
w
e
b
-o

r
ie

n
te

d
 e

ve
n
t

p
r
o
c
e
s
s
in

g
Ro

la
nd

 S
tü

hm
er

Roland Stühmer

Roland Stühmer

Web-oriented Event Processing

Web-oriented Event Processing

by
Roland Stühmer

Genehmigte Dissertation, Karlsruher Institut für Technologie (KIT)
Fakultät für Wirtschaftswissenschaften, 2014
Tag der mündlichen Prüfung: 17. Juli 2014
Referent: 	 Prof. Dr. Rudi Studer
Korreferent: 	Prof. Dr. Opher Etzion

Print on Demand 2014

ISBN	 978-3-7315-0265-4
DOI	 10.5445/KSP/1000043122

This document – excluding the cover – is licensed under the
Creative Commons Attribution-Share Alike 3.0 DE License

(CC BY-SA 3.0 DE): http://creativecommons.org/licenses/by-sa/3.0/de/

The cover page is licensed under the Creative Commons
Attribution-No Derivatives 3.0 DE License (CC BY-ND 3.0 DE):

http://creativecommons.org/licenses/by-nd/3.0/de/

Impressum

Karlsruher Institut für Technologie (KIT)
KIT Scientific Publishing
Straße am Forum 2
D-76131 Karlsruhe

KIT Scientific Publishing is a registered trademark of Karlsruhe
Institute of Technology. Reprint using the book cover is not allowed.

www.ksp.kit.edu

Abstract

Event processing – computing performed on occurrences happening in a
system or domain – is a common methodology of dealing with real-time
data where situations must be detected instantaneously. Event processing
research and products today provide a good understanding and support
for closed-domain systems such as enterprises. On the Web real-time re-
sults also gain interest as more and more data are available in data streams.
Examples are social activity streams or sensor readings. Requirements
for event processing on the Web are, however, different from those in
closed-domain systems. The question then arises as to how the Web can
be made situation-aware. In this thesis we collect the requirements for a
Real-time Web and answer the posed question by contributing the design
and realisation of a Web-oriented event processing system to manage
events, streams and queries.

The presented result is a semantic system that serves as an Event Market-
place: heterogeneous events from the Web modelled in RDF are matched
and integrated using a processing language we designed and describe
in this work. The system consists of these main components: an event
processing layer to combine, integrate, filter and derive events quickly, in
memory, and a storage layer to maintain historic events augmenting the
real-time layer with long-term queries. Event-driven applications are im-
plemented on this architecture by expressions in our language supporting
hybrid queries combining both real-time queries (on pushed data) and
historic queries (on pull data). A governance component enforces efficient
access control on event streams and storage. The main contributions of the
system design are its Web-orientation by adhering to open and extensible
standards, its processing language offering the combination of real-time

Abstract

and historical queries on events and its governance capabilities creating a
multitenant system based on permissions. The system uses Web technolo-
gies such as Linked Data, RDF and SPARQL to model, organise, locate,
process and control access to events.

We evaluate the artefacts produced as part of this work using qualitative
and quantitative measures: Qualitative comparisons are made with the
State of the Art and the overall cost of our Web-based approach is deter-
mined quantitatively and compared to a non-Web-based solution as the
baseline.

I am deeply thankful to Prof. Dr. Rudi Studer for creating a creative and
productive environment in Semantic Web research. He leads people by
example and he makes it a delight to be in his team and to prove one-
self. Prof. Dr. Opher Etzion is the author of one of the most important
books on event processing and I am proud to have him on my jury. I
appreciate his calmness and his independent thinking regarding technolo-
gies and their hypes. Moreover I am thankful to Prof. Dr. Thomas Setzer
and Prof. Dr. Jan Kowalski for participating in the jury and thinking the
thoughts of different research fields with appreciation.

I would like to thank my mentor Nenad Stojanovic for supporting my
ideas, managing the research group very effectively, always pushing for
more creativity, and sharing his excitement for Web technologies. Nonethe-
less, I would like to thank Ljiljana Stojanovic for her tireless scientific
rigour and attention to detail which impresses me and greatly benefited
my work. Their qualities make Ljiljana and Nenad the rare and admirable
team that they are.

I have enjoyed many entertaining and fruitful discussions with my friends
and co-workers: Special thanks go to Dominik Riemer for supporting me
in situations of doubt, to Jürgen Bock for being a steady advocate since I
started my work, Benedikt Kämpgen for his spontaneous help, sharp eyes
and questions screening my work, to Valentin Zacharias for his motivating
inquisitiveness and unorthodox thinking and finally to Darko Aničić for
his foundational work. Extra special thanks go to Heike Döhmer whose

I have received a great deal of
encouragement

Acknowledgements

omnipresence paired with cheerful attitude assured me that any problem
can be overcome and that the workplace should be a happy place.

I am thankful to Stefan Obermeier for helping me implement the system
with great technical detail and for enduring my expectations for diligence.
I am also thankful to Ningyuan Pan for helping with the implementation
and for his effort in starting the future directions of this work.

I would like to gratefully mention the European Union whose research
grants SYNERGY and PLAY enabled me to conduct my work. The grants al-
lowed me to work in challenging, international environments. Some of the
many interesting persons I met deserve special thanks: Yiannis Verginadis
for his compassionate diplomacy and his help in critical phases of work,
Iyad Alshabani for finding pragmatic and effective solutions during our
international collaboration, Laurent Pellegrino for setting good examples
of software quality, Christophe Hamerling for teaching me the tools of
software engineering, Prof. Dr. Françoise Baude, Prof. Dr. Frédérick Bén-
aben and Philippe Gibert for their fruitful collaboration and the warm
welcome and finally Aleksandar Stojadinović for transferring some of
my results in a production setting.

I wish to thank my parents Elisabeth and Gerhard Stühmer who had
enabled me to study Informatics. Long before that they instilled in me
a love of science and language, all of which finds a place in this thesis. I
am thankful for my younger brother and only sibling Stephan Stühmer,
he has been a very good friend throughout the years. I would like to
commemorate my grandmother for her placidness and my great-aunt for
her impeccable manners. Both influenced me long beyond their parting.
Finally, I would like to thank Jana Eubel. She is an inspiration and a
motivation to get ahead in life and to get things done. I am happy to have
met her.

Contents

Figures ix

Tables xi

Listings xiii

Abbreviations xv

1 Introduction 1
1.1 Research Questions . 3
1.2 Research Paradigm and Methodology 6
1.3 Contributions of this Thesis 6
1.4 Previous Publications . 7
1.5 Guide to the Reader . 9

2 Requirements 11
2.1 Requirements for Event Modelling (Event Format) 12
2.2 Web Requirements . 13
2.3 Linked Data Requirements 14
2.4 Requirements for Event Processing (Pattern Language) . . 15
2.5 Event Processing Grand Challenge 16
2.6 Event Marketplace . 17
2.7 Requirements from Scenarios 18

3 Foundations 21
3.1 Resource Description Framework (RDF) and Linked Data . 21
3.2 SPARQL Protocol and RDF Query Language 23

Contents

3.3 REST versus SOAP . 24
3.4 Push versus Pull . 24
3.5 Publish/Subscribe . 25
3.6 Events . 26
3.7 Event Processing Systems 28
3.8 Event Formats . 30
3.9 Protocols for Real-time Data on the Web 31
3.10 Data Sources for Real-time Data on the Web 32

4 State of the Art 35
4.1 RDF Event Models . 35
4.2 RDF Streaming Systems . 36
4.3 Combining real-time with historical Querying 38
4.4 Lambda Architecture . 39
4.5 RDF Access Control . 40
4.6 Relationship with EP-SPARQL 41

5 A Model for Events 43
5.1 Introduction: An open Event Model 43
5.2 Requirements . 44
5.3 The Model . 46
5.4 Tools . 50
5.5 Discussion . 55

6 A Pattern Language for Events 59
6.1 Introduction: A real-time Query Language for RDF Event

Streams . 59
6.2 Requirements . 61
6.3 Formalism: Syntax and Semantics of the Language 62
6.4 Query Decomposition . 67
6.5 Discussion . 70

7 An Infrastructure for Events 73
7.1 Architecture . 73
7.2 Event Processing . 77
7.3 Access Control . 85
7.4 RESTful Services . 90

Contents

7.5 Linked Data Streaming . 92
7.6 Event Adapters . 96
7.7 Web Application . 99
7.8 Discussion . 101

8 Evaluation 105
8.1 Fulfilment of Requirements 105
8.2 Efficiency of the Approach 108
8.3 Comparison with Related Work 110
8.4 Overall System Test . 112
8.5 Fast Flower Delivery Scenario 122
8.6 Discussion . 126

9 Conclusions and Outlook 127
9.1 Summary of the Results . 128
9.2 Significance of the Results 131
9.3 Outlook . 132

Appendix 135

A Open-source Contributions 137
A.1 Source Code . 137
A.2 Binary Artefacts . 139
A.3 Grammar . 140

B Listings 141
B.1 Overall System Test . 141

Bibliography 147

Index 157

Figures

5.1 Event Model . 46

5.2 Event Type Hierarchy . 51

7.1 System Architecture . 74

7.2 Components . 78

7.3 Query Decomposition, Part 1 79

7.4 Query Decomposition, Part 2 84

7.5 Access Control Vocabulary 86

7.6 RESTful Client . 91

7.7 Web Application . 100

8.1 Efficiency of the Approach 109

8.2 First Experiment: Event Processing Time 117

8.3 First Experiment: Event Processing Time, Accumulated . . 118

8.4 First Experiment: Component Contribution 119

8.5 Second Experiment: Event Processing Time 121

8.6 Second Experiment: Component Contribution 122

8.7 Event Type Hierarchy for Scenario 125

A.1 Module Interdependencies 139

Tables

5.1 Requirements for the Event Model 56

6.1 Requirements for the Pattern Language 71

7.1 RESTful Services . 90

7.2 Requirements for the Infrastructure 102

8.1 Overall Requirements . 106

8.2 Query Expressivity of BDPL 111

8.3 First Experiment: Event Processing Time 119

A.1 Source Code Locations . 138

Listings

5.1 RDF Event Example. 50

5.2 Event Model SDK: Predefined Schema. 53

5.3 Event Model SDK: Ad-hoc Schema. 54

6.1 BDPL Query Example . 66

6.2 Output of BDPL Parser . 67

7.1 Historic Query Example 82

7.2 Permissions Example . 87

7.3 Twitter Event Example . 99

8.1 Scenario-based Test: Example Event 114

8.2 Scenario-based Test: First Pattern 115

8.3 Linked Data for Scenario 126

B.1 Scenario-based Test: First Pattern 142

B.2 Scenario-based Test: Second Pattern 143

B.3 Scenario-based Test: Third Pattern. 144

Abbreviations

API Application programming interface

BDPL Big Data Processing Language

BNF Backus-Naur Form

DCEP Distributed Complex Event Processing

EDA Event-driven architecture

ELE ETALIS Language for Events

EP Event processing

IoS Internet of Services

IoT Internet of Things

JSON JavaScript Object Notation

LD Linked Data

OWL Web Ontology Language

RDF Resource Description Framework

RDFS Resource Description Framework Schema

REST Representational state transfer

SDK Software development kit

Abbreviations

SOA Service-oriented architecture

SOAP Simple Object Access Protocol

SPARQL SPARQL Protocol and RDF Query Language

SSN Semantic Sensor Network

XML Extensible Markup Language

XPath XML Path Language

1
Introduction

In this thesis we are pursuing the idea of bringing event processing
(EP) [Luckham 2001] to the Web. Recently, there has been a significant
paradigm shift towards a Real-time Web. Previously, requests for Web sites
just like queries against databases were concerned with looking at what
happened in the past. On the other hand, event processing is concerned
with processing real-time occurrences, i.e. event processing is concerned
with events which are just happening.

An event is something that happens, or is contemplated as happening
[Etzion and Niblett 2010]. For example, on the Web an event may signify a
sensor reading, a price-change signal, some piece of information becoming
available, a deviation and so forth. An event can also represent something
that did not happen (e.g. the contemplation of absence of an event within
a certain time frame).

2 1. Introduction

Using event processing this thesis describes an architecture for dynamic
and complex, event-driven interaction for the Web. Such an architecture
will enable the exchange of real-time data (events) between heterogeneous
services, providing possibilities of optimizing and personalizing the exe-
cution of services on the Web, resulting in context-driven adaptivity.

To deal with heterogeneity on the Web we propose an event format based
on Resource Description Framework (RDF) [Klyne and Carroll 2004] with
a matching event pattern language syntax based on SPARQL Protocol
and RDF Query Language (SPARQL) [Harris and Seaborne 2010]. Both of
these base-technologies are currently used on the Web as general methods
for conceptual modelling (and querying, respectively) of information.
We have adapted them to enable a Real-time Web based on these well-
known foundations, i.e. RDF and SPARQL. Non-functional aspects such
as privacy for real-time data on the Web are also addressed using these
foundations.

The motivation for our work is the idea of the Web being situation-aware
in real-time. This idea was developed as a grand challenge [Chandy et al.
2011] for event processing. The purpose of this challenge is “to identify a
single, though broad challenge that impacts society and at the same time
measures the progress of research” [Chandy et al. 2011]. The challenge
is to create a decentralised, global, Internet-like infrastructure built upon
widely-accepted open standards [Chandy et al. 2011]. We will discuss the
requirements in detail in Chapter 2.

There are a number of terms (synonyms) given for a Web which is situation-
aware. Examples are Real-time Web1, Web of Events2, Active Web3, Reac-
tive Web4 and Event Processing Fabric5.

They have in common that data must be exchanged quickly after it is
created. Moreover, Fromm [Fromm 2009] states that the Real-time Web (i)
is a new form of communication which (ii) creates a new body of content,

1Ken Fromm: [Fromm 2009]
2Ramesh Jain keynote: [Jain 2007]
3Krzysztof Ostrowski: [Ostrowski et al. 2007]
4François Bry: [Bry and Eckert 2006]
5Event processing manifesto: [Chandy et al. 2011]

1.1. Research Questions 3

(iii) is real-time, (iv) is public with an explicitly associated social graph and
(v) carries an implicit model of federation. Indeed, this work makes a con-
tribution to the Real-time Web by enabling a new form of communication
using event processing, working in real-time and supporting federated
data-creation and consumption.

There are many technological developments on the Web today which can
create a lot of events and thus support a Real-time Web. Such events are
delivered in a push fashion as opposed to the traditional client–server
Web of request and response. For one, there is the W3C Web Notification
Working Group6 which is working on push notifications to actively notify
running Web applications. Additionally, HTML5 defines two techniques
to facilitate communication initiated by the server. These techniques are
Server-Sent Events7 and WebSockets8. They operate at different layers of the
protocol stack to achieve push delivery to Web clients. Another approach
to push-data on the Web is the Google PubSubHubbub protocol9 to enable
mainly server-to-server notifications. It is designed to avoid inefficient
polling of news feeds in Atom or RSS. Lastly, the Facebook Graph API
provides a large-scale example of an application-specific way to subscribe
to real-time updates10 from changes to connected people’s profiles.

With event processing in itself and with Web technologies such as de-
scribed in this thesis below we can get closer to reaching the goals of the
grand challenge such as distributed ownership and community-based
self-curation and updating of event schemas and queries.

1.1. Research Questions

The principal research question for this work is presented first. It combines
research about the Web on the one hand and on real-time data on the

6Web Notification Working Group: http://www.w3.org/2010/06/notification-charter
7Server-Sent Events: http://www.w3.org/TR/eventsource/
8WebSocket API: http://www.w3.org/TR/websockets/
9Google PubSubHubbub protocol http://code.google.com/p/pubsubhubbub/

10Facebook Graph API Real-time Updates https://developers.facebook.com/docs/graph-
api/real-time-updates

http://www.w3.org/2010/06/notification-charter
http://www.w3.org/TR/eventsource/
http://www.w3.org/TR/websockets/
http://code.google.com/p/pubsubhubbub/
https://developers.facebook.com/docs/graph-api/real-time-updates
https://developers.facebook.com/docs/graph-api/real-time-updates

4 1. Introduction

other. The question is subsequently broken down into three sub-questions
which will be answered in and be the primary topic of the main chapters
(5 to 7).

The principal research question is:

How can the Web be made situation-aware?

The question addresses (i) situation awareness and (ii) the Web. Situation
awareness is defined in [Endsley and Garland 2000] as “the perception of
the elements in the environment within a volume of time and space, the
comprehension of their meaning, and the projection of their status in the
near future.” For this work we focus on the first part, perception which is
about “knowing what is going on” [Endsley and Garland 2000].

The Web is the second part of the question. The Web consists of resources
which can be queried for their current state by accessing these resources.
Additionally, indexes such as search engines exist. They can also be used
to get information about the state of resources.

To gain awareness about situations on the Web, however, timeliness is
important. Therefore, it is not efficient to query (i.e. pull) all of the Web’s
resources regularly to capture state changes as soon as they happen (cf.
Section 3.4 on the discussion of push and pull communication). Cen-
tralised indexes can only at best achieve near real-time performance (i.e.
by pulling at high frequencies). Moreover, such indexes usually do not
cover large portions of the Web.

Therefore, to gain situation awareness on the Web, time-critical data must
be exchanged in a push fashion. The paradigm for such data processing
is event processing which is often (but not necessarily) connected with
push-data.

This thesis does not impose restrictions on the type and volume of data
that are exchanged on the Real-Time Web. Specifically, no statements are
being made as to what part of the data is persisted and available later and
what part is discarded immediately and is only available via aggregations.
Such decisions are left to be application-specific.

1.1. Research Questions 5

Event processing is used during the course of this work to answer many
parts of the principal research question. Event processing consists of three
ingredients: events (i.e. the data), event patterns (i.e. the logic) and event
processing engines (i.e. the infrastructure). Hence, the following research
questions ask about these three ingredients one by one, with special focus
on their use on the Web.

Research Question 1 (Web Interoperability). How can we achieve event
interoperability for situation awareness at a Web scale?

This research question deals with the data which must be exchanged on
the Web to gain situation awareness. We will consider our answer to
this question as going beyond the question of static data interoperability.
Additions are made for specificities to situation awareness such as time
and/or place of situations as defined above. The requirements to answer
this question are collected in detail in Chapter 2, Requirements, and are
resolved in Chapter 5.

Research Question 2 (Processing Language). How to design and realise a
processing language for Web events?

The second research question deals with the logics of situation awareness.
Specifically, this question targets a formalism to define more complex situ-
ations on the basis of simpler situations in an operational way. This sort
of inductive definition is borrowed from event processing where derived
events (i.e. more complex situations) are created based on simpler events
(simpler situations). The target of this question is a language which for-
malises the derivation of events from other events. Detailed requirements
for such a language are collected in our chapter on requirements and are
resolved in Chapter 6.

Research Question 3 (Infrastructure). How to design and develop an efficient
infrastructure supporting a Web of events?

This research question deals with the matter of the information system
behind the approach. Infrastructure is required to evaluate the logic men-
tioned above. Meanwhile, the efficiency of the approach must be suitable

6 1. Introduction

for the application scenarios. Detailed requirements for an infrastructure
supporting situation awareness on the Web are collected in our chapter
on requirements and are resolved in Chapter 7.

1.2. Research Paradigm and Methodology

The aforementioned research questions are addressed in this thesis through
qualitative and quantitative means using the paradigm of design science
as it is known for information systems research.

Design science as described in [Hevner et al. 2004] “seeks to extend the
boundaries of human and organizational capabilities by creating new and
innovative artefacts”.

Innovative artefacts in the sense of design science can be vocabularies,
models, methods and instantiations (implemented and prototype systems).
For this thesis we produced models for events (cf. Chapter 5), models and
methods for queries (cf. Chapter 6) and an instantiation of a prototype
system (cf. Chapter 7).

1.3. Contributions of this Thesis

This thesis contributes an implemented system for processing real-time
data from events on the Web using open standards needed for adoption
on the Web. The system is comprised of three main contributions. They
are developed addressing the three main research questions from Sec-
tion 1.1. These contributions are our event model, our event processing
language and the system implementing them. Further contributions are
the adherence to Web standards and expressive software tooling to foster
adoption of our approach. Our contributions are as follows:

1. An event model based on RDF. Our event model is an expressive
RDF schema. It supports arbitrarily structured events unlike flat or
atomic schemas found in large parts of the related work. On the

1.4. Previous Publications 7

other hand, our format is suitable for event processing unlike some
schemas which allow fuzzy temporal properties which cannot be
processed by machines. Moreover, our schema is designed with
interoperability as a goal and fosters re-use of domain schemas.

2. An event pattern language based on RDF and SPARQL. Our language
has support for combined (hybrid) patterns of real-time data and
historic data using transparent joins built into the language whereas
existing languages can query historic data mostly by imperative,
non-declarative extensions or not at all.

3. Design and Software Implementation of our event processing system to
process the event model and patterns.

4. Use of open Web standards for event modelling, pattern modelling,
access control.

5. Software tooling: SDK for event modelling and event-based com-
munication, event adapters for existing sources (Twitter, Facebook,
Xively).

These contributions collectively address the research questions stated in
Section 1.1 and thus show how the Web can be made situation-aware when
data is on the move using push-oriented communication.

1.4. Previous Publications

The core contributions of this thesis are peer-reviewed and published as
follows. For each of the core contributions (model, pattern language and
system) we will select one most viable publication.

Event Model: The RDF event model elaborated in Chapter 5 is described
in [Stühmer et al. 2009a] and [Stühmer et al. 2009b] and was demonstrated
in [Stühmer et al. 2009c]. The most important publication for the event
model was presented at the 8th International Semantic Web Conference (ISWC
2009) [Stühmer et al. 2009b]:

Roland Stühmer, Darko Anicic, Sinan Sen, Jun Ma, Kay-Uwe
Schmidt, and Nenad Stojanovic [2009b]. ‘Lifting events

8 1. Introduction

in RDF from interactions with annotated Web pages’. In:
The Semantic Web - ISWC 2009. Vol. 5823. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, pp. 893–
908. isbn: 978-3-642-04929-3. doi: {10.1007/978-3-642-
04930-9_56}.

Event Pattern Language: The language BDPL elaborated in Chapter 6
was first described in [Stojanovic et al. 2012] and evaluated for performance
in [Stojanovic et al. 2013]. The most important publication for BDPL was
presented in our paper at the 7th ACM International Conference on Distributed
Event-Based Systems (DEBS 2013) [Stojanovic et al. 2013]:

Nenad Stojanovic, Ljiljana Stojanovic, and Roland Stühmer
[2013]. ‘Tutorial: Personal Big Data Management in Cyber-
physical Systems – The Role of Event Processing’. In: Pro-
ceedings of the 7th ACM international conference on Distributed
event-based systems. New York, NY, USA. isbn: 978-1-4503-
1758-0. doi: 10.1145/2488222.2488348.

System: The overall system elaborated in Chapter 7 was presented at
the 14th IFIP Working Conference on Virtual Enterprises (PRO-VE 2013) and
is published in [Stühmer et al. 2013]:

Roland Stühmer, Yiannis Verginadis, Iyad Alshabani, Thomas
Morsellino, and Antonio Aversa [2013]. ‘PLAY: Semantics-
Based Event Marketplace’. In: 14th IFIP Working Conference
on Virtual Enterprise – Special Session on Event-Driven Col-
laborative Networks. Ed. by Luis M. Camarinha-Matos and
Raimar J. Scherer. Vol. 408. IFIP Advances in Information
and Communication Technology. Springer, pp. 699–707.
doi: 10.1007/978-3-642-40543-3_73.

Moreover, we published the general motivation for using Semantic Web
technologies in event processing [Stojanovic et al. 2011] and more specifi-
cally using Linked Data in event processing [Wagner et al. 2010].

http://dx.doi.org/{10.1007/978-3-642-04930-9_56}
http://dx.doi.org/{10.1007/978-3-642-04930-9_56}
http://dx.doi.org/10.1145/2488222.2488348
http://dx.doi.org/10.1007/978-3-642-40543-3_73

1.5. Guide to the Reader 9

The research challenges have been discussed in a doctoral consortium
at the 4th ACM International Conference on Distributed Event-Based Systems
(DEBS 2010).

Finally, our approach is evaluated in previously published works on the
use cases of crisis management [Barthe-Delanoë et al. 2012], [Truptil et al.
2012] and logistics [Lauras et al. 2012].

1.5. Guide to the Reader

This thesis is structured as follows. Chapters 1 to 4 are preliminaries,
Chapters 5 to 7 are the three main chapters referring to the main contribu-
tions and addressing the three research questions. Chapters 8 to 9 present
evaluation and conclusions only followed by appendices, bibliography
and the index at the end of this document.

Chapter 1, Introduction, posed the research questions under the principal
question: How can the Web be made situation-aware?

Chapter 2, Requirements, breaks down the questions into tractable require-
ments for designing the final artefacts as contributions of this thesis.

Chapters 3 and 4, Foundations and State of the Art describe related work.
Foundations are work which is related “vertically” to this work being un-
derpinnings or technology necessary for an understanding when reading
this thesis. State of the Art on the other hand is related work with simi-
lar goals and/or similar applications to this thesis where a comparative
analysis is conducted.

Chapters 5 to 7, A Model for Events, A Pattern Language for Events and An
Infrastructure for Events describe the main contributions of this thesis. The
research questions and their requirements are addressed there. Resulting
models, methods and instantiations are described.

Chapter 8, Evaluation, evaluates the artefacts produced as part of this
work. Qualitative comparisons are made with the State of the Art and the

10 1. Introduction

overall cost of the Web-based approach is determined quantitatively and
compared to a non-Web-based solution.

Chapter 9, Conclusions and Outlook, summarises the results, discusses their
significance and points to future work.

Appendices, the bibliography and the index conclude this document.

2
Requirements

In this chapter we dive deeper into the design of the main contributions
of this thesis. To that end we elaborate on finer-grained requirements
stemming from the research questions from Section 1.1. Each research
question is broken down into tractable requirements for the further design
of the contributions. Research Question 1 (Web Interoperability) is dis-
cussed in Sections 2.1 to 2.3. Research Question 2 (Processing Language)
is discussed in Section 2.4. Finally, Research Question 3 (Infrastructure)
is discussed in Sections 2.5 to 2.7. The requirements collected here are
revisited in the main chapters and evaluation chapter below to measure
the results.

12 2. Requirements

2.1. Requirements for Event Modelling (Event
Format)

Let us remind ourselves of the first research question:

Research Question 1 (Web Interoperability). How can we achieve event
interoperability for situation awareness at a Web scale?

The question addresses data modelling specific to events and moreover
specific to the Web. First, we collect requirements specific to events in
this section. Thereafter, we collect requirements for the Web and more
specifically Linked Data in subsequent sections below.

An event is something that happens, or is contemplated as happening
within a particular system or domain [Etzion and Niblett 2010]. Events are
first-class objects, i.e. a fundamental information unit. This means they
can be stored, queried and merged with other events [Gupta and Jain 2011]
and do not need to be inferred from changes in state or in class membership
or in other implicit means. Moreover, in many real-life systems the number
of different states is quite large and cannot be modelled at design time
[Gupta and Jain 2011, Section 2.3]. This requires a model which explicitly
models the known and relevant relationships, i.e. events, instead of all
possible states and state transitions.
Requirement R1: Events are first-class objects
Events are first-class objects, they are a fundamental information unit which
can be stored, queried and merged with other events. Events explicitly model the
known relationships in an application domain.

According to [Gupta and Jain 2011, Chapter 2] important properties of
an event are time, a type-hierarchy and inter-event relationships to make
events more meaningful. Consequently the next requirements are to
support time properties and type-hierarchies.
Requirement R2: Time properties
Time properties of events must be supported.
Requirement R3: Type hierarchy
Type hierarchies of events must be supported.

2.2. Web Requirements 13

In [Etzion and Niblett 2010, Section 3.4] and [Gupta and Jain 2011, Sec-
tions 2.3 and 3.2] required relationships between events are specified as
membership, generalization, specialization and retraction. The relation
membership between two events means that one event can be a member in
another event when one event caused the other event, or was used in the
detection and inference of the other. The relations of generalization and
specialization resemble the known object-oriented notions of superclass
and subclass for event classes which are more general or less general than
other classes. The relation of retraction, finally, is used to model events
which retract the facts conveyed by previous events. Since events are often
treated as being immutable [Luckham and Schulte 2011] (cf. Section 3.6),
an event cannot be deleted but a retraction can be sent.
Requirement R4: Inter-event relationships
Inter-event relationships must be supported.

Semantic Web technologies such as RDF provide re-usable schemas, called
ontologies. An ontology is a “formal, explicit specification of a shared
conceptualisation” [Studer et al. 1998]. Sharing of a conceptualisation
is done to enable interoperability between systems and datasets. Thus,
interoperability can be achieved through common ontologies [Pinto and
Martins 2000]. This leads to the requirement for ontology re-use.
Requirement R5: Ontology re-use
Classes and properties from existing ontologies must be re-used where possible to
increase interoperability.

2.2. Web Requirements

A growing number of resources on the Web move away from traditional
request/response communication. Examples include not just Twitter but
broader technologies such as WebHooks, Callbacks, HTML5, WebSockets
and movements such as the Internet of Things (IoT). We explain these
examples in more detail in Sections 3.9 and 3.10.

The reason we mention these examples here is that a lot of push-data is
already available on the Web today. Such data sources can be leveraged to

14 2. Requirements

alleviate a cold start of our approach as well as demonstrate interoperabil-
ity with existing systems. This leads us to the next requirement:
Requirement R6: Push-data on the Web
Bottom-up movements on the Web such as available and upcoming push-data
initiatives must be leveraged to acquire and process data.

2.3. Linked Data Requirements

The Linked Data principles [Berners-Lee 2006] are a methodology for
publishing structured data on the Web and to interlink the data to make
them more useful. (Cf. Section 3.1.) The principles were described and
implemented for static data.

For streaming data, on the other hand, there are no separate guidelines.
Such data, however, could also profit from the aforementioned principles
and the principles apply just as well. This leads us to the next require-
ment:
Requirement R7: Linked Data Principles for Modelling
The Linked Data principles must be employed for modelling events and static data
using HTTP URIs and outgoing links.

To exchange events we need a method of streaming the data. Addressing
the Linked Data principles, therefore, we require an RDF Streaming API
to adapt the four Linked Data principles to real-time applications.

While the event format is built on top of RDF as required above the data
modelling language thus fits seamlessly with the data distribution via RDF
streams:
Requirement R8: Linked Data Principles for Publishing
The Linked Data principles must be employed for publishing events and static
data using dereferenceable URIs.

2.4. Requirements for Event Processing (Pattern Language) 15

2.4. Requirements for Event Processing
(Pattern Language)

Let us recall the next research question:

Research Question 2 (Processing Language). How to design and realise a
processing language for Web events?

This question addresses a real-time processing language tailored to the
use on Web events. Events are modelled according to the requirements
stated above. To process events a language is needed which is a close fit to
the data model used for these events. This leads us to the first requirement
for the language:
Requirement R9: Support for the data model
The processing language must be suitable for the data model.

Event processing often focuses on the detection of patterns in event streams
in real-time using in-memory techniques. However, for supporting longer-
term data analysis archived streams are necessary [Dindar et al. 2011].
The number of use cases of a language is greatly increased by enabling
queries for both real-time and historic events/data. It is a design goal of
this work to allow both types of data in the same query resulting in hybrid
queries:
Requirement R10: Hybrid Querying
The query language must support mixed queries comprised of both real-time and
historic events.

Our event processing language must support typical temporal opera-
tors. Temporal operators are employed by event processing systems to
relate two or more events to each other. Typical examples are a sequence
which matches two events in the right order [Etzion and Niblett 2010,
Section 9.3.1] or time windows which match zero or more events whose
timestamps fall within the interval of the time window.

