june/p10.pdf (cit. on p. 55).

[97] A. Doan and A. Y. Halevy,
Semantic Integration Research in the Database Community: A Brief Survey,
AI Magazine 26 (2005) 83, url:
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1801
(cit. on p. 55).

[98] Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy and D. S. Weld,
“An Adaptive Query Execution System for Data Integration”,
SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data,
June 1-3, 1999, Philadelphia, Pennsylvania, USA.
Ed. by A. Delis, C. Faloutsos and S. Ghandeharizadeh, ACM Press, 1999 299,
isbn: 1-58113-084-8, url: https://doi.org/10.1145/304182.304209
(cit. on p. 55).

[99] W. Scheufele and G. Moerkotte,
“On the Complexity of Generating Optimal Plans with Cross Products”,
Proceedings of the Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, May 12-14, 1997, Tucson, Arizona, USA,
ed. by A. O. Mendelzon and Z. M. Özsoyoglu, ACM Press, 1997 238, isbn: 0-89791-910-6,
url: https://doi.org/10.1145/263661.263687 (cit. on p. 61).

[100] M. Acosta, M. Vidal and Y. Sure-Vetter,
“Diefficiency Metrics: Measuring the Continuous Efficiency of Query Processing Approaches”,
The Semantic Web - ISWC 2017 - 16th International Semantic Web Conference, Vienna, Austria,
October 21-25, 2017, Proceedings, Part II, ed. by C. d’Amato, M. Fernández, V. A. M. Tamma,
F. Lécué, P. Cudré-Mauroux, J. F. Sequeda, C. Lange and J. Heflin, vol. 10588,

138

http://dx.doi.org/10.1186/s13326-017-0118-0
https://doi.org/10.1186/s13326-017-0118-0
https://doi.org/10.1007/978-3-642-25073-6%5C_37
https://doi.org/10.1007/978-3-642-04329-1%5C_16
http://sites.computer.org/debull/A18june/p10.pdf
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1801
https://doi.org/10.1145/304182.304209
https://doi.org/10.1145/263661.263687

Bibliography

Lecture Notes in Computer Science, Springer, 2017 3, isbn: 978-3-319-68203-7,
url: https://doi.org/10.1007/978-3-319-68204-4%5C_1 (cit. on p. 66).

[101] C. Weiss, P. Karras and A. Bernstein,
Hexastore: sextuple indexing for semantic web data management, PVLDB 1 (2008) 1008,
url: http://www.vldb.org/pvldb/1/1453965.pdf (cit. on p. 77).

[102] K. M. Endris, Z. Almhithawi, I. Lytra, M. Vidal and S. Auer,
“BOUNCER: Privacy-Aware Query Processing over Federations of RDF Datasets”,
Database and Expert Systems Applications - 29th International Conference, DEXA 2018,
Regensburg, Germany, September 3-6, 2018, Proceedings, Part I, 2018 69,
url: https://doi.org/10.1007/978-3-319-98809-2%5C_5 (cit. on p. 87).

[103] M. Vidal, E. Ruckhaus, T. Lampo, A. Martínez, J. Sierra and A. Polleres,
“Efficiently Joining Group Patterns in SPARQL Queries”,
The Semantic Web: Research and Applications, 7th Extended Semantic Web Conference, ESWC
2010, Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings, Part I, ed. by L. Aroyo,
G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt, L. Cabral and T. Tudorache,
vol. 6088, Lecture Notes in Computer Science, Springer, 2010 228, isbn: 978-3-642-13485-2,
url: https://doi.org/10.1007/978-3-642-13486-9%5C_16 (cit. on p. 91).

[104] R. Verborgh, O. Hartig, B. D. Meester, G. Haesendonck, L. D. Vocht, M. V. Sande, R. Cyganiak,
P. Colpaert, E. Mannens and R. V. de Walle,
“Querying Datasets on the Web with High Availability”,
The Semantic Web - ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda,
Italy, October 19-23, 2014. Proceedings, Part I, ed. by P. Mika, T. Tudorache, A. Bernstein,
C. Welty, C. A. Knoblock, D. Vrandecic, P. T. Groth, N. F. Noy, K. Janowicz and C. A. Goble,
vol. 8796, Lecture Notes in Computer Science, Springer, 2014 180, isbn: 978-3-319-11963-2,
url: https://doi.org/10.1007/978-3-319-11964-9%5C_12
(cit. on pp. 101, 102).

[105] K. M. Endris, S. Faisal, F. Orlandi, S. Auer and S. Scerri,
“Interest-Based RDF Update Propagation”, The Semantic Web - ISWC 2015 - 14th International
Semantic Web Conference, Bethlehem, PA, USA, October 11-15, 2015, Proceedings, Part I,
ed. by M. Arenas, Ó. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. T. Groth,
M. Dumontier, J. Heflin, K. Thirunarayan and S. Staab, vol. 9366,
Lecture Notes in Computer Science, Springer, 2015 513, isbn: 978-3-319-25006-9,
url: https://doi.org/10.1007/978-3-319-25007-6%5C_30 (cit. on p. 101).

[106] K. M. Endris, S. Faisal, F. Orlandi, S. Auer and S. Scerri,
“iRap - an Interest-Based RDF Update Propagation Framework”,
Proceedings of the ISWC 2015 Posters & Demonstrations Track co-located with the 14th
International Semantic Web Conference (ISWC-2015), Bethlehem, PA, USA, October 11, 2015.
Ed. by S. Villata, J. Z. Pan and M. Dragoni, vol. 1486, CEUR Workshop Proceedings,
CEUR-WS.org, 2015, url: http://ceur-ws.org/Vol-1486/paper%5C_124.pdf
(cit. on pp. 101, 120).

