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Abstract

The permutation flow shop scheduling problem is one of the most studied op-
erations research related problems. Literally, hundreds of exact and approximate
algorithms have been proposed to optimise several objective functions. In this pa-
per we address the total tardiness criterion, which is aimed towards the satisfaction
of customers in a make-to-order scenario. Although several approximate algorithms
have been proposed for this problem in the literature, recent contributions for related
problems suggest that there is room for improving the current available algorithms.
Thus, our contribution is twofold: First, we propose a fast beam-search-based con-
structive heuristic that estimates the quality of partial sequences without a complete
evaluation of their objective function. Second, using this constructive heuristic as
initial solution, eight variations of an iterated-greedy-based algorithm are proposed.
A comprehensive computational evaluation is performed to establish the efficiency
of our proposals against the existing heuristics and metaheuristics for the problem.
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1 Introduction

The flow shop is a common manufacturing layout in which a set of n jobs has to be processed in a

set ofmmachines where each job follows the same route through the machines. For simplicity, the

problem is denoted by permutation flow shop (PFSP in the following) when the same sequence

of jobs is applied on each machine. The PFSP is one of the most studied optimization problems

in Operations Research. Among the objectives studied in the literature (see e.g. Pan and Ruiz,

2013; Fernandez-Viagas and Framinan, 2014; Fernandez-Viagas et al., 2016a), the minimisation

of the total tardiness is essential for manufacturing systems (Raman, 1995), since due dates

play an important role in these systems (Panwalkar et al., 1982) and delays may increase costs

and/or the dissatisfaction of customers (resulting in either a poor reputation, or even the loss of

customer) (Sen and Gupta, 1984).

According to the α|β|γ notation (see e.g. Pinedo, 1995), the PFSP to minimise total tardiness

can be denoted as Fm|prmu|
∑
Tj . Since this problem is known to be NP-hard (Du and Leung,

1990), during the last years several approximate algorithms –heuristics and metaheuristics– have

been proposed in the literature (see e.g. Vallada et al., 2008; Li et al., 2015; Karabulut, 2016).

However, these proposals have not been compared against themselves, or the comparison has

not been carried out under the same conditions, so the state-of-the-art regarding approximate

algorithms for the problem remains unclear. Instead, these methods have been usually compared

against either the genetic algorithm proposed by Vallada and Ruiz (2010), the Iterated Greedy

(IG) algorithm by Ruiz and Stützle (2007), and/or the NEHedd by Kim (1993), which is the

adaptation for the problem of the well-known NEH heuristic by Nawaz et al., 1983. The latter

two are considered key methods in the flowshop scheduling literature since the noteworthy papers

by Nawaz et al. (1983) and Ruiz and Stützle (2007), respectively. Regarding the NEHedd, it is

probably the key constructive heuristic for the problem due to several reasons (Fernandez-Viagas

and Framinan, 2015d): aside being an efficient heuristic for the problem, it is used to obtain

an initial solution by the rest of efficient constructive or improvement heuristics, and by more

than half of the efficient improvement heuristics or metaheuristics. Regarding IG, it remains

the cornerstone of subsequent algorithms in the flowshop literature and can be considered as
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the state-of-the-art algorithm for several scheduling problems (see e.g. Fernandez-Viagas and

Framinan, 2015b and Dubois-Lacoste et al., 2017)1.

Despite the preeminence of these two algorithms, recent advances in related scheduling prob-

lems have shown that they can be improved: On the one hand, some studies (see e.g. Dong et al.,

2009 and Pan and Ruiz, 2014) have found better results by varying the destruction-construction

phase in the IG for total flowtime minimisation, which is related to the problem under consid-

eration (see Fernandez-Viagas and Framinan, 2015d). On the other hand, recent constructive

heuristics based on a non-complete evaluation of the partial sequences have clearly outperformed

the original NEH for other objective functions (see e.g. Fernandez-Viagas and Framinan, 2015c;

Fernandez-Viagas et al., 2016a; Fernandez-Viagas and Framinan, 2017).