Some streaming systems (cf. Section 4.2) do not offer temporal operators.
Instead, users are required to emulate temporal semantics manually, using

16 2. Requirements

arithmetic on timestamps. Apart from being complicated and unneces-
sarily verbose, manual time arithmetic is error-prone and not portable.
Explicit temporal operators on the other hand may be overloaded to deal
with interval-based and point-based events interchangeably. Using over-
loading, e.g. our sequence operators are able to process events with just
one timestamp and events with two timestamps (intervals) transparently
without the query author having to write conditional statements. This
results in shorter and more complete queries. All possible interval-based
relationships are described in [Allen 1981]. Event processing systems
must be able to detect these relationships by offering matching temporal
operators:
Requirement R11: Temporal Operators
The query language must support typical temporal operators.

2.5. Event Processing Grand Challenge

Let us recall the third and final research question:

Research Question 3 (Infrastructure). How to design and develop an efficient
infrastructure supporting a Web of events?

This question deals with infrastructure which is needed to support situa-
tion awareness on the Web. Exchanging data in real-time requires special
infrastructure, so does the enforcement of privacy guarantees in the Real-
time Web. We collect all our requirements in this section with the help of
other people who postulated these requirements before us.

The Real-time Web is the notion of an Web-scale network where informa-
tion is exchanged in a push fashion as opposed to the mostly request/re-
sponse oriented Web where information must be requested first before it can
be consumed. In the Real-time Web information is pushed to the consumer
based on her/his interests in real-time as soon as the information is created.
The goals of such an event-driven Web are quicker reactions to important
news and possibly proactivity by greater information awareness.

2.6. Event Marketplace 17

The Real-time Web is defined in [Chandy et al. 2011] through a set of
challenges. The event processing community1 defines a so-called grand
challenge serving as a common goal and mechanism for coordinating research
across the spectrum of people working on event processing. The document
identifies a single, though broad challenge that impacts society and at the same
time provides a basis for measuring progress of the EP community.

The grand challenge in event processing [Chandy et al. 2011] lists the
requirements for creating a Real-time Web. The challenge is defined there
as a “fabric into which components can be easily plugged and unplugged,
enabling the development of time-driven or event-based global applica-
tions”.

The challenge particularises that an (i) infrastructure is needed using (ii)
widely-accepted open standards which (iii) enables time-driven or event-
driven applications and furthermore is (iv) “on-the-fly adaptive”. This
leads us to the next four requirements:
Requirement R12: Infrastructure
Infrastructure must be provided.
Requirement R13: Open Standards
Widely-accepted open standards must be used.
Requirement R14: Event-driven
Time-driven or event-driven applications must be enabled.
Requirement R15: Adaptivity
Adaptivity on-the-fly must be supported for changing event models and for chang-
ing event patterns.

2.6. Event Marketplace

In order to bring consumers and producers of events together, we envision
a marketplace for events or event sources. Such a marketplace is a system
where producers of events make their events known and consumers look

1The community is represented by vendors and scientists in the Event Processing Technical
Society: http://en.wikipedia.org/wiki/Event_Processing_Technical_Society

http://en.wikipedia.org/wiki/Event_Processing_Technical_Society

18 2. Requirements

for available events. Much like service marketplaces such a system serves
as an (albeit loose) coupling of Web-scale systems. Pricing, however, a
common task of marketplaces is out of the scope of this thesis.

A large marketplace will have numerous event sources which emit a high
number of event streams of different event types. For a user to make sense
of this, search functionality is required. To make an event marketplace
work, metadata must be created and collected for event types, streams
and sources:
Requirement R16: Event Metadata
Metadata must be created and collected for event types, streams and sources. The
metadata must be made searchable.

Multitenancy facilitates the virtual separation of tenants in an information
system. To accommodate producers and consumers of events with private
data the marketplace must employ means of separating tenants from each
other:
Requirement R17: Multitenancy
The system must employ means of separating tenants from each other.

2.7. Requirements from Scenarios

Our work was used in a research project on RDF-oriented event process-
ing2. Two scenarios were carried out in the project. Both contributed
further requirements to our work. The technical report [Benaben et al.
2013] describes the two scenarios as (i) a telecommunications use case and
(ii) a crisis management use case.

The telecommunications use case simulates location-based services for
smartphones in combination with social media. To that end the use case
contributes a simulation environment containing event streams and event
patterns. Using the simulation and a matching smartphone app the sce-
nario can demonstrate the behaviour of many smartphone users emitting

2Research Project PLAY funded by the European Commission (Grant 258659) http://www.
play-project.eu/

http://www.play-project.eu/
http://www.play-project.eu/

2.7. Requirements from Scenarios 19

and consuming events in real-time and with location-awareness. The
event sources involved in the telecommunications use case are (i) location
updates of mobile phones from the simulator, (ii) phone calls from the
simulator and (iii) social media updates from the Web using our event
adapter described in Section 7.6. Based on these available events the use
case offers location-based user recommendations on how and where to
contact a certain person in the scenario.

The crisis management use case considers the simulation of a nuclear crisis
situation in which a large quantity of radioactive substance is accidentally
released in the atmosphere, due to a critical accident in a French nuclear
plant. Simulated, heterogeneous actors have to work together with the
shared aim to solve or at least improve the crisis situation. The event
sources involved in the nuclear crisis scenarios are Web Services, which
send and receive events in order to simulate the evolution of the crisis
situation on the one hand like the radiation rate and on the other hand
the dynamics of the crisis response by the simulated actors. Supporting
both use cases and their scenarios leads us to the next requirement for our
language:
Requirement R18: Query Expressivity
The scenarios must be supported in their query expressivity.

Supporting location-based services requires our event model to leverage
event properties to define geolocations and our pattern language to process
such events accordingly:
Requirement R19: Mobility
The scenarios must be supported in their need for mobile data.

The experts of both use cases needed to publish events from their sources
mentioned above. However, not all programmers are trained in using
technologies such as RDF and RDFS necessary for our work. Thus, it is a
requirement for programmers to be able to create events without skills in
RDF and RDFS:
Requirement R20: Support for Programmers
The scenarios must be supported so that programmers can easily produce events
in RDF.

20 2. Requirements

This concludes the collection of requirements. They are revisited during
the design and implementation of the main contributions in Chapters 5
to 7 and finally for an overall picture of their fulfilment in Chapter 8.

3
Foundations

In this chapter we describe basic definitions, terms and technologies the
understanding of which is helpful in reading the rest of this work. The
following sections describe basics which are related to this work by being
necessary building blocks. The state of the art in work comparable to ours
is explained separately in the next chapter (4).

3.1. Resource Description Framework (RDF)
and Linked Data

Resource Description Framework (RDF) [Klyne and Carroll 2004] and its
schema language RDFS are a general method for conceptual description
or modelling of information. RDF is used for making statements about
resources. Statements are made in the form of subject-predicate-object

22 3. Foundations

expressions (triples). Triples can be extended with a fourth component
(resulting in quadruples) to record the provenance of the statement.

Apart from the advantages of RDF as a data model, there is the advantage
of having a lot of public data readily available in RDF that can be re-used1.
This means that a lot of static data is available to be used as context of events.
We make use of Linked Data during the implementation of a scenario in
Section 8.5 where we use information about known geographical locations
inside the city of Berlin to model the scenario.

Linked Data are a recommended best practice for exposing, sharing, and
connecting pieces of data, information, and knowledge on the Semantic
Web using URIs and RDF [Berners-Lee 2006]. The basic idea is to use
dereferenceable links in RDF to improve discovery of related information
on the Web.

Examples of Linked Data are geographical names and their globally unique
identifiers which can be found on-line. These identifiers are useful in
identity management on the Web. Publishing Linked Data in general is
done using four steps [Berners-Lee 2006]:

1. Use URIs to identify things.
2. Use HTTP URIs so that these things can be referred to and looked

up (“dereferenced”) by people and user agents.
3. Provide useful information about the thing when its URI is deref-

erenced, using standard formats such as RDF and SPARQL.
4. Include links to other, related URIs in the exposed data to improve

discovery of other related information on the Web.

This was described and implemented for static data. For streaming data,
on the other hand, there are no similar guidelines. Streaming data could,
however, also profit from the aforementioned principles and they apply
just as well. We explain our solution for Linked Data streaming later in
this thesis.

1Data Sets: http://linkeddata.org/data-sets

http://linkeddata.org/data-sets

3.2. SPARQL Protocol and RDF Query Language 23

Standards for streaming RDF data are also not yet available. There is, how-
ever, a W3C working group on the subject, called “RDF Stream Processing
Community Group”2,3.

3.2. SPARQL Protocol and RDF Query
Language

SPARQL Protocol and RDF Query Language (SPARQL) is a W3C standard
to query RDF data [Harris and Seaborne 2010]. SPARQL is a SQL-like
query language but supports graph-based patterns to match RDF. Unlike
SQL, SPARQL supports three different query forms. Select queries, Con-
struct queries and Ask queries. They differ in the structure of their result
sets.

A Select query has relational results like in SQL. The result set consists
of a schema of variables with a set of tuples binding these variables. The
result set of a Construct query does not consist of arbitrary-length tuples
but is in triple form like its input, thus producing RDF statements from
RDF statements. In other words, a Construct query is self-mapping RDF
to RDF, a useful characteristic when processing interoperable data. Finally,
an Ask query returns a purely Boolean result depending on whether the
query was matched (one or more times) or was not matched.

In this work we use all three query forms, most noticeably the Construct
form in our pattern language producing RDF events (Section 6.3), the Select
form in our system communicating with storage backends for static data
(Section 7.2) and the Ask form validating access permissions to Boolean
true or false (Section 7.3).

SPARQL queries are designed like SQL queries to be one-time queries.
They are posed by a client, then answered by a database system and then
discarded. However, event processing requires continuous queries. They
must be monitored by a system continuously matching events whenever

2W3C RDF Stream Processing Community Group: http://www.w3.org/community/rsp/
3The author of this thesis is a member of the group.

http://www.w3.org/community/rsp/

24 3. Foundations

they happen. To that end, our Construct queries (Section 6.3) are inter-
preted in a continuous fashion. Related work on continuous SPARQL is
discussed in Section 4.2.

3.3. REST versus SOAP

Representational state transfer (REST) and Simple Object Access Protocol
(SOAP) are two competing standards and best practises to model Web
Services.

SOAP4 heavily relies on XML to model structured information in Web
Services. A stack of protocols is defined to implement various aspects of
communication in XML such as security. The protocols may define and
extend the capabilities of a Web Service defining actions in an arbitrary
manner.

REST5 relies on the limited set of “verbs” from HTTP 1.1 to describe actions
which can be performed on URLs. Examples are get, put, delete and post.
REST is not an official protocol like SOAP but rather an architectural style
on modelling services using basic technologies such as HTTP.

In this work we use both SOAP and REST where applicable. SOAP is
used, e.g. in Section 7.1.2 where a standardised protocol for the exchange
of events is needed. REST on the other hand is used in this work, e.g. in
Section 7.4 where simplicity is needed for the design of a new service.

3.4. Push versus Pull

Many data sources are accessed in a pull fashion. This means that a request
for data has to be initiated by the client and is answered by the server
providing the data source. Communication is bipartite in that there are

4W3C SOAP: http://www.w3.org/TR/soap/
5REST: http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

http://www.w3.org/TR/soap/
http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

3.5. Publish/Subscribe 25

two kinds of messages: requests and responses. Most information systems
such as databases work in this way. Most of the Web works in this way.

However, request/response is not an optimal solution to the problem of
timely data dissemination: Data sources must be polled regularly and
clients must check the polling result for possible updates. This means that
the polling interval (chosen by the client) influences the perceived “real-
time” behaviour of an application: A long interval results in new items
being received late, a very long interval can even result in lost updates6.
A very short interval on the other hand results in inefficiency for both
client and server because many costly calls are being made with no new
results.

The drawbacks of pulling data [Martin-Flatin 1999] can best be mitigated
by introducing push-oriented architectures [Mühl et al. 2006, p. 17]. There,
the server chooses when communication is initiated. This usually happens
when new data is available avoiding unnecessary communication and
disseminating updates in a timely fashion.

3.5. Publish/Subscribe

Publish/subscribe is a messaging pattern for push-based communica-
tion. Producers and consumers are decoupled from each other in that
no hard-coded connections between them are formed. Instead, messages
are published by producers regardless of the consumer (i.e. the type of
consumer, the time of consumption, the number of consumers or vary-
ing consumers over time). Consumers, on the other hand, express their
interest in messages by issuing subscriptions for certain messages. A pub-
lish/subscribe system is further characterised by the expressivity of the
subscriptions it supports:

6Lost updates occur in the case of aggregate feeds such as RSS which only return the latest
𝑛 items (e.g. 40 most recent entries). A client using a very long polling interval might
poll again after 𝑛 + 𝑥 items are created but the feed only returns 𝑛 latest items resulting
in the loss of items for the client.

26 3. Foundations

Topic-based Publish/Subscribe: Messages can be organised into sub-
jects by the producer [Mühl et al. 2006, Section 2.3.2]. These subjects
(so-called “topics”) are usually annotated as metadata on each message.
A subscription can then ask for only certain messages of one or more
topics. In this way messages can be filtered based on metadata. Thus, the
topics define virtual channels. Topic-based publish/subscribe is the most
widely7 used form of publish/subscribe. It is quite expressive but still rel-
atively efficient compared to content-based publish/subscribe described
below. The downside of topic-based publish/subscribe is that the virtual
channels formed by topics are mostly governed by the publisher thus
restricting the expressivity of filtering for the consumer. Content-based
publish/subscribe mitigates this shortcoming.

Content-based Publish/Subscribe: Instead of filtering for message meta-
data, content-based publish/subscribe can filter based on properties inside
the message payload, i.e. looking into the message body [Mühl et al. 2006,
Section 2.3.4]. This increases the expressivity of subscriptions by enabling
the consumer to classify messages regardless of the classification by the
producer. Producer and consumer can thus be decoupled to a higher
degree. Filtering for message content instead of metadata usually incurs
higher cost at runtime, making content-based publish/subscribe systems
less efficient compared to topic-based ones.

3.6. Events

An event is something that happens, or is contemplated as happening
[Etzion and Niblett 2010] and events are first-class objects which means a
fundamental information unit which can be stored, queried and merged
with other events [Gupta and Jain 2011]. Events can be exchanged as part
of messages in a push-based fashion.

7Supported by standards such as WS-Topics and widely implemented, e.g. by Apache
ActiveMQ: http://activemq.apache.org/

http://activemq.apache.org/

3.6. Events 27

We distinguish several subclasses of events. Since events can be processed
in event processing systems we distinguish events which are input and
output of such systems. A simple event (also called raw event) [Etzion
and Niblett 2010, Section 2.2.1] is an event which is input to a system. A
derived event [Ibid.] is an event which is generated as an output (result)
of event processing. Delineating further, a complex event [Luckham and
Schulte 2011] is an event that summarizes, represents, or denotes a set
of other events. Finally, a composite event [Etzion and Niblett 2010, Sec-
tion 3.2.1] is a complex event which physically contains the set of events
which it summarises, represents, or denotes. With the use of Linked Data
for events, however, the distinction of complex and composite events be-
comes blurred. A composite event using Linked Data will contain links
to its member events and not physically repeat their data. Thus, such a
composite event using Linked Data will not be distinguishable from a
complex event. Therefore, throughout this work the term complex event
will be sufficient.

Events can be defined over a single point in time or with a duration, i.e.
an interval. Point-based events [Etzion and Niblett 2010, Section 11.1.1]
are appropriate when describing state transitions which have no duration.
In reality, however, many events happen over a period of time [Ibid.].
Moreover, the detection of complex events happens over a period of time,
so interval-based events can be used to describe the results. Using time-
point semantics when detecting complex events has non-intuitive effects on
the semantics of such simple notions as a sequence8 [Galton and Augusto
2002, Section 4].

In many event processing systems events are immutable [Luckham and
Schulte 2011]. This stems from the definition of an event as something that
happens, meaning an event cannot be made to unhappen. Immutability

8The authors of [Galton and Augusto 2002] for example point out that the sequence pat-
terns “→” of three events 𝐸1 → (𝐸2 → 𝐸3) and 𝐸2 → (𝐸1 → 𝐸3) both match the
same sequence of events 𝑒1, 𝑒2, 𝑒3 contrary to an intuitive understanding of sequences.
This happens if time points and not intervals are used to represent the results of the
parentheses: The last time point in the parenthesis is used which is always 𝑒3 regardless
of the other event in the parenthesis. Thus, the parenthesis fulfils the sequence operator
in some unexpected cases.

28 3. Foundations

is a valuable assumption when building event processing systems; espe-
cially, when employing publish/subscribe communication. There, several
receivers may obtain a copy of the same event and continue processing
it. The loose coupling of the agents involved makes is hard to guarantee
consistency between the distributed data (i.e. copies of events). Thus, the
guarantee for immutability is helpful.

Instead of altering events, event retraction [Etzion and Niblett 2010, Sec-
tion 11.3.1] may be used: Many systems with event immutability offer to
send a so-called retraction event referring to an old event which occurred
previously (e.g. [Aničić 2012]). Upon retraction, the older event is not
deleted from an information systems standpoint but is said to be retracted
by the presence of the retraction event. The subsequent state of the old
event being retracted (but still available) in a system is similar to a notion
from temporal database research where data can have a transaction-time
and a possibly shorter valid-time.

Apart from deleting events, immutability also affects other operations
manipulating events, for example enriching events with more data or
projecting events to drop unneeded properties. Event processing systems
deal with this issue by stipulating that derived events have a new iden-
tity. Therefore, new, derived events are created and the original, simple
events remain unchanged. Optionally, such derived events may contain a
reference to the original, unaltered event to maintain provenance.

Historic events [Etzion and Niblett 2010, Section 6.4] and other static
reference data must be distinguished from events. Such data is needed in
event processing systems, e.g. to enrich events or otherwise help if more
data is needed than is contained in an event. Historic data is exchanged
in a pull-based fashion.

3.7. Event Processing Systems

Event processing is defined as computing that performs operations on events,
including reading, creating, transforming, or discarding events [Luckham and

3.7. Event Processing Systems 29

Schulte 2011]. Since events are the fundamental unit of information, each
event is processed atomically, i.e. completely or not at all.

Much like database management relies on database management systems;
event processing relies on event processing systems. The ingredients
of event processing are the events (data), event patterns (queries) and
processing engines (systems). The ingredients are typically combined in
an architecture called event processing network (EPN) [Etzion and Niblett
2010, Section 2.2].

Event processing systems offer a certain granularity as to how events
can be processed. If a system offers operators to group events in sets
and then operate on them using set-oriented operators (e.g. aggregation
functions such as min, max, count), a system is said to support set-at-a-
time semantics. If a system supports per-event operators (e.g. detection of
a sequence of two specific events), the system is said to support event-at-
a-time semantics. Distinguishing these two notions marked the advent of
event processing systems supporting both types of semantics whereas stream
processing systems support only sets, i.e. after grouping events into sets of
events9. For the remainder of this work, the distinction of both semantics
is interesting with regards to the expressivity of supported operators in
an event processing system or its language.

Event processing systems are available today as re-usable products, com-
mercially or open-source. However, most systems take a closed-domain
approach to modelling such that, e.g. the supported events are defined
in one place, by a limited number of people, for a known domain. In
our work we target an open world with many people defining event sche-
mas and supporting privacy, i.e. access control on streams amongst these
users.

Also, the popular streaming frameworks such as Apache Storm10 and
Apache S411 provide only a framework for processing data. They do

9The two approaches were previously called complex event processing (CEP) vs. event
stream processing (ESP) which are other terms for the same disambiguation.

10Apache Storm, formerly Twitter Storm: http://storm-project.net/
11Apache S4, formerly Yahoo S4: http://incubator.apache.org/s4/

http://storm-project.net/
http://incubator.apache.org/s4/

30 3. Foundations

not define event operators on a declarative level neither set-at-a-time nor
event-at-a-time.

3.8. Event Formats

In a heterogeneous system such as the Web, a common understanding
of data exchanged is crucial. According to [Rozsnyai et al. 2007b] this
is especially true in a decoupled system such as an event-based system
where the producer and consumer of an event might have no knowledge of
each other. Therefore, a consumer must find a way to understand received
events which entails the need for a universal event model [Rozsnyai et al.
2007b].

Many event-based systems such as Gryphon [Aguilera et al. 1999], Siena
[Carzaniga et al. 2001], Hermes [Pietzuch and Bacon 2002] and Padres
[Fidler et al. 2005] use very simple event models, i.e. only list-based event
schemata or key/value pairs, modelling purely syntactical data where
semantics must be derived from its values. The attribute types belong
to a predefined set of primitive types found in common programming
languages. Some attempts were made to define a universal vocabulary
for events. A notable approach from industry is the WSDM Event Format
(WEF) standardised by OASIS [Kreger 2005]. The standard is extensible
and contains some predefined XML elements for the event domain of
reporting situations in IT systems monitoring, creating some level of agree-
ment on what these terms mean to a sender and a receiver of such events.
An approach from research is the XML format of AMIT presented in
[Adi et al. 2000]. It goes beyond the previous approaches, e.g. by provid-
ing more detailed temporal semantics and by modelling not only events
but generalization, specialization and other relationships between events
which can be used in processing.

While designing an event-based system at Web scale, it is useful to employ
widely available Semantic Web Technologies to model events as proposed
in [Stojanovic et al. 2011], such as RDF. Previous efforts using RDF were
made in [Petrovic et al. 2005] and [Qian et al. 2008]. RDF and its schema

3.9. Protocols for Real-time Data on the Web 31

language RDFS are well suited for distributed Web-scale exchange of
data (in our case events) between inhomogeneous systems. We discuss
RDF-oriented formats in detail in Section 4.1.

3.9. Protocols for Real-time Data on the Web

There are many technological developments on the Web today which
create events. Such events are delivered in a push fashion as opposed to
the traditional client–server Web of request and response.

Technologies such as AJAX [Garrett 2005] and Comet [Russell 2006] are
widely used to enable push-data from the server to the client. However,
push transfer is in many cases only achieved by the client polling a server.
To emulate real-time behaviour, the server answers the poll only when
new data becomes available and blocking the call otherwise until data
is available. Since the client poll is then fulfilled (i.e. the call returns),
the client must poll again for further data. The described mechanism of
blocking a call until data becomes available and then polling again is called
long-polling. Another disadvantage is that client-side logic in JavaScript
is required for the approach to function. Other approaches without the
mentioned drawbacks are available or upcoming.

For one, there is the W3C Web Notification Working Group12 which is
working on push notifications to actively notify running Web applications
in browsers. Additionally, HTML5 defines two techniques to facilitate
communication initiated by the server. These techniques are Server-Sent
Events13 and WebSockets14. They operate on different layers of the protocol
stack to achieve push delivery to Web clients.

RSS and other news feed formats offer schemas for publishing frequently
updated information. However, they are not a solution to the problem of
timely data dissemination because they rely on pull (cf. Section 3.4). The

12Web Notification Working Group: http://www.w3.org/2010/06/notification-charter
13Server-Sent Events: http://www.w3.org/TR/eventsource/
14WebSocket API: http://www.w3.org/TR/websockets/

http://www.w3.org/2010/06/notification-charter
http://www.w3.org/TR/eventsource/
http://www.w3.org/TR/websockets/

32 3. Foundations

intrinsic drawbacks apply to all feed-oriented applications such as Yahoo
Pipes15.

Google PubSubHubbub protocol16 is designed to mitigate inefficient pulling
of news feeds in Atom or RSS. To that end, PubSubHubbub provides a
push-oriented protocol based on WebHooks17. Today it is mainly used to
enable server-to-server notifications. Further server-to-server techniques
are WebHooks themselves, Pingback18 and Semantic Pingback19.

Lastly, the Facebook Graph API provides an application-specific way to
subscribe to real-time updates20 from changes to connected people’s pro-
files.

The amount of existing and upcoming protocols provides motivation for
real-time infrastructures on the Web such as undertaken by this work.
Apart from technical underpinnings for this work there are applications
on the Web which provide content which can be consumed in real-time.
We will describe such data sources next.

Social Web sites such as Facebook and Twitter host a large amount of
user-contributed material for a wide variety of events happening in the
real-world. Events from Xively21 further extend this range of events by
adding real-time data from devices around the world which people are
sharing.
15Yahoo Pipes: http://pipes.yahoo.com
16Google PubSubHubbub protocol http://code.google.com/p/pubsubhubbub/
17WebHooks: http://www.webhooks.org/
18Pingback: http://www.hixie.ch/specs/pingback/pingback
19Semantic Pingback: http://aksw.org/Projects/SemanticPingBack
20Facebook Graph API Real-time Updates http://developers.facebook.com/docs/api/

realtime
21Xively, a Web portal to connect sensor data: http://xively.com/ previously known as

Cosm and before that as Pachube

3.10. Data Sources for Real-time Data on the
Web

http://pipes.yahoo.com
http://code.google.com/p/pubsubhubbub/
http://www.webhooks.org/
http://www.hixie.ch/specs/pingback/pingback
http://aksw.org/Projects/SemanticPingBack
http://developers.facebook.com/docs/api/realtime
http://developers.facebook.com/docs/api/realtime
http://xively.com/

3.10. Data Sources for Real-time Data on the Web 33

Such data sources do not offer a common interface to receive real-time
data. After all, there are no standards-based ways to exchange real-time
data on the Web. However, application-specific adapters can be created to
connect to these sources. We do this in Section 7.6. Consequently, we can
consume real-time data from the Web in our infrastructure.

4
State of the Art

After having discussed related work of underlying foundations in the
previous chapter we now discuss related work which is comparable to
this work.

4.1. RDF Event Models

Widely available Semantic Web technologies are a good match for mod-
elling events in a Web-oriented, event-based system [Sen and Stojanovic
2010]. RDF and its schema language RDFS are well suited for distributed
Web-scale exchange of data (in our case events) between inhomogeneous
systems through the re-use of shared schemas.

Some RDF-based event formats such as [Gutierrez et al. 2007] use time as
a second-class citizen. This means that temporal properties are handled

36 4. State of the Art

implicitly by the system, e.g. by maintaining hidden timestamps for each
RDF triple, i.e. using quintuples internally. Several current RDF streaming
systems work in the same way, cf. C-SPARQL, EP-SPARQL, Linked Data-
Fu and Sparkwave described in the following section. These systems
define an event as one triple and define a stream as a series of triples.
Since one triple can contain just one statement there is no event model
which can hold multiple properties of an event such as a type, a timestamp
or other event metadata.

However, there are schemas similar to ours in that they model events as
larger graphs consisting of more than one triple per event. This allows
for time as a first-class citizen in one or more triples contained in the
event graph. Such schemas include E* [Gupta and Jain 2011], F [Scherp
et al. 2009] and LODE [Shaw et al. 2009], all of which also rely on the
DOLCE [Gangemi et al. 2002] top-level ontology as we do. However, they
do not seem to be tailored to real-time processing of events because a
lot of their (e.g. temporal) expressivity such as relative and vague time
is not supported by the state of the art in real-time processing engines.
Therefore, these event models remain partly theoretical.

The authors of the RDF streaming system INSTANS describe a more
elaborated event model in a workshop paper [Rinne et al. 2013]. The model
eliminates much of the shortcomings of other approaches described above
such as using tractable temporal expressiveness. However, even though
several timestamps are supported with different semantics (e.g. real-world
occurrence, detection time by the system, etc.) the approach does not allow
interval-based semantics for describing events with a duration.

Our event format combines a large part of the expressivity and flexibility
of the aforementioned formats with the execution model of our underlying
processing engine ETALIS [Aničić 2012, Part II].

4.2. RDF Streaming Systems

Early efforts in RDF Streaming were made by [Petrovic et al. 2005] and
[Qian et al. 2008]. Both do not focus on expressive query languages like

4.2. RDF Streaming Systems 37

SPARQL but proved the feasibility of RDF-oriented event filtering to match
subscriptions.

A more expressive approach, C-SPARQL is a language and a system to
process streaming RDF data incrementally with more complex queries
[Barbieri et al. 2010]. There, the authors define events as RDF triples.
Timestamps are attached to the triples implicitly when the events enter
the system. Sets of events are matched in windows. This means that the
approach has a set-at-a-time semantics. The same holds true for similar
approaches SPARQLStream [Calbimonte et al. 2010] and CQELS [Le-Phuoc
et al. 2011].

EP-SPARQL [Aničić 2012, Chapter 11] is built on top of the Prolog-based
event processing engine ETALIS like our work. EP-SPARQL supports
more event processing operators than C-SPARQL including event-at-a-
time operators like the sequence of two events which require no mandatory
window definition and are thus more declarative. Like C-SPARQL, how-
ever, this approach considers events as triples not as objects with further
structure. This means that, e.g. time is a second-class citizen and not part
of the event to be transmitted across distributed systems. Our approach
(introduced in Chapter 5) works with structured events consisting of many
RDF triples per event as opposed to one triple per event.

In addition to real-time data both C-SPARQL and EP-SPARQL can combine
stream results with background knowledge. However, they do not propose
a federated system to address the volume of such data. As such they are
limited to static data fitting into memory on one system. Our approach
integrates static data from distributed RDF stores. Queries are federated
to combine data from more than one external source. Thus, we are not
limited to background knowledge fitting into memory. To enable federated
querying in our approach historic data is partitioned in streams. Streams
are stored in distributed quad stores. Linked Data based on stream URIs
is used to identify and locate the streams. This enables us to accommodate
growing histories of events and other large static data sets as background
knowledge.

Linked Data-Fu [Stadtmüller et al. 2013] is an RDF-oriented production
rule system to derive RDF triples based on existing triples. Linked Data-Fu

38 4. State of the Art

evaluates rules similar to Datalog using the Rete algorithm. This means
that no temporal event operators are supported and no garbage collection
of unconsumed triples is possible. We have previously discussed the
drawbacks of using Rete for event processing in [Schmidt et al. 2008,
Section 3].

INSTANS [Rinne et al. 2012] is another Rete-oriented streaming system. It
uses SPARQL as a query language. The system suffers from the same draw-
backs of Rete mentioned above. Also, temporal operators such as windows
are not part of the language and thus must be emulated in complicated
FILTER statements. Apart from being complicated and unnecessarily ver-
bose, manual time arithmetic in a FILTER statement is error-prone and not
portable. Explicit temporal operators on the other hand can be overloaded
to deal with interval-based and point-based events. Our approach of ex-
tending SPARQL with event processing operators as first-class elements
thus yields shorter and more readable queries.

Sparkwave [Komazec et al. 2012] is yet another Rete-oriented streaming
system for RDF data. Sparkwave is very efficient at evaluating production
rules incrementally in a forward-chaining manner on fast arriving RDF
triples. Like Linked Data-Fu, Sparkwave is well suited for creating data-
driven applications with real-time results. However, temporal operators
are limited due to the underlying Rete algorithm which processes data
purely in a set-oriented fashion disregarding any order in the arrival
and validity of the data. Incorporating temporal ordering, however, is
important for temporal expressivity such as detecting sequences and it is
important for implementation purposes when realising efficient garbage
collection.

4.3. Combining real-time with historical
Querying

Real-time event processing systems today operate on pushed notifications,
e.g. for changes in data. This means that data comes to the searcher. In
such a setting continuous real-time queries offer insight into the data,

4.4. Lambda Architecture 39

i.e. filter, enrich, combine and otherwise process real-time data to make
them useful for the searcher. However, real-time notifications often do
not contain all necessary data, e.g. are missing context which must be
found elsewhere. Typically, context can be retrieved through one-time,
non-continuous queries.