[107] S. Faisal, K. M. Endris, S. Shekarpour, S. Auer and M. Vidal, “Co-evolution of RDF Datasets”,
Web Engineering - 16th International Conference, ICWE 2016, Lugano, Switzerland, June 6-9,
2016. Proceedings, ed. by A. Bozzon, P. Cudré-Mauroux and C. Pautasso, vol. 9671,
Lecture Notes in Computer Science, Springer, 2016 225, isbn: 978-3-319-38790-1,
url: https://doi.org/10.1007/978-3-319-38791-8%5C_13 (cit. on p. 101).

139

https://doi.org/10.1007/978-3-319-68204-4%5C_1
http://dx.doi.org/10.14778/1453856.1453965
http://www.vldb.org/pvldb/1/1453965.pdf
https://doi.org/10.1007/978-3-319-98809-2%5C_5
https://doi.org/10.1007/978-3-642-13486-9%5C_16
https://doi.org/10.1007/978-3-319-11964-9%5C_12
https://doi.org/10.1007/978-3-319-25007-6%5C_30
http://ceur-ws.org/Vol-1486/paper%5C_124.pdf
https://doi.org/10.1007/978-3-319-38791-8%5C_13

Bibliography

[108] L. D. Ibáñez, H. Skaf-Molli, P. Molli and O. Corby,
“Col-Graph: Towards Writable and Scalable Linked Open Data”,
The Semantic Web - ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda,
Italy, October 19-23, 2014. Proceedings, Part I, ed. by P. Mika, T. Tudorache, A. Bernstein,
C. Welty, C. A. Knoblock, D. Vrandecic, P. T. Groth, N. F. Noy, K. Janowicz and C. A. Goble,
vol. 8796, Lecture Notes in Computer Science, Springer, 2014 325, isbn: 978-3-319-11963-2,
url: https://doi.org/10.1007/978-3-319-11964-9%5C_21 (cit. on p. 102).

[109] E. Marx, S. Shekarpour, S. Auer and A. N. Ngomo, “Large-Scale RDF Dataset Slicing”,
2013 IEEE Seventh International Conference on Semantic Computing, Irvine, CA, USA,
September 16-18, 2013, IEEE Computer Society, 2013 228, isbn: 978-0-7695-5119-7,
url: https://doi.org/10.1109/ICSC.2013.47 (cit. on p. 103).

[110] SPARQL 1.1 Query Language,
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/, 2013
(cit. on p. 105).

[111] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann and S. Auer,
Quality assessment for Linked Data: A Survey, Semantic Web 7 (2016) 63,
url: https://doi.org/10.3233/SW-150175 (cit. on p. 121).

[112] H. Zafar, G. Napolitano and J. Lehmann,
“Formal Query Generation for Question Answering over Knowledge Bases”,
The Semantic Web - 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, June
3-7, 2018, Proceedings, ed. by A. Gangemi, R. Navigli, M. Vidal, P. Hitzler, R. Troncy,
L. Hollink, A. Tordai and M. Alam, vol. 10843, Lecture Notes in Computer Science,
Springer, 2018 714, isbn: 978-3-319-93416-7,
url: https://doi.org/10.1007/978-3-319-93417-4%5C_46 (cit. on p. 126).

[113] S. Bechhofer, M. Hauswirth, J. Hoffmann and M. Koubarakis, eds.,
The Semantic Web: Research and Applications, 5th European Semantic Web Conference, ESWC
2008, Tenerife, Canary Islands, Spain, June 1-5, 2008, Proceedings, vol. 5021,
Lecture Notes in Computer Science, Springer, 2008, isbn: 978-3-540-68233-2,
url: https://doi.org/10.1007/978-3-540-68234-9.

[114] P. Mika, T. Tudorache, A. Bernstein, C. Welty, C. A. Knoblock, D. Vrandecic, P. T. Groth,
N. F. Noy, K. Janowicz and C. A. Goble, eds.,
The Semantic Web - ISWC 2014 - 13th International Semantic Web Conference, Riva del Garda,
Italy, October 19-23, 2014. Proceedings, Part I, vol. 8796, Lecture Notes in Computer Science,
Springer, 2014, isbn: 978-3-319-11963-2,
url: https://doi.org/10.1007/978-3-319-11964-9.

[115] L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt, L. Cabral and
T. Tudorache, eds., The Semantic Web: Research and Applications, 7th Extended Semantic Web
Conference, ESWC 2010, Heraklion, Crete, Greece, May 30 - June 3, 2010, Proceedings, Part I,
vol. 6088, Lecture Notes in Computer Science, Springer, 2010, isbn: 978-3-642-13485-2,
url: https://doi.org/10.1007/978-3-642-13486-9.

[116] S. Hartmann, J. Küng, S. Chakravarthy, G. Anderst-Kotsis, A. M. Tjoa and I. Khalil, eds.,
Database and Expert Systems Applications - 30th International Conference, DEXA 2019, Linz,
Austria, August 26-29, 2019, Proceedings, Part I, vol. 11706,

140

https://doi.org/10.1007/978-3-319-11964-9%5C_21
https://doi.org/10.1109/ICSC.2013.47
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://dx.doi.org/10.3233/SW-150175
https://doi.org/10.3233/SW-150175
https://doi.org/10.1007/978-3-319-93417-4%5C_46
https://doi.org/10.1007/978-3-540-68234-9
https://doi.org/10.1007/978-3-319-11964-9
https://doi.org/10.1007/978-3-642-13486-9

Bibliography

Lecture Notes in Computer Science, Springer, 2019, isbn: 978-3-030-27614-0,
url: https://doi.org/10.1007/978-3-030-27615-7.