To tackle the aforementioned issues, the contribution of this work is twofold: We first im-

plement a beam search algorithm for the problem which constructs several partial sequences in

parallel. The algorithm estimates the value of the objective function for each partial sequence

based on specific variables of the problem. We then develop several iterated-greedy-based algo-

rithms to improve the pool of sequences generated by the beam search algorithm. To explore the

effect of the construction phase in the algorithm, we implement eight different methods based on

insertions, exchanges, randomness and optimizations of partial solutions. We finally compare the

proposals with the best performing algorithms in the literature in an exhaustive computational

evaluation.

The remainder of the paper is as follows: In Section 2 we formalise the problem and discuss its

background. In Section 3 we propose the beam search and the iterated-greedy-based algorithms.

These algorithms are compared with the state-of-the-art methods in Section 4. Finally, in Section

5 we discuss the main conclusions of the paper.
1IG is currently a state-of-the-art algorithm for makespan minimisation (Fm|prmu|Cmax). As stated

by Fernandez-Viagas et al. (2017), the speed up proposed by Taillard (1990) is probably one of main
reason of the good-performance of insertion phases -constructing jobs following a greedy method for that
scheduling problem- as compared to randomized ones.
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2 Problem Statement and Background

The problem under study can be set as follows: a set N of n jobs have to be processed in

a flowshop composed of a set M of m machines. Each job j ∈ {1, . . . , n} has a due date dj

and a processing time pij on each machine i ∈ {1, . . . ,m}. Given a sequence of jobs Π :=

(π1, . . . , πr, . . . , πn) where r ∈ {1, . . . , n} is an index of the position in a sequence, let Cij(Π)

(abbreviated to Cij whenever it does not lead to confusion) be the completion time of job j on

machine i according to sequence Π. Obviously, Cmj(Π) is the completion time of job j on the last

machine, and Cmπn(Π) = Cmax is the maximum completion time or makespan of the sequence.

The tardiness (earliness) of job j is defined as Tj = max{Cmj − dj , 0} (Ej = max{dj −Cmj , 0}).

Analogously, total tardiness, whose minimisation is the goal of our problem, is defined as
∑
Tj =∑n

j=1 max{Cmj − dj , 0}, while total earliness is defined as
∑
Ej =

∑n
j=1 max{dj −Cmj , 0}. Note

that the completion times can be computed recursively as follows:

Ciπj = max{Ci−1,πj , Ci,πj−1}+ piπj (1)

where C0πj = Ciπ0 = 0.

A number of approximate procedures have been proposed in the literature to provide good

solutions for this problem in reasonable computation times. A review and evaluation of these

algorithms prior to 2008 is given in Vallada et al. (2008). From this review, it turns out that the

NEHedd proposed by Kim (1993), the ENS2 by Kim et al. (1996), and the simulated annealing

algorithms by Hasija and Rajendran (2004) and Parthasarathy and Rajendran (1997) (denoted

as HR and SAH, respectively) are the most promising algorithms for the problem. Using the

same computer conditions, Framinan and Leisten (2008) propose a hybrid algorithm (denoted as

HA) which outperforms both the HR and the SAH′ (proposed by Parthasarathy and Rajendran,

1998)2. This algorithm combines the iterated greedy and the variable neighbourhood search

algorithms using a partial (adjacent-pairwise-exchange) local search in its construction phase, as

well as an insertion local search improvement. In addition, Framinan and Leisten (2008) have

2This SAH′ algorithm was not included in the computational evaluation of Vallada et al. (2008) due
to the resemblance of it with SAH.
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also proposed a speed up mechanism to decrease the complexity of the evaluation3. Recently,

Karabulut (2016) have found around 50% time saving when applying it to the NEH.