To combine real-time and “historic” queries we propose a hybrid language
called Big Data Processing Language (BDPL). A previous approach trying
to achieve a similar goal is described in [Rozsnyai et al. 2007a] where
queries are implicitly rewritten to also return results from “related” events,
thus broadening the query along implicit event relationships. In our
approach we want to make these relationships more explicit. Doing so
will enable the user to join real-time data with historical data along any
dimension such as time, place or domain-specific dimensions and also
with non-event data increasing the expressivity of the approach.

In [Dindar et al. 2011] a real-time processing system is described which
supports a language explicitly combining real-time and historic parts as
BDPL in this work. However, their approach requires fixed specifications
of “recency” in a query meaning that the approach is not as flexible as
possible in terms of the historic part. None of the related approaches uses
RDF (Linked Data) to link events with historic data.

4.4. Lambda Architecture

In [Marz and Warren 2015]1 another approach is described to combine
real-time data with historic data. The book proposes the so-called Lambda
Architecture. The architecture is split into two specialised systems called
(i) the “speed layer” to process low-latency data (i.e. events) on the one
hand and (ii) the “batch layer” for high-latency data (i.e. historic data) on
the other hand. Separate systems are used for the layers with the goal of
applying optimised processing logic in each case. Queries may use data
from both systems simultaneously to generate answers which cover both
analytic, historic aspects and real-time results.

1Early Access Edition, final book to appear in 2015.

40 4. State of the Art

Our system architecture which pre-dates the book uses a similar separa-
tion of components for event processing and storage (cf. Section 7.1) while
supporting homogeneous queries against both types of data simultane-
ously.

4.5. RDF Access Control

There are previous approaches to modelling access control using RDF.
The approaches use RDF as a modelling language for permissions linking
users with user’s rights on the one hand and on the other hand are used
on RDF data granting access to users (linking permissions with data). All
approaches grant access to RDF resources while assuming what is not
granted is forbidden.

The S4AC Vocabulary Specification 0.2 [Villata et al. 2011] defines access
rights tailored towards RDF query answering, i.e. SPARQL processing.
The vocabulary defines access rights Create, Read, Update and Delete.
The model is very expressive by allowing fine-grained access conditions
modelled as contextual queries against arbitrary context data to check.
However, the integration with SPARQL is not applicable for our system
as not all operations require a query such as a plain subscription to a
stream.

SIOC Access is a part of the SIOC specification [Berrueta 2010]. It is a very
simple but extensible vocabulary to define permissions in the scope of
the social Web. The vocabulary does not have any predefined rights. The
lack of rights, the focus on social communities and its lack of traction on
the Web are the drawbacks of this candidate when choosing a model for
access control in our system.

The W3C WebAccessControl (WAC) [Berners-Lee 2009] is a generic vocab-
ulary declaring some predefined rights (Read, Write, Append, Control)
on Web information resources. Streams in our system are information
resources so the vocabulary can be used without change. Access rights
must be extended for our system to govern the real-time access Notify

4.6. Relationship with EP-SPARQL 41

and Subscribe in addition to the predefined rights Read and Write for
static data.

4.6. Relationship with EP-SPARQL

BDPL is in some ways similar to EP-SPARQL [Aničić 2012, Chapter 11]
in that both languages describe event processing systems which have
event-at-a-time and set-at-a-time (cf. Section 3.7) operators. In fact, BDPL
and EP-SPARQL rely on the same underlying engine ETALIS [Anicic et al.
2009] to provide some of the temporal event detection semantics.

However, BDPL is different from EP-SPARQL in having (i) more expressive
events using graphs vs. triples, (ii) a richer language using many new
operators such as XPath, (iii) a clear syntactic distinction between the real-
time and historic parts of the query and finally (iv) a system for federated
query execution allowing distributed triple stores for historic data vs. the
relatively small amount which can be held in memory by one Prolog
instance.

5
A Model for Events

As the first contribution of this thesis we devise an event model for use on
the Web. To that end we explain why a model is needed. Then we design
the model based on the collected requirements. After that we show how
this model can be used in applications by providing practical software
around the model. Finally, we discuss the design decisions made.

5.1. Introduction: An open Event Model

Why do we need an event model? Some RDF streaming systems discussed
in Section 4.2 have little or no model for the real-time data they ingest.
These systems make the lowest common assumptions about the structure
of the data, i.e. that the data consist of a stream of RDF triples. Thus,
each piece of real-time data (event) is one triple. One triple, however,

44 5. A Model for Events

cannot hold a lot of information. For example when typing data, the triple
<myInstance> rdf:type <MyClass> can introduce a type, but the event
(one triple) is “full”. This means that any structure in the data must be
inferred from more than one event. Events, however, occur spontaneously
and event consumers are often decoupled from the senders (cf. publish/
subscribe in Section 3.5). Therefore, consumers cannot make assumptions
about events which are not yet received.

Events should be self-describing. A common understanding of data is
crucial for consumers and producers [Rozsnyai et al. 2007b], especially
in a distributed and heterogeneous system such as the Web. Therefore, a
consumer must find a way to understand received events which entails
the need for a universal event model [Rozsnyai et al. 2007b].

5.2. Requirements

For event processing some generally accepted1 requirements must be
met. Events are objects which can be stored, queried and merged with
other events, cf. Requirement R1: Events are first-class objects. Events have
structure, cf. R2: Time properties, R4: Inter-event relationships and R3: Type
hierarchy. According to [Cardelli 2004] “the fundamental purpose of a
type system is to prevent the occurrence of execution errors during the
running of a program”. According to [Rozsnyai et al. 2007b] types and their
description are needed in a decoupled event processing system to provide
a common understanding of data. Thus, we require R16: Event Metadata.
However, too much detail in modelling can make a model inappropriate
for some of the use cases. Therefore, a balance must be found between
the necessary structure of an event and the adaptivity (Requirement R15:
Adaptivity) necessary to implement domain-specific scenarios. We collect
the minimal structure for an event model such as time and types and retain
extensibility of the model through requirements R13: Open Standards, R5:
Ontology re-use, R7: Linked Data Principles for Modelling and specifically to
the known scenarios: R19: Mobility.

1[Etzion and Niblett 2010; Luckham 2001; Luckham and Schulte 2011; Rozsnyai et al. 2007b;
Gupta and Jain 2011]

5.2. Requirements 45

5.2.1. The Role of Semantics

We use RDF as a modelling language for events, because it is an open

standard and it is well suited for schema re-use. Using RDF has important

advantages described as follows. Performance impacts at runtime are

examined and described below in our evaluation, Section 8.2.

RDF is used for modelling data. Its schema language RDFS supports

extensible and shared schema descriptions. These are useful in diverse,

emerging scenarios such as sensor data. RDF is a standard with tool-

ing available. This means that for modelling tasks such as creating new

event schemas there is tool support available. Also, pre-existing sche-

mas are available on the Web for immediate re-use. RDF is multi-schema

friendly: This enables us to combine schemas for different applications

freely and mix and match them on the fine-grained level of properties

for each event type. Moreover, with RDF, schemas are optional: When

complex situations are detected in our system combining more than one

event, mixtures of schemas may be created implicitly and on the fly. This

is not supported, e.g. by XML Schema. It follows a document-centric

paradigm with mandatory schemas where the schema document must

exist first. Thus, XML does not allow fine-grained re-use of schema parts

in an ad-hoc fashion as RDF does. Moreover, unlike XML, RDF is self-

describing2 and can produce self-contained datasets which is useful for

events which are often exchanged spontaneously and without further

context. Furthermore, unlike XML, RDF allows for limited reasoning

which enables event processing operations on inferred knowledge which

were previously not possible in event processing. Finally, using RDF as

metadata for events, streams of events, sources and actors/users provides

ways of effective search and linking capabilities in an “event marketplace”

infrastructure.

To create an open and extensible system, many users must be able to

produce or consume events. Semantic Web mark-up can help model

events. Moreover, Linked Data [Berners-Lee 2006] based on Semantic

Web mark-up can help connect real-time data to static contextual data.

2i.e. containing both data and schema including some semantics as supported by RDFS

46 5. A Model for Events

Such pre-existing data can be used for identity management of things, e.g.

people and places. Such linkable context adds to the knowledge available

when processing just a single event.

5.3. The Model

DUL:Event
DUL:hasConstituent : DUL:Event
DUL:hasPart : DUL:Event
DUL:hasParticipant : DUL:Object
DUL:involvesAgent : DUL:Agent
DUL:isEventIncludedIn : DUL:Situation
DUL:hasEventDate : date

Stream
bus:topic : wsnt:Topic[0..1]
dc:desciption : string
dc:Event

eventPattern : [0..1]
location : geo:Point[0..1]
members : rdf:List[0..1]
source : Source[0..1]
stream : Stream[1..1]
endTime : dateTime[1..1]
startTime : dateTime[0..1]
message : string Source

geo:Point
geo:alt
geo:lat
geo:long

stream

location

source

Figure 5.1.: Event Model (Class Diagram)

Figure 5.1 shows the event model in a class diagram3. The class “Event”

at bottom left of the figure is the superclass for any event to conform to

our model. This class makes use of related work by inheriting from the

3UML-like notation of TopBraid Composer: http://www.topquadrant.com/composer/

docs/TBC-Diagram-Graph.pdf

http://www.topquadrant.com/composer/docs/TBC-Diagram-Graph.pdf
http://www.topquadrant.com/composer/docs/TBC-Diagram-Graph.pdf

5.3. The Model 47

class “DUL:Event” from Dolce Ultralight based on DOLCE [Gangemi et al.
2002]. That class provides a notion of time and helps distinguish events
(things that happen) from facts (which are always valid).

In accordance with our requirements some properties are mandatory
while the rest are optional. An instance of class Event MUST have (i) a
type, (ii) at least one timestamp and (iii) a relevant stream. We describe
the event properties in detail as follows.

The type of an event must be specified using rdf:type4. The type must be
the class Event or any subclass. Figure 5.2 shows examples of subclasses.
The hierarchy in that figure starts with the universal superclass owl:Thing
and shows our Event class with domain-specific subclasses needed to
implement our scenarios from Section 2.7.

The event model supports interval-based events as well as point-based
events (cf. Section 3.6) by either using just the property :endTime for a
point or both :startTime and :endTime for an interval. The property
:endTime thus has a cardinality of [1..1] whereas :startTime has a
cardinality of [0..1]. Both temporal properties are subproperties of
DUL:hasEventDate from the super class. We improve the semantics by
distinguishing start from end whereas the superclass has an alternative,
more difficult way of formulating intervals using subobjects reifying the
interval.

The property :stream associates an event with a stream. Streams are
used in our system as a unit of organisation for events governing pub-
lish/subscribe (cf. Section 3.5) and access control (cf. Section 4.5). Streams
themselves are modelled using title, description and a topic needed for
topic-based publish/subscribe (cf. Section 3.5).

The first optional property is :location. For for geo-referencing of events
(where necessary) we re-use the basic geo vocabulary from the W3C [Brick-
ley 2003]. The property may be used to locate events in physical loca-
tions on the globe. The property is subproperty of DUL:hasLocation and
geo:location to inherit the semantics from those schemas.

4Or using the shorthand “a” like in “is a ...”. Cf. the example in Listing 5.1.

48 5. A Model for Events

Inter-event relationships may be supported by linking a complex event
to the simple events which caused it. Thus, RDF Lists may be used in
:members to maintain an ordered and complete account of member events.
The linked events are identified by their URI. These linked events could
have further member events themselves. This facilitates modelling of
composite events [Luckham and Schulte 2011]. The :members property is a
subproperty of DUL:hasConstituent from the superclass.

The property :eventPattern may be used to link a complex event to
the pattern which caused the event to be detected. Direct links to event
patterns are provided by RESTful services described in Section 7.4. Using
such links can help in recording provenance of derived events.

The source of an event may be specified using the :source property. This
is an optional property to record the creator of an event where needed.
The property is a subproperty of DUL:involvesAgent. Agents may be
human or non-human.

A human readable synopsis of an event may be added using the :message
property. This proves useful in scenarios where events are received by
human end users. The :message property is a subproperty of dc:title, a
popular way of describing things using natural language. Multilingualism
is provided by the feature of language tags for string literals in RDF [Klyne
and Carroll 2004].

N-ary predicates [Noy and Rector 2006] may be used to maintain event
properties which are valid only for a specific event, e.g. a volatile sensor
reading such as the temperature measurement belonging to a specific
event. For example, instead of plainly stating the disputable fact that “the
city of Nice has a temperature in Celsius of 23 degrees” which looks like
this:

dbpedia :Nice : curTemp "23" .

We can instead state that the city of Nice has said temperature but qual-
ified by the conjunction with a given event “e2” in the following n-ary
predicate:

5.3. The Model 49

dbpedia :Nice : curTemp [
rdf: value "23" ;
: event <http :// events ... org/ids/e2#event >

] .

Endowment of further structure for events is left to domain-specific sche-
mas. For example the W3C Semantic Sensor Network (SSN) Ontology5

may be added if fine-grained modelling of sensors and pertaining sensor
readings is needed.

Listing 5.1 shows several facts about our event model along an example.
The listing uses the example of a Facebook event generated by our event
adapter described in Section 7.6:

1. The example shows an event using quadruples in TriG syntax [Bizer
and Cyganiak 2014]. The graph name (a.k.a context) before the curly
braces is used as a unique identifier, e.g. to enable efficient indexing
of contiguous triples in the storage backend for historic events.

2. The event in this example has the ID 5534987067802526 as part of its
URI. There is a distinction made between URIs for things and URIs
for their information resources, i.e. the event object 553498706780-
2526#event and the Web document 5534987067802526 describing
the event. The two URIs might carry, e.g. a different creation date,
which is why it can be important to separate them. The fragment
identifier #event is used to differentiate them. See [Berners-Lee
2005] for an in-depth discussion of the matter of disambiguation6.

3. There is an event type hierarchy from which the type Facebook-
StatusFeedEvent is inherited. This hierarchy can be extended by
any user by referencing the RDF type :Event as a super class. See
Figure 5.2 for an example hierarchy.

4. The event may link to entities from static Linked Data where further
context for the event can be retrieved. In this example the event uses
user:link where further context for the event can be retrieved, in
this case from the Facebook Graph API7.

5http://www.w3.org/2005/Incubator/ssn/ssnx/ssn
6The issue of HTTP URIs identifying both types of resources became known as the

httpRange-14 issue after its issue number in the W3C Technical Architecture Group
7Facebook started publishing Linked Data as RDF [Weaver and Tarjan 2012]

http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

50 5. A Model for Events

5. The event links to a stream which is a URI where current events can
be obtained in real-time by dereferencing the link.

6. The namespace event-processing.org is chosen as a generic home
for this schema.

1 @prefix : <http :// events .event - processing .org/ types /> .
2 @prefix e: <http :// events .event - processing .org/ids/> .
3 @prefix user: <http :// graph . facebook .com/ schema /user#> .
4 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema #> .
5
6 e :5534987067802526 {
7 <http :// events .event - processing .org/ids /5534987067802526# event >
8 a : FacebookStatusFeedEvent ;
9 : endTime "2012 -03 -28 T06 :04:26.522 Z"^^ xsd: dateTime ;

10 : status "I bought some JEANS this morning " ;
11 : stream <http :// streams ... org/ids/ FacebookStatusFeed #stream > ;
12 user:id " 100000058455726 " ;
13 user:link <http :// graph . facebook .com/ roland . stuehmer #> ;
14 user: location "Karlsruhe , Germany " ;
15 user:name " Roland Stühmer" .
16 }

Listing 5.1: Example of an RDF Event (TriG Syntax)

We are re-using and creating domain vocabularies to subclass the class
Event. For example in the Facebook case we use the schema from the
RDF/Turtle API provided by Facebook [Weaver and Tarjan 2012].

We developed this event model to satisfy requirements of an open platform
where data from the Web can be re-used and which is extensible for open
participation. Future updates to the event schema can be tracked on-line
at [Harth and Stühmer 2011].

5.4. Tools

In this section we describe tools which simplify dealing with our RDF
event model. The tools can be roughly divided in design-time tools and
run-time tools. Our contributions focus on the run-time tools, namely
the software development kit (SDK) and event adapters whereas for the
design-time tools users can rely on standard tools for RDF modelling.

5.4. Tools 51

Figure 5.2.: Event Type Hierarchy

Design-Time encompasses the modelling of event classes in the schema
language RDFS. For this task existing software can be used to create event
classes and hierarchies. The choice for established Semantic Web Technolo-
gies such as RDF resulted in relatively good tool support. One example is
TopBraid Composer8 used in Figure 5.2.

Run-Time encompasses the creation of instances of events in RDF. How-
ever, not all programmers are skilled in Semantic Web Technologies, thus,
the realisation of our scenarios required tools for the creation of events.
The SDK we provide meets the Requirement R20: Support for Programmers
in the Java programming language. We explain the aspects of the SDK to
create events in more detail as follows.

Event instances conforming to our model must at least be of class “Event”
and have the properties :endTime and :stream as explained in Section 5.3.
Furthermore, applications may use the optional properties like :location.
However, most applications need to use domain-specific properties in

8TopBraid Composer: http://www.topquadrant.com

http://www.topquadrant.com

52 5. A Model for Events

events which go beyond the generic temporal and spatial properties in-
troduced above. There are two options on how to implement events with
further properties: (i) specialised subclasses of “Event” may be created
and instantiated or (ii) the base class may be directly instantiated and
domain-specific properties be used in an ad-hoc fashion without a schema
other than the base class.

Thus, domain-specific events may have their own schema but alternatively
the SDK may also be used for ad-hoc instances extending only the base
class. Common to both cases is the minimum requirement of instantiating
at least the base class. We go into the details of both cases as follows.

The advantage of creating schemas for domain-specific events is type
safety and better support in Java. The downside of the approach is the
added effort in creating the schema and that a re-compilation of the Java
application is needed as we will see below.

The advantage of not having a schema is that event types can be created
and instantiated in an ad-hoc fashion. No re-compilation is required and
no effort must be put in the creation of an RDFS schema. The downside is
decreased type safety. While the datatypes for the generic event properties
such as timestamp and location can be checked, there is no schema to
check the types of values supplied to any ad-hoc properties.

In conclusion, the schema-oriented approach is more useful when many
event instances of a class will be produced and the effort of creating a
schema is negligible. The schema-less approach (where only the base
schema is enforced) is more useful for ad-hoc implementations without
the overhead of modelling a domain-specific schema or when events must
be modelled dynamically without re-compiling an application.

For the schema-oriented approach we use the tool RDFReactor9 [Völkel
2006] to create Java classes for event models. RDFReactor consumes RDFS
schemas for “Event” and its subclasses. Using a template engine Java files
are created which must be compiled. The template engine adds all getters
and setters for event properties and maps RDF inheritance. The process of

9RDFReactor: http://semanticweb.org/wiki/RDFReactor

http://semanticweb.org/wiki/RDFReactor

5.4. Tools 53

building the templates can be well integrated in an overall build process
by using Maven.

Creating Java classes enables programmers to use a familiar object-oriented
abstraction instead of RDF triples. Instantiating an event can be achieved
simply by constructing the Java object and calling setters for the event
properties. See Listing 5.2 on how to create the example event from List-
ing 5.1 in Java. The resulting Java object is backed by an RDF model which
can be serialised at any moment for any RDF-compliant system like triple
stores or our event-based infrastructure introduced in Chapter 7.

1 String eventId = EventHelpers . createRandomEventId ();
2 Calendar time = Calendar . getInstance ();
3
4 FacebookStatusFeedEvent event = new FacebookStatusFeedEvent (
5 EventHelpers . createEmptyModel (eventId),
6 eventId + EVENT_ID_SUFFIX ,
7 true);
8 event . setEndTime (time);
9 event . setStream (new URIImpl (Stream . FacebookStatusFeed . getUri ()));

10 event . setStatus ("I bought some JEANS this morning ");
11 event . setFacebookId (" 100000058455726 ");
12 event . setFacebookLink (new URIImpl ("http :// graph . facebook .com/ roland .

stuehmer #"));
13 event . setFacebookLocation ("Karlsruhe , Germany ");
14 event . setFacebookName (" Roland Stühmer");

Listing 5.2: Instantiating an Event with predefined Schema (Java)

On line 4 of Listing 5.2 the domain-specific event class is instantiated. The
backing RDF model is supplied as one of the parameters. Line 8 ff. shows
how domain-specific setters are called subsequently on the event class.
Using setters like setFacebookId on line 11 the underlying RDF properties
and their URIs (e.g. http://graph.facebook.com/schema/user#id from
the event in Listing 5.1) do not need to be known by a programmer using
the SDK.

The schema-less approach on the other hand relies only on the schema
of the base class “Event”. No compilation of further schemas is required.
However, more understanding of RDF is required from the programmer
compared to the approach describe above. The schema-less approach

54 5. A Model for Events

consists of just one Java class “Event” with some type-safe setters for the
generic event properties from Section 5.3 and some non-type-safe setters
for arbitrary ad-hoc properties. Using this approach programmers can
quickly instantiate events without having created a schema beforehand
and programmatically use arbitrary event properties without re-compiling
any SDK classes from templates.

1 String eventId = EventHelpers . createRandomEventId ();
2 Calendar time = Calendar . getInstance ();
3 // Define a namespace for some ad -hoc properties
4 final String USER = "http :// graph . facebook .com/ schema /user#";
5
6 Event event2 = EventHelpers . builder (eventId)
7 .type(FacebookStatusFeedEvent . RDFS_CLASS)
8 . endTime (time)
9 . stream (Stream . FacebookStatusFeed)

10 . addProperty ("http :// events ... org/ types / status ", "I bought some
JEANS this morning ")

11 . addProperty (USER + "id", " 100000058455726 ")
12 . addProperty (USER + "link", new URIImpl ("http :// graph . facebook .com/

roland . stuehmer #"))
13 . addProperty (USER + " location ", " Karlsruhe , Germany ")
14 . addProperty (USER + "name", " Roland Stühmer")
15 . build ();

Listing 5.3: Instantiating an Event with ad-hoc Schema (Java)

Listing 5.3 shows how to create the same example from Listing 5.1 without
using a predefined schema. Some type-safe setters are used for basic event
properties like endTime() on line 8. Non-type-safe setters are shown on
line 10 ff. where programmers must specify URIs for properties. The URIs
are coined in an ad-hoc fashion by concatenating strings using namespaces
as shown, e.g. on line 4. The listing shows how the SDK uses a fluent
interface10 invoking each setter on the result of the previous setter and
finally calling the build() method. According to the builder pattern11 first
a preliminary builder object is instantiated. The setters of the builder object
may be called in any order and pass on the preliminary object. Finally, the
build() method instantiates the actual Event object. Introducing such a
two-phase creation has the advantage of validating the final event object.
10Fluent Interface: http://martinfowler.com/bliki/FluentInterface.html
11Design Patterns: http://c2.com/cgi/wiki?GangOfFour

http://martinfowler.com/bliki/FluentInterface.html
http://c2.com/cgi/wiki?GangOfFour

5.5. Discussion 55

This concludes the description of our SDK. It is applied in our scenarios
and various implementations of event adapters described in Section 7.6
below.

5.5. Discussion

We now give an overview of the fulfilment of requirements for the event
model. At first we list the schemas which were re-used fulfilling Require-
ment R5: Ontology re-use, after that we discuss the remaining require-
ments.

5.5.1. Schema Re-Use

In order to make our event model as interoperable as possible we re-
used existing schemas. The value of interoperability through common
ontologies [Pinto and Martins 2000] was discussed in Section 2.1. The
following list shows all re-used schemas for the event model and for access
control which is used later.

• Time Schemas
– DOLCE defines Endurant and Occurrent [Gangemi et al. 2002]
– Properties used: startTime, endTime

• Location Schemas
– W3C Geo predicates [Brickley 2003]
– Class used: Point

• Access Control Schemas
– W3C WebAccessControl [Berners-Lee 2009]
– Classes used: Agent (Users, Groups, Classes), Mode (Read, Write)

• Domain Schemas
– Facebook [Weaver and Tarjan 2012], SIOC [Berrueta 2010]
– Properties used: e.g. sioc:content, user:link
– W3C SSN Ontology12

– Classes used: Observation, Sensor,
12http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

http://www.w3.org/2005/Incubator/ssn/ssnx/ssn

56 5. A Model for Events

Table 5.1.: Overview of Requirements for the Event Model

Fulfilled by

Requirement Us
e o

f R
DF

Ou
r M

od
ell

in
g

R1: Events are first-class objects X
R2: Time properties X
R3: Type hierarchy X X
R4: Inter-event relationships X
R5: Ontology re-use X
R7: Linked Data Principles for Modelling X X
R13: Open Standards X
R15: Adaptivity X
R16: Event Metadata X
R19: Mobility X

5.5.2. Fulfilment of Requirements

Table 5.1 summarises the coverage of requirements from Chapter 2 by
the design decisions made above. The table distinguishes only two main
design decisions for the sake of simplicity. The first is the use of RDF
(second column from the right). When mapping the fulfilment of require-
ments, this decision subsumes many facets of RDF, e.g. being a standard
by the W3C, supporting hierarchies of classes through RDFS, its use for
Linked Data on the Web and its versatility of mixing schemas. The second
design decision subsumes our modelling decisions, i.e. how we use RDF
(rightmost column). The modelling subsumes decisions which we made
with respect to the event properties we use, the properties we re-use and
the URIs we coined.

5.5. Discussion 57

Table 5.1 can be understood line by line: The requirement Events are first-
class objects is fulfilled by our modelling. The same is true for Time properties.
The requirement for a Type hierarchy is supported both by RDF but also
by our modelling in the way we designed the hierarchy of events for our
scenarios. Inter-event relationships are supported by our modelling in that
we designed the necessary event properties. Ontology re-use is supported
by our choice of pre-existing schemas wherever possible. Linked Data
Principles for Modelling are made possible by the use of RDF, a necessary
precondition for Linked Data, as well as by our modelling which favours
dereferenceable URIs. The use of Open Standards is fulfilled by our decision
to use RDF. The same holds true for Adaptivity which is supported by the
flexibility of using, mixing and evolving RDF schemas. Event Metadata is
supported by the use of RDF as a data and metadata modelling language.
Finally, Mobility is supported by our modelling using W3C standards for
location tagging.

This concludes the design of the event model. In Chapter 6 below we
explain the event pattern language which facilitates processing of events
based on the model in real-time. Further below in Chapter 7 we describe
the infrastructure used to organise, subscribe, and process events using
the format and the pattern language.

6
A Pattern Language for Events

To combine real-time data and historic data we propose a language called
Big Data Processing Language (BDPL). The language is designed to be
used in a distributed setting of RDF streams and RDF static data.

Our language is based on ETALIS, previous work in event processing.
ETALIS is an event processing system, with an accompanied event pat-
tern language, cf. [Aničić 2012, Part II]. The system is based on logic
programming. Complex events are deduced from simpler events by means
of applying event patterns. Event patterns are defined as deductive rules,
and events including their attributes are represented as sets of facts. Every

6.1. Introduction: A real-time Query Language
for RDF Event Streams

60 6. A Pattern Language for Events

time a simple event (relevant w.r.t. the set of monitored complex events)
occurs, the system updates its knowledge base, i.e. it adds respective facts
to the internal state of complex events. Essentially, this internal state en-
codes what atomic events have already happened and what events are still
missing for the completion of a certain complex event. Complex events
are detected and propagated as soon as the last event required for their
detection has occurred. This is an important difference from query-driven
approaches to logic programming where polling is required to produce
results. Knowledge about which occurrence of an event furthers the de-
tection of complex events (including the relationships between complex
events and events they consist of) are given by deductive rules. ETALIS de-
fines an expressive complex event description language with a rule-based
syntax and a declarative, formal semantics. The language is founded on
an execution model that compiles complex event patterns into logic rules
and enables timely, event-driven detection of complex events. New rules
can efficiently re-use common subexpressions of existing rules and rules
can be added and removed from the query execution graph at runtime.

Our language, BDPL, is a language executed on top of ETALIS as a front-
end language compiled to ETALIS rules. The purpose of BDPL is to fulfil
the requirements of RDF events which are discussed in Chapter 2. For
this thesis we go beyond the related work to deal with structured events
consisting of many RDF triples as opposed to one triple per event. This
greatly increases the ease-of-use of our implementation in environments
where events have many attributes as opposed to a single triple per event
(cf. the discussion in Section 4.1). In other words, BDPL works with
structured events which can combine many properties, whereas previous
designs only looked at one triple at a time. An event is thus now a graph
whereas it used to be a triple before. This is much closer to real-world
systems which must understand events with multiple facets.

As part of allowing for multiple attributes, the timestamps in each event are
now made explicit (as another event property) whereas they were merely
second-class citizens in related work being added in the background to
each tuple. This allows our system to transmit the time as part of the event.
Using time in events enables the support of “application time”. This

6.2. Requirements 61

means that a source specifies the occurrence time of an event as opposed
to “system time” where the receiving system specifies the time.

Our language supports hybrid queries mixing real-time event processing
with historic data. Events which are processed in real-time often do not
contain all context which is needed to process them in a meaningful way.
Also, longer-term data analysis must operate on archived streams [Dindar
et al. 2011]. For these reasons a current, real-time view of events is not
enough. Therefore, our language combines efficient, incremental real-
time monitoring of events with historic queries in one hybrid language.
Architectures supporting such languages are called Lambda Architectures
in [Marz and Warren 2015]. Lambda Architectures support real-time data
and historic data in specialised systems but with one homogeneous query
language, see Section 4.4.

6.2. Requirements

The event pattern language must fulfil certain requirements. These were
collected in Chapter 2. In the following we briefly reiterate the require-
ments specific to the language.

Requirement R9: Support for the data model must be fulfilled by the language
to be used with the data model of events in RDF. R10: Hybrid Querying
requires the language to support queries mixing in-memory, real-time
matching of events with federated querying of historic data. Temporal
operators must be supported by the real-time matching to address R11:
Temporal Operators. Moreover, R13: Open Standards must be observed. Fur-
thermore, R14: Event-driven requires the language to support event-driven
applications by offering fine-grained event-at-a-time operators which can
be used to selectively react to interesting situations. R15: Adaptivity must
be supported to enable multi-user systems with changing demands for
varying situations of interest and for evolving schemas. Finally, R18: Query
Expressivity subsumes the compliance of our language with the needs from
the scenarios.

62 6. A Pattern Language for Events

We modelled BDPL close to SPARQL 1.1 but with focus on integrating
primitives from event processing. We describe our design in detail as
follows.

From the SPARQL 1.1 language we use the following subset: CONSTRUCT
queries without operators UNION and subqueries, OPTIONAL or LIMIT
clauses. UNION and subqueries are omitted for simplicity of our im-
plementation; they can be emulated by issuing several separate queries.
LIMIT on the other hand is not applicable in real-time queries because
queries are expected to return an unbounded set of results until the queries
are unregistered. So LIMIT was omitted. We introduced window opera-
tors instead to group events into finite sets without limiting the number
of results overall. OPTIONAL is omitted but is a useful enhancement for
future versions.

We syntactically extend this subset of SPARQL in two ways: (i) with
primitives from event processing such as time windows [Aničić 2012,
Chapter 6] to enable temporal processing and (ii) to distinguish real-time
data from historic data.

Introducing temporal processing operators is needed to match events in
certain relationships such as sequences and time windows. Also, temporal
operators may be overloaded to deal with both interval-based and point-
based events as discussed for Requirement R11: Temporal Operators in
Chapter 2.

Distinguishing real-time data from historic data is done using the syn-
tax EVENT and GRAPH. The distinction is needed to facilitate federation of
queries. Bound variables may be used to join events based on their pay-
loads with historic data. Variables may be bound anywhere in the WHERE
clause: in the individual event instances and in historic data. To match the
entire query a suitable binding must be found for all occurrences of each
variable or otherwise the event can be discarded. Section 7.2.3 explains
the joins of federated data in detail.