[117] A. Delis, C. Faloutsos and S. Ghandeharizadeh, eds.,
SIGMOD 1999, Proceedings ACM SIGMOD International Conference on Management of Data,
June 1-3, 1999, Philadelphia, Pennsylvania, USA, ACM Press, 1999, isbn: 1-58113-084-8.

[118] L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N. F. Noy and E. Blomqvist, eds.,
The Semantic Web - ISWC 2011 - 10th International Semantic Web Conference, Bonn, Germany,
October 23-27, 2011, Proceedings, Part I, vol. 7031, Lecture Notes in Computer Science,
Springer, 2011, isbn: 978-3-642-25072-9,
url: https://doi.org/10.1007/978-3-642-25073-6.

[119] M. Arenas, Ó. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. T. Groth,
M. Dumontier, J. Heflin, K. Thirunarayan and S. Staab, eds.,
The Semantic Web - ISWC 2015 - 14th International Semantic Web Conference, Bethlehem, PA,
USA, October 11-15, 2015, Proceedings, Part I, vol. 9366, Lecture Notes in Computer Science,
Springer, 2015, isbn: 978-3-319-25006-9,
url: https://doi.org/10.1007/978-3-319-25007-6.

[120] C. Bizer, T. Heath, T. Berners-Lee and K. Idehen, eds., Proceedings of the WWW2009 Workshop
on Linked Data on the Web, LDOW 2009, Madrid, Spain, April 20, 2009, vol. 538,
CEUR Workshop Proceedings, CEUR-WS.org, 2009,
url: http://ceur-ws.org/Vol-538.

[121] H. Alani, L. Kagal, A. Fokoue, P. T. Groth, C. Biemann, J. X. Parreira, L. Aroyo, N. F. Noy,
C. Welty and K. Janowicz, eds., The Semantic Web - ISWC 2013 - 12th International Semantic
Web Conference, Sydney, NSW, Australia, October 21-25, 2013, Proceedings, Part I, vol. 8218,
Lecture Notes in Computer Science, Springer, 2013, isbn: 978-3-642-41334-6,
url: https://doi.org/10.1007/978-3-642-41335-3.

[122] O. Hartig, A. Harth and J. F. Sequeda, eds., Proceedings of the Second International Workshop
on Consuming Linked Data (COLD2011), Bonn, Germany, October 23, 2011, vol. 782,
CEUR Workshop Proceedings, CEUR-WS.org, 2011,
url: http://ceur-ws.org/Vol-782.

141

https://doi.org/10.1007/978-3-030-27615-7
https://doi.org/10.1007/978-3-642-25073-6
https://doi.org/10.1007/978-3-319-25007-6
http://ceur-ws.org/Vol-538
https://doi.org/10.1007/978-3-642-41335-3
http://ceur-ws.org/Vol-782

APPENDIX A

List of Publications

A.1 Publications

The following publications have been produced during the work on this thesis. These articles have been
presented and published in the proceedings of the conferences and journals.

‚ Conference Papers

1. Kemele M Endris, Philipp D. Rohde, Maria-Esther Vidal, Sören Auer, Ontario: Feder-
ated Query Processing against Heterogeneous Data Sources in a Data Lake. International
Conference on Database and Expert Systems Applications, DEXA 2019.

2. Kemele M. Endris, Mikhail Galkin, Ioanna Lytra, Mohamed Nadjib Mami, Maria-Esther
Vidal, Sören Auer, MULDER: Querying the Linked Data Web by Bridging RDF Molecule
Templates. In International Conference on Database and Expert Systems Applications, pp.
3-18. Springer, Cham, 2017. Best Paper Award

3. Kemele M. Endris, Mikhail Galkin, Ioanna Lytra, Mohamed Nadjib Mami, Maria-Esther
Vidal, Sören Auer, Querying Interlinked Data by Bridging RDF Molecule Templates. In
Transactions on Large-Scale Data-and Knowledge-Centered Systems XXXIX, pp. 1-42.
Springer, Berlin, Heidelberg, 2018.

4. Kemele M Endris, Zuhair Almhithawi, Ioanna Lytra, Maria-Esther Vidal, Sören Auer,
BOUNCER: Privacy-Aware Query Processing over Federations of RDF Datasets. In Interna-
tional Conference on Database and Expert Systems Applications, pp. 69-84. Springer, Cham,
2018.

5. Kemele M. Endris, Sidra Faisal, Fabrizio Orlandi, Sören Auer, Simon Scerri, Interest-
based RDF update propagation, In Proceedings of the 14th International Conference on The
Semantic Web-ISWC 2015-Volume 9366, pp. 513-529. Springer-Verlag, 2015.

6. Kemele M. Endris, José M. Giménez-García, Harsh Thakkar, Elena Demidova, Antoine
Zimmermann, Christoph Lange, Elena Simperl: Dataset Reuse: An Analysis of References in
Community Discussions, Publications and Data. Short paper in International Conference on
Knowledge Capture (K-CAP) 2017: 5:1-5:4

7. Lucie-Aimée Kaffee, Kemele M. Endris, Elena Simperl and Maria-Esther Vidal, Ranking
Knowledge Graphs By Capturing Knowledge about Languages and Labels, Proceedings of
the Knowledge Capture Conference (K-CAP) 2019, Marina del Rey, California, USA, ACM
2019

143

Appendix A List of Publications

8. Lucie-Aimée Kaffee, Kemele M. Endris, Elena Simperl "When humans and machines
collaborate: cross-lingual label editing in wikidata." Proceedings of the 15th International
Symposium on Open Collaboration. ACM, 2019.

