283 research outputs found

    Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimize total tardiness

    Get PDF
    The permutation flow shop scheduling problem is one of the most studied operations research related problems. Literally, hundreds of exact and approximate algorithms have been proposed to optimise several objective functions. In this paper we address the total tardiness criterion, which is aimed towards the satisfaction of customers in a make-to-order scenario. Although several approximate algorithms have been proposed for this problem in the literature, recent contributions for related problems suggest that there is room for improving the current available algorithms. Thus, our contribution is twofold: First, we propose a fast beam-search-based constructive heuristic that estimates the quality of partial sequences without a complete evaluation of their objective function. Second, using this constructive heuristic as initial solution, eight variations of an iterated-greedy-based algorithm are proposed. A comprehensive computational evaluation is performed to establish the efficiency of our proposals against the existing heuristics and metaheuristics for the problem.Ministerio de Ciencia e Innovación DPI2013-44461-PMinisterio de Ciencia e Innovación DPI2016-80750-

    An effective iterated greedy algorithm for the mixed no-idle flowshop scheduling problem

    Full text link
    In the no-idle flowshop, machines cannot be idle after finishing one job and before starting the next one. Therefore, start times of jobs must be delayed to guarantee this constraint. In practice machines show this behavior as it might be technically unfeasible or uneconomical to stop a machine in between jobs. This has important ramifications in the modern industry including fiber glass processing, foundries, production of integrated circuits and the steel making industry, among others. However, to assume that all machines in the shop have this no-idle constraint is not realistic. To the best of our knowledge, this is the first paper to study the mixed no-idle extension where only some machines have the no-idle constraint. We present a mixed integer programming model for this new problem and the equations to calculate the makespan. We also propose a set of formulas to accelerate the calculation of insertions that is used both in heuristics as well as in the local search procedures. An effective iterated greedy (IG) algorithm is proposed. We use an NEH-based heuristic to construct a high quality initial solution. A local search using the proposed accelerations is employed to emphasize intensification and exploration in the IG. A new destruction and construction procedure is also shown. To evaluate the proposed algorithm, we present several adaptations of other well-known and recent metaheuristics for the problem and conduct a comprehensive set of computational and statistical experiments with a total of 1750 instances. The results show that the proposed IG algorithm outperforms existing methods in the no-idle and in the mixed no-idle scenarios by a significant margin.Quan-Ke Pan is partially supported by the National Science Foundation of China 61174187, Program for New Century Excellent Talents in University (NCET-13-0106), Science Foundation of Liaoning Province in China (2013020016), Basic scientific research foundation of Northeast University under Grant N110208001, Starting foundation of Northeast University under Grant 29321006, and Shandong Province Key Laboratory of Intelligent Information Processing and Network Security (Liaocheng University). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "RESULT - Realistic Extended Scheduling Using Light Techniques" with reference DPI2012-36243-C02-01 co-financed by the European Union and FEDER funds and by the Universitat Politecnica de Valencia, for the project MRPIV with reference PAID/2012/202.Pan, Q.; Ruiz García, R. (2014). An effective iterated greedy algorithm for the mixed no-idle flowshop scheduling problem. Omega. 44:41-50. https://doi.org/10.1016/j.omega.2013.10.002S41504

    A computational evaluation of constructive and improvement heuristics for the blocking flow shop to minimize total flowtime

    Get PDF
    This paper focuses on the blocking flow shop scheduling problem with the objective of total flowtime minimisation. This problem assumes that there are no buffers between machines and, due to its application to many manufacturing sectors, it is receiving a growing attention by researchers during the last years. Since the problem is NP-hard, a large number of heuristics have been proposed to provide good solutions with reasonable computational times. In this paper, we conduct a comprehensive evaluation of the available heuristics for the problem and for related problems, resulting in the implementation and testing of a total of 35 heuristics. Furthermore, we propose an efficient constructive heuristic which successfully combines a pool of partial sequences in parallel, using a beam-search-based approach. The computational experiments show the excellent performance of the proposed heuristic as compared to the best-so-far algorithms for the problem, both in terms of quality of the solutions and of computational requirements. In fact, despite being a relative fast constructive heuristic, new best upper bounds have been found for more than 27% of Taillard’s instances.Ministerio de Ciencia e Innovación DPI2013-44461-P/DP