6.3. Formalism: Syntax and Semantics of the
Language

6.3. Formalism: Syntax and Semantics of the Language 63

We introduce the formal grammar for BDPL in Backus-Naur Form (BNF).
The full text of the grammar is available as open-source software, cf. Ap-
pendix A.3.

The first part of the grammar defines the syntax of BDPL as CONSTRUCT
queries like in SPARQL. The two remaining query types in SPARQL,
namely ASK and SELECT queries, are not applicable to event processing.
ASK queries only return Boolean results which is not expressive enough
to model derived events. SELECT queries return arbitrary-length tuples
which is not appropriate to model triples for derived events. CONSTRUCT
queries are the only query form providing an RDF to RDF mapping1.

⟨ConstructQuery⟩ ::= ‘CONSTRUCT’ (⟨ConstructTemplate⟩
⟨BdplWhereClause⟩ ⟨SolutionModifier⟩)

⟨ConstructTemplate⟩ ::= ⟨LBRACE⟩ ⟨TriplesBlock⟩ ⟨RBRACE⟩

⟨BdplWhereClause⟩ ::= (‘WHERE’)? ⟨LBRACE⟩
⟨RealTimeEventQuery⟩ ⟨HistoricalEventQuery⟩
⟨RBRACE⟩

⟨SolutionModifier⟩ ::= (⟨HavingClause⟩)?

The previous snippet shows the initial productions of the grammar in
BNF. The ConstructQuery exhibits standard SPARQL syntax except for
the modified WHERE clause. We introduce the most important features of
BDPL there. Thus, the so-called BdplWhereClause consists of a real-time
part and a historic part. The latter contains unmodified SPARQL whereas
the RealTimeEventQuery contains our new keyword EVENT along with
temporal operators needed for event processing. The real-time part is
explained in detail as follows.

⟨RealTimeEventQuery⟩ ::= ⟨WindowClause⟩ | (⟨EventPattern⟩)

⟨WindowClause⟩ ::= ⟨WINDOW⟩ ⟨LBRACE⟩ ⟨EventPattern⟩ ⟨RBRACE⟩
⟨WindowDecl⟩ (⟨FilterOrBind⟩)*

1Although the other query forms are not applicable to the design of BDPL, they nevertheless
are used in this work for other purposes: SELECT queries are employed in Section 7.2 to
integrate historic RDF backends and ASK queries in Section 7.3 to evaluate RDF access
control.

64 6. A Pattern Language for Events

⟨EventPattern⟩ ::= ⟨EventClause⟩ (⟨BdplBinOperators⟩ ⟨EventClause⟩)*
| ⟨NotClause⟩
| ⟨TimeBasedEvent⟩
| (⟨LBRACE⟩ ⟨EventPattern⟩ ⟨RBRACE⟩)

⟨EventClause⟩ ::= ‘EVENT’ ⟨VarOrIRIref ⟩ ⟨LBRACE⟩ ⟨EventGraphPattern⟩
⟨RBRACE⟩

⟨BdplBinOperators⟩ ::= ⟨SEQ⟩ | ⟨AND⟩ | ⟨OR⟩ | ⟨EQUALS⟩ |
⟨OPTIONALSEQ⟩ | ⟨EQUALSOPTIONAL⟩

⟨NotClause⟩ ::= ‘NOT’ ⟨LBRACE⟩ (⟨EventClause⟩ | ⟨TimeBasedEvent⟩)
(⟨EventClause⟩ | ⟨TimeBasedEvent⟩)
(⟨EventClause⟩ | ⟨TimeBasedEvent⟩) ⟨RBRACE⟩

⟨EventGraphPattern⟩ ::= (⟨TriplesBlock⟩)? (⟨Filter⟩ (⟨DOT⟩)? (⟨TriplesBlock⟩
)?)*

⟨HistoricalEventQuery⟩ ::= (⟨GraphGraphPattern⟩)*

The previous snippet shows the details of the real-time part. The Event-
Clause marks a pattern to match one event. It starts with the keyword
EVENT. The clause can be composed into patterns of multiple events us-
ing operators or windows. The NotClause is a special operator which is
ternary. Its syntax NOT {A, B, C} is matched if an event of type B does
not occur within A and C.

The WindowClause declares window operators of different types. A win-
dow operator groups events from an unbounded stream into sequential
finite sets of events, called windows [Etzion and Niblett 2010]. A time-
based window is set of events happening in a certain time-interval, e.g.
within the last five minutes. A count-based window is a set of events de-
fined by the order of events, e.g. the last five events. Both types of windows
are supported including the specification of the window length.

The HistoricalEventQuery at the end of the snippet is the syntax for
the historical part of the query. It consists of standard patterns from
SPARQL.

Listing 6.1 shows an example query in BDPL. The purpose of this query is
to notify the recipient whenever three users of the social network Facebook

6.3. Formalism: Syntax and Semantics of the Language 65

report something of interest in their status message. In this case the query
matches the word “JEANS” in their status message during a time window
of thirty minutes. The real-time data is combined with historic data from
past tweets of one of the friends.

The example demonstrates several facts about our query language:

1. We modelled BDPL as close to SPARQL 1.1 [Harris and Seaborne
2010] as possible. Exceptions are being made for necessary event
operators and the denotations of events compared to non-event
historic data.

2. Event derivation (the modelling of the resulting complex event) is
handled through a CONSTRUCT clause as in SPARQL 1.1. The
clause (starting on line 6) contains a template of triples for the com-
plex event. Additional attributes like the timestamps are handled
implicitly. They are derived automatically from the participating
simple events which form the complex event according to the se-
mantics of the event operators.

3. The event pattern is modelled in the subsequent WHERE clause
starting on line 12.

4. The pattern contains several events combined with event operators
(e.g. SEQ on line 21) nested in a sliding time window defined by
the xsd:duration on line 37. The matching semantics of the event
operators is described by [Aničić 2012, Chapter 7] in terms of the
event’s time stamps along with an execution model of the language.

5. Each event is matched according to its content in addition to the
temporal matching described before. Matching of event content is
done similarly to the GRAPH clause in SPARQL 1.1. The clause,
however, is denoted with EVENT here (e.g. on line 14) to distinguish
the real-time parts of the query from the optional historic parts. The
historic parts are evaluated after the real-time part is detected. The
syntax for historic data uses standard GRAPH clauses from SPARQL
1.1. (Cf. line 39.)

6. Bound variables may be used to join events with each other and
with historic data. The variable ?friend3 is an example. It is bound
in the third event on line 34 and in the historic part of the query
on line 42. To match the query a suitable binding must be found

66 6. A Pattern Language for Events

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX user: <http :// graph . facebook .com/ schema /user#>
3 PREFIX sioc: <http :// rdfs.org/sioc/ns#>
4 PREFIX : <http :// events .event - processing .org/ types />
5
6 CONSTRUCT {
7 :e rdf:type : FacebookCepResult .
8 :e : stream <http :// streams ... org/ids/ FacebookCepResults #stream > .
9 :e user:name ? friend1 , ? friend2 , ? friend3 .

10 :e : status ? status1 , ? status2 , ? status3 , ? historicTweet .
11 }
12 WHERE {
13 WINDOW {
14 EVENT ?id1 {
15 ?e1 rdf:type : FacebookStatusFeedEvent .
16 ?e1 : stream <http :// streams .../ FacebookStatusFeed #stream > .
17 ?e1 : status ? status1 .
18 ?e1 user:name ? friend1 .
19 FILTER contains (? status1 , " JEANS ")
20 }
21 SEQ
22 EVENT ?id2 {
23 ?e2 rdf:type : FacebookStatusFeedEvent .
24 ?e2 : stream <http :// streams .../ FacebookStatusFeed #stream > .
25 ?e2 : status ? status2 .
26 ?e2 user:name ? friend2 .
27 FILTER contains (? status2 , " JEANS ")
28 }
29 SEQ
30 EVENT ?id3 {
31 ?e3 rdf:type : FacebookStatusFeedEvent .
32 ?e3 : stream <http :// streams .../ FacebookStatusFeed #stream > .
33 ?e3 : status ? status3 .
34 ?e3 user:name ? friend3 .
35 FILTER contains (? status3 , " JEANS ")
36 }
37 } (" PT30M "^^ xsd:duration , sliding)
38
39 GRAPH ?id4 {
40 ?e4 rdf:type : TwitterEvent .
41 ?e4 : stream <http :// streams .../ TwitterFeed #stream > .
42 ?e4 : screenName ? friend3 .
43 ?e4 sioc: content ? historicTweet .
44 }
45 }

Listing 6.1: BDPL Query Example

6.4. Query Decomposition 67

for all occurrences of each variable or otherwise the event can be
discarded.

7. We extended the underlying engine ETALIS to execute XPath func-
tions such as contains() to be more expressive with regard to han-
dling XML data types. (Cf. line 19.)

This concludes the specification of BDPL, our design for matching struc-
tured, rich events in RDF. Section 6.4 describes how BDPL is compiled into
rules which are understood by the underlying execution engine ETALIS.

6.4. Query Decomposition

A BDPL query consists of a real-time part and a historic part. A new query
is parsed using our grammar. From the resulting parse tree two kinds of
code are generated: (i) the real-time part which is transformed into rules
for the underlying event processing engine ETALIS and (ii) the historic part
which is transformed into one or more SPARQL queries for distributed
storage backends. We explain the real-time part in the following, whereas
we explain the historic part in Section 7.2.

The real-time part of BDPL is compiled into ETALIS Language for Events
(ELE) rules [Aničić 2012, Part II]. They are understood by ETALIS. List-
ing 6.2 shows ELE code generated from the query in Listing 6.1. Since
ELE does not handle events in RDF we extended it with Prolog rules to
do so.

The first part of the ELE rule in Listing 6.2 (before the arrow "<-" on line
42) is the left hand side of the rule. The derived event is constructed there.
This is generated from the CONSTRUCT clause in the original BDPL query.
Each predicate generateConstructResult() creates another triple or set
of triples in the derived event.

1 r1 ’rule:’ complex (CEID)
2 do (
3 generateConstructResult (
4 [’http :// events .event - processing .org/ types /e’],
5 [’http :// www.w3.org /1999/02/22 - rdf -syntax -ns#type ’],
6 [’http :// events .event - processing .org/ types / FacebookCepResult ’],
7 CEID),

68 6. A Pattern Language for Events

8 generateConstructResult (
9 [’http :// events .event - processing .org/ types /e’],

10 [’http :// graph . facebook .com/ schema /user#name ’],
11 [FRIEND1],
12 CEID),
13 generateConstructResult (
14 [’http :// events .event - processing .org/ types /e’],
15 [’http :// graph . facebook .com/ schema /user#name ’],
16 [FRIEND2],
17 CEID),
18 generateConstructResult (
19 [’http :// events .event - processing .org/ types /e’],
20 [’http :// graph . facebook .com/ schema /user#name ’],
21 [FRIEND3],
22 CEID),
23 generateConstructResult (
24 [’http :// events .event - processing .org/ types /e’],
25 [’http :// events .event - processing .org/ types / discussionTopic ’],
26 [ABOUT1],
27 CEID),
28 generateConstructResult (
29 [’http :// events .event - processing .org/ types /e’],
30 [’http :// events .event - processing .org/ types / discussionTopic ’],
31 [ABOUT2],
32 CEID),
33 generateConstructResult (
34 [’http :// events .event - processing .org/ types /e’],
35 [’http :// events .event - processing .org/ types / discussionTopic ’],
36 [ABOUT3],
37 CEID),
38 decrementReferenceCounter (ID1), collectGarbage (ID1),
39 decrementReferenceCounter (ID2), collectGarbage (ID2),
40 decrementReferenceCounter (ID3), collectGarbage (ID3)
41)
42 <-
43 (’http :// events .event - processing .org/ types / FacebookStatusFeedEvent ’(ID1

)
44 ’WHERE ’ (
45 (rdf(E1 , ’http :// www.w3.org /1999/02/22 - rdf -syntax -ns#type ’,
46 ’http :// events .event - processing .org/ types / FacebookStatusFeedEvent

’, ID1)),
47 (rdf(E1 , ’http :// events .event - processing .org/ types /status ’, ABOUT1 ,

ID1)),
48 (rdf(E1 , ’http :// events .event - processing .org/ types /name ’, FRIEND1 ,

ID1)),
49 (xpath (element (sparqlFilter , [keyWord = ABOUT1], []) ,
50 // sparqlFilter (contains (@keyWord ,’JEANS ’)), _)),
51 incrementReferenceCounter (ID1)
52)
53) ’SEQ ’
54 (’http :// events .event - processing .org/ types / FacebookStatusFeedEvent ’(

ID2)
55 ’WHERE ’ (

6.4. Query Decomposition 69

56 (rdf(E2 , ’http :// www.w3.org /1999/02/22 - rdf -syntax -ns#type ’,
57 ’http :// events .event - processing .org/ types / FacebookStatusFeedEvent

’,
58 ID2)),
59 (rdf(E2 , ’http :// events .event - processing .org/ types /status ’,
60 ABOUT2 , ID2)),
61 (rdf(E2 , ’http :// events .event - processing .org/ types /name ’,
62 FRIEND2 , ID2)),
63 (xpath (element (sparqlFilter , [keyWord = ABOUT2], []) ,
64 // sparqlFilter (contains (@keyWord ,’JEANS ’)), _)),
65 incrementReferenceCounter (ID2)
66)
67) ’SEQ ’
68 (’http :// events .event - processing .org/ types / FacebookStatusFeedEvent ’(

ID3)
69 ’WHERE ’ (
70 (rdf(E3 , ’http :// www.w3.org /1999/02/22 - rdf -syntax -ns#type ’,
71 ’http :// events .event - processing .org/ types / FacebookStatusFeedEvent

’,
72 ID3)),
73 (rdf(E3 , ’http :// events .event - processing .org/ types /status ’,
74 ABOUT3 , ID3)),
75 (rdf(E3 , ’http :// events .event - processing .org/ types /name ’,
76 FRIEND3 , ID3)),
77 (xpath (element (sparqlFilter , [keyWord = ABOUT3], []) ,
78 // sparqlFilter (contains (@keyWord ,’JEANS ’)), _)),
79 incrementReferenceCounter (ID3),
80 random (1000000 , 9000000 , CEID)
81)
82).
83 event_rule_property (r1 , event_rule_window ,1800) .

Listing 6.2: Output of BDPL Parser (ETALIS ELE Syntax)

The predicates decrementReferenceCounter() and collectGarbage()
deal with the garbage collection of the participating simple events. Ac-
cording to the number of rules registered in the system a simple event may
be consumed several times before it can be collected. The corresponding
Prolog predicates maintain the usage counters and execute the collection
of garbage.

The remainder of the query (line 43 ff.) deals with the right hand side of the
rule, defining the constraints on the simple events. This is generated from
the WHERE clause in the original BDPL query. The temporal operator SEQ
from ETALIS can be seen in the example. The constraint from the time
window in BDPL is sent to ETALIS separately (line 83) as a rule property
containing the window length in seconds.

70 6. A Pattern Language for Events

The predicate rdf() is used to match RDF quadruples in simple events
(line 45 ff.). The predicate xpath() is used to apply several useful XPath
functions to increase the expressivity in matching events (e.g. line 49).
The predicate random() is used to create new event IDs for the derived
event (line 80).

We use the following Prolog libraries to execute BDPL:

• library(semweb/rdf_db)2 to handle RDF triples
• library(xpath)3 to implement XPath functions
• library(random)4 to provide new, random IDs for derived events

This concludes the description of our language BDPL and its transforma-
tion for the underlying event processing engine.

6.5. Discussion

Table 6.1 summarises the coverage of requirements specific to the pattern
language from Chapter 2. The table distinguishes two main design deci-
sions for the sake of simplicity: The first is the use of SPARQL (second
column from the right). When mapping the fulfilment of requirements,
this decision subsumes many facets of SPARQL, e.g. being a standard by
the W3C, being tailored specifically for processing RDF or its expressive-
ness when matching graph data. The second design decision subsumes
the extensions to SPARQL we made (rightmost column). These extensions
include e.g. the temporal operators, event-at-a-time semantics and hybrid
querying we added when designing BDPL.

Table 6.1 can be understood line by line as follows: The requirement
Support for the data model is fulfilled by the use of SPARQL in our work. On
the other hand, Hybrid Querying is fulfilled not by basic SPARQL but by the
extensions we make to it. Likewise, Temporal Operators are supported by

2semweb/rdf_db: The RDF database: http://www.swi-prolog.org/pldoc/man?section=
semweb-rdf-db

3xpath: Select nodes in an XML DOM: http://www.swi-prolog.org/pldoc/man?section=
xpath

4random: Random numbers: http://www.swi-prolog.org/pldoc/man?section=random

http://www.swi-prolog.org/pldoc/man?section=semweb-rdf-db
http://www.swi-prolog.org/pldoc/man?section=semweb-rdf-db
http://www.swi-prolog.org/pldoc/man?section=xpath
http://www.swi-prolog.org/pldoc/man?section=xpath
http://www.swi-prolog.org/pldoc/man?section=random

6.5. Discussion 71

Table 6.1.: Overview of Requirements for the Pattern Language

Fulfilled by

Requirement Us
e o

f S
PA

RQ
L

Ou
r E

xt
en

sio
ns

R9: Support for the data model X
R10: Hybrid Querying X
R11: Temporal Operators X
R13: Open Standards X(1)
R14: Event-driven X
R15: Adaptivity X X
R18: Query Expressivity X X

our extensions. The requirement for Open Standards is fulfilled by basing
our approach on SPARQL but with the limitation (cf. (1) in Table 6.1) of
making extensions, i.e. changes to the standard. The requirement of being
Event-driven is fulfilled by our extensions by adding event processing
operators to the language. Adaptivity is supported by making any two
queries isolated from each other. Thus, adding an event pattern never
steals events from another pattern. For standard SPARQL CONSTRUCT
queries this is a given and for our extensions we ascertain that all queries
consume events in isolation. Finally, the required Query Expressivity for
our scenarios is supported both by basic SPARQL and by our extensions;
cf. [Benaben et al. 2013].

7
An Infrastructure for Events

This chapter describes the software artefacts which were designed as part
of this thesis to answer the research questions. The artefacts are part
of a larger system architecture for Web-oriented event processing. The
architecture not only includes event processing as part of this work but
also access control for streaming data as well as storage and a service bus
which are contributed by third parties mentioned below.

7.1. Architecture

There are two main layers in our conceptual architecture; event processing
and storage: The storage layer provides a publish/subscribe mechanism
allowing storing and retrieving events. Storage is organised into partitions
to allow federated queries. The second layer is event processing. It enables

74 7. An Infrastructure for Events

the deduction of events from low level events based on event patterns.
The full picture is presented in Figure 7.1.

Platform
Services

Event
Processing

Storage

Q
ue

ry
D

is
pa

tc
he

r

Service Bus

events
query

query

events

G
ov

er
na

nc
e

query

query

meta
Event
Meta-
data

meta

discovery

Figure 7.1.: Architecture of the System (Block Diagram)

7.1.1. Components

The system architecture as presented in Figure 7.1 is comprised of the
following components:

• The Service Bus provides the Service-oriented architecture (SOA)
and Event-driven architecture (EDA) infrastructure for components
and end user services.

• The Governance component enables users to specify permissions
on streams. Permissions are enforced on incoming queries.

7.1. Architecture 75

• The Storage component provides storage of events and historic data
as well as forwarding of events [Filali et al. 2011].

• The Event Processing component has the role of detecting complex
events and reasoning over events. It contains the main contributions
of this work.

• The Platform Services incorporate several functional additions to
the platform as a whole: Query Dispatcher has the role of decompos-
ing and deploying BDPL queries. The Event Metadata component
stores information about events and streams to facilitate search.

The service bus (at bottom of Figure 7.1) is an event-oriented middleware.
It is contributed by a third party, see also Appendix A.1 on open-source
artefacts. The service bus supports publish/subscribe interaction based
on event topics. Its purpose is the standards-based integration of event
users: producers and consumers.

The next element in the stack is storage (on the right of Figure 7.1). Its
purpose is to store events for non-real-time (e.g. analytical) queries along
with other static data. Storage is implemented as a distributed quadruple
store to organise event’s triples according to their provenance: Apart from
the organization in graphs, events are furthermore organised in streams.
The stream representing a topic on the service bus is specified in each event.
The streams are used for partitioning the storage onto several nodes. For
the storage nodes we use interchangeable implementations of Virtuoso1,
4store2 and EventCloud3. Subsequently, queries are federated accordingly
by evaluating the stream property in each pattern.

Events are relayed immediately to event processing which is the next
element on the stack (top right of Figure 7.1). Its purpose is to match
real-time queries against streaming events on-line and to orchestrate any
historic parts of the queries with the nodes of the storage component.

1Virtuoso Open Source: http://virtuoso.openlinksw.com/
24store, RDF database: http://4store.org/
3EventCloud was used in our evaluation in Section 8.4

http://virtuoso.openlinksw.com/
http://4store.org/

76 7. An Infrastructure for Events

7.1.2. Communication

Communication inside the platform as well as with external components
relies on three main protocols for specific purposes. The protocols are
ProActive4 (based on RMI5), SOAP (using WS-Notification messages) and
REST.

ProActive: Internally and among each other the components commu-
nicate using ProActive based on RMI. ProActive is a component model
and a distributed middleware. It realises remote communication between
distributed components by translating method calls to RMI. Components
may be linked and unlinked dynamically according to their interfaces.
ProActive provides good type safety, being implemented in pure Java. We
chose ProActive because it is the only component model suitable for distri-
buted deployment unlike, e.g. OSGI, and because it is a framework which
allows dynamic changes to a distributed topology, e.g. unlike Apache
Storm.

SOAP: The service bus communicates with external components (event
producers and consumers) through SOAP using WS-Notification mes-
sages. Thus, event publishing and subscription is standardised by WS-
Notification6. The specification defines the schemas of Notify, Subscribe
and Unsubscribe messages. Subsequently, the event schema contributed
by this work (cf. Chapter 5) is then embedded inside Notify message en-
velopes. Each event is associated with a topic and subscriptions are based
on such topics. We selected WS-Notification because of its platform inde-
pendence and because it is an official standard for topic-based publish/
subscribe (for publish/subscribe see Section 3.5).

REST: The platform additionally exposes its external APIs using repre-
sentational state transfer (REST). These APIs for publish/subscribe offer a

4ProActive Parallel Suite: http://proactive.activeeon.com
5Java Remote Method Invocation, the object-oriented equivalent of remote procedure calls
6WS-Notification: https://www.oasis-open.org/committees/wsn/

http://proactive.activeeon.com
https://www.oasis-open.org/committees/wsn/

7.2. Event Processing 77

simpler message format; however, the schemas are not standardised like
WS-Notification. We implemented the REST APIs to obtain simple access
for ad-hoc clients such as JavaScript-based management clients of our
platform. A JavaScript-based pattern manager using REST is described in
Section 7.4.

In conclusion, RMI-communication is used to connect our components
internally, SOAP-communication is used with external components where
standardised protocols are available such as WS-Notification and finally
REST-communication is used externally where no standards previously
existed.

7.2. Event Processing

Hereinafter we focus on the component event processing introduced in
Section 7.1. Its implementation is referred to as Distributed Complex Event
Processing (DCEP). To connect with the remainder of the platform DCEP
has inputs and outputs, defined by interfaces.

7.2.1. Interfaces

DCEP provides two interfaces (on the left edge of Figure 7.2), the Dcep-
MonitoringApi and the DcepManagementApi. They are used by the exter-
nal governance component to manage the registered event patterns and
to configure monitoring.

DCEP consumes three interfaces (on the right edge of Figure 7.2), the
PublishApi, the SubscribeApi and the PutGetApi. They are used to ac-
cess external components in the platform to subscribe to necessary simple
events needed to fulfil patterns, to publish complex events and to fetch
historic data from storage.

78 7. An Infrastructure for Events

7.2.2. Components

Internally, DCEP is divided into subcomponents which are designed for a
distributed deployment (cf. Figure 7.2). The figure shows the components
DistributedEtalis, QueryDispatcher and DcepManager contained in
the global component Dcep.

DistributedEtalis implements the core event processing logic in Java
and Prolog. It can be instantiated and deployed multiple times. The
remaining components are singletons: Dcep contains all other components
and exposes external APIs to other parts of the overall system such as
storage and the service bus. DcepManager holds the logic for monitoring
DistributedEtalis. Finally, QueryDispatcher holds the BDPL parser
separating real-time and historic parts of a query.

Figure 7.2.: Subcomponents of DCEP (Component Diagram)

component Dcep

<<component>>

DcepManager

<<component>>

QueryDispatcher

<<component>>

DistributedEtalis

DcepMonitoringApi

DcepManagementApi

DcepManagementApi

MonitoringApi

PublishApi

SubscribeApi

Manage non-functional
aspects such as
monitoring data.

Decompose and
route event patters
to DistributedEtalis
nodes.

Publish complex
events to the
middleware.

Subscribe to
necessary simple
events to do event
processing.

PutGetApi

Get
historical
data using
a pull API.

7.2. Event Processing 79

7.2.3. Algorithm

Intuitively, a hybrid query is fulfilled if there is a mapping (according to
the semantics of SPARQL [Pérez et al. 2009]) for all variables from the
real-time patterns and a compatible mapping for the historic data at the time
of the real-time answer. This entails the computation of joins between the
data at some point in time. Operationally, real-time patterns are applied
to the streams first. This is done in a continuous fashion, listening for
matching events. Results are detected incrementally and are produced
as soon as the last events arrive to fulfil the part. When such a real-time
result is reported, the historical parts of the query are executed. The
variable mappings from both the real-time part and the historic parts will
be checked for compatibility. The combined result is then created via joins
of any bound variables.

After a non-empty result is found, the CONSTRUCT template is filled to
create a new event from the result. This event is published as any other
event and may be received by users, services and devices. This includes the
event participating in further queries to create layered, higher abstractions
of further complex events. (Cf. event abstraction hierarchies in [Luckham
2001, Section 3.7].)

Figure 7.3.: Query Decomposition, Part 1: Calculation of the Results
Company logo Brussels, 20/11/2012

-Time Queries

Var1: a,b,c
Var2: c,d

Var1: c
Var3: x,y

80 7. An Infrastructure for Events

Figure 7.3 shows how queries are decomposed. A query in Big Data
Processing Language (BDPL) consists of a real-time part and a historic
part as indicated on the left of the figure. A new query is parsed using our
grammar. From the resulting parse tree two kinds of code are generated:
(i) the real-time part is transformed into rules for the underlying event
processing engine ETALIS and (ii) the historic part is transformed into one
or more SPARQL queries for distributed storage backends. The process is
indicated in the centre column of the figure.

The nature of Linked Data is exploited during query decomposition. Each
pattern in the historical query (cf. GraphGraphPattern in the grammar
above) defines a stream property. This property links an event to its
stream. See Listing 6.1, line 41, for an example linking to a stream of
Twitter events.

This information is used with real-time events and historical events. With
historical events separate historical queries are created from BDPL for
each separate historic stream. Data in our storage system is partitioned by
stream. Queries which are decomposed in this way are later fired when it
is time to retrieve historic results. Such requests are only made to those
backends which have the relevant data according to the partitioning in
our system. Additionally, links to streams are used to obtain real-time
data. There, data are subscribed to in a topic-based fashion similar to the
partitioning of our historic data. Each stream URI can be used to subscribe
to the topic containing the streaming data.

The decomposition of a query happens when the query is registered. The
real-time part is then registered with our event processing system imme-
diately, cf. top right of Figure 7.3. Whenever the real-time part produces a
result, the corresponding historical parts are executed, cf. bottom right of
the figure. This happens by executing each separate historical query at
its corresponding storage backend. The links in stream descriptions are
followed to find the appropriate backend.

The process of answering different parts of a query by different backend
systems is called federated querying [Harris and Seaborne 2010] in the
terminology of SPARQL. Joins are allowed across the entire query. This

7.2. Event Processing 81

means individual results from the backend systems must be joined to
produce a final result.

Equi-joins in SPARQL are computed between graph patterns which de-
clare a shared SPARQL variable. In Listing 6.1 the variable ?friend3 is
an example which is shared by several graph patterns. To find valid bind-
ings, SPARQL execution engines must compute equi-joins between graph
patterns with shared variables. Further types of joins are required by the
FILTER clause using non-equi comparators between shared variables.

SPARQL provides support for making joins in federated queries more
efficient. In a federated setting intermediate results of a join are transmit-
ted between systems to produce a final result in one place. The size of
intermediate results participating in a join must be minimised to reduce (a)
the transmission costs and (b) the computational cost of the final join. To
that end SPARQL queries can be constrained by variable bindings which
restrict the possible results of joins.

If variables are bound in the real-time part of a query, there will be a set of
possible values, i.e. bindings, for that variable once the real-time part has
a solution (i.e. the event pattern was matched). The resulting intermediate
variable bindings are then transmitted to the storage systems along with
the historic queries. The historic queries may then be pre-joined with the
transmitted data.

Sending intermediate data to the historic storage systems for joining and
not vice versa usually optimises the join order. We assume that the
real-time parts of our queries usually match a small set of in-memory,
time-constrained data. Thus, its intermediate results are usually smaller
than the results from historic, archived streams where a lot of data are
queried.

Listing 7.1 shows the example of a historic query as it is sent to a storage
system including a very small variable binding. The query is statically
generated during the decomposition of the BDPL query from the previous
example, Listing 6.1. However, before it is sent in the form presented in
the listing, the query is amended with variable bindings for the shared
variable ?friend3 on line 13. The VALUES clause is a part of standard

82 7. An Infrastructure for Events

1 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
2 PREFIX sioc: <http :// rdfs.org/sioc/ns#>
3 PREFIX : <http :// events .event - processing .org/ types />
4
5 SELECT ? friend3 ? historicTweet
6 WHERE {
7 GRAPH ?id4 {
8 ?e4 rdf:type : TwitterEvent .
9 ?e4 : stream <http :// streams .../ TwitterFeed #stream > .

10 ?e4 : screenName ? friend3 .
11 ?e4 sioc: content ? historicTweet .
12 }
13 VALUES ? friend3 { " rolandstuehmer " }
14 }

Listing 7.1: Historic Query Example generated from BDPL

SPARQL to support federated queries. The clause may be used to transmit
lists of bindings for one or more variables. In the example on line 13
only one binding for the variable was found in the real-time part. It is
transmitted as “inline data” [Harris and Seaborne 2010] together with the
query. Its purpose is to restrict the fulfilment of the historic part optimizing
the final join operation.

Other than the VALUES clause the historic query exhibits the following
characteristics:

1. The query uses standard SPARQL 1.1 [Harris and Seaborne 2010].
Thus, our event processing system can be used with any RDF triple
stores as the backends.

2. The SELECT query form of SPARQL is used. Cf. line 5 of the listing.
Sets of values must be exchanged with the backends. Thus, for
intermediate results there is no need to exchange full triples. Full
triples, supported only by CONSTRUCT queries, will be created
only in our final step when filling the overall BDPL with final join
results.

3. The WHERE clause starting on line 6 is extracted unchanged from
the originating BDPL query in Listing 6.1.

4. The variables in the projection on line 5 are only those variables
shared by this historic query with the rest (i.e. “the outside”) of the

7.2. Event Processing 83

BDPL query. It is the task of our code generator to create this set of
variables for each historic query when decomposing BDPL.

5. The variables in VALUES on line 13 are only those variables (i) shared
with the rest of the query and (ii) having previous bindings from
the real-time part. It is the task of our event processing system to
populate this set of values at runtime when the real-time part of the
query returns results before the historic query is dispatched to its
backend.