9. David Chaves-Fraga, Kemele Endris, Enrique Iglesias, Oscar Corcho and Maria-Esther
Vidal, What are the Parameters that Affect the Construction of a Knowledge Graph?, Pro-
ceedings of the 18th International Conference on Ontologies, DataBases, and Applications of
Semantics (ODBASE) (in OTM) 2019, Rhodes, Greece, Springer 2019.

10. Sidra Faisal, Kemele M. Endris, Saeedeh Shekarpour, Sören Auer, Maria-Esther Vidal,
Co-evolution of RDF Datasets, Web Engineering - 16th International Conference, ICWE
2016, Lugano, Switzerland, June 6-9, 2016. Proceedings, pp. 225–243, 2016

11. Mikhail Galkin, Kemele M. Endris, Maribel Acosta, Diego Collarana, Maria-Esther Vidal,
Sören Auer. SMJoin: A Multi-way Join Operator for SPARQL Queries. In Proceedings
of the 13th International Conference on Semantic Systems (SEMANTiCS) 2017, 104–111,
Springer;

12. Saeedeh Shekarpour, Kemele M. Endris, Ashwini Jaya Kumar, Denis Lukovnikov, Kuldeep
Singh, Harsh Thakkar, Christoph Lange: Question Answering on Linked Data: Challenges
and Future Directions. WWW (Companion Volume) 2016: 693-698

13. Harsh Thakkar, Kemele M. Endris, José M. Giménez-García, Jeremy Debattista, Christoph
Lange, Sören Auer: Are Linked Datasets fit for Open-domain Question Answering? A Quality
Assessment. WIMS 2016: 19:1-19:12

14. Omar Al-Safi, Christian Mader, Ioanna Lytra, Mikhail Galkin, Kemele M. Endris, Maria-
Esther Vidal, Sören Auer: Shipping Knowledge Graph Management Capabilities to Data
Providers and Consumers. ICSC 2018: 9-16

15. Marlene Goncalves, Maria-Esther Vidal, Kemele M. Endris, PURE: A Privacy Aware Rule-
Based Framework over Knowledge Graphs. Special paper in International Conference on
Database and Expert Systems Applications, DEXA 2019.

‚ Journal Articles

16. Kemele M. Endris, Mikhail Galkin, Ioanna Lytra, Mohamed Nadjib Mami, Maria-Esther
Vidal, Sören Auer. MULDER: Querying the Linked Data Web by Bridging RDF Molecule
Templates. Accepted for publication in the LNCS Transactions on Large-Scale Data- and
Knowledge-Centered Systems Journal (Transactions LDKS), 2018;

17. Maria-Esther Vidal, Kemele M. Endris, Samaneh Jazashoori, Ahmad Sakor, Ariam Rivas:
Transforming Heterogeneous Data into Knowledge for Personalized Treatments - A Use Case.
Datenbank-Spektrum 19(2): 95-106 (2019)

‚ Book Chapters

18. Maria-Esther Vidal, Kemele M Endris, Samaneh Jozashoori, Farah Karim, Guillermo Palma:
Semantic data integration of big biomedical data for supporting personalised medicine,
Current Trends in Semantic Web Technologies: Theory and Practice, Springer, Cham, 25-56
(2019)

‚ Demos and Posters

144

A.1 Publications

19. Kemele M. Endris, Sidra Faisal, Fabrizio Orlandi, Sören Auer, Simon Scerri, iRap-an
Interest-Based RDF Update Propagation Framework. Proceedings of the ISWC 2015 Posters
& Demonstrations Track co-located with the 14th International Semantic Web Conference
(ISWC-2015), Bethlehem, PA, USA, October 11, 2015.

20. Kemele M Endris, Maria-Esther Vidal, Sören Auer, FedSDM: Semantic Data Manager for
Federations of RDF Datasets. In International Conference on Data Integration in the Life
Sciences, pp. 85-90. Springer, Cham, 2018.

21. Maria-Esther Vidal, Kemele M. Endris, Samaneh Jozashoori, Guillermo Palma: A Know-
ledge Driven Pipeline for Transforming Big Data into Actionable Knowledge. In International
Conference on Data Integration in the Life Sciences (DILS) 2018: 44-49

145

APPENDIX B

Benchmark Queries

B.1 BSBM Queries

Listing B.1: Prefixes

PREFIX bsbm-inst: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/instances/>
PREFIX bsbm: <http://www4.wiwiss.fu-berlin.de/bizer/bsbm/v01/vocabulary/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rev: <http://purl.org/stuff/rev#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>
PREFIX dc: <http://purl.org/dc/elements/1.1/>

Listing B.2: B1: Find products for a given set of generic features

SELECT DISTINCT ?product ?label
WHERE {

?product rdfs:label ?label .
?product a %ProductType% .
?product bsbm:productFeature %ProductFeature1% .
?product bsbm:productFeature %ProductFeature2% .
?product bsbm:productPropertyNumeric1 ?value1 .
FILTER (?value1 > %x%)

}

Listing B.3: B2: Retrieve basic information about a specific product for display purposes

SELECT ?label ?comment ?producer ?productFeature ?propertyTextual1 ?
propertyTextual2 ?propertyTextual3

?propertyNumeric1 ?propertyNumeric2 ?propertyTextual4 ?propertyTextual5 ?
propertyNumeric4

WHERE {
%ProductXYZ% rdfs:label ?label .
%ProductXYZ% rdfs:comment ?comment .
%ProductXYZ% bsbm:producer ?p .
?p rdfs:label ?producer .
%ProductXYZ% dc:publisher ?p .
%ProductXYZ% bsbm:productFeature ?f .
?f rdfs:label ?productFeature .