    A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation

    Get PDF
    [EN] The permutation flowshop problem is a classic machine scheduling problem where n jobs must be processed on a set of m machines disposed in series and where each job must visit all machines in the same order. Many production scheduling problems resemble flowshops and hence it has generated much interest and had a big impact in the field, resulting in literally hundreds of heuristic and metaheuristic methods over the last 60 years. However, most methods proposed for makespan minimisation are not properly compared with existing procedures so currently it is not possible to know which are the most efficient methods for the problem regarding the quality of the solutions obtained and the computational effort required. In this paper, we identify and exhaustively compare the best existing heuristics and metaheuristics so the state-of-the-art regarding approximate procedures for this relevant problem is established. (C) 2016 Elsevier B.V. All rights reserved.The authors are sincerely grateful to the anonymous referees, who provide very valuable comments on the earlier version of the paper. This research has been funded by the Spanish Ministry of Science and Innovation, under projects "ADDRESS" (DPI2013-44461-P/DPI) and "SCHEYARD" (DPI2015-65895-R) co-financed by FEDER funds.Fernandez-Viagas, V.; Ruiz García, R.; Framinan, J. (2017). A new vision of approximate methods for the permutation flowshop to minimise makespan: State-of-the-art and computational evaluation. European Journal of Operational Research. 257(3):707-721. https://doi.org/10.1016/j.ejor.2016.09.055S707721257

    A beam-search-based constructive heuristic for the PFSP to minimise total flowtime

    Get PDF
    In this paper we present a beam-search-based constructive heuristic to solve the permutation flowshop scheduling problem with total flowtime minimisation as objective. This well-known problem is NP-hard, and several heuristics have been developed in the literature. The proposed algorithm is inspired in the logic of the beam search, although it remains a fast constructive heuristic. The results obtained by the proposed algorithm outperform those obtained by other constructive heuristics in the literature for the problem, thus modifying substantially the state-of-the-art of efficient approximate procedures for the problem. In addition, the proposed algorithm even outperforms two of the best metaheuristics for many instances of the problem, using much lesser computation effort. The excellent performance of the proposal is also proved by the fact that the new heuristic found new best upper bounds for 35 of the 120 instances in Taillard’s benchmark.Ministerio de Ciencia e Innovación DPI2013-44461-PMinisterio de Ciencia e Innovación DPI2016-80750-

    A critical-path based iterated local search for the green permutation flowshop problem

    Get PDF
    The permutation flowshop scheduling problem is a widely studied combinatorial optimization problem with several real-world applications. In this paper we address a green variant of the problem with controllable processing times and two objective functions: one related to the service level of the factory (makespan) and another one related to the total cost or the total energy/carbon consumption. For this problem we propose a novel Critical-Path based Iterated Local Search. This metaheuristic incorporates several theoretical results to accelerate the search of solutions in the intensification phase. The proposed algorithm has been compared on an extensive benchmark with the most promising algorithms in the literature. The computational results show the excellent performance of the proposal.Ministerio de Ciencia e Innovación PID2019-108756RB-I00Junta de Andalucía US-126451

    An efficient discrete artificial bee colony algorithm for the blocking flow shop problem with total flowtime minimization

    Get PDF
    This paper presents a high performing Discrete Artificial Bee Colony algorithm for the blocking flow shop problem with flow time criterion. To develop the proposed algorithm, we considered four strategies for the food source phase and two strategies for each of the three remaining phases (employed bees, onlookers and scouts). One of the strategies tested in the food source phase and one implemented in the employed bees phase are new. Both have been proved to be very effective for the problem at hand. The initialization scheme named HPF2(¿, µ) in particular, which is used to construct the initial food sources, is shown in the computational evaluation to be one of the main procedures that allow the DABC_RCT to obtain good solutions for this problem. To find the best configuration of the algorithm, we used design of experiments (DOE). This technique has been used extensively in the literature to calibrate the parameters of the algorithms but not to select its configuration. Comparing it with other algorithms proposed for this problem in the literature demonstrates the effectiveness and superiority of the DABC_RCTPeer ReviewedPostprint (author’s final draft

    Trajectory Scheduling Methods for minimizing total tardiness in a flowshop

    Get PDF
    AbstractIn this paper, Trajectory Scheduling Methods (TSMs) are proposed for the permutation flowshop scheduling problem with total tardiness minimization criterion. TSMs belong to an iterative local search framework, in which local search is performed on an initial solution, a perturbation operator is deployed to improve diversification, and a restart point mechanism is used to select the new start point of another cycle. In terms of the insertion and swap neighborhood structures, six composite heuristics are introduced, which exploit the search space with a strong intensification effect. Based on purely insertion-based or swap-based perturbation structures, three compound perturbation structures are developed that construct a candidate restart point set rather than just a single restart point. The distance between the current best solution and each start point of the set is defined, according to which the diversification effect of TSMs can be boosted by choosing the most appropriate restart point for the next iteration. A total of 18 trajectory scheduling methods are constructed by different combinations of composite heuristics. Both the best and worst combinations are compared with three best existing sequential meta-heuristics for the considered problem on 540 benchmark instances. Experimental results show that the proposed heuristics significantly outperform the three best existing algorithms within the same computation time
    corecore