The query is subsequently dispatched to the corresponding storage back-
end which holds the archived stream, i.e. partition, TwitterFeed as ex-
pressed on line 10.

The query may hold more than one GRAPH clause if the originating
BDPL query has more than one historic parts matching the TwitterFeed.
Also, more than one separate historic query may be generated, if there are
historic parts matching other streams archived at other backends.

If more than one result set is returned from the storage backends, a final
join must be executed for any shared variable. Thus, our system further
optimises the join performance by planning the join order for the final
join. After counting the size of the intermediate results these results are
joined with each other in ascending order from smallest to largest.

Figure 7.4 continues the diagram from the previous figure. Here, the
transmission of variable bindings is depicted in the column on the left.
The final join for all variables is depicted at centre and top right of the
figure.

The bottom right of Figure 7.4 shows how the final values are filled in the
CONSTRUCT template to create the derived event. The values accurately
fulfil all predicates of the overall query while the query was fulfilled
across one or more storage systems and our event processing system in a
federated manner. Full triples, i.e. valid RDF, results filling the template.

Algorithm 1 summarises the steps taken to fulfil a hybrid query with both
its real-time and its historic parts. The life-cycle defined in the algorithm
starts by registering the query and ends by unregistering it. First, a new
BDPL query is received from a user (on line 1). Subsequently, the query is

84 7. An Infrastructure for Events

Var1: a,b,c
Var2: c,d

Var1: c
Var3: x,y

Var1: c
Var2: c,d
Var3: x,y Real-time

Results

Historic
Results

Joined
Results:

Derived Event

Figure 7.4.: Query Decomposition, Part 2: Join of the Results

decomposed into its real-time part and historic parts. The real-time part is
extracted and cross-compiled into the language for ETALIS. The historic
parts are extracted as SPARQL. Then the real-time part is registered with
ETALIS (on line 4). From that time onwards the system is listening for
events. The execution is blocked (on line 6) until events are detected.
When new events are detected by ETALIS fulfilling the real-time part, the
system starts collecting the historic parts of the query (starting on line 7)
from the distributed backends. Querying historic data from backends (in
the loop on line 8 ff.) is conducted in parallel. After that the results are
sorted (on line 10) to optimise the following join. The nested-loop join (on
line 11 ff.) finds a valid result satisfying all parts of the query or returns
empty. If the join is non-empty (on line 13) then the combined results
satisfy the overall query. The results are then used to derive the desired
event (on line 14) according to the CONSTRUCT template in the query.
Finally, the derived event is published. It can be received by subscribers
and can match further queries. The algorithm is repeated (from line 5)
and waits (i.e. is blocked) until new events arrive (on line 6). The loop,
however, terminates if the query is unregistered by the user.

7.3. Access Control 85

Algorithm 1 Query Execution for Hybrid Queries
1: 𝑞𝑢𝑒𝑟𝑦 ← new query
2: 𝑟𝑡𝑄𝑢𝑒𝑟𝑦 ← getRealTimePart(𝑞𝑢𝑒𝑟𝑦)
3: ℎ𝑖𝑠𝑡𝑄𝑢𝑒𝑟𝑖𝑒𝑠[]← getHistoricParts(𝑞𝑢𝑒𝑟𝑦)
4: registerRealtimeQuery(𝑟𝑡𝑄𝑢𝑒𝑟𝑦) ◁ Start detecting events

5: while isRegisteredRealtimeQuery(𝑟𝑡𝑄𝑢𝑒𝑟𝑦) do
6: 𝑟𝑟 ← new real-time result ◁ Event(s) detected
7: ℎ𝑟[]← empty array for historic results
8: for all ℎ𝑖𝑠𝑡𝑄𝑢𝑒𝑟𝑦 in ℎ𝑖𝑠𝑡𝑄𝑢𝑒𝑟𝑖𝑒𝑠[] do
9: ℎ𝑟[]←← append issueHistoricQuery(ℎ𝑖𝑠𝑡𝑄𝑢𝑒𝑟𝑦)

10: ℎ𝑟[]← orderBySize(ℎ𝑟[], 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔)
11: for all ℎ𝑟 in ℎ𝑟[] do
12: 𝑟𝑟 ← 𝑟𝑟 ◁▷ ℎ𝑟

13: if 𝑟𝑟 ̸= ∅ then
14: 𝑟𝑒𝑠𝑢𝑙𝑡← createDerivedEvent(𝑞𝑢𝑒𝑟𝑦, 𝑟𝑟)
15: publishEvent(𝑟𝑒𝑠𝑢𝑙𝑡) ◁ Fire new event and repeat

This concludes the description of executing hybrid queries in our distri-
buted system DCEP. The following section addresses the non-functional
concern of permissions, e.g. who can subscribe to events and register
queries for events.

7.3. Access Control

Our system has the requirement for multitenancy (cf. Requirement R17:
Multitenancy). As such there is a need for privacy. Foremost, there is a
need for annotating privacy on data (i.e. streams) such that users can
define access to their real-time and historic information transmitted and
stored in our system.

A further requirement for our system is to support open and extensible
standards (Requirement R13: Open Standards). User management and

86 7. An Infrastructure for Events

access control are based on RDF. Therefore, the model of administrative
information integrates seamlessly and in a standards-based way with the
model for streams and events.

Data in our system is organised in streams (cf. topic-based publish/sub-
scribe in Section 3.5). Attributing access control on a per-stream granu-
larity was chosen. Finer granularity such as per-event attribution was
discarded. The expected performance impact at runtime was thought to
be unnecessarily high when having to check each event for each of its
recipients before delivery. None of the scenarios required this granularity.
Coarser granularity such as granting access to all streams at once, however,
was contradicting Requirement R17: Multitenancy forfeiting the ability to
separate users.

After analysing existing RDF models for access control (cf. Section 4.5) we
concluded that W3C WebAccessControl was the most viable candidate of the
three available candidates S4AC [Villata et al. 2011], SIOC Access [Berrueta
2010] and the W3C WebAccessControl [Berners-Lee 2009]. Reasons were
its traction on the Web, its generality, and its ease of use7 compared to the
other candidates.

acl: <http://www.w3.org/ns/auth/acl#>
foaf: <http://xmlns.com/foaf/0.1/>
sioc: <http://rdfs.org/sioc/ns#>
wsnt: <http://docs.oasis-open.org/wsn/b-2/>

sioc:Usergroup sioc:UserAccount

foaf:Agent

owl:sameAssioc:has_member

acl:Authorizati
on

acl:agent

:Stream

acl:accessTo

acl:Access

acl:Read acl:Write

acl:mode

wsnt:Subscribewsnt:Notify

Access Control

Figure 7.5.: Access Control Lists using the W3C WebAccessControl Vocabulary
(Class Diagram)

7linking permissions with plain RDF resources instead of complex SPARQL queries

7.3. Access Control 87

Figure 7.5 shows the concepts of WebAccessControl (WAC). The bottom
of the figure shows that a single permission (Authorization in WAC
terms) is a ternary relation. It consists of an agent (who can access), an
information resource (what) and a mode (how), cf. middle row of the figure.
An example ternary relation is: Roland can access the TwitterFeed with
permissions Subscribe and Read. The top left of the figure shows an agent
can be either a group or an individual user’s account: User accounts can
be members in groups. If accounts are defined in several locations, they
can be declared to be the same, thus granting permissions to them all at
once.

In Figure 7.5 the concepts from the WAC vocabulary are highlighted in blue
colour. WAC has predefined access rights Read and Write for static data, cf.
top right of the figure. For the use with real-time data we extended WAC
with the rights Notify and Subscribe. The classes on white background
in the figure are defined as part of this work. Finally, the classes in yellow
are from the SIOC vocabulary.

1 @prefix acl: <http :// www.w3.org/ns/auth/acl#> .
2 @prefix foaf: <http :// xmlns .com/foaf /0.1/ > .
3 @prefix group : <http :// groups .event - processing .org/id/> .
4 @prefix permission : <http :// permissions .event - processing .org/id/> .
5 @prefix person : <http :// www.roland - stuehmer .de/ profile #> .
6 @prefix s: <http :// streams .event - processing .org/ids/> .
7 @prefix sioc: <http :// rdfs.org/sioc/ns#> .
8 @prefix wsnt: <http :// docs.oasis -open.org/wsn/b -2/ > .
9

10 permission : p0001
11 acl: accessTo s: TwitterFeed ;
12 acl: agent person :rs ;
13 acl:mode wsnt: Subscribe , acl:Read .
14
15 permission : p0002
16 acl: accessTo s: FacebookStatusFeed ;
17 acl: agent group : administrators ;
18 acl:mode acl: Write .
19
20 person :rs
21 sioc: member_of group : administrators ;
22 owl: sameAs <http :// data. semanticweb .org/ person /roland -stuehmer > .

Listing 7.2: Permissions Example (Turtle Syntax)

88 7. An Infrastructure for Events

Listing 7.2 shows two example authorizations p0001 and p0002 in the
namespace permission starting on line 10 and 15. A user person:rs
who is member of the group group:administrators is shown starting
on line 20. Both permissions exhibit the ternary relation between who,
what and how access is granted. The first permission states that Roland
(rs) can access the TwitterFeed with permissions Subscribe and Read.
The second permission states that group:administrators can access the
FacebookStatusFeed with permission Write.

When defining permissions, the streams are modelled as information
resources (e.g. http://.../TwitterFeed on line 11 without the trailing
#stream). Elsewhere, streams are modelled with their non-information
resource (e.g. http://.../TwitterFeed#stream). Making this distinc-
tion8 we can attribute different metadata to the information for the stream
(e.g. annotate permissions) and to the real-world stream (e.g. annotate its
real-world event source or author).

RDF permissions like in Listing 7.2 are used in the access control module9

of our system. The module checks whether to allow or deny access for the
three parameters agent, resource and permission (who, what and how).
To that end the module uses OWL reasoning and SPARQL Ask queries to
arrive at its conclusion true (allow) or false (deny). By default we deny
access if no known permissions are found.

OWL reasoning is employed as a preprocessing step before querying.
We use OWL to infer relationships making use of transitive, inverse and
symmetric properties of existing relationships between agents, resources
and permissions. Doing so we can successfully grant access to (i) users
who are in a group of a group which has access (transitive property
sioc:member_of), (ii) users who have a group which lists them as member
unilaterally (inverse properties sioc:member_of↔ sioc:has_member) or
(iii) users who have an equivalent user ID which has access (symmetric
property owl:sameAs). For the relationships see Figure 7.5.

8See also our similar discussion for event URIs and the so-called httpRange-14 issue in
Section 5.3

9PLAY Commons library including play-commons-accesscontrol: https://github.com/
play-project/play-commons/

https://github.com/play-project/play-commons/
https://github.com/play-project/play-commons/

7.3. Access Control 89

A SPARQL Ask query is a Boolean type of query returning true if there
are matching data in the dataset and false otherwise. We pose three dis-
junctive queries to arrive at the final conclusion (cf. line 5 of Algorithm 2)
according to the WAC standard. First, we check if the supplied agent
has direct access to a stream resource (line 6). Secondly, we check if the
supplied agent has access via a group membership (line 8) and finally,
we check whether the supplied agent has access via one of its RDF classes
(line 10), which might be allowed to access. If none of the queries finds any
matching permissions (all queries return false) we deny access, otherwise
we allow access.

Algorithm 2 Evaluating Access Control
1: 𝑎← agentUri ◁ (who)
2: 𝑟 ← resourceUri ◁ (what)
3: 𝑝← permissionUri ◁ (how)
4: function check(𝑎, 𝑟, 𝑝)
5: return checkDirectPermission(𝑎, 𝑟, 𝑝) ||

checkViaGroupMembership(𝑎, 𝑟, 𝑝) ||
checkViaAgentClass(𝑎, 𝑟, 𝑝)

6: function checkDirectPermission(𝑎, 𝑟, 𝑝)
7: return sparql(

ASK WHERE {
[acl:agent 𝑎 ; acl:accessTo 𝑟 ; acl:mode 𝑝] })

8: function checkViaGroupMembership(𝑎, 𝑟, 𝑝)
9: return sparql(

ASK WHERE {
𝑎 sioc:member_of ?group .
[acl:agent ?group ; acl:accessTo 𝑟 ; acl:mode 𝑝] })

10: function checkViaAgentClass(𝑎, 𝑟, 𝑝)
11: return sparql(

ASK WHERE {
𝑎 rdf:type ?class .
[acl:agentClass ?class ; acl:accessTo 𝑟 ; acl:mode 𝑝] })

90 7. An Infrastructure for Events

7.4. RESTful Services

The external interfaces of DCEP (cf. Section 7.2) are exposed as RESTful
services. This is implemented in addition to the protocols WS-Notification
and ProActive mentioned above. While the SOAP standard WS-Notification
serves as a standardised protocol for publish/subscribe, the RESTful ser-
vices described hereafter satisfy our requirements for exposing derefer-
enceable URIs (i.e. direct links) for things such as event patterns. Moreover,
conventions in best practises of RESTful service design ease the rapid cre-
ation of client software such as the user interface described below to view,
create, update and delete event patterns.

As mentioned in Section 3.3, REST relies on the limited set of “verbs” from
HTTP 1.1 to describe actions which can be performed on URLs. Examples
are get, put, delete and post. To manage event patterns in our system the
DcepManagementApi exposes RESTful service URLs. The URLs and their
supported verbs are listed in Table 7.1.

Table 7.1.: RESTful Services

URL Verb Description

/patterns GET fetch all entities
/patterns POST create entity

/patterns/id GET fetch entity
/patterns/id PUT modify entity
/patterns/id DELETE delete entity

The table shows how the service is designed to expose two kinds of URLs.
The /patterns URL is a so-called collection URL. Interactions with it
concern the entire collection of entities managed by the service. Individual
entities in the collection are addressed by their so-called entity URLs. They
are subordinate URLs according to their path template: /patterns/id.

All URLs represent resources uniquely. However, each unique resource
such as an event pattern at /patterns/1234 can be retrieved from the

7.4. RESTful Services 91

same endpoint in different syntactical variations. This is achieved through
HTTP content negotiation10. A Web client can tell the Web server in the
Accept: header which content type he/she prefers. Using this mechanism
our system serves entities in several available content types. Supported
types are JavaScript Object Notation (JSON), XML and plain text. Coining
unique URIs supporting content negotiation for variants is addressing
Requirement R8: Linked Data Principles for Publishing.

Figure 7.6.: RESTful Client using standardised JavaScript tooling

We created a graphical user interface to manage event patterns. It enables
humans to interact with the RESTful DcepManagementApi. The entities

10HTTP 1.1 Content Negotiation: [Fielding et al. 1999, Section 12]

92 7. An Infrastructure for Events

under management by our API are laid out according to clear conventions
of RESTful service design as shown above. Therefore, generic management
tools can be used. We employed Backbone.js11 to create, update and delete
entities in our service. Based on the exposed URL structure and JSON
models, Backbone.js can be used to easily create user interfaces interacting
with the collection and with individual entities.

Figure 7.6 shows the user interface based on Backbone.js. The view shows
a list of entities, i.e. event patterns, currently in our system. The list was
automatically generated by Backbone.js querying the collection URL of our
REST API. Individual entities in the collection can be expanded to show
the content of each entity in BDPL. The user interface can interact with
the individual entity URLs via the “Delete” buttons in red. Furthermore,
the interface can interact with the collection URL using the “New” button
in green to create new entities in the collection of event patterns.

In conclusion, to satisfy Requirement R8: Linked Data Principles for Publishing
we coined RESTful URLs for our management APIs to get unique, direct
links to entities such as event patterns. Moreover, using REST conventions
such as the predefined verbs, URL collection design and HTTP content
negotiation we were able to create a standards-based user interface to
interact with the API in a graphical way.

7.5. Linked Data Streaming

The Linked Data principles were introduced in Section 3.1 as four guide-
lines to model and publish data on the Web. In this thesis the principles
are used to identify context for events as well as to provide a publishing
paradigm. Context is described above in Section 5.3 modelling events and
in Section 7.4 exposing related URIs, e.g. for event patterns in our plat-
form. Publishing events according to Linked Data guidelines is discussed
hereafter.
11Backbone.js: http://backbonejs.org/

http://backbonejs.org/

7.5. Linked Data Streaming 93

Linked Data is described and implemented for static data in RDF but not
for streaming data. Streaming data could also profit from the principles
and the principles apply just as well.

Therefore, in this section we describe the design and implementation
of our Linked Data streaming adapter. It is comprised of a Web server
component which supports the streaming of RDF events in real-time.
For this adapter, we designed an RDF streaming API to adapt the four
Linked Data principles to real-time applications. Since our event format
is built in RDF, the data modelling language fits seamlessly with the data
dissemination. In analogy to the principles for static data [Berners-Lee
2006], the adapter follows these rules:

1. Use URIs to identify streams.
2. Use HTTP URIs so that these streams can be referred to and looked

up by people and user agents.
3. When its URI is dereferenced, provide real-time events from the

stream using standard formats such as RDF.
4. Include links to other, related URIs in the exposed stream to improve

discovery of other related information on the Web.

Streams are potentially unbounded sequences of events. Thus, when ac-
cessing a stream URL the stream cannot be downloaded in one piece. To
support the transmission of unbounded streams we use persistent connec-
tions from HTTP 1.1 [Fielding et al. 1999, Section 8.1]. The connections are
kept alive and transmitting new events until the connections are closed
explicitly.

Moreover, events occur spontaneously, thus, streams can exist which do
not contain events at a constant rate. Therefore, we support the trans-
mission of events at the discretion of the sender, i.e. whenever the event
occurs. To that end we combine the persistent connections with chunked
transfer encoding from HTTP 1.1 [Fielding et al. 1999, Section 3.6.1].

Chunked transfer encoding enables a Web server to start the transmission
of content in chunks without knowing the final number and combined
size of chunks. This knowledge is otherwise required for HTTP responses.

94 7. An Infrastructure for Events

Instead, the server can transmit the data as a series of chunks, specifying
only the size of each chunk as it is sent.

Another feature of streams is punctuation. “A punctuation is a pattern 𝑝 in-
serted into the data stream with the meaning that no data item 𝑖 matching
𝑝 will occur further on in the stream” [Maier et al. 2005]. Punctuation pro-
vides guarantees to downstream components to make strong assumptions
about what data has been received.

For event processing systems, events are the fundamental unit of informa-
tion [Gupta and Jain 2011]. This means each event is processed atomically,
i.e. completely or not at all. For RDF stream processing systems this
can cause problems if events are modelled as graphs consisting of mul-
tiple quadruples: A receiver of an event must know with certainty that
all quadruples pertaining to the event are transmitted in order to start
processing the event.

In our system events are modelled as RDF graphs. Subsequently, graphs
consist of RDF quadruples. Hence, for streams of RDF graphs punctuation
can be re-interpreted as follows: A punctuation is a pattern 𝑝 inserted into
the quadruple stream with the meaning that no quadruples 𝑖 from graph
𝑝 will occur further on in the stream. This guarantee can be used by a
downstream component to know that an event has been received in its
entirety. The event can then be processed further in an atomic fashion.

Punctuation can be implemented using special (“magic”) quadruples in-
terweaved in the stream. However, since our system relies on the protocol
stack of the Web, punctuation can be provided out-of-band, i.e. imple-
mented on a lower layer of the stack. Thus, the RDF layer on top of our
stack is not polluted with “magic” tokens. Rather, the underlying HTTP
layer can support punctuation by means of chunked transfer encoding dis-
cussed previously. Each chunk is used to transfer exactly all quadruples
of an event. The receipt of the chunk then indicates that an event is fully
transferred or in other words guaranteeing that no quadruples from the
event will arrive later.

Using the mechanism of chunked transfer encoding we created a server
component (Linked Data streaming adapter) which keeps a connection

7.5. Linked Data Streaming 95

alive when requested by a client. Whenever an event occurs in the server,
a new chunk (with a known chunk size) is sent to the client and the
connection is kept open. The combined chunk size of the unbounded
stream needs not to be known, however, thus facilitating unbounded
streaming of data using standard HTTP.

Using HTTP, our server can expose stream URIs and answer requests by
sending events in real-time when they occur. Accessing a stream URI is not
like a regular HTTP download of static, finite data but like a subscription to
the stream. The subscription is started by accessing the URI for the desired
stream. Then events are received by the client. The subscription can be
ended by the client or the server terminating the persistent connection.

The advantage of the approach is that it is implemented using plain HTTP.
No further client-side logic is required as in JavaScript-based approaches
such as AJAX [Garrett 2005] and Comet [Russell 2006]. Thus, events are
published in accordance with Linked Data principles addressing the rules
mentioned above and fulfilling Requirement R8: Linked Data Principles for
Publishing.

The adapter is integrated with our platform by connecting to the service
bus (cf. Section 7.1). The address of the adapter is http://streams.event-
processing.org to be able to resolve stream URIs used throughout this work.
A stream URI like http://streams.event-processing.org/ids/TwitterFeed
can now be directly dereferenced and the adapter is invoked.

When the adapter is invoked it replies with chunks of HTTP data, each
chunk holding one event. The formatting of events can be controlled using
HTTP content negotiation [Fielding et al. 1999, Section 12] as described
above in Section 7.4. Content negotiation enables a client to specify which
syntax of RDF is preferred using the Accept: header.

In conclusion, Linked Data is used in our work (i) as static context for
events and (ii) as a means for publishing events dynamically in real-time:

• Context for events:
– Additional information, e.g. everything in the Wikipedia such

as people and place names
– Structure for events, e.g. for geo data, coordinates

http://streams.event-processing.org
http://streams.event-processing.org
http://streams.event-processing.org/ids/TwitterFeed

96 7. An Infrastructure for Events

• Publishing of events:
– HTTP URIs for historic events by ID
– HTTP URIs for event streams by stream ID

The Linked Data streaming adapter is an output adapter, meaning it can be
used by clients to obtain events from our platform. Events can be selected
by stream. If a client knows a stream ID (e.g. from a historic event or
from the WebApp catalogue of streams, cf. Section 7.7), the client can get a
real-time feed of all current events in this stream using no other technology
than plain HTTP and RDF.

The purpose of the Linked Data streaming adapter is to advance the
principles of Linked Data towards real-time Linked Data.

7.6. Event Adapters

Not all events in our system were provided by the scenarios described
in Section 2.7. To enable more diverse use cases and to alleviate a cold
start of our system we add further real-time data sources. To that end
we implemented several input adapters for well-known streaming data
sources on the Web to be used by the scenarios.

Adding these existing sources of push-data addresses our Requirement
R6: Push-data on the Web. We provide adapters for events from the Social
Web as well as the Internet of Things (IoT) to demonstrate the diversity in
existing data and the applicability of RDF to both fields.

Social Web sites such as Facebook and Twitter host a large amount of
user-contributed material for a wide variety of events happening in the
real-world. Events from Xively12 further extend this range of events by
adding real-time data from devices around the world which people are
sharing.

Namely, these data sources include: (i) A Facebook app which a user can
allow to notify all Facebook Wall updates as RDF events. (2) A Xively
12Xively, a Web portal to connect sensor data: http://xively.com/ previously known as

Cosm and before that as Pachube

http://xively.com/

7.6. Event Adapters 97

adapter which can subscribe to sensor readings and similar events from
the IoT and can flexibly be transformed into RDF events. (3) A Twitter
adapter which uses the Twitter API to receive tweets and convert them to
RDF events.

The Facebook adapter. It consists of three modules. First, subscribing
and retrieving the information from Facebook. Second, transforming
this information to RDF events. Third, using WS-Notification publish/
subscribe to deliver the events.

A Tomcat servlet is created for retrieving information and creating events.
This application registers with Facebook to receive events in real-time.
Whenever authenticated Facebook users post something on their Face-
book Wall, a Facebook real-time notification is sent to our servlet using
WebHooks. A WebHook is an HTTP callback: an HTTP POST request
that occurs when something happens. The servlet then fetches the neces-
sary data which is not part of the Facebook notification such as the user’s
location and the full message content. After that, the data is transformed
into RDF events. Those events are sent to the service bus of our system
for use in the platform.

Listing 5.1 on page 50 shows an example event from the Facebook adapter.
The listing demonstrates the use of all attributes currently in the schema.
Some attributes are in the default namespace of our system (e.g. :status),
some are in the namespace user: [Weaver and Tarjan 2012] defined by
the Facebook Graph API (e.g. user:id).

The Xively adapter. It has the purpose of subscribing to sensor readings
and similar events from the IoT. Using the adapter, such events can be
transformed into RDF events.

To connect Xively to the our system we implement another Java servlet.
It is exposed to the Web in order for Xively to invoke it whenever there
is new data using WebHooks. When the servlet is invoked, it parses
the data received from Xively, converts it to RDF and creates an event
instance using an event class from our SDK (cf. Section 5.4) specific to

98 7. An Infrastructure for Events

Xively events. The data from Xively arrives as non-semantic JSON data.
We lift the data to meaningful RDF from the structured JSON data in
two consecutive steps according to [Norton and Krummenacher 2010].
The lifting is implemented as a SPARQL CONTRUCT query. First, JSON
is converted to “naive” RDF by replicating only the structure, not the
semantics. Then, CONSTRUCT queries are used like an RDF to RDF
transformation. Meaningful RDF properties from well-known schemas
can thereby be introduced in the event to increase interoperability between
event producers and consumers. These properties replace the merely
structural ones. This is done in order to make the results more usable as
semantic events.

The Twitter adapter. It uses the Twitter API13 to receive tweets and
convert them to RDF events. To connect to the Twitter API we have im-
plemented another dedicated Java servlet. It makes heavy use of the
Twitter4J14 library, a Java library for the Twitter API. The Twitter API “al-
lows high-throughput near real-time access to various subsets of public
and protected Twitter data”. Public tweets are available from all users,
filtered in various ways: By user id, by keyword, by random sampling
and/or by geographic location.

Listing 7.3 shows an example Twitter event displaying properties from
our schema. As a best practice in ontology design we not only define our
own schema but re-use existing schemas to increase interoperability with
other software and increase semantic understanding of our data. This
addresses our Requirement R5: Ontology re-use. Thus, our schema uses
event properties from the namespace sioc: in the SIOC ontology15 on
line 21 to describe user generated content on the Web 2.0. Moreover, we
reuse properties from the W3C Basic Geo Vocabulary16 in the namespace
geo: on lines 18 and 19 to describe the location in a standardised way.

13Twitter API: https://dev.twitter.com/
14Twitter4J, Java library for the Twitter API: http://twitter4j.org/
15SIOC Core Ontology Specification: http://sioc-project.org/ontology
16Basic Geo (WGS84 lat/long) Vocabulary: http://www.w3.org/2003/01/geo/

https://dev.twitter.com/
http://twitter4j.org/
http://sioc-project.org/ontology
http://www.w3.org/2003/01/geo/

7.7. Web Application 99

1 @prefix : <http :// events .event - processing .org/ types /> .
2 @prefix e: <http :// events .event - processing .org/ids/> .
3 @prefix geo: <http :// www.w3.org /2003/01/ geo/ wgs84_pos #> .
4 @prefix sioc: <http :// rdfs.org/sioc/ns#> .
5 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema #> .
6
7 e: twitter39043305504377175 {
8 <http :// events .event - processing .org/ids/ twitter39043305504377175 #

event >
9 a : TwitterEvent ;

10 : endTime "2011 -06 -02 T15 :06:45.000 Z"^^ xsd: dateTime ;
11 : followersCount "10"^^ xsd:int ;
12 : friendsCount "1"^^ xsd:int ;
13 : isRetweet " false "^^ xsd: boolean ;
14 : screenName " softamo " ;
15 : stream <http :// streams ... org/ids/ TwitterFeed #stream > ;
16 : twitterName " Sergio del Amo" ;
17 : location [
18 geo:lat " 43.616231774652796 "^^ xsd: double ;
19 geo:long " 7.053824782139356 "^^ xsd: double
20] ;
21 sioc: content " Animate a participar en el programa @wayra de

Telefonica y consigue apoyo integral para tu proyecto http ://
bit.ly/ k84qgN # iniciador " .

22 }

Listing 7.3: Example of a Twitter Event (TriG Syntax)

7.7. Web Application

Events are often consumed by specialised, domain specific programmes.
However, in some cases there is the need to view all raw events as-is, in an
ad-hoc fashion. This is true, e.g. for developers debugging event streams
or for end users discovering available event streams. In such cases events
must be viewed but not fully interpreted by machines.

We developed a Web application, called the WebApp17. It enables users
to browse streams, view RDF events in real-time and browse historic
events.

The WebApp demonstrates our notion of an event marketplace. It is a sys-
tem where producers of events make their events known and consumers
17WebApp Source Code: https://github.com/play-project/WebApp

https://github.com/play-project/WebApp

100 7. An Infrastructure for Events

look for available events (cf. Section 2.6). Events can be searched based
on static information (i.e. stream metadata) and can be viewed based on
their dynamic content (i.e. event payloads).

Figure 7.7.: Web Application: Event Marketplace View

Figure 7.7 shows a screenshot of the main page of our WebApp. Static
stream data can be seen in the left column. Subscribed streams can be
seen in the centre column. Dynamic event content can be seen in the right
column.

The left column shows static stream metadata. The metadata is modelled
by stream providers in RDF. The schema for streams contains a human-
readable and internationalised title, long description, a stream icon and
the unique stream URL. The schema was presented as part of our RDF
model in Section 5.3. The textual metadata can be searched using the box
at the top of the left column in the figure.

The centre column shows the subscribed streams. To view dynamic event
data in the WebApp a stream must be subscribed. This happens when

7.8. Discussion 101

clicking on the “Sub” link of a stream in the left column, thus moving the
stream into the centre column, subscribing to it.

The rightmost column shows the dynamic content of the subscribed
streams. The displayed events are shown for all subscribed streams or for
just one stream depending on what is selected in the centre column. Events
are displayed in a mostly raw format. No domain-specific schemas are
employed by the WebApp to render events; however, the generic schema
from our model is used: the event type is rendered as headline, and the
event icon URI is used to find and display icons in the right column.

To show events in real-time efficiently the WebApp is implemented using
dynamic JavaScript technology. Thus, events can be notified by our Web
server to the Web clients immediately when the events occur. The WebApp
is connected to the service bus of our platform (cf. Section 7.1) to receive
events. To minimise network bandwidth the WebApp subscribes to each
stream only once even if several clients subscribe to the same stream.
Events of each stream are then demultiplexed by the WebApp for each
client. The WebApp only unsubscribes from a stream with the service bus
when the last client has unsubscribed from the stream.

In conclusion, the search functionality in the WebApp enables users to
search for interesting streams based on keywords in the textual metadata.
Streams can be found and sampled in real-time using the WebApp.

7.8. Discussion

Table 7.2 summarises the coverage of requirements from Chapter 2 by the
design decisions made above. The table distinguishes only three main
design decisions for the sake of simplicity. The first is the subsumption of
all decisions which influence the DCEP Component (third column from
the right). The second design decision subsumes the decisions made for
the WebApp component (second column from the right). The third design
decision depicted in the table subsumes all design decisions taken for the
event Adapters and SDKs (rightmost column).