147

Appendix B Benchmark Queries

%ProductXYZ% bsbm:productPropertyTextual1 ?propertyTextual1 .
%ProductXYZ% bsbm:productPropertyTextual2 ?propertyTextual2 .
%ProductXYZ% bsbm:productPropertyTextual3 ?propertyTextual3 .
%ProductXYZ% bsbm:productPropertyNumeric1 ?propertyNumeric1 .
%ProductXYZ% bsbm:productPropertyNumeric2 ?propertyNumeric2 .
OPTIONAL { %ProductXYZ% bsbm:productPropertyTextual4 ?propertyTextual4 }
OPTIONAL { %ProductXYZ% bsbm:productPropertyTextual5 ?propertyTextual5 }
OPTIONAL { %ProductXYZ% bsbm:productPropertyNumeric4 ?propertyNumeric4 }

}

Listing B.4: B3: Find products having some specific features and not having one feature

SELECT ?product ?label
WHERE {

?product rdfs:label ?label .
?product a %ProductType% .
?product bsbm:productFeature %ProductFeature1% .
?product bsbm:productPropertyNumeric1 ?p1 .
?product bsbm:productPropertyNumeric3 ?p3 .
?product bsbm:productFeature ?pf .
FILTER (?p3 < %y%)
FILTER (?p1 > %x%)
FILTER (?pf != bsbm-inst:ProductFeature8001)

}

Listing B.5: B4: Find products matching two different sets of features

SELECT DISTINCT ?product ?label ?propertyTextual
WHERE {
{

?product rdfs:label ?label .
?product rdf:type %ProductType% .
?product bsbm:productFeature %ProductFeature1% .
?product bsbm:productFeature %ProductFeature2% .
?product bsbm:productPropertyTextual1 ?propertyTextual .
?product bsbm:productPropertyNumeric1 ?p1 .
FILTER (?p1 > %x%)

} UNION {
?product rdfs:label ?label .
?product rdf:type %ProductType% .
?product bsbm:productFeature %ProductFeature1% .
?product bsbm:productFeature %ProductFeature3% .
?product bsbm:productPropertyTextual1 ?propertyTextual .
?product bsbm:productPropertyNumeric2 ?p2 .
FILTER (?p2> %y%)

}
}

Listing B.6: B5: Find product that are similar to a given product

SELECT DISTINCT ?product ?productLabel
WHERE {

?product rdfs:label ?productLabel .
%ProductXYZ% bsbm:productFeature ?prodFeature .

148

B.1 BSBM Queries

?product bsbm:productFeature ?prodFeature .
%ProductXYZ% bsbm:productPropertyNumeric1 ?origProperty1 .
?product bsbm:productPropertyNumeric1 ?simProperty1 .
%ProductXYZ% bsbm:productPropertyNumeric2 ?origProperty2 .
?product bsbm:productPropertyNumeric2 ?simProperty2 .
FILTER (%ProductXYZ% != ?product)
FILTER (?simProperty1 < (?origProperty1 + 120) && ?simProperty1 > (?

origProperty1 - 120))
FILTER (?simProperty2 < (?origProperty2 + 170) && ?simProperty2 > (?

origProperty2 - 170))
}

Listing B.7: B6: Retrieve in-depth information about a specific product including offers and reviews

SELECT ?productLabel ?offer ?price ?vendor ?vendorTitle ?review ?revTitle ?
reviewer

?revName ?rating1 ?rating2
WHERE {

%ProductXYZ% rdfs:label ?productLabel .
OPTIONAL {

?offer bsbm:product %ProductXYZ% .
?offer bsbm:price ?price .
?offer bsbm:vendor ?vendor .
?vendor rdfs:label ?vendorTitle .

?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#DE> .
?offer dc:publisher ?vendor .
?offer bsbm:validTo ?date .
FILTER (?date > %currentDate%)

}
OPTIONAL {

?review bsbm:reviewFor %ProductXYZ% .
?review rev:reviewer ?reviewer .
?reviewer foaf:name ?revName .
?review dc:title ?revTitle .

OPTIONAL { ?review bsbm:rating1 ?rating1 . }
OPTIONAL { ?review bsbm:rating2 ?rating2 . }

}
}

Listing B.8: B7: Give me recent reviews in English for a specific product

SELECT ?title ?text ?reviewDate ?reviewer ?reviewerName ?rating1 ?rating2 ?
rating3 ?rating4

WHERE {
?review bsbm:reviewFor %ProductXYZ% .
?review dc:title ?title .
?review rev:text ?text .
FILTER langMatches(lang(?text), "EN")
?review bsbm:reviewDate ?reviewDate .
?review rev:reviewer ?reviewer .
?reviewer foaf:name ?reviewerName .
OPTIONAL { ?review bsbm:rating1 ?rating1 . }
OPTIONAL { ?review bsbm:rating2 ?rating2 . }
OPTIONAL { ?review bsbm:rating3 ?rating3 . }
OPTIONAL { ?review bsbm:rating4 ?rating4 . }

}

149

Appendix B Benchmark Queries

Listing B.9: B8: Get offers for a given product which fulfill specific requirements

SELECT DISTINCT ?offer ?price
WHERE {

?offer bsbm:product %ProductXYZ% .
?offer bsbm:vendor ?vendor .
?offer dc:publisher ?vendor .
?vendor bsbm:country <http://downlode.org/rdf/iso-3166/countries#US> .
?offer bsbm:deliveryDays ?deliveryDays .
?offer bsbm:price ?price .
?offer bsbm:validTo ?date .
FILTER (?date > %currentDate%)
FILTER (?deliveryDays <= 3)

}

Listing B.10: B9: Get all information about an offer.

SELECT ?property ?hasValue ?isValueOf
WHERE {
{ %OfferXYZ% ?property ?hasValue }
UNION { ?isValueOf ?property %OfferXYZ% }

}

Listing B.11: B10: Get all products’ review text and product label from a specific producer

SELECT DISTINCT ?product ?revText ?rating3 ?plabel
WHERE {

?product rdfs:label ?plabel .
?product bsbm:producer %producer1% .
?product a ?productType .
%producer1% a bsbm:Producer .
%producer1% rdfs:label ?prlabel .
%producer1% foaf:homepage ?homepage .
?review bsbm:reviewFor ?product .
?review bsbm:rating1 ?rating1 .
?review bsbm:rating2 ?rating2 .
?review bsbm:rating3 ?rating3 .
?review rev:text ?revText .

}

Listing B.12: B11: Find offer and vendors of a product with a given feature and type

SELECT DISTINCT ?product ?producer ?offer ?vendor
WHERE {

?product a %ProductType1% .
?product rdfs:label ?label .
?product bsbm:productFeature %ProductFeature1% .
?product rdfs:comment ?productComment .
?product bsbm:producer ?producer .
?product dc:publisher ?publisher .
?product bsbm:productPropertyTextual1 ?propertyTextual1 .
?product bsbm:productPropertyTextual2 ?propertyTextual2 .

150

B.2 LSLOD Queries

?product bsbm:productPropertyTextual3 ?propertyTextual3 .
?product bsbm:productPropertyNumeric1 ?propertyNumeric1 .
?product bsbm:productPropertyNumeric2 ?propertyNumeric2 .
?producer rdfs:label ?producerLabel .
?producer rdfs:comment ?producerComment.
?producer dc:publisher ?producerPublisher.
?offer bsbm:product ?product .
?offer bsbm:price ?price .
?offer bsbm:vendor ?vendor .
?offer bsbm:validTo %currentDate% .
?offer bsbm:validFrom ?offerValidFrom.
?offer bsbm:deliveryDays ?offerDeliveryDays.
?offer dc:publisher ?offerPublisher.
?offer dc:date ?offerPublishDate.
?vendor rdfs:label ?vendorLabel.
?vendor rdfs:comment ?vendorComment.
?vendor bsbm:country ?vcountry.

}

Listing B.13: B12: Find information about its feature, review and reviewer about a given product

SELECT DISTINCT ?label ?productType ?productFeature ?producer ?review ?reviewer
WHERE {

%Product1% a ?productType .
%Product1% rdfs:label ?label .
%Product1% bsbm:productFeature ?productFeature .
%Product1% rdfs:comment ?productComment .
%Product1% bsbm:producer ?producer .
%Product1% dc:publisher ?publisher .
%Product1% bsbm:productPropertyTextual1 ?propertyTextual1 .
%Product1% bsbm:productPropertyTextual2 ?propertyTextual2 .
%Product1% bsbm:productPropertyTextual3 ?propertyTextual3 .
%Product1% bsbm:productPropertyNumeric1 ?propertyNumeric1 .
%Product1% bsbm:productPropertyNumeric2 ?propertyNumeric2 .
?productFeature rdfs:label ?productFeatureLabel .
?productFeature rdfs:comment ?productFeatureComment.
?productFeature dc:publisher ?productFeaturePublisher.
?review bsbm:reviewFor %Product1% .
?review rev:reviewer ?reviewer .
?review dc:title ?revTitle .
?reviewer foaf:name ?revName .
?reviewer bsbm:country ?country.
?reviewer dc:publisher ?reviewerPublisher.
?reviewer dc:date ?reviewerPublishDate.

}

B.2 LSLOD Queries

Listing B.14: Prefixes

PREFIX drugbank: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/drugbank/>
PREFIX drugcategory: <http://www4.wiwiss.fu-berlin.de/drugbank/resource/

drugcategory/>

151

Appendix B Benchmark Queries

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX bio2RDF: <http://bio2rdf.org/ns/bio2rdf#>
PREFIX purl: <http://purl.org/dc/elements/1.1/>
PREFIX kegg: <http://bio2rdf.org/ns/kegg#>
PREFIX diseasome: <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome

/>
PREFIX dailymed: <http://www4.wiwiss.fu-berlin.de/dailymed/resource/dailymed/>
PREFIX sider: <http://www4.wiwiss.fu-berlin.de/sider/resource/sider/>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX linkedct: <http://data.linkedct.org/resource/>

Listing B.15: S1: Find all drugs along with their indications

SELECT ?genericName ?indication
WHERE {

{
?da drugbank:genericName ?genericName.
?da drugbank:indication ?indication.

}
UNION {
?da dailymed:name ?genericName.
?da dailymed:indication ?indication.

}
}

Listing B.16: S2: Find all drug descriptions and chemical equations of reactions related to durgs from category
Cathartics

SELECT ?drugDesc ?cpd ?equation
WHERE {

?drug drugbank:drugCategory drugcategory:cathartics.
?drug drugbank:keggCompoundId ?cpd .
?drug drugbank:description ?drugDesc .
?enzyme kegg:xSubstrate ?cpd .
?enzyme rdf:type kegg:Enzyme .
?reaction kegg:xEnzyme ?enzyme .
?reaction kegg:equation ?equation .

}

Listing B.17: S3: Find all drugs, together with the URL of the corresponding Web-pages as well as images

SELECT ?drug ?keggUrl ?chebiImage
WHERE {

?drug rdf:type drugbank:drugs .
?drug drugbank:keggCompoundId ?keggDrug .
?keggDrug bio2RDF:url ?keggUrl .
?drug drugbank:genericName ?drugBankName .
?chebiDrug purl:title ?drugBankName .
?chebiDrug bio2RDF:image ?chebiImage .