102 7. An Infrastructure for Events

Table 7.2.: Overview of Requirements for the Infrastructure

Fulfilled by

Requirement DC
EP

Co
m

po
ne

nt
W

eb
Ap

p

Ad
ap

te
rs

, S
DK

R1: Events are first-class objects X X
R6: Push-data on the Web X
R8: Linked Data Principles for Publishing X
R10: Hybrid Querying X
R12: Infrastructure X X X
R13: Open Standards X
R14: Event-driven X
R15: Adaptivity X
R16: Event Metadata X
R17: Multitenancy X
R20: Support for Programmers X X

Table 7.2 can be understood line by line: The requirement Events are first-
class objects is fulfilled by our design of the DCEP component as well
as the adapters which produce atomic, first-class event objects for every
update they detect. Push-data on the Web can be consumed in our infras-
tructure thanks to the respective event adapters. Linked Data Principles
for Publishing are employed by the Linked Data streaming adapter de-
scribed above. Hybrid Querying is made possible by the DCEP component
whereas Infrastructure is generally provided by all three components. Open
Standards are introduced mainly by the DCEP component but also used
elsewhere in the WebApp and Adapters to a lesser degree. The require-
ment of being Event-driven is again mainly fulfilled by the design of DCEP.
The same holds true for Adaptivity which enables users to register and

7.8. Discussion 103

unregister event queries at any time and introduce new schemas in event
bodies at any time. Event Metadata for event streams is made searchable
by the WebApp component, thus fulfilling this requirement. Multitenancy
is supported by DCEP with the ability of enforcing access control through
governance. Support for Programmers, finally, is provided by the SDK to
help programming RDF in Java.

8
Evaluation

In this chapter we evaluate the artefacts produced as part of this work.
Firstly, the fulfilment of all requirements is verified. Secondly, a popular
event processing scenario is implemented using our approach to validate
the necessary expressiveness. Then, the overall cost of the Web-based
approach is determined compared to a non-Web-based solution. After
that, qualitative comparisons are made with the State of the Art followed by
a quantitative performance analysis of the overall infrastructure through
stress tests.

8.1. Fulfilment of Requirements

As the first part of our evaluation we recapitulate all requirements from
Chapter 2 and track if and how they are fulfilled. Table 8.1 summarises the

106 8. Evaluation

coverage of all requirements by the combined design decisions made for
our main contributions in Chapters 5 to 7. The fulfilment of requirements
was discussed above for each contribution separately. This table is the
combined conclusion.

Table 8.1.: Overview of all Requirements for this Work

Requirement Fulfilled by

R1: Events are first-class
objects

The design of class Event in our model en-
ables standalone instances for events (Sec-
tion 5.3)

R2: Time properties The definition of time properties in our
model (Section 5.3)

R3: Type hierarchy Use of RDFS to enable hierarchies and our
own classes implementing a hierarchy (Sec-
tion 5.3)

R4: Inter-event
relationships

Link properties like :member in our model
(Section 5.3) to reference related events on
an instance level

R5: Ontology re-use Schemas like DOLCE, W3C Geo, SSN, Web-
AccessControl re-used by our model and
infrastructure (Section 5.5.1)

R6: Push-data on the Web Adapters for existing real-time data, e.g. for
Xively (Section 7.6)

R7: Linked Data
Principles for Modelling

Link properties like :stream in our model
to reference and locate further data (Sec-
tion 5.3)

R8: Linked Data
Principles for Publishing

Linked Data streaming adapter to serve real-
time data when dereferencing a stream URI
(Section 7.5)

R9: Support for the data
model

Use of SPARQL as a starting point for our
language (Chapter 6)

Continued on next page

8.1. Fulfilment of Requirements 107

Requirement Fulfilled by

Continued from last page

R10: Hybrid Querying Our extensions to SPARQL (Section 6.3) and
our federated execution (Section 7.2.3)

R11: Temporal Operators Our extensions to SPARQL (Section 6.3)
R12: Infrastructure All components: DCEP (Section 7.2), We-

bApp (Section 7.7), Adapters (Section 7.6)
R13: Open Standards Use of RDF and RDFS (Section 3.1), exten-

sion of SPARQL (Section 6.3), REST services
(Section 7.4), WS-Notification (Section 7.1.2)

R14: Event-driven Our extensions to SPARQL (Section 6.3) and
our implementation of the DCEP event pro-
cessing engine (Section 7.2)

R15: Adaptivity Adding and removing patterns at run time
(Section 7.2), flexibility of RDFS at design
time (Section 3.1)

R16: Event Metadata Use of RDF to define metadata (Section 5.3)
and WebApp to search metadata (Sec-
tion 7.7)

R17: Multitenancy Definition and enforcement of access con-
trol (Section 7.3)

R18: Query Expressivity Use of SPARQL and our extensions (Sec-
tion 2.7)

R19: Mobility Property :location in our model (Sec-
tion 5.3)

R20: Support for
Programmers

SDK (Section 5.4), predefined and abstract
event adapter implementations (Section 7.6)

In conclusion, Table 8.1 shows that each requirement from Chapter 2 is
fulfilled by at least one design decision made for this work.

108 8. Evaluation

8.2. Efficiency of the Approach

As the next step of the evaluation we examine the issue of the computa-
tional cost incurred by RDF event processing. To that end we compare
our work with a non-RDF event processing system as the baseline.

As part of our system we developed a native RDF event processor. That
means RDF events are understood as-is, without transformation. This
has the benefit of preserving all semantics of RDF throughout our system.
We want to evaluate the performance cost of that. Our event processor is
implemented using the underlying event processor ETALIS. We re-use its
temporal event operators but we add RDF capabilities1.

To measure the runtime cost of our additions to the basic ETALIS system
we ran similar experiments on both systems and compared the throughput
of both cases. We created two similar event patterns, one in BDPL and
one in ETALIS Language for Events (ELE), the native language of ETALIS.
Each pattern matched and consumed every single event of a given type,
i.e. the garbage collection was fully tested. The defined pattern in each
language was designed for each simulated simple event (input) to create
one complex event (output). We then compared the output rates for each
approach. The simple events were created at the highest possible speed of
each experiment so that the Java buffers were always full. One hundred
thousand simple events of the same type were created during the course
of each part of the experiment.

The experimental setup used a Core Duo 2.0 GHz with 3 GB RAM running
Windows7 32bit, SWI Prolog 5.10.5, Java 1.6 and a Java heap size of 256 MB.
The experiments ran locally on the machine, eliminating the influence of
networking as part of the setup.

Figure 8.1 shows the results. On the x-axis are all simulated events from
the first one on the left of the figure to the 100,000th on the right. The
y-axis shows the frequency of complex events created per second. As
mentioned before, for each simple event exactly one complex event is

1Please note that there was one previous, independent approach to adding RDF to ETALIS
called EP-SPARQL. We do not build on top of EP-SPARQL because of its simpler event
model. Cf. the discussion in Section 4.6.

8.2. Efficiency of the Approach 109

Figure 8.1.: Efficiency of the Approach (Throughput of BDPL compared with
non-RDF ETALIS)

produced. This incurs a delay which is measured. The two curves describe
the experiments, BDPL with RDF support and plain ETALIS rules without
RDF support. Both curves are nearly constant showing that both engines
do proper garbage collection so that consumed events do not slow down
the engines over time during the course of the experiment. Throughout
the experiment the performance of BDPL is about ten times lower than
that of the plain event processing engine, i.e. one can conclude that the
cost of RDF event processing for the current state of the implementation
is about one order of magnitude higher than for event processing without
RDF.

This cost is incurred for the expressiveness of RDF, its self-descriptiveness,
the extensibility and distributed ownership of schemas and the possibility
of exploiting Web data in events. Technically, RDF events are much more

110 8. Evaluation

verbose than events for plain ETALIS. An ETALIS event looks like the fol-
lowing example, event(myEvent(’Hello World’, 5.1, 5), datime(Y,
M,D,H,Min,S)) where myEvent is the event type followed by zero or more
unnamed properties of simple Prolog data types (in this case string, deci-
mal and integer) and followed by one or two timestamps (in this case one
timestamp for point-based events).

RDF events on the other hand (cf. example in Listing 5.1 on page 50) have
several features which increase the verbosity (i.e. the size and parsing
effort) of payloads: (i) named properties which allow the departure from
fixed, comma-separated schemas as in Prolog, (ii) the use of HTTP URIs
for identifiers which facilitate globally unique identification of schema
documents and (iii) the use of explicit typing of properties from the XML
Schema type system which is more expressive than the simple types of
Prolog and other programming languages. These are some of the building
blocks for creating Web-oriented interoperability (cf. Requirement R5:
Ontology re-use).

In conclusion, the use of native RDF in event processing incurs a runtime
cost of about one order of magnitude in terms of decreased throughput.
This has to be taken into account when weighting the advantages of such a
system and of RDF. During the realisation of our scenarios (cf. Section 2.7)
we found that 100 events per second are sufficient for all their use cases.

8.3. Comparison with Related Work

The benchmark SRBench [Zhang et al. 2012] allows qualitative compar-
isons between RDF streaming engines. The benchmark compares previous
RDF streaming solutions SPARQLStream, CQELS and C-SPARQL (cf. Chap-
ter 4 for a discussion of the state of the art). Quantitative comparisons such
as latency and throughput are not conducted by SRBench. To fulfil SR-
Bench there are 17 queries to be modelled, Q1 to Q17. Each is characterised
by one or more language features needed to support the expressivity of
the SRBench scenario.

8.3. Comparison with Related Work 111

Table 8.2.: Query Expressivity of BDPL compared to the State of the Art

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17

SPARQLStream X PP A G G X X G G,
IF

SD SD PP,
SD

PP,
SD

PP,
SD

PP,
SD

PP,
SD

PP,
SD

CQELS X PP A X X X D/
N

X IF X X PP PP PP PP PP PP

C-SPARQL X PP A X X X D X IF X X PP PP PP PP PP PP

BDPL X X
(1,
2)

A SM
(3)

X X
(4)

X SM SM X X
(5)

PP,
SM

X
(6,
7)

X X X X

Table 8.2 shows the resulting feature matrix extended with our approach,
BDPL. Check marks denote fully supported queries. Abbreviations denote
a missing feature why a particular query is not fully supported by one
of the approaches: A: Ask query form, D: Dstream, G: groupBy and
aggregations, IF: if expression, N: negation, PP: property path, SD: static
dataset, all abbreviations defined in [Zhang et al. 2012]. We added SM: no
solutions modifiers implemented yet (e.g. MIN(?values) in CONSTRUCT
clause).

Implementation of a streaming query like in this benchmark is often not
straightforward and the natural language definitions of the queries leave
room for interpretation. Where appropriate we leave some technical im-
plementation notes: (1) property paths in the query Q2 can be replaced
by RDFS reasoning in our implementation, (2) optional parts currently
return a placeholder value instead of UNDEF, (3) results are reported not
every 10 minutes but updated on each event (sliding window is used),
(4) UNION can be replaced by BDPL AND-operator here, (5) subselect
can be replaced by BDPL SEQ-operator here, (6) disjunctive property path
replaced by BDPL OR-operator here, (7) property paths in historical part
are allowed in BDPL, as we have higher expressivity here thanks to feder-
ation of historical queries which have the full expressivity of SPARQL 1.1
including property paths.

112 8. Evaluation

Discussing the benchmark, it becomes apparent that some important fea-
tures of our work are not evaluated such as the event model allowing
expressive events to be notified or federated queries allowing large quan-
tities of historical data to be incorporated in results. Also, ASK queries (as
marked by “A” in Table 8.2) are part of the benchmark but are not useful
in event processing as they return Boolean query results, not structured
derived events. We discussed this in Section 6.3.

In conclusion, our implementation ranks above average when counting
the check marks in Table 8.2, a benchmark comparing the language ex-
pressivity of the state of the art in RDF event processing.

8.4. Overall System Test

The overall system is evaluated in terms of scenario-based tests. The
questions to be answered are:

• What is the latency for each individual component as the event
throughput increases?

• What is the overall (end-to-end) latency as the event throughput
increases?

The scenarios use real-world data collected from Twitter and match several
synthetic patterns on them. Two experiments were conducted using the
same event patterns but varying datasets and speeds. We first describe
the origin and structure of the datasets below followed by the structure
and purpose of each event pattern. After that we introduce the two exper-
imental setups and their results.

The components under test are “event processing” and “storage” from
Figure 7.1 on page 74. The component “service bus” is used in our ex-
perimental setup to send and receive events but the throughput is only
measured for the core components event processing and storage. Our
component DCEP is used for event processing. The third-party compo-
nent EventCloud2 [Pellegrino et al. 2013] is used for storage. EventCloud

2EventCloud: http://eventcloud.inria.fr/

http://eventcloud.inria.fr/

8.4. Overall System Test 113

is a distributed publish/subscribe system to store and forward RDF data
in real-time like an active database. Both components are involved in
answering hybrid queries of real-time and historic data.

The tests were run on a machine with 8 cores Intel Xeon CPU E7–4860 at
2.27 GHz, 24 GB of main memory, 500 GB of disk space running Fedora
Linux release 17 (Beefy Miracle).

8.4.1. Test Dataset

The experiments were conducted with recorded events to be able to repro-
duce3 the results. Events have been recorded from Twitter in June 2013
during seven consecutive days. Four different simple event streams have
been collected with arbitrary but popular keywords in the message. The
keywords were google, apple, microsoft and yahoo. Using our event
adapter for Twitter (cf. Section 7.6) we lifted the tweets to RDF.

The event types in RDF are subclasses of TwitterEvent, namely 𝐺, 𝐴,
𝑀 and 𝑌 respectively for the four kinds of tweets. The event instances
contain properties such as the originating Twitter user, the tweet message
and the number of friends the originating twitter user has.

We have collected 23.200 events in total, i.e. 5.800 of each type. Listing 8.1
shows an example event of type google (cf. line 9). Each event consisted
of twelve RDF statements (triples) on average and amounted to 1428 bytes
on average.

Variations in event size are due to the varying nature of the basic data from
twitter, e.g. the message length which is depicted by the event property
sioc:content on line 18 of Listing 8.1.

Variations in the number of triples per event result from our modelling
of properties. For example like the data supplied by the Twitter API we
model a separate property for each link detected in a tweet. This number
can vary. The property sioc:links_to from the SIOC ontology is used

3Test dataset: https://github.com/play-project/play-test/tree/develop/play-test-overall-
scenario-simulator. See also Appendix A.1 on open-source artefacts.

https://github.com/play-project/play-test/tree/develop/play-test-overall-scenario-simulator
https://github.com/play-project/play-test/tree/develop/play-test-overall-scenario-simulator

114 8. Evaluation

for this purpose. One such property is depicted on line 10 of the listing.
Since the number of links in a tweet can vary, the number of triples varies
depending on the number of links detected in an original tweet. Similar
modelling is used for hashtags and users’ names mentioned in a tweet
resulting in further variability of the number of triples per event.

The dataset can be replayed at varying data rates to perform the stress
tests of the platform.

1 @prefix : <http :// events .event - processing .org/ types /> .
2 @prefix e: <http :// events .event - processing .org/ids/> .
3 @prefix sioc: <http :// rdfs.org/sioc/ns#> .
4 @prefix xhtml2 : <http :// www.w3.org /2002/06/ xhtml2 /> .
5 @prefix xsd: <http :// www.w3.org /2001/ XMLSchema #> .
6
7 e: twitter_2e7586a0 -7f9a -4181 -91ed -110 e5a57aa79 {
8 <http :// events ... org/ids/ twitter_2e7586a0 -... -110 e5a57aa79 #event >
9 a : google ;

10 sioc: links_to <http ://t.co/b> ;
11 : userMention " MaxenceDodi " , " Estirpe_ " , " hematocritico " , "

NoelBurgundy " ;
12 : endTime "2013 -07 -22 T09 :17:01.000 Z"^^ xsd: dateTime ;
13 : stream <http :// streams ... org/ids/ TwitterFeed #stream > ;
14 : source <http :// sources ... org/ids/ TwitterAdapter #source > ;
15 : friendsCount "322"^^ xsd:int ;
16 : followersCount "6231"^^ xsd:int ;
17 : isRetweet "true"^^ xsd: boolean ;
18 sioc: content "RT @MaxenceDodi : Esta tarde a las 18h Google Hangout

con el equipo de @estirpe_ acompanados de @hematocritico y
@NoelBurgundy http ://t.co/b" ;

19 : screenName " NoelBurgundy " ;
20 : twitterName "Noel Ceballos " ;
21 xhtml2 :icon <http :// www. google .de/ favicon .ico > .
22 }

Listing 8.1: Scenario-based Test: Example Event (TriG Syntax)

8.4.2. Test Patterns

For the experiments three synthetic event patterns were created. The goal
was to provide a realistic query load. The patterns are based on the event
types 𝐺, 𝐴, 𝑀 and 𝑌 mentioned above. The patterns are of increasing
complexity to provide realistic runtime behaviour.

8.4. Overall System Test 115

The first pattern matches 𝐺, 𝐴, 𝑀 and 𝑌 in sequence (i.e. one event strictly
following the other) within a time window of five seconds. This pattern
was chosen with the goal of stress testing the temporal matching of the
event processing engine. Cf. Listing 8.2.

1 #
2 # Basic pattern detecting 4 company - related events in sequence .
3 #
4
5 CONSTRUCT {
6 :e rdf:type : UcTelcoEsrRecom .
7 :e : stream <http ://.../ ids/ OverallResults01 #stream > .
8 :e uctelco : ackRequired " false "^^ xsd: boolean .
9 :e uctelco : answerRequired " false "^^ xsd: boolean .

10 :e : message " Pattern 01: Four tweets were detected ."^^ xsd: string .
11 }
12 WHERE {
13 WINDOW {
14 EVENT ?id1 {
15 ?e1 rdf:type : google .
16 ?e1 : stream <http ://.../ ids/ TwitterFeed #stream > .
17 ?e1 : screenName ? screenName01 .
18 }
19 SEQ
20 EVENT ?id2 {
21 ?e2 rdf:type : apple .
22 ?e2 : stream <http ://.../ ids/ TwitterFeed #stream > .
23 }
24 SEQ
25 EVENT ?id3 {
26 ?e3 rdf:type : microsoft .
27 ?e3 : stream <http ://.../ ids/ TwitterFeed #stream > .
28 }
29 SEQ
30 EVENT ?id4 {
31 ?e4 rdf:type : yahoo .
32 ?e4 : stream <http ://.../ ids/ TwitterFeed #stream > .
33 }
34 } ("PT5S"^^ xsd:duration , sliding)
35 }

Listing 8.2: Scenario-based Test: First Pattern (BDPL Syntax)

The second pattern is a specialisation of the first pattern to be more selec-
tive. It matches a subset of the matched events from the first pattern and
is more complex to calculate. The pattern matches each event 𝐺, 𝐴, 𝑀

and 𝑌 only if it is from a Twitter user with more than ten followers. This

116 8. Evaluation

pattern was chosen to stress test the content-based filtering capability of
the event processing engine.

The third pattern is another specialisation of the first pattern. It matches
the real-time results with historic data. The pattern detects the subset of
the same events where the originating Twitter user of one Tweet (in our
case 𝐴) had been tweeting in the past. This pattern was chosen to stress
test the cost of retrieving historic data from storage and joining it with the
real-time data in memory.

The full text of all three patters can be found in Appendix B: Listings B.1
to B.3.

8.4.3. Experiments

Based on the events and patterns described above we conducted two ex-
periments. The first experiment runs a small dataset with all components
at differing speeds. The second experiment tests all components with a
larger dataset and therefore high stress on historical queries testing at two
different speeds. Each dataset is run at increasing speeds by consecutively
shortening a delay when replaying the events. The delay is decreased
down to 0 ms, the burst transmission. Each measurement is repeated three
times to get a meaningful average reading for every single datapoint in
the experiments.

• First Experiment
– Numbers of tests: 10
– Dataset: 400 events
– Delay between the transmissions of events by the simulator:

200 ms, 100 ms, 50 ms, 25 ms, 12 ms, 6 ms, 3 ms, 1 ms, 0 ms
– Repeat each experiment three times in order to calculate the

mean processing time for DCEP and Storage
• Second Experiment

– Numbers of tests: 2
– Dataset: 23.200 events
– Delay between the transmissions of events by the simulator:

6 ms, 0 ms

8.4. Overall System Test 117

The previous list summarises the two experiments. Notable differences
are in bold print.

8.4.4. Results

Figure 8.2 shows results from the first experiment. The components under
test are event processing (DCEP) and storage (EventCloud). The x-axis
shows the increasing transmission speed of the incoming events. The
y-axis shows the latency for each outgoing event, i.e. for EventCloud the
time difference for an event passing through the component and for DCEP
the time difference between a complex event leaving the component and
the last of its simple events having entered the component.

0

0,1

0,2

0,3

0,4

0,5

200 100 50 25 12 6 3 1 0

M
ea

n
Ev

en
t P

ro
ce

ss
in

g
Ti

m
e

(s
ec

)

Event Transmission Speed: Delay in (ms)

First Experiment

Storage

DCEP

Figure 8.2.: Mean Event Processing Time vs. Event Transmission Speed in the
First Experiment (Line Chart)

The transmission speeds are increased from low throughput, using a delay
of 200 ms between sending events at the datasource up to about 256 times
that speed, using no delay between sending events at the datasource.

118 8. Evaluation

At increasing transmission speeds storage shows an almost constant pro-
cessing time. DCEP, however, shows an increasing processing time. We
cannot explain the fluctuation between 50 ms delay and 6 ms delay even
though we conducted the experiment repeatedly as explained above. The
general increase in transmission speed, however, is explained as follows:
The experiments define event patterns with time windows of five seconds
(Section 8.4.2). At increasing event speeds these time windows match
more and more events occurring within the length of a window. This has
two implications for the performance of an event processing system:

(i) The memory consumption increases as more events are valid at any
given time as part of the matching windows. Thus, these events cannot be
removed from memory by garbage collection.

(ii) When deriving the resulting complex event from such a match, more
data (i.e. all valid events in the window) must be taken into account. Thus,
the result becomes larger and longer to compute.

0

0,2

0,4

0,6

0,8

200 100 50 25 12 6 3 1 0

M
ea

n
Ev

en
t P

ro
ce

ss
in

g
Ti

m
e

(s
ec

)

Event Transmition Speed: Delay in (ms)

First Experiment

DCEP

Storage

Figure 8.3.: Accumulated (stacked) Mean Event Processing Time vs. Event Trans-
mission Speed in the First Experiment (Stacked Bar Chart)

8.4. Overall System Test 119

Figure 8.3 shows that, overall, the combined system scales satisfactorily
from the slow experiment (used as a reference speed) on the left of the
figure all the way to the burst experiment on the right. On average the
latency of both components combined is 0.549 sec for the first experiment,
cf. Table 8.3.

Table 8.3.: Mean Event Processing Time in the First Experiment

Avg. Latency Std. Dev.

[ms] [%] 𝜎 [ms]

Storage: 0.420 77 % 0.023

DCEP: 0.129 23 % 0.047

Total: 0.549 100 %

Storage
77%

DCEP
23%

Component Contribution to
Overall Event Processing Time

Figure 8.4.: Mean Component Contribution to Overall Event Processing Time in
the First Experiment (Pie Chart)

120 8. Evaluation

After looking at the average of the combined system we look at the compo-
nents individually. Table 8.3 shows the details of latency per component.
For storage the average latency in the first experiment is 0.420 ms or 77 %
of the total. For DCEP it is 0.129 ms or 23 %.

The pie chart of Figure 8.4 shows the percentages of the contribution of
each component to the overall latency of the system. These percentages
change in the second experiment when a larger dataset is used.

Figure 8.5 shows the event processing times for the second experiment.
As stated above, two speeds were tested using the larger dataset. The
dataset was increased from 400 events in the first experiment to 23.200
events in the second experiment. The figure shows that a lot more latency
is incurred in DCEP than in storage now. Figure 8.6 confirms this, showing
89 % of the total latency contributed by DCEP as opposed to just 23 % with
the smaller dataset in the first experiment, above. Storage shows almost
the same mean event processing time, with a small increase in the end
because of the growing history storing the large dataset.

The growing number of historic events is specific to the second experi-
ment. The event pattern with a historic part is pattern number three (cf.
Listing B.3 in Appendix B, indicated by the existence of a GRAPH clause
on line 46). Thus, it is affected by historic events.

The GRAPH clause in pattern three requests all previous (historic) tweets
of the same author who posted the apple tweet as part of the pattern. This
means that while the history of events grows during the experiment the
historic results for this query grow as well.

However, since the dispatch of historical queries and joining of their results
with the real-time data is a task of DCEP (cf. Section 7.2.3), the long delays
for hybrid queries are entirely attributed to DCEP.

The latency attributed to storage in Figures 8.5 and 8.6 is comprised only
of the transmission of real-time events. Historic queries are not part of the
latency we detected for storage. Historic queries only indirectly slowed
down the storage component by a small latency increase in the end but
the effect is invisible in the figure.

8.4. Overall System Test 121

0

1

2

3

4

5

6 0

M
ea

n
Ev

en
t P

ro
ce

ss
in

g
Ti

m
e

(s
ec

)

Event Transmission Speed: Delay in (ms)

Second Experiment

Storage

DCEP

Figure 8.5.: Mean Event Processing Time vs. Event Transmission Speed in the
Second Experiment (Line Chart)

On the other hand, the increase in latency for DCEP in the end (right side
of Figure 8.5) is the known effect from the first experiment of higher event
frequencies coupled with time windows: More events per second means
that a five second time window matches more events at any given time.
This results in higher memory consumption for DCEP and higher load
because of larger result sets.

In conclusion, Figure 8.3 shows that, overall, the combined system scales
satisfactorily. Nevertheless, the artificial event patterns from the experi-
mental setup must be optimised to be appropriate for growing histories
of events. This could be achieved by increasing the selectivity of the his-
toric part much like the real-time part has a high selectivity by having a
constrained time window.

122 8. Evaluation

Storage
11%

DCEP
89%

Component Contribution to Overall
Event Processing Time

Figure 8.6.: Mean Component Contribution to Overall Event Processing Time in
the Second Experiment (Pie Chart)

8.5. Fast Flower Delivery Scenario

The fast flower delivery scenario is an example event processing applica-
tion from the book [Etzion and Niblett 2010]. The purpose of the scenario is
to illustrate features commonly found in event processing applications.

The scenario may be used to validate the expressivity of existing event
processing systems. This was done for several related systems before, e.g.
in [Aničić 2012, Section 13.2.1] and [Weidlich et al. 2013]. We implemented
parts of the scenario for our language BDPL.

The scenario is described in [Etzion and Niblett 2010, Appendix B] using
five phases of a fictional flower delivery process, including the situations
to be detected, the schema of events and the sequence of events.

A fictional consortium of flower shops outsources their flower deliveries to
local, independent van drivers. Drivers are ranked according to their pre-

8.5. Fast Flower Delivery Scenario 123

vious performance. In the first phase of the scenario (“bid phase”) a shop
emits an event indicating that a new delivery is to be made. According to
background data about drivers’ rankings a central system in the scenario
sends events to only those drivers who match minimum requirements.
In the second phase (“assignment phase”) the drivers may respond with
a bid on the delivery. They have two minutes to do so until the central
system aggregates all occurring bids and creates a report with the five
highest-ranked drivers for the shop. The shop then assigns one of the
drivers in a new event. During the third phase (“delivery process”) events
are created when the flowers are picked up by the driver and dropped
off at the customer’s location. In the fourth phase (“ranking evaluation”)
the system generates ranking increase and decrease events according to
the delivery performance based on recent events. Phase five (“activity
monitoring”) aggregates driver’s assignments and other events to create a
monthly report on the quality of service per driver. Various alerts during
the process are emitted as further events.

Modelling the scenario requires static data, events and streams. Examples
of static data are the flower shops as well as drivers and location features
like regions of delivery. For the regions we placed the delivery scenario
in the city of Berlin and fetched the city quarters of Berlin from existing
Linked Data. An example is given further below.

The following listing illustrates static data about drivers. An entity of
type Driver is shown with a ranking of five. The listing uses RDF Turtle
syntax:

@prefix owl: <http :// www.w3.org /2002/07/ owl#> .
@prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .
@prefix xsd: <http :// www.w3.org /2001/ XMLSchema #> .
@prefix : <http :// events .event - processing .org/ffd/> .

:John rdf:type : Driver ;
: ranking "5"^^ xsd:int .

For the geographical information about drivers, not only geo coordinates
are used but also geographical names to allow more course-grained as-
signments to city regions in the scenario. To that end we crawled Linked

124 8. Evaluation

Data from DBpedia4 about geographical names of the city quarters of
Berlin in RDF. The advantage of using Linked Data here is that the entities
are identified and modelled for re-use in RDF-oriented scenarios. The
following listing illustrates the properties we used from the Berlin quarter
of Charlottenburg:

@prefix dbpedia : <http :// dbpedia .org/ resource /> .
@prefix dbpedia -owl: <http :// dbpedia .org/ ontology /> .
@prefix dbpprop : <http :// dbpedia .org/ property /> .

dbpedia : Charlottenburg
rdf:type dbpedia -owl: PopulatedPlace , dbpedia -owl: Place , dbpedia

-owl: Settlement , yago: LocalitiesOfBerlin ;
dbpprop :area 10.6 ;
dbpprop :city " Berlin "@en ;
dbpprop : density 11198 ;
dbpprop :name " Charlottenburg "@en ;
dbpprop : population 118704 ;
dbpprop : populationAsOf

2008 ;
dbpprop :type " Quarter "@en ;
dbpprop :year 1705 ;
geo:lat " 52.5167 "^^ xsd: float ;
geo:long "13.3"^^ xsd: float ;
...

The next listing illustrates an entity of type Shop with a minimum ranking
for viable drivers:

FlowerShop42
rdf:type :Shop ;
: minimumRanking "2"^^ xsd:int .

Streams are defined in RDF according to our model (cf. Section 5.3) as
follows:

ffd: AssignmentChannel
rdf:type : Stream .

ffd: DeliveryRequestChannel
rdf:type : Stream .

ffd: DriverLocationChannel
rdf:type : Stream .

4DBpedia: http://dbpedia.org

http://dbpedia.org

8.5. Fast Flower Delivery Scenario 125

We created an event hierarchy for the scenario as illustrated in Figure 8.7.
According to our model the events are subclasses of class Event. Apart
from the parent class the hierarchy is disjoint from event classes created
for previous scenarios (e.g. in Figure 5.2). The classes in this scenario also
are in a separate namespace, ffd:, so that they are uniquely identified and
their schema may be administered independently from other schemas.

Figure 8.7.: Event Type Hierarchy for the Fast Flower Delivery Scenario

Listing 8.3 shows an event of type DeliveryRequest from the bid phase.
The event illustrates our event model using timestamps defined in Sec-
tion 5.3 as startTime and endTime. Linked Data is used to refer to further
context of the event, e.g. the Berlin quarter mentioned above and the
stream.

Our implementation of the Fast Flower Delivery scenario is available
as open-source software5, see also Appendix A.1. The implementation
includes events, static data, event patterns and code to test the scenario.

5Fast Flower Delivery (FFD) Scenario: https://github.com/play-project/play-test/tree/
develop/play-test-fast-flower-delivery

https://github.com/play-project/play-test/tree/develop/play-test-fast-flower-delivery
https://github.com/play-project/play-test/tree/develop/play-test-fast-flower-delivery

126 8. Evaluation

@prefix : <http :// events .event - processing .org/ types /> .
@prefix ffd: <http :// events .event - processing .org/ffd/> .

<http :// events .event - processing .org/ids/ deliveryRequestEvent #event >
rdf:type ffd: DeliveryRequest ;
ffd: addresseeLocation

<http :// dbpedia .org/ resource / Charlottenburg > ;
ffd: requestId 128 ;
ffd: requiredDeliveryTime

"2014 -03 -18 T20 :00:01.011 Z"^^ xsd: dateTime ;
ffd: requiredPickupTime

"2014 -03 -18 T12 :42:01.011 Z"^^ xsd: dateTime ;
ffd: store ffd: FlowerShop42 ;
: stream ffd: DeliveryRequestChannel ;
: endTime "2014 -03 -15 T12 :42:01.012 Z"^^ xsd: dateTime ;
: startTime "2014 -03 -15 T12 :42:01.011 Z"^^ xsd: dateTime .