}

Listing B.18: S4: Find KEGG drug names of all drugs in DrugBank belonging to category Micronutrient

152

B.2 LSLOD Queries

SELECT distinct ?drug ?title
WHERE {

?drug drugbank:drugCategory drugcategory:micronutrient .
?drug drugbank:casRegistryNumber ?id .
?keggDrug rdf:type kegg:Drug .
?keggDrug bio2RDF:xRef ?id .
?keggDrug purl:title ?title .

}

Listing B.19: S5: Find all drugs and their mass that affect humans and other mammals. For those having a
description of their bioinformation, also return this description

SELECT ?drug ?transform ?mass
WHERE {

?drug drugbank:affectedOrganism ’Humans and other mammals’ .
?drug drugbank:casRegistryNumber ?cas.
?keggDrug bio2RDF:xRef ?cas .
?keggDrug bio2RDF:mass ?mass .
OPTIONAL { ?drug drugbank:biotransformation ?transform }

}

Listing B.20: S6: Find diseases and corresponding drugs that target those diseases

SELECT ?drug ?disease ?name
WHERE {

?drug drugbank:molecularWeightAverage ?weight .
?drug drugbank:possibleDiseaseTarget ?disease .
?disease diseasome:name ?name .

}

Listing B.21: S7: Find drugs and their side effects with labels for the drug name "Sodium Phosphate" in dailymed

SELECT ?drug ?sidereffect ?label
WHERE {

?drugAlt sider:sideEffect ?sidereffect .
?sidereffect rdfs:label ?label .
?drug dailymed:name ’Sodium Phosphates’ .
?drug owl:sameAs ?drugAlt .

}

Listing B.22: S8: Find diseases and corresponding drugs that target those diseases along with their labels

SELECT ?drug ?disease ?label
WHERE {

?disease diseasome:name ?diseasomename .
?disease drugbank:possibleDiseaseTarget ?drug .
?drug rdfs:label ?label .

}

Listing B.23: S9: Find intervention names and ids for the drugs in dailymed with drug dose, description, inactive
ingredients as well as possible disease target

153

Appendix B Benchmark Queries

SELECT DISTINCT *
WHERE {

?intervention a linkedct:intervention.
?intervention linkedct:intervention_intervention_name ?intervention_name.
?intervention rdfs:seeAlso ?dailymedDrug .
?dailymedDrug dailymed:dosage ?dosage.
?dailymedDrug dailymed:description ?description.
?dailymedDrug dailymed:inactiveIngredient ?inactiveIngredient .
?dailymedDrug dailymed:possibleDiseaseTarget ?possibleDiseaseTarget .

}

Listing B.24: S10: Find intervention names and types for the drugs in durgbank with drug chemical structure, drug
state, its protein binding and smiles String Canonical

SELECT distinct *
WHERE
{

?intervention a linkedCT:intervention.
?intervention linkedCT:intervention_name ?intervention_name.
?intervention linkedCT:intervention_type ?intervention_type.
?intervention rdfs:seeAlso ?drugbankDrug.
?drugbankDrug drugbank:structure ?structure.
?drugbankDrug drugbank:state ?state.
?drugbankDrug drugbank:proteinBinding ?proteinBinding.
?drugbankDrug drugbank:smilesStringCanonical ?smilesStringCanonical .

}

154

List of Figures

1.1 From Big Data to Actionable Knowledge . 2
1.2 Challenges . 5
1.3 Thesis Contributions . 8

2.1 Dimensions of Data Integration Systems . 15
2.2 Classification of Data Integration Systems . 16
2.3 RDF Graph representing an RDF triple . 18
2.4 RDF Molecule – dbr:Docetaxel . 19
2.5 Overview of R2RML Triple Maps . 24
2.6 RML mapping schema . 25
2.7 Federated Query Processing Basic Components . 27

3.1 Related work topics . 31

4.1 Data Source Description Model: Challenges and Contributions 40
4.2 Data Source Description Model: Motivating Example 41
4.3 Example RDF Molecules . 43
4.4 RDF Molecules Templates per Data Source . 45
4.5 Intra- and Inter-dataset Links . 46
4.6 Analysis of RDF-MTs of BSBM . 48
4.7 Frequency of BSBM RDF-MTs Per Number of Properties 48
4.8 Analysis of RDF-MTs of LSLOD . 49
4.9 Frequency of LSLOD RDF-MTs Per Number of Properties 50
4.10 Analysis of RDF-MTs of FedBench . 51
4.11 Frequency of FedBench RDF-MTs Per Number of Properties 51
4.12 BSBM: Performance of different source descriptions 53

5.1 Query Decomposition and Source Selection: Challenges and Contributions 56
5.2 Query Decomposition and Source Selection: Motivating Example Part I 57
5.3 Query Decomposition and Source Selection: Motivating Example Part II 57
5.4 MULDER: Query Decomposition Technique . 59
5.5 MULDER: Query Planning . 60
5.6 The MULDER Client-Server Architecture . 61
5.7 BSBM: Performance of Federated Engines . 63
5.8 FedBench: Execution Time and Completeness of Federated Engines 64
5.9 LSLOD: Answer traces, S2–S8 . 65
5.10 LSLOD: Answer traces, S1, S6, S9, S10 . 66
5.11 LSLOD: Efficiency and Completeness Metrics . 67
5.12 LSLOD: Comparison of Diefficiency . 68