Listing 8.3: Linked Data for the Fast Flower Delivery Scenario

8.6. Discussion

We have evaluated our system in parts and in total, quantitatively and
qualitatively, have compared it to the state of the art and have implemented
an archetype scenario.

In conclusion, we have shown that each of the requirements is met. We
have confirmed that our implementation ranks above average in the quali-
tative benchmark comparing the language expressivity of the state of the
art in RDF event processing. Also, we have shown quantitatively what the
cost is of using native RDF in event processing and confirming that our
combined system scales satisfactorily.

9
Conclusions and Outlook

In this thesis we developed models, methods and an instantiation (system)
to make the Web situation-aware. Our models describe a schema for
events and a language to process events. Our methods describe protocols
to exchange events on the Web, algorithms to execute the language and
to calculate access rights. Finally, our system realises and integrates the
previous contributions in a running implementation. We conclude this
thesis by summing up the research questions, achieved results, drawing
conclusions and providing an outlook on future work.

Based on the observation that an increasing volume of real-time data is
available on the Web and that a technology is needed to make sense of
these data we raised the principal research question in this thesis:

How can the Web be made situation-aware?

128 9. Conclusions and Outlook

Event processing is a suitable technology for gaining real-time results.
However, most existing related work in event processing is designed for
closed-domain settings. It cannot trivially be applied to the Web. Thus, we
collected requirements for event processing on the Web. Event processing
generally uses three ingredients which we employed to structure our
three research questions: events, processing languages and a system to
evaluate the languages over events. Hence, for the use on the Web we
raised the research questions: Research Question 1: (Web Interoperability)
about events, Research Question 2: (Processing Language) and Research
Question 3: (Infrastructure) about a system. In the following we describe
the results achieved, answering each of the questions.

9.1. Summary of the Results

The first research question addresses a model for events with the goal of
interoperability on the Web:

Research Question 1 (Web Interoperability). How can we achieve event
interoperability for situation awareness at a Web scale?

We answered this question by designing an event model in RDF. First we
collected requirements for an event model from related work, research lit-
erature, best practises for Web data modelling and Linked Data, scenarios
such as the Real-time Web grand challenge, the vision of the event market-
place, a crisis management scenario and a telecommunications scenario
described by domain experts. The requirements covered modelling events
as first class objects, supporting temporal and geo-spatial properties, sup-
porting type hierarchies and further relationships between events, the use
of open standards and re-use of existing schemas to foster interoperability,
satisfying the Linked Data guidelines, providing metadata for search and
enabling adaptivity of the schema to address changing needs of users.

The second research question addresses the processing language to detect
meaningful situations on the Web:

9.1. Summary of the Results 129

Research Question 2 (Processing Language). How to design and realise a
processing language for Web events?

We answered this research question by designing an event processing
language based on the RDF query language SPARQL. First we collected
requirements from related work, research literature and our scenarios. The
requirements covered matching the data model, supporting event-driven
processing including temporal query operators, the ability to query both
real-time and historic events, supporting the expressivity needed by our
scenarios and employing open standards.

The third and final research question addresses the infrastructure to man-
age events and queries:

Research Question 3 (Infrastructure). How to design and develop an efficient
infrastructure supporting a Web of events?

We answered this research question by designing and implementing an
open source system to process events, execute our processing language,
manage streams of events including metadata search and access rights and
implement adapters and tools to re-use existing real-time event sources.
First we collected requirements from related work, research literature, our
scenarios, existing event sources and the vision of an event marketplace.
The requirements for our system covered the parsing and understanding
of event models, evaluating real-time and historic queries, processing
events in real-time, the integration of existing event sources to realise our
scenarios, Linked Data guidelines, employing open standards, supporting
multitenancy by separating users by access control and by allowing them
to add and remove event patterns dynamically at any time when users’
needs change, and lastly by supporting programmers with programmable
tools such as SDKs.

9.1.1. Event Model

Addressing Research Question 1: (Web Interoperability) and its require-
ments we presented our event model for RDF. The model is designed for

130 9. Conclusions and Outlook

the use on the Web with many users, and many application domains. Thus,
the model enforces only a minimum set of event properties and leaves
room for extensibility. We defined the set of mandatory properties to de-
scribe the core characteristics of an event and thus facilitate basic temporal
event processing required by all of our scenarios. Furthermore, we de-
fined optional properties to enable common but not mandatory use cases
such as geographic filtering of events required by some of our scenarios.
Moreover, the model was designed for extensibility. The schema language
RDFS used in our modelling is multi-schema friendly and particularly well
suited for re-use of schemas across the Web and at a fine-grained granular-
ity allowing the re-use and mixing of multiple schemas. The mandatory
time-oriented properties were chosen to support both point-based and
interval-based events as needed by our scenarios.

9.1.2. Event Pattern Language

Addressing Research Question 2: (Processing Language) and its require-
ments we presented our event processing language BDPL. The language
supports event-at-a-time operators to describe fine-grained situations
where very specific events must be matched. Also the language supports
set-at-a-time operators to detect coarse-grained situations where only ag-
gregate values from sets of events are sufficient to find a match. Since
real-time data in streams often need to be augmented with static back-
ground knowledge or historical data our language supports so-called
hybrid queries which match both data from real-time streams and data
from data stores. The language is designed as a variation of SPARQL,
the well-known query language for RDF. As such the language is a good
match for the underlying data representation in RDF and from a users’
perspective the language is not completely new to learn.

9.1.3. Event Processing System

Addressing Research Question 3: (Infrastructure) and its requirements
we presented our event processing system built on open standards. The

9.2. Significance of the Results 131

system manages events in our open and extensible event model. Events are
fed into the system using standards such as WS-Notification. The logic of
the system is provided by expressions in our event pattern language based
on SPARQL. Various types of tooling are supported by our system. The
tools help modelling events programmatically, send and receive events to
integrate new scenarios with our system, manage events by setting access
rights and search for streams to be used in new scenarios. The system
combines all of our contributions in one implemented stack of tools.

9.2. Significance of the Results

Our system employs event processing on the Web. Whereas event process-
ing was previously only used in closed-domain applications, the focus on
Web standards makes event processing feasible in an open setting. Data
description in RDF and query languages like SPARQL have tried the same
for static data. By employing re-usable schemas, RDF and SPARQL are
gaining traction in the realisation of a Web of data. On the Web of data
formal, structured queries can be posed against distributed datasets. For
the integration of real-time streams such systems are not yet standardised.
However, as this thesis showed, the same principles of data management
can be applied.

In this thesis we answered the question of how to make the Web situation-
aware by being able to fulfil structured queries over real-time, streaming
data. To that end we designed and developed a Web-oriented event pro-
cessing system. It uses Web-standards such as RDF, SPARQL and WS-
Notification. The system combines open standards, self-descriptiveness
and extensible schemas of RDF. Thus, this work addresses the require-
ments from the event processing challenge of a Real-time Web: distributed
ownership and reach of the Web, the community-based, self-curated, con-
stantly updated nature of Wikipedia as well as the adaptive nature of
complex multitenant systems.

Our work can be used for the consolidation of real-time data from the
Internet of Services (IoS) with data from the Internet of Things (IoT) and

132 9. Conclusions and Outlook

from the Social Web. This was achieved by designing and developing a
general-purpose event processing engine with the open data description
format RDF, thus enabling the combination of arbitrary data sources where
each source retains the freedom and flexibility to create and extend its
schemas. Especially the re-use and mashup of available schemas facilitates
the combination of schemas from the IoS with schemas from the IoT (e.g.
the W3C Semantic Sensor Network (SSN) Ontology) using spontaneous
events emitted from either or both sources and combined in real-time
using our work.

Our system was designed with two purpose-built components, one for
event processing and one for storage. Our language interpreter can then
compute queries over both of them and produce combined results. Ac-
cording to the book [Marz and Warren 2015] Lambda Architecture is an
upcoming design principle to build such architectures. The “speed layer”
from the Lambda Architecture corresponds with our real-time and stream
management component DCEP, whereas the “batch layer” corresponds
with our storage component. The “serving layer” from the Lambda Archi-
tecture is responsible for correlation of results from both previous layers,
represented in our work by our unified, hybrid query language. Our
design is thus well in line with the state of the art in system architecture
even before the term Lambda Architecture was coined.

9.3. Outlook

Future work can be seen going in at least two directions: performance and
expressivity.

Parsing of RDF is a large part of the computational work necessary when
an event is received in our components. This is a shortcoming of text-
based data representations like RDF but also XML. However, performance
optimizations for RDF exist much like for XML. Examples are binary
on-the-wire representations which are less verbose. Another example is
JSON which is a very concise text-based representation. It does not allow

9.3. Outlook 133

complex datatypes or schemas, but the JSON-LD1 specification provides
a mapping to and from RDF so that semantics can be maintained. These
data representations can be evaluated during further optimisation and
re-evaluation of our work.

Another performance bottleneck was the communication of our compo-
nents in Java with the underlying event processing engine written in Pro-
log. Using such different native language interpreters or virtual machines,
the data (i.e. events) cannot easily flow between the two. The inter-process
communication between Java and Prolog must be optimised. A way out
of this problem is the replacement of the Prolog event processing engine
with a pure-Java engine. That way no communication between Java and a
different interpreter is necessary. However, a matching event processing
engine must be found which can deal with RDF and fulfil all requirements
stated in this work.

Distributed event processing must also be researched for increasing through-
put and thus processing events using Web technologies at Web scale. A
lot of related work such as [Xing et al. 2005] already exists and must be
evaluated for its application with RDF data. Our work is prepared for
parallel execution by employing frameworks such as ProActive. Event
processing in general is a good candidate for horizontal scaling because of
the immutability of events which greatly reduces the data dependencies
of components. As such distributed event processing is a natural next
step.

In terms of expressivity some use cases required the processing of contin-
uous, numerical data such as the radiation increase in the nuclear crisis
scenario. However, event processing languages (ours being no exception)
are designed for discrete processing of events. Thus, numerical processing
of continuous data is an interesting field for extending event processing.
More scenarios can be covered when adding language features covering
continuous data such as curves of radiation measurements, ECG time
series from wearable cardio sensors (continuously providing 256 values
per second) or geographical paths (e.g. series of points). Such scenarios
need different abstractions to write short and concise queries, e.g. to find

1JSON for Linking Data: http://json-ld.org/

http://json-ld.org/

134 9. Conclusions and Outlook

specific shapes in a curve of real-time sensor data or use statistical methods
on such data.

Another important direction for future research should be the usability
of query authoring. Non-technical users today can easily query the Web
by writing keyword queries. However, the Real-time Web supports e.g.
temporal relatedness of events which must be expressed explicitly by the
use of temporal query operators. Such operators must be learned and
correctly applied by users. A lot of work has been conducted in the field of
graphical user interfaces for query design [Sen et al. 2009] and in the field
of natural language interfaces [Linehan et al. 2011]. The former enable a
user to draw a query graph on a canvas using events and event operators
whereas the latter enable a user to write short sentences in a simplified
natural language using a controlled vocabulary of temporal operators
and event properties. Both attempts are promising but have not seen
widespread adoption by non-technical users so far. Making the Real-time
Web user-friendly still needs further work.

Appendix

A
Open-source Contributions

This appendix lists the contributions we made to free and open-source
software. First, we describe where to find the sources for this work and in a
second section we describe where to find pre-compiled binary artefacts.

A.1. Source Code

The results of our work are published open-source. This includes the
designed artefacts such as our models and software components described
above in Chapters 5 to 7 but also experimental data and test programmes
to reproduce our evaluation results described in Chapter 8.

We publish our components under a free open-source license providing
users the rights to re-use our approach and study, change and distribute
the software to anyone and for any purpose [Laurent 2008]. Furthermore,

138 A. Open-source Contributions

Table A.1.: Source Code Locations on the Web

Component Source Code
(https://github.com/...)

Event Model and its SDK play-project/play-commons/

DCEP play-project/play-dcep/

Access Control play-project/play-
commons/tree/master/play-
commons-accesscontrol

Event Adapters for Twitter,
Facebook and Xively events

play-project/play-eventadapters/

WebApp play-project/WebApp/

Experimental datasets and
benchmarks

play-project/play-test/

we publish our experimental datasets and test setup to enable users to
reproduce our evaluation results. Additional technical documentation
such as an install guide1 and a developers guide2 are provided.

Table A.1 shows the location of the artefact sources. Related components
developed by third parties are also made available open-source by those
parties. Such components include the service bus DSB3, the storage com-
ponent EventCloud4 and the Governance5 component. The RDF framework
RDFReactor6 is also available on the Web. It is used as underpinnings to
our event modelling SDK and we contributed to it.

1Install Guide: https://github.com/play-project/play-dcep/tree/develop/play-dcep-
distribution-etalis/README.md

2Developers Guide: https://github.com/play-project/play-dcep/blob/develop/
README.eclipse.md

3DSB Code on Github: PetalsLinkLabs/petals-dsb/
4EventCloud Code: http://eventcloud.inria.fr/
5Governance Code on Github: play-project/play-governance/
6RDFReactor Code: http://code.google.com/p/semweb4j/

https://github.com/play-project/play-commons/
https://github.com/play-project/play-dcep/
https://github.com/play-project/play-commons/tree/master/play-commons-accesscontrol
https://github.com/play-project/play-commons/tree/master/play-commons-accesscontrol
https://github.com/play-project/play-commons/tree/master/play-commons-accesscontrol
https://github.com/play-project/play-eventadapters/
https://github.com/play-project/WebApp/
https://github.com/play-project/play-test/
https://github.com/play-project/play-dcep/tree/develop/play-dcep-distribution-etalis/README.md
https://github.com/play-project/play-dcep/tree/develop/play-dcep-distribution-etalis/README.md
https://github.com/play-project/play-dcep/blob/develop/README.eclipse.md
https://github.com/play-project/play-dcep/blob/develop/README.eclipse.md
https://github.com/PetalsLinkLabs/petals-dsb/
http://eventcloud.inria.fr/
https://github.com/play-project/play-governance/
http://code.google.com/p/semweb4j/

A.2. Binary Artefacts 139

A.2. Binary Artefacts

To make re-use of our software easier for developers, pre-compiled bina-
ries are available on the Web. All artefacts compiled from our code are
published using Maven7 repositories. Consequently, developers can create
tools incorporating our technology using Maven, automating the process
of resolving and downloading all required dependencies.

Figure A.1 shows the components of our contribution Distributed Complex
Event Processing (DCEP).

Figure A.1.: Module Interdependencies of all DCEP Software Artefacts

7Maven Build Tool: http://maven.apache.org/

org.ow2.play
api

2.0-SNAPSHOT

org.ow2.play
bdpl-etalis

2.0-SNAPSHOT

org.ow2.play
play-platformservices-bdpl-esper

2.0-SNAPSHOT

org.ow2.play
querydispatcher-etalis

2.0-SNAPSHOT

org.ow2.play
querydispatcher-esper

2.0-SNAPSHOT

org.ow2.play
play-dcep-api
2.0-SNAPSHOT

org.ow2.play
play-dcep-core
2.0-SNAPSHOT

org.ow2.play
play-dcep-node-core
2.0-SNAPSHOT

org.ow2.play
play-dcep-node-esper
2.0-SNAPSHOT

org.ow2.play
play-dcep-node-etalis
2.0-SNAPSHOT

org.ow2.play
play-dcep-distribution-etalis

2.0-SNAPSHOT

org.ow2.play
play-dcep-distribution-esper

2.0-SNAPSHOT

play-platformservices-

play-platformservices-

play-platformservices- play-platformservices-

http://maven.apache.org/

140 A. Open-source Contributions

A.3. Grammar

Our language BDPL is a derivation from SPARQL 1.1 as explained in
Section 6.3. Thus, we modified a grammar of SPARQL to obtain a grammar
for our language. The Jena ARQ8 library contains such a grammar.

We modified the grammar from Jena ARQ and stored our result together
with our other open-source contributions at the following address:

https://github.com/play-project/play-dcep

The grammar is available as an input file for the parser generator JavaCC9

and as online documentation in HTML form.

8ARQ – A SPARQL Processor for Jena: http://jena.apache.org/documentation/query/
9JavaCC – The Java Parser Generator: https://javacc.java.net/

https://github.com/play-project/play-dcep
http://jena.apache.org/documentation/query/
https://javacc.java.net/

B
Listings

This appendix contains the full listings of event patterns used in the eval-
uation in Section 8.4.

B.1. Overall System Test

The patterns in BDPL match four events of different types where the
subsequent patterns add complexity in (i) testing for event content and
(ii) including historic data.

The patterns are part of the experimental setup described in the previous
appendix and can be obtained from the Web address mentioned there.

142 B. Listings

The first pattern was chosen to stress-test the temporal matching of the
event processing engine. The second pattern was chosen to test the content-
based filtering capabilities and the third pattern adding historic data
was chosen to test the retrieval of distributed static data and performing
efficient joins.

1 #
2 # Basic pattern detecting 4 company - related events in sequence bounded

by a time window .
3 #
4
5 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
6 PREFIX uctelco : <http :// events .event - processing .org/uc/ telco />
7 PREFIX geo: <http :// www.w3.org /2003/01/ geo/ wgs84_pos #>
8 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
9 PREFIX : <http :// events .event - processing .org/ types />

10
11 CONSTRUCT {
12 :e rdf:type : UcTelcoEsrRecom .
13 :e : stream <http :// streams .event - processing .org/ids/ OverallResults01 #

stream > .
14 :e uctelco : ackRequired " false "^^ xsd: boolean .
15 :e uctelco : answerRequired " false "^^ xsd: boolean .
16 :e : message " Pattern 01: Four tweets about our companies were

detected ."^^ xsd: string .
17 :e uctelco : action <blank :// action1 > .
18 <blank :// action1 > rdf:type uctelco : OpenTwitter ;
19 : screenName ? screenName01 .
20 :e : members ?e1 , ?e2 , ?e3 , ?e4 .
21 }
22 WHERE {
23 WINDOW {
24 EVENT ?id1 {
25 ?e1 rdf:type : google .
26 ?e1 : stream <http :// streams .event - processing .org/ids/ TwitterFeed #

stream > .
27 ?e1 : screenName ? screenName01 .
28 }
29 SEQ
30 EVENT ?id2 {
31 ?e2 rdf:type : apple .
32 ?e2 : stream <http :// streams .event - processing .org/ids/ TwitterFeed #

stream > .
33 }
34 SEQ
35 EVENT ?id3 {
36 ?e3 rdf:type : microsoft .
37 ?e3 : stream <http :// streams .event - processing .org/ids/ TwitterFeed #

stream > .
38 }
39 SEQ
40 EVENT ?id4 {

B.1. Overall System Test 143

41 ?e4 rdf:type : yahoo .
42 ?e4 : stream <http :// streams .event - processing .org/ids/ TwitterFeed #

stream > .
43 }
44 } ("PT5S"^^ xsd:duration , sliding)
45 }

Listing B.1: Scenario-based Test: First Pattern (BDPL Syntax)

1 #
2 # Selective pattern detecting 4 company - related events in sequence

bounded by a time window
3 # and filtering twitter events for number of friends and more.
4 #
5
6 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
7 PREFIX uctelco : <http :// events .event - processing .org/uc/ telco />
8 PREFIX geo: <http :// www.w3.org /2003/01/ geo/ wgs84_pos #>
9 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>

10 PREFIX : <http :// events .event - processing .org/ types />
11
12 CONSTRUCT {
13 :e rdf:type : UcTelcoEsrRecom .
14 :e : stream <http :// streams .event - processing .org/ids/ OverallResults02 #

stream > .
15 :e uctelco : ackRequired " false "^^ xsd: boolean .
16 :e uctelco : answerRequired " false "^^ xsd: boolean .
17 :e : message " Pattern 02: Four company - related events were detected

using stricter filters ."^^ xsd: string .
18 :e uctelco : action <blank :// action1 > .
19 <blank :// action1 > rdf:type uctelco : OpenTwitter ;
20 : screenName ? screenName01 .
21 :e : members ?e1 , ?e2 , ?e3 , ?e4 .
22 }
23 WHERE {
24 WINDOW {
25 EVENT ?id1 {
26 ?e1 rdf:type : google .
27 ?e1 : stream <http :// streams .event - processing .org/ids/ TwitterFeed #

stream > .
28 ?e1 : screenName ? screenName01 .
29 ?e1 : isRetweet " false " .
30 ?e1 : friendsCount ? friendsCount01 .
31 }
32 FILTER (? friendsCount01 > "10")
33 SEQ
34 EVENT ?id2 {
35 ?e2 rdf:type : apple .
36 ?e2 : stream <http :// streams .event - processing .org/ids/ TwitterFeed #

stream > .
37 ?e2 : isRetweet " false " .
38 ?e2 : friendsCount ? friendsCount02 .
39 }

144 B. Listings

40 FILTER (? friendsCount02 > "10")
41 SEQ
42 EVENT ?id3 {
43 ?e3 rdf:type : microsoft .
44 ?e3 : stream <http :// streams .event - processing .org/ids/ TwitterFeed #

stream > .
45 ?e3 : isRetweet " false " .
46 ?e3 : friendsCount ? friendsCount03 .
47 }
48 FILTER (? friendsCount03 > "10")
49 SEQ
50 EVENT ?id4 {
51 ?e4 rdf:type : yahoo .
52 ?e4 : stream <http :// streams .event - processing .org/ids/ TwitterFeed #

stream > .
53 ?e4 : isRetweet " false " .
54 ?e4 : friendsCount ? friendsCount04 .
55 }
56 FILTER (? friendsCount04 > "10")
57 } ("PT5S"^^ xsd:duration , sliding)
58 }

Listing B.2: Scenario-based Test: Second Pattern (BDPL Syntax)

1 #
2 # Real -time and historic pattern detecting 4 company - related events

where one poster has previously posted in the past.
3 #
4
5 PREFIX rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#>
6 PREFIX uctelco : <http :// events .event - processing .org/uc/ telco />
7 PREFIX geo: <http :// www.w3.org /2003/01/ geo/ wgs84_pos #>
8 PREFIX xsd: <http :// www.w3.org /2001/ XMLSchema #>
9 PREFIX : <http :// events .event - processing .org/ types />

10
11 CONSTRUCT {
12 :e rdf:type : UcTelcoEsrRecom .
13 :e : stream <http :// streams .event - processing .org/ids/ OverallResults03 #

stream > .
14 :e uctelco : ackRequired " false "^^ xsd: boolean .
15 :e uctelco : answerRequired " false "^^ xsd: boolean .
16 :e : message " Pattern 03: Four company - related events were detected

where one poster has previously posted in the past."^^ xsd: string
.

17 :e uctelco : action <blank :// action1 > .
18 <blank :// action1 > rdf:type uctelco : OpenTwitter ;
19 : screenName ? screenName01 .
20 :e : members ?e1 , ?e2 , ?e3 , ?e4 .
21 }
22 WHERE {
23 WINDOW {
24 EVENT ?id1 {
25 ?e1 rdf:type : google .

B.1. Overall System Test 145

26 ?e1 : stream <http :// streams .event - processing .org/ids/ TwitterFeed #
stream > .

27 ?e1 : screenName ? screenName01 .
28 }
29 SEQ
30 EVENT ?id2 {
31 ?e2 rdf:type : apple .
32 ?e2 : stream <http :// streams .event - processing .org/ids/ TwitterFeed #

stream > .
33 ?e2 : screenName ? screenName02 .
34 }
35 SEQ
36 EVENT ?id3 {
37 ?e3 rdf:type : microsoft .
38 ?e3 : stream <http :// streams .event - processing .org/ids/ TwitterFeed #

stream > .
39 }
40 SEQ
41 EVENT ?id4 {
42 ?e4 rdf:type : yahoo .
43 ?e4 : stream <http :// streams .event - processing .org/ids/ TwitterFeed #

stream > .
44 }
45 } ("PT5S"^^ xsd:duration , sliding)
46 GRAPH ?id5 {
47 ?e5 : stream <http :// streams .event - processing .org/ids/ TwitterFeed #

stream > .
48 ?e5 : screenName ? screenName02 .
49 }
50 }

Listing B.3: Scenario-based Test: Third Pattern (BDPL Syntax)

Bibliography

Adi, Asaf; Botzer, David; Etzion, Opher (2000). ‘Semantic Event Model and
its Implication on Situation Detection’. In: ECIS. Wirtschaftsuniversität
Wien (WU).

Aguilera, Marcos K.; Strom, Robert E.; Sturman, Daniel C.; Astley, Mark;
Chandra, Tushar D. (1999). ‘Matching events in a content-based sub-
scription system’. In: PODC ’99: Proceedings of the eighteenth annual ACM
Symposium on Principles of Distributed Computing. New York, NY, USA:
ACM, pp. 53–61. isbn: 1-58113-099-6. doi: 10.1145/301308.301326.

Allen, James F. (1981). ‘An interval based representation of temporal knowl-
edge’. In: In Proc. of the 7 IJCAI, pp. 221–226.

Aničić, Darko (2012). Event Processing and Stream Reasoning with ETALIS.
Saarbrücken: Südwestdeutscher Verlag für Hochschulschriften. isbn:
9783838131733.

Anicic, Darko; Fodor, Paul; Stühmer, Roland; Stojanovic, Nenad (2009).
‘Event-driven Approach for Logic-based Complex Event Processing’.
In: CSE ’09: Proceedings of the 2009 12th IEEE International Conference
on Computational Science and Engineering. Washington, DC, USA: IEEE
Computer Society.

Barbieri, Davide Francesco; Braga, Daniele; Ceri, Stefano; Valle, Emanuele
Della; Grossniklaus, Michael (2010). ‘Querying RDF streams with C-
SPARQL’. In: SIGMOD Rec. 39.1, pp. 20–26. issn: 0163-5808. doi: 10.1145/
1860702.1860705.

http://dx.doi.org/10.1145/301308.301326
http://dx.doi.org/10.1145/1860702.1860705
http://dx.doi.org/10.1145/1860702.1860705

148 Bibliography

Barthe-Delanoë, Anne-Marie; Truptil, Sebastien; Stühmer, Roland; Ben-
aben, Frederick (2012). ‘Definition of a Nuclear Crisis Use-case Manage-
ment to S(t)imulate an Event Management Platform’. In: 7th International
Workshop on Semantic Business Process Management (SBPM 2012). Vol. 862.
CEUR Workshop Proceedings. SBPM Workshop, pp. 128–137.

Benaben, Frederick; Gibert, Philippe; Stühmer, Roland (2013). PLAY Deliv-
erable D6.3.6 – Evaluation Report concerning the two Use Cases’ Execution
on the PLAY Platform. Project Deliverable. PLAY Collaborative Project
258659.

Berners-Lee, Tim (2005). What HTTP URIs Identify? – Design Issues. Online
Article. http://www.w3.org/DesignIssues/HTTP-URI2.html Last
accessed 2014-05-02.

Berners-Lee, Tim (2006). Linked Data. http://www.w3.org/DesignIssues/
LinkedData.html Last accessed 2014-05-02.

Berners-Lee, Tim (2009). WebAccessControl. Online resource. http://www.
w3.org/wiki/WebAccessControl Last accessed 2014-05-02.

Berrueta, Diego (2010). SIOC Core Ontology Specification. Online resource.
http://rdfs.org/sioc/spec/ Last accessed 2014-05-02.

Bizer, Chris; Cyganiak, Richard (2014). RDF 1.1 TriG. W3C Recommenda-
tion. http://www.w3.org/TR/trig/ Last accessed 2014-05-02.

Brickley, Dan (2003). Basic Geo (WGS84 lat/long) Vocabulary. Online Article.
W3C Semantic Web Interest Group. http://www.w3.org/2003/01/geo/
Last updated 2004. Last accessed 2014-05-02.

Bry, F.; Eckert, M. (2006). ‘Twelve theses on reactive rules for the web’. In:
Proceedings of the Workshop on Reactivity on the Web, Munich, Germany.

Calbimonte, Jean-Paul; Corcho, Oscar; Gray, Alasdair J.G. (2010). ‘Enabling
Ontology-Based Access to Streaming Data Sources’. In: The Semantic Web
– ISWC 2010. Ed. by Peter F. Patel-Schneider; Yue Pan; Pascal Hitzler;
Peter Mika; Lei Zhang; Jeff Z. Pan; Ian Horrocks; Birte Glimm. Vol. 6496.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, pp. 96–
111. isbn: 978-3-642-17745-3. doi: 10.1007/978-3-642-17746-0_7.

Cardelli, Luca (2004). ‘Type Systems’. In: CRC Handbook of Computer Sci-
ence and Engineering. Ed. by Allen Tucker. Boca Raton, Fla: CRC Press.
Chap. 97, pp. 97/1–97/32. isbn: 158488360X.

Carzaniga, Antonio; Rosenblum, David S.; Wolf, Alexander L. (2001). ‘De-
sign and evaluation of a wide-area event notification service’. In: ACM

http://www.w3.org/DesignIssues/HTTP-URI2.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/wiki/WebAccessControl
http://www.w3.org/wiki/WebAccessControl
http://rdfs.org/sioc/spec/
http://www.w3.org/TR/trig/
http://www.w3.org/2003/01/geo/
http://dx.doi.org/10.1007/978-3-642-17746-0_7

Bibliography 149

Trans. Comput. Syst. 19.3, pp. 332–383. issn: 0734-2071. doi: 10.1145/
380749.380767.

Chandy, Mani K.; Etzion, Opher; Ammon, Rainer von (2011). ‘10201 Exec-
utive Summary and Manifesto – Event Processing’. In: Event Processing.
Ed. by K. Mani Chandy; Opher Etzion; Rainer von Ammon. Dagstuhl
Seminar Proceedings 10201. Dagstuhl, Germany: Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, Germany.

Dindar, Nihal; Fischer, Peter M.; Soner, Merve; Tatbul, Nesime (2011). ‘Effi-
ciently correlating complex events over live and archived data streams’.
In: Proceedings of the 5th ACM International Conference on Distributed Event-
Based Systems. Ed. by David M. Eyers; Opher Etzion; Avigdor Gal; Stanley
B. Zdonik; Paul Vincent. ACM, pp. 243–254. isbn: 978-1-4503-0423-8. doi:
10.1145/2002259.2002293.

Endsley, M.R.; Garland, D.J. (2000). Situation Awareness Analysis and Mea-
surement. Taylor & Francis. isbn: 9781410605306.

Etzion, Opher; Niblett, Peter (2010). Event Processing in Action. Manning
Publications Co. isbn: 978-1935182214.

Fidler, E.; Jacobsen, H.-A.; Li, G.; Mankovski, S. (2005). ‘The Padres distri-
buted publish/subscribe System’. In: In 8th International Conference on
Feature Interactions in Telecommunications and Software Systems, pp. 12–30.

Fielding, R.; Gettys, J.; Mogul, J.; Frystyk, H.; Masinter, L.; Leach, P.;
Berners-Lee, T. (1999). Hypertext Transfer Protocol – HTTP/1.1. RFC. United
States.

Filali, Imen; Pellegrino, Laurent; Bongiovanni, Francesco; Huet, Fabrice;
Baude, Françoise (2011). ‘Modular P2P-based Approach for RDF Data
Storage and Retrieval’. In: Proceedings of The Third International Conference
on Advances in P2P Systems (AP2PS 2011).

Fromm, Ken (2009). The Real-Time Web: A Primer. Online Resource. http:
//readwrite.com/2009/08/29/the_real-time_web_a_primer_part_1
Last visited 2014-05-02.

Galton, Antony; Augusto, Juan Carlos (2002). ‘Two Approaches to Event
Definition’. In: DEXA ’02: Proceedings of the 13th International Conference
on Database and Expert Systems Applications. London, UK: Springer-Verlag,
pp. 547–556. isbn: 3-540-44126-3.

Gangemi, Aldo; Guarino, Nicola; Masolo, Claudio; Oltramari, Alessan-
dro; Schneider, Luc (2002). ‘Sweetening Ontologies with DOLCE’. In:

http://dx.doi.org/10.1145/380749.380767
http://dx.doi.org/10.1145/380749.380767
http://dx.doi.org/10.1145/2002259.2002293
http://readwrite.com/2009/08/29/the_real-time_web_a_primer_part_1
http://readwrite.com/2009/08/29/the_real-time_web_a_primer_part_1

150 Bibliography

Proceedings of the 13th International Conference on Knowledge Engineering
and Knowledge Management. Ontologies and the Semantic Web. EKAW ’02.
London, UK: Springer-Verlag, pp. 166–181. isbn: 3-540-44268-5.

Garrett, Jesse James (2005). Ajax: A New Approach to Web Applications. On-
line article. http://www.adaptivepath.com/ideas/ajax-new-approach-
web-applications/. Last visited: 2014-05-02.

Gupta, Amarnath; Jain, Ramesh (2011). Managing Event Information: Model-
ing, Retrieval, and Applications. 1st. Synthesis Lectures on Data Manage-
ment. Morgan & Claypool Publishers. isbn: 1608453510, 9781608453511.
doi: 10.2200/S00374ED1V01Y201107DTM019.

Gutierrez, Claudio; Hurtado, Carlos A.; Vaisman, Alejandro (2007). ‘In-
troducing Time into RDF’. In: IEEE Transactions on Knowledge and Data
Engineering 19, pp. 207–218. issn: 1041-4347. doi: 10.1109/TKDE.2007.34.

Harris, Steve; Seaborne, Andy (2010). SPARQL 1.1 Query Language. W3C
Recommendation. http://www.w3.org/TR/sparql11-query/ Last
accessed 2014-05-02.

Harth, Andreas; Stühmer, Roland (2011). Publishing Event Streams as Linked
Data. Online Article. http://km.aifb.kit.edu/sites/lodstream/ Last vis-
ited 2014-05-02. Karlsruhe Institute of Technology, FZI Forschungszen-
trum Informatik.

Hevner, A. R.; March, S. T.; Park, J.; Ram, S. (2004). ‘Design Science in
Information Systems Research’. In: MIS Quarterly 28.1, pp. 75–106.

Jain, Ramesh (2007). ‘Toward EventWeb’. In: IEEE Distributed Systems On-
line 8.9. issn: 1541-4922. doi: 10.1109/MDSO.2007.56.

Klyne, Graham; Carroll, Jeremy J. (2004). Resource Description Framework
(RDF): Concepts and Abstract Syntax. W3C Recommendation. http://
www.w3.org/TR/rdf-concepts/ Last accessed 2014-05-02.

Komazec, Srdjan; Cerri, Davide; Fensel, Dieter (2012). ‘Sparkwave: Contin-
uous Schema-enhanced Pattern Matching over RDF Data Streams’. In:
Proceedings of the 6th ACM International Conference on Distributed Event-
Based Systems. DEBS ’12. New York, NY, USA: ACM, pp. 58–68. isbn:
978-1-4503-1315-5. doi: 10.1145/2335484.2335491.

Kreger, Heather (2005). OASIS Web Services Distributed Management (WSDM)
TC. Online Resource. http://www.oasis-open.org/committees/tc_
home.php?wg_abbrev=wsdm.

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/
http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications/
http://dx.doi.org/10.2200/S00374ED1V01Y201107DTM019
http://dx.doi.org/10.1109/TKDE.2007.34
http://www.w3.org/TR/sparql11-query/
http://km.aifb.kit.edu/sites/lodstream/
http://dx.doi.org/10.1109/MDSO.2007.56
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-concepts/
http://dx.doi.org/10.1145/2335484.2335491
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsdm

Bibliography 151

Lauras, Matthieu; Stühmer, Roland; Verginadis, Yiannis; Benaben, Freder-
ick (2012). ‘An event-driven platform to manage agility’. In: Proceedings
of the 6th IEEE Int. Conf. on Digital Ecosystems and Technologies for Complex
Systems, Environment, and Service Engineering IEEE-DEST 2012.

Laurent, Andrew St. (2008). Understanding Open Source and Free Software
Licensing. Sebastopol: O’Reilly Media, Inc. isbn: 9780596553951.

Linehan, Mark H.; Dehors, Sylvain; Rabinovich, Ella; Fournier, Fabiana
(2011). ‘Controlled English Language for Production and Event Process-
ing Rules’. In: Proceedings of the 5th ACM International Conference on Dis-
tributed Event-based System. DEBS ’11. New York, New York, USA: ACM,
pp. 149–158. isbn: 978-1-4503-0423-8. doi: 10.1145/2002259.2002281.

Luckham, David C. (2001). The Power of Events: An Introduction to Com-
plex Event Processing in Distributed Enterprise Systems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc. isbn: 0201727897.

Luckham, David C.; Schulte, Roy (2011). Event Processing Glossary - Version
2.0. Online Resource. http://www.complexevents.com/2011/08/23/
event-processing-glossary-version-2-0/ Last visited 2014-05-02.

Maier, David; Li, Jin; Tucker, Peter; Tufte, Kristin; Papadimos, Vassilis
(2005). ‘Semantics of Data Streams and Operators’. In: Proceedings of the
10th International Conference on Database Theory. ICDT’05. Edinburgh,
UK: Springer-Verlag, pp. 37–52. isbn: 3-540-24288-0, 978-3-540-24288-8.
doi: 10.1007/978-3-540-30570-5_3.

Martin-Flatin, J.P. (1999). ‘Push vs. pull in Web-based network manage-
ment’. In: Integrated Network Management, 1999. Distributed Management
for the Networked Millennium. Proceedings of the Sixth IFIP/IEEE Interna-
tional Symposium on, pp. 3–18. doi: 10.1109/INM.1999.770671.

Marz, Nathan; Warren, James (2015). Big Data: Principles and Best Practices
of Scalable Realtime Data Systems. Early Access Edition, final book to
appear in 2015. Manning Publications Co. isbn: 9781617290343.

Mühl, Gero; Fiege, Ludger; Pietzuch, Peter (2006). Distributed Event-Based
Systems. Secaucus, NJ, USA: Springer-Verlag New York, Inc. isbn: 3-540-
32651-0.

Norton, Barry; Krummenacher, Reto (2010). ‘Consuming Dynamic Linked
Data’. In: Proceedings of the First International Workshop on Consuming
Linked Data (COLD2010). Ed. by Olaf Hartig; Andreas Harth; Juan Se-
queda. Vol. 665. CEUR Workshop Proceedings. COLD Workshop.

http://dx.doi.org/10.1145/2002259.2002281
http://www.complexevents.com/2011/08/23/event-processing-glossary-version-2-0/
http://www.complexevents.com/2011/08/23/event-processing-glossary-version-2-0/
http://dx.doi.org/10.1007/978-3-540-30570-5_3
http://dx.doi.org/10.1109/INM.1999.770671

152 Bibliography

Noy, Natasha; Rector, Alan (2006). Defining N-ary Relations on the Semantic
Web. W3C Working Group Note. World Wide Web Consortium.

Ostrowski, Krzysztof; Birman, Ken; Dolev, Danny (2007). ‘Live Distributed
Objects: Enabling the Active Web’. In: IEEE Internet Computing 11.6,
pp. 72–78. issn: 1089-7801. doi: 10.1109/MIC.2007.131.

Pellegrino, Laurent; Huet, Fabrice; Baude, Françoise; Alshabani, Amjad
(2013). ‘A Distributed Publish/Subscribe System for RDF Data’. In: Data
Management in Cloud, Grid and P2P Systems. Springer, pp. 39–50.

Pérez, Jorge; Arenas, Marcelo; Gutierrez, Claudio (2009). ‘Semantics and
complexity of SPARQL’. In: ACM Trans. Database Syst. 34.3, 16:1–16:45.
issn: 0362-5915. doi: 10.1145/1567274.1567278.

Petrovic, Milenko; Liu, Haifeng; Jacobsen, Hans-Arno (2005). ‘G-ToPSS:
Fast Filtering of graph-based Metadata’. In: WWW ’05: Proceedings of
the 14th International Conference on World Wide Web. New York, NY, USA:
ACM, pp. 539–547. isbn: 1-59593-046-9. doi: 10.1145/1060745.1060824.

Le-Phuoc, Danh; Dao-Tran, Minh; Parreira, Josiane Xavier; Hauswirth,
Manfred (2011). ‘A native and adaptive approach for unified processing
of linked streams and linked data’. In: Proceedings of the 10th international
conference on The semantic web - Volume Part I. ISWC’11. Berlin, Heidelberg:
Springer-Verlag, pp. 370–388. isbn: 978-3-642-25072-9.

Pietzuch, Peter R.; Bacon, Jean M. (2002). ‘Hermes: A Distributed Event-
Based Middleware Architecture’. In: ICDCSW ’02: Proceedings of the 22nd
International Conference on Distributed Computing Systems. Washington,
DC, USA: IEEE Computer Society, pp. 611–618. isbn: 0-7695-1588-6.

Pinto, H. Sofia; Martins, J. P. (2000). ‘Reusing Ontologies’. In: In AAAI 2000
Spring Symposium on Bringing Knowledge to Business Processes. AAAI
Press, pp. 77–84.

Qian, Jianfeng; Yin, Jianwei; Shi, Dongcai; Dong, Jinxiang (2008). ‘Explor-
ing a Semantic Publish/Subscribe Middleware for Event-Based SOA’. In:
APSCC ’08: Proceedings of the 2008 IEEE Asia-Pacific Services Computing
Conference. Washington, DC, USA: IEEE Computer Society, pp. 1269–
1275. isbn: 978-0-7695-3473-2. doi: 10.1109/APSCC.2008.153.

Rinne, Mikko; Abdullah, Haris; Törmä, Seppo; Nuutila, Esko (2012). ‘Pro-
cessing Heterogeneous RDF Events with Standing SPARQL Update
Rules’. In: OTM Conferences (2). Ed. by Robert Meersman; Hervé Panetto;
Tharam S. Dillon; Stefanie Rinderle-Ma; Peter Dadam; Xiaofang Zhou;

http://dx.doi.org/10.1109/MIC.2007.131
http://dx.doi.org/10.1145/1567274.1567278
http://dx.doi.org/10.1145/1060745.1060824
http://dx.doi.org/10.1109/APSCC.2008.153

Bibliography 153

Siani Pearson; Alois Ferscha; Sonia Bergamaschi; Isabel F. Cruz. Vol. 7566.
Lecture Notes in Computer Science. Springer, pp. 797–806. isbn: 978-3-
642-33614-0, 978-3-642-33615-7. doi: 10.1007/978-3-642-33615-7_24.

Rinne, Mikko; Blomqvist, Eva; Keskisärkkä, Robin; Nuutila, Esko (2013).
‘Event Processing in RDF’. In: 4th Workshop on Ontology and Semantic
Web Patterns (WOP2013). CEUR Workshop Proceedings.

Rozsnyai, S.; Vecera, R.; Schiefer, J.; Schatten, A. (2007a). ‘Event Cloud -
Searching for Correlated Business Events’. In: E-Commerce Technology and
the 4th IEEE International Conference on Enterprise Computing, E-Commerce,
and E-Services, 2007. CEC/EEE 2007. The 9th IEEE International Conference
on, pp. 409–420. doi: 10.1109/CEC-EEE.2007.47.

Rozsnyai, Szabolcs; Schiefer, Josef; Schatten, Alexander (2007b). ‘Concepts
and models for typing events for event-based systems’. In: Proceedings
of the 1st ACM International Conference on Distributed Event-Based Systems.
New York, NY, USA: ACM, pp. 62–70. isbn: 978-1-59593-665-3. doi: 10.
1145/1266894.1266904.

Russell, Alex (2006). Comet: Low Latency Data for the Browser. Online Article.
http://infrequently.org/2006/03/comet-low-latency-data-for-the-
browser/. Last visited: 2014-05-02.

Scherp, Ansgar; Franz, Thomas; Saathoff, Carsten; Staab, Steffen (2009).
‘F–a Model of Events based on the foundational Ontology Dolce+DnS
Ultralight’. In: Proceedings of the fifth International Conference on Knowledge
Capture. K-CAP ’09. New York, NY, USA: ACM, pp. 137–144. isbn: 978-1-
60558-658-8. doi: 10.1145/1597735.1597760.

Schmidt, Kay-Uwe; Stühmer, Roland; Stojanovic, Ljiljana (2008). ‘Blend-
ing Complex Event Processing with the RETE Algorithm’. In: Proc. of
iCEP2008: 1st International workshop on Complex Event Processing for the
Future Internet colocated with the Future Internet Symposium (FIS2008). Ed.
by Darko Anicic; Christian Brelage; Opher Etzion; Nenad Stojanovic.
Vol. 412. CEUR Workshop Proceedings (CEUR-WS.org, ISSN 1613-0073).

Sen, Sinan; Stojanovic, Nenad (2010). ‘GRUVe: A Methodology for Com-
plex Event Pattern Life Cycle Management’. In: Advanced Information
Systems Engineering. Ed. by Barbara Pernici. Vol. 6051. Lecture Notes
in Computer Science. Springer Berlin / Heidelberg, pp. 209–223. doi:
{10.1007/978-3-642-13094-6_17}.

http://dx.doi.org/10.1007/978-3-642-33615-7_24
http://dx.doi.org/10.1109/CEC-EEE.2007.47
http://dx.doi.org/10.1145/1266894.1266904
http://dx.doi.org/10.1145/1266894.1266904
http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/
http://infrequently.org/2006/03/comet-low-latency-data-for-the-browser/
http://dx.doi.org/10.1145/1597735.1597760
http://dx.doi.org/{10.1007/978-3-642-13094-6_17}

154 Bibliography

Sen, Sinan; Stojanovic, Nenad; Lin, Ruofeng (2009). ‘A graphical editor
for complex event pattern generation’. In: Proceedings of the 3rd ACM
International Conference on Distributed Event-Based Systems. New York,
NY, USA: ACM, pp. 1–2. isbn: 978-1-60558-665-6. doi: 10.1145/1619258.
1619309.

Shaw, Ryan; Troncy, Raphael; Hardman, Lynda (2009). ‘LODE: Linking
Open Descriptions of Events’. In: The Semantic Web. Vol. 5926. Lecture
Notes in Computer Science. Springer Berlin / Heidelberg, pp. 153–167.
isbn: 978-3-642-10870-9. doi: 10.1007/978-3-642-10871-6_11.

Stadtmüller, Steffen; Speiser, Sebastian; Harth, Andreas; Studer, Rudi
(2013). ‘Data-Fu: A Language and an Interpreter for Interaction with
Read/Write Linked Data’. In: Proceedings of the 22nd International Con-
ference on World Wide Web. Republic and Canton of Geneva, Switzer-
land: International World Wide Web Conferences Steering Committee,
pp. 1225–1236.

Stojanovic, Nenad; Stojanovic, Ljiljana; Anicic, Darko; Ma, Jun; Sen, Sinan;
Stühmer, Roland (2011). ‘Semantic Complex Event Reasoning – Beyond
Complex Event Processing’. In: Foundations for the Web of Information and
Services. Ed. by Dieter Fensel. Springer Berlin Heidelberg, pp. 253–279.
isbn: 978-3-642-19797-0. doi: 10.1007/978-3-642-19797-0_14.

Stojanovic, Nenad; Stojanovic, Ljiljana; Stühmer, Roland (2013). ‘Tutorial:
Personal Big Data Management in Cyber-physical Systems – The Role of
Event Processing’. In: Proceedings of the 7th ACM international conference
on Distributed event-based systems. New York, NY, USA. isbn: 978-1-4503-
1758-0. doi: 10.1145/2488222.2488348.

Stojanovic, Nenad; Stühmer, Roland; Gibert, Philippe; Baude, Françoise
(2012). ‘Tutorial: Where Event Processing Grand Challenge meets Real-
time Web: PLAY Event Marketplace’. In: Proceedings of the 6th ACM
International Conference on Distributed Event-Based Systems. Berlin, Ger-
many: ACM, pp. 341–352. isbn: 978-1-4503-1315-5. doi: 10.1145/2335484.
2335521.

Studer, Rudi; Benjamins, V. Richard; Fensel, Dieter (1998). ‘Knowledge
engineering: Principles and methods’. In: Data & Knowledge Engineering
25.1–2, pp. 161–197. issn: 0169-023X. doi: 10.1016/S0169-023X(97)00056-
6.

http://dx.doi.org/10.1145/1619258.1619309
http://dx.doi.org/10.1145/1619258.1619309
http://dx.doi.org/10.1007/978-3-642-10871-6_11
http://dx.doi.org/10.1007/978-3-642-19797-0_14
http://dx.doi.org/10.1145/2488222.2488348
http://dx.doi.org/10.1145/2335484.2335521
http://dx.doi.org/10.1145/2335484.2335521
http://dx.doi.org/10.1016/S0169-023X(97)00056-6
http://dx.doi.org/10.1016/S0169-023X(97)00056-6

Bibliography 155

Stühmer, Roland; Anicic, Darko; Sen, Sinan; Ma, Jun; Schmidt, Kay-Uwe;
Stojanovic, Nenad (2009a). ‘Client-side Event Processing for Personal-
ized Web Advertisement’. In: On the Move to Meaningful Internet Systems:
OTM 2009. Vol. 5871. Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, pp. 1069–1086. isbn: 978-3-642-05150-0. doi: 10.1007/978-
3-642-05151-7_23.

Stühmer, Roland; Anicic, Darko; Sen, Sinan; Ma, Jun; Schmidt, Kay-Uwe;
Stojanovic, Nenad (2009b). ‘Lifting events in RDF from interactions with
annotated Web pages’. In: The Semantic Web - ISWC 2009. Vol. 5823. Lec-
ture Notes in Computer Science. Springer Berlin / Heidelberg, pp. 893–
908. isbn: 978-3-642-04929-3. doi: {10.1007/978-3-642-04930-9_56}.

Stühmer, Roland; Anicic, Darko; Sen, Sinan; Stojanovic, Nenad (2009c).
‘Client-side Event Processing for Personalized Web Advertisement —
[Demo]’. In: Proceedings of the 3rd ACM International Conference on Dis-
tributed Event-Based Systems. New York, NY, USA: ACM, pp. 1–2. isbn:
978-1-60558-665-6. doi: 10.1145/1619258.1619307.

Stühmer, Roland; Verginadis, Yiannis; Alshabani, Iyad; Morsellino, Thomas;
Aversa, Antonio (2013). ‘PLAY: Semantics-Based Event Marketplace’.
In: 14th IFIP Working Conference on Virtual Enterprise – Special Session on
Event-Driven Collaborative Networks. Ed. by Luis M. Camarinha-Matos;
Raimar J. Scherer. Vol. 408. IFIP Advances in Information and Commu-
nication Technology. Springer, pp. 699–707. doi: 10.1007/978-3-642-
40543-3_73.

Truptil, Sebastien; Barthe, Anne-Marie; Benaben, Frederick; Stühmer, Ro-
land (2012). ‘Nuclear Crisis Use-Case Management in an event-driven
Architecture’. In: Business Process Management Workshops. Ed. by Florian
Daniel; Kamel Barkaoui; Schahram Dustdar. isbn: 978-3-642-28107-5.
doi: 10.1007/978-3-642-28108-2_45.

Villata, Serena; Delaforge, Nicolas; Gandon, Fabien (2011). S4AC Vocabu-
lary Specification. Online resource. http://ns.inria.fr/s4ac Last accessed
2014-05-02.

Völkel, Max (2006). ‘RDFReactor – From Ontologies to Programatic Data
Access’. In: Proc. of the Jena User Conference 2006. HP Bristol.

Wagner, Andreas; Anicic, Darko; Stühmer, Roland; Stojanovic, Nenad;
Harth, Andreas; Studer, Rudi (2010). ‘Linked Data and Complex Event
Processing for the Smart Energy Grid’. In: Proc. of Linked Data in the

http://dx.doi.org/10.1007/978-3-642-05151-7_23
http://dx.doi.org/10.1007/978-3-642-05151-7_23
http://dx.doi.org/{10.1007/978-3-642-04930-9_56}
http://dx.doi.org/10.1145/1619258.1619307
http://dx.doi.org/10.1007/978-3-642-40543-3_73
http://dx.doi.org/10.1007/978-3-642-40543-3_73
http://dx.doi.org/10.1007/978-3-642-28108-2_45
http://ns.inria.fr/s4ac

156 Bibliography

Future Internet at the Future Internet Assembly. Ed. by Sören Auer; Stefan
Decker; Manfred Hauswirth. Vol. 700. CEUR Workshop Proceedings
ISSN 1613-0073.

Weaver, Jesse; Tarjan, Paul (2012). ‘Facebook Linked Data via the Graph
API’. In: Semantic Web Journal. doi: 10.3233/SW-2012-0078.

Weidlich, Matthias; Mendling, Jan; Gal, Avigdor (2013). ‘Net-Based Anal-
ysis of Event Processing Networks – The Fast Flower Delivery Case’.
In: Application and Theory of Petri Nets and Concurrency. Ed. by José-
Manuel Colom; Jörg Desel. Vol. 7927. Lecture Notes in Computer Sci-
ence. Springer Berlin Heidelberg, pp. 270–290. isbn: 978-3-642-38696-1.
doi: 10.1007/978-3-642-38697-8_15.

Xing, Ying; Zdonik, Stan; Hwang, Jeong-Hyon (2005). ‘Dynamic Load
Distribution in the Borealis Stream Processor’. In: ICDE ’05: Proceedings
of the 21st International Conference on Data Engineering. Washington, DC,
USA: IEEE Computer Society, pp. 791–802. isbn: 0-7695-2285-8. doi:
10.1109/ICDE.2005.53.

Zhang, Ying; Duc, PhamMinh; Corcho, Oscar; Calbimonte, Jean-Paul
(2012). ‘SRBench: A Streaming RDF/SPARQL Benchmark’. In: The Se-
mantic Web — ISWC 2012. Vol. 7649. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, pp. 641–657. isbn: 978-3-642-35175-4. doi:
10.1007/978-3-642-35176-1_40.

http://dx.doi.org/10.3233/SW-2012-0078
http://dx.doi.org/10.1007/978-3-642-38697-8_15
http://dx.doi.org/10.1109/ICDE.2005.53
http://dx.doi.org/10.1007/978-3-642-35176-1_40

Index

Active Web 2
see also Real-time Web

AJAX . 31, 95
AMIT . 30
Apache S4 29
Apache Storm 29, 76
Ask query see SPARQL
atomic event . . . see simple event
atomicity 29, 94

Backbone.js 92

C-SPARQL 36, 37, 110
chunked transfer encoding . . .93
Comet 31, 95
complex eventsee event
Construct query . . . see SPARQL
content negotiation 91, 95
content-based publish/subscribe

see publish/subscribe
continuous query see query
CQELS37, 110

DcepManagementApi 77, 90
DcepMonitoringApi 77
DcepManager 78
derived event see event

design science 6
DistributedEtalis 78
DOLCE 36, 47, 55
Dolce Ultralight 47

EP-SPARQL 36, 37, 41
ETALIS36, 37, 59, 67, 80, 108
event . 26

complex 27, 59
composite27, 48
derived 5, 27, 67, 83
historic 15, 28, 37, 49, 64, 81, 96,

120
interval-based 16, 27, 36, 38, 47
point-based 16, 27, 38, 47
simple 5, 27

event identity . . 28, 48, 49, 70, 96
event marketplace 17, 45, 99
event model

E* . 36
F . 36
LODE . 36
WEF . 30

event processing 28
Event Processing Fabric . . . 2, 17

see also Real-time Web
event processing system . . 29, 36

158 Index

event-at-a-time .29, 37, 41, 61, 70
EventCloud 75, 112, 117, 138

fabric see Event Processing Fabric
fast flower delivery 122
federated query see query

garbage collection 38, 69, 109, 118
grand challenge 2, 17

historic event see event
HTML5 3, 31
httpRange-14 issue 49, 88
hybrid query see query

identity . . . see event identity, see
stream identity, see user iden-
tity

identity management22, 46
immutability 13, 27, 133
INSTANS 36, 38
Internet of Services 131
Internet of Things 13, 96, 97, 131
interoperability . 5, 12, 13, 55, 98,

110, 128

join
equi- . 81
intermediate results 81, 83
non-equi-81
order 81, 83, 84

JSON-LD 133

Lambda Architecture 39, 61, 132
Linked Data 14, 22, 27, 49, 80, 91,

92, 123
Linked Data-Fu 36, 37

long-polling 31

Maven 53, 139
multitenancy 18, 85, 129

ontology 13, 36, 55, 98
ontology re-use13, 45, 55, 98
OWL . 88

Pingback . 32
ProActive 76, 133
property

inverse . 88
symmetric88
transitive 88

publish/subscribe 25, 73, 90
content-based 26
topic-based . . 26, 47, 75, 76, 80

PublishApi 77
PubSubHubbub 32
pull . 4, 24
punctuation 94
push 4, 14, 25
PutGetApi 77

quadruple 22, 49, 70, 94
query

continuous38, 79
federated 37, 41, 61, 73, 75, 80,

112
hybrid 7, 15, 39, 61, 79, 113, 120

query decomposition 75, 79
QueryDispatcher 78

raw event see simple event
RDFReactor 52, 138
Reactive Web 2

Index 159

see also Real-time Web
Real-time Web 2, 16, 17
reasoning

OWL . 88
RDFS . 111

request/response . . . 3, 13, 16, 25
requirement

Adaptivity 17, 44, 56, 57, 61, 71,
102, 107

Event-driven . . 17, 61, 71, 102,
107

Infrastructure 17, 102, 107
Open Standards 17, 44, 56, 57,

61, 71, 85, 102, 107
Linked Data Principles for

Modelling . . . 14, 44, 56, 57,
106

Linked Data Principles for
Publishing . . 14, 91, 92, 95,
102, 106

Event Metadata . 18, 44, 56, 57,
102, 103, 107

Multitenancy . . 18, 85, 86, 102,
103, 107

Events are first-class objects 12,
44, 56, 57, 102, 106

Inter-event relationships 13, 44,
56, 57, 106

Ontology re-use 13, 44, 55–57,
98, 106, 110

Time properties . 12, 44, 56, 57,
106

Type hierarchy . . 12, 44, 56, 57,
106

Support for the data model 15,
61, 70, 71, 106

Hybrid Querying 15, 61, 70, 71,
102, 107

Temporal Operators 16, 61, 62,
70, 71, 107

Query Expressivity .19, 61, 71,
107

Mobility 19, 44, 56, 57, 107
Support for Programmers . 19,

51, 102, 103, 107
Push-data on the Web . 14, 96,

102, 106
REST 24, 76, 90
Rete . 38
retraction 13, 28

S4AC Vocabulary 40
schema re-use see ontology

re-use
Select querysee SPARQL
Semantic Pingback 32
Server-Sent Events 31
set-at-a-time29, 41
simple event see event
SIOC 87, 98, 113
SIOC Access 40
situation awareness . . . 4, 16, 131
SOAP . 24, 76
Social Web 96, 132
Sparkwave 36, 38
SPARQL

Ask query . 23, 63, 88, 111, 112
Construct query 23, 62, 65, 71,

79, 98, 111
Select query 23, 63, 82

SPARQLStream 37, 110
SRBench 110

160 Index

stream identity .47, 50, 80, 88, 96
SubscribeApi 77

time
application 60
interval-based see event
point-based see event
system . 61

topic . 75
topic-based publish/subscribe see

publish/subscribe
TriG . 49
triple . 22
type safety 44, 52, 76

user identity 88

Values clause 81
variable binding 62, 81

W3C . . 3, 23, 31, 40, 55, 56, 70, 86
Web of Events 2

see also Real-time Web
WebAccessControl 40, 55, 86
WebApp . 99
WebHooks 32, 97
WebSockets 31
Where clause 62, 63, 65, 82
WS-Notification 76, 90, 97

XML Schema 45

Yahoo Pipes 32

9 783731 502654

ISBN 978-3-7315-0265-4

w
e
b
-o

r
ie

n
te

d
 e

ve
n
t

p
r
o
c
e
s
s
in

g
Ro

la
nd

 S
tü

hm
er

Based on the observation that an increasing volume of real-time data

is available on the Web and that a technology is needed to make sense

of these data we raised the principal research question in this work:

How can the Web be made situation-aware? Event processing is a

suitable technology for gaining necessary real-time results. However,

most existing work in event processing is designed for closed-

domain settings. Thus, we collected requirements for event

processing on the Web of many users and many applica-

tion domains. Based on these requirements we developed

models, methods and an instantiation (system) to make the

Web situation-aware: Our models describe a schema for

events and a language to process events. The schema

language RDFS used in our models is multi-schema

friendly allowing the re-use and mixing of schemas

from diverse users and application domains.

Furthermore, our methods describe protocols

to exchange events on the Web, algorithms

to execute the language and to calculate

access rights. Finally, our system real-

ises and integrates these contribu-

tions in a running implementation.

	Figures
	Tables
	Listings
	Abbreviations
	1 Introduction
	1.1 Research Questions
	1.2 Research Paradigm and Methodology
	1.3 Contributions of this Thesis
	1.4 Previous Publications
	1.5 Guide to the Reader

	2 Requirements
	2.1 Requirements for Event Modelling (Event Format)
	2.2 Web Requirements
	2.3 Linked Data Requirements
	2.4 Requirements for Event Processing (Pattern Language)
	2.5 Event Processing Grand Challenge
	2.6 Event Marketplace
	2.7 Requirements from Scenarios

	3 Foundations
	3.1 Resource Description Framework (RDF) and Linked Data
	3.2 SPARQL Protocol and RDF Query Language
	3.3 REST versus SOAP
	3.4 Push versus Pull
	3.5 Publish/Subscribe
	3.6 Events
	3.7 Event Processing Systems
	3.8 Event Formats
	3.9 Protocols for Real-time Data on the Web
	3.10 Data Sources for Real-time Data on the Web

	4 State of the Art
	4.1 RDF Event Models
	4.2 RDF Streaming Systems
	4.3 Combining real-time with historical Querying
	4.4 Lambda Architecture
	4.5 RDF Access Control
	4.6 Relationship with EP-SPARQL

	5 A Model for Events
	5.1 Introduction: An open Event Model
	5.2 Requirements
	5.3 The Model
	5.4 Tools
	5.5 Discussion

	6 A Pattern Language for Events
	6.1 Introduction: A real-time Query Language for RDF Event Streams
	6.2 Requirements
	6.3 Formalism: Syntax and Semantics of the Language
	6.4 Query Decomposition
	6.5 Discussion

	7 An Infrastructure for Events
	7.1 Architecture
	7.2 Event Processing
	7.3 Access Control
	7.4 RESTful Services
	7.5 Linked Data Streaming
	7.6 Event Adapters
	7.7 Web Application
	7.8 Discussion

	8 Evaluation
	8.1 Fulfilment of Requirements
	8.2 Efficiency of the Approach
	8.3 Comparison with Related Work
	8.4 Overall System Test
	8.5 Fast Flower Delivery Scenario
	8.6 Discussion

	9 Conclusions and Outlook
	9.1 Summary of the Results
	9.2 Significance of the Results
	9.3 Outlook

	Appendix
	A Open-source Contributions
	A.1 Source Code
	A.2 Binary Artefacts
	A.3 Grammar

	B Listings
	B.1 Overall System Test

	Bibliography
	Index