155

List of Figures

6.1 Query Planning and Optimization: Challenges and Contributions 72
6.2 Query Planning and Optimization: Motivating Example Part I 73
6.3 Example raw data in each data sources . 74
6.4 Query Planning and Optimization: Motivating Example Part II 74
6.5 Semantic Data Lake Basic Components . 79
6.6 The Ontario Architecture . 80
6.7 Star-Shaped group types . 83
6.8 Efficiency of Ontario on homogeneous data sources 83
6.9 Performance of Ontario engine on heterogeneous sources 84
6.10 Queries where RDF+RDB is better . 84
6.11 Queries where RDF only is better . 85

7.1 Privacy-aware Query Processing: Challenges and Contributions 88
7.2 Hospital Data (S1) . 88
7.3 Research Institute Data (S2) . 89
7.4 Privacy-aware Query Processing: Motivating Example Part II 90
7.5 Example of Privacy-Aware Decompositions . 95
7.6 Example of Privacy-aware RDF Molecule Templates (PRDF-MTs) 95
7.7 BOUNCER Architecture . 97
7.8 Decomposition and Planning Time . 98
7.9 Overall Execution Time . 98
7.10 Efficiency of Query Plans . 99

8.1 Interest-based Update Propagation: Challenges and Contributions 102
8.2 Live mirror based changeset propagation approach 103
8.3 Formalization overview of the interest-based update propagation 105
8.4 Co-evolution of linked datasets . 114
8.5 iRap framework Architecture . 117
8.6 Evaluation results for Football dataset . 120
8.7 Evaluation results for Location dataset . 120

156

List of Tables

2.1 Example drugs.csv . 26

3.1 Overview of data source description approaches . 34

4.1 FedBench RDF-MT Graph Metrics . 48
4.2 LSLOD RDF-MT Graph Metrics . 49
4.3 FedBench RDF-MT Graph Metrics . 52

5.1 BSBM queries characteristic . 62
5.2 LSLOD queries characteristic . 62

6.1 Distribution of Data Sources over Data Formats . 81
6.2 Characteristics of SSQs of the LSLOD benchmark Queries 82

8.1 Conflict resolution policies and functions . 116
8.2 Distribution of DBpedia Live changesets published October 01-15, 2014 118
8.3 Comparison of results for Football App . 119
8.4 Comparison of results for Location App . 119
8.5 Number of triples in the source, target, and changesets for a given time frame 121
8.6 Results of synchronization . 121
8.7 Synchronization effect on completeness, consistency, and conciseness 122

157

	Introduction
	Motivation
	Problem Statement and Challenges
	Research Questions
	Thesis Overview
	Contributions
	List of Publications

	Thesis Structure

	Background
	Data Integration System
	Global-as-View Approach (GAV)
	Local-as-View Approach (LAV)
	Classification of Data Integration Systems
	Data Integration in the era of Big Data

	Semantic Web
	The Resource Description Framework (RDF)
	RDF Schema
	The SPARQL Query Language and SPARQL Protocol
	Rule-based Mapping Languages for Transforming raw data to RDF

	Federated Query Processing Systems
	Data Source Description
	Query Decomposition and Source Selection
	Query Planning and Optimization
	Query Execution

	Related Work
	Materialized Integration Approaches
	Federated Query Processing Systems
	Data Source Description and Source Selection Approaches
	Query Decomposition Techniques
	Query Planning and Execution Techniques

	Query Processing over Heterogeneous Data Sources
	Privacy-aware Federated Query Processing
	Update Propagation and Co-evolution

	Data Source Description Model
	Motivating Example
	Source Description Model
	RDF-MT: RDF Molecule Templates
	Creating RDF Molecule Templates

	Experimental Study
	RDF-MT based Characterization of Benchmarks
	Comparison of Source Descriptions for Query Processing

	Summary

	Query Decomposition and Source Selection
	Motivating Example
	Problem Statement and Proposed Solution
	Problem Statement
	Proposed Solution

	MULDER: A Federated Query Processing Engine
	Source Selection and Query Decomposition Technique
	The MULDER Architecture

	Empirical Evaluation
	Comparison of Federated Query Engines
	Measuring Continuous Efficiency of MULDER

	Summary

	Query Planning and Optimization
	Motivating Example
	Problem Statement and Proposed Solution
	Problem Statement
	Proposed Solution

	Ontario: Federated Query Processing over Semantic Data Lakes
	Heuristics
	Query Plan Generation
	The Ontario Architecture

	Empirical Evaluation
	Impact of Star-shaped Group Types
	Impact of Considering Heterogeneity
	Impact of Heterogeneous Sources
	Measuring the Continuous Efficiency

	Summary

	Privacy-aware Query Processing
	Motivating Example
	Problem Statement and Proposed Solution
	BOUNCER: A Privacy-Aware Query Engine
	Privacy-Aware Source Selection and Decomposition
	Privacy-Aware Query Planning Technique
	The BOUNCER Architecture

	Empirical Evaluation
	Impact of Access Control Enforcement.
	Impact of Privacy-Aware Query Plans.

	Summary

	Interest-based Update Propagation
	Motivation
	Problem Statement and Proposed Solution
	Problem Statement
	Proposed Solution

	Formalization of Interest-based Update Propagation
	Managing Co-evolution
	Conflict
	Synchronization Strategies
	Co-evolution Approach

	iRap: RDF Update Propagation Framework
	Empirical Evaluation
	Evaluating iRap Update Propagation
	Evaluating Co-evolution Strategies

	Summary

	Conclusions and Future Directions
	Revisiting the Research Questions
	Open Issues and Future Directions
	Closing Remarks

	Bibliography
	List of Publications
	Publications

	Benchmark Queries
	BSBM Queries
	LSLOD Queries

	List of Figures
	List of Tables