In parallel to the contribution by Framinan and Leisten (2008), Vallada and Ruiz (2010)

propose three genetic algorithms (GAPR, GAPR2, and GADV) that also outperform the HR

and SAH in a fair comparison, and using a similar speed up mechanism for the problem. The

best results were obtained by the GAPR version, although this algorithm was not compared

to HA. Laterly, several contributions have outperformed the GAPR algorithm. First, Cura

(2015) proposes an evolutionary algorithm (EA in the following), that outperforms both GAPR

and SAH. The algorithm includes a mating procedure to diversify the solutions. Two local

search methods with different neighbourhood sizes are employed, although the comparison is

not performed using the same conditions, i.e. the algorithms used for comparison were not re-

implemented. Secondly, several trajectory scheduling methods are proposed by Li et al. (2015)

using six different composite heuristics (denoted as CHi) and three perturbation methods. Let

us denote as TSMij the trajectory scheduling methods composed of composite heuristic CHi and

perturbation method j. Among these methods, the best results are found by TSM63. On the one

hand, under the same stopping criterion and the same computer conditions, TSM63 outperforms

the three genetic algorithms by Vallada and Ruiz (2010), i.e. GAPR, GAPR2, and GADV.

On the other hand, the proposed composite heuristics outperform the NEHedd but require

additional CPU times. Regarding NEHedd, Fernandez-Viagas and Framinan (2015d) analyse the

structure of the problem, finding that there are a high number of ties in the selection procedure of

NEHdd. Eight tie-breaking mechanisms are then proposed and compared with the original one,

resulting that each tie-breaking mechanism (with the exception of the random one) statistically

outperforms NEHedd. The most promising tie-breaking mechanisms are NEHedd(TBIT1) and

NEHedd(TBMS-Taillard, IT1) (these heuristics are denoted in the following as TBIT1 and TBTa,

3The speed up mechanism is a very common practice in the flowshop layout with permutation se-
quences. Taillard (1990) have proposed the first one for Fm|prmu|Cmax. Since then, several other
mechanisms have been proposed for different constraints and/or objectives. Naderi and Ruiz (2010), Rios-
Mercado and Bard (1998) and Fernandez-Viagas and Framinan (2015b) have successfully adapted them
for the DF |prmu|Cmax, Fm|sijk, prmu|Cmax and Fm|prmu|ε(Cmax/Tmax) problems, respectively. With
some modifications and lesser decrease in CPU times, they have been also adapted for the Fm|prmu|

∑
Cj ,

Fm|prmu|
∑
Tj , Fm|prmu|

∑
Ej +

∑
Tj and Fm|block|

∑
Cj problems by Li et al. (2009), Framinan

and Leisten (2008), Fernandez-Viagas et al. (2016a) and Fernandez-Viagas et al. (2016b), respectively.
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respectively). In addition, they also statistically improve GAPR when used as an initial solution

instead of the traditional NEHedd.

Recently, Karabulut (2016) propose KIG, an iterated greedy algorithm that incorporates

a random local search method instead of the traditional insertion local search method. The

search randomly performs insertion and exchanges using the speed up mechanism proposed by

Framinan and Leisten (2008), until no more improvement is achieved in n iterations. In addition,

it uses a simple annealing-like acceptance criterion with a constant temperature based on the

makespan and the due dates of the jobs. Although the authors do not compare their proposal

with algorithms specifically developed for the problem, they compare it with the original iterated

greedy algorithm proposed by Ruiz and Stützle (2007) –originally designed for the PFSP to

minimise makespan–, which has been reimplemented for the problem under consideration. It

is to note that such iterated greedy algorithm was found to be outperformed by GAPR for the

problem under study.

To summarise, several algorithms have been proposed in the literature to solve the problem

under consideration. However, the new picture of the efficient metaheuristics for the problem

remains unclear due to the following issues:

1. The most promising metaheuristics found by Vallada et al. (2008) have been outperformed

by GAPR and HA, but there is no comparison among these two latter algorithms and, to

the best of our knowledge, contributions after 2008 do not include HA in their comparisons.

2. There is no computational comparison among the recent iterative algorithms proposed in

the literature, i.e. EA, TSM63, and KIG.

3. Some metaheuristics are tested either under different computer conditions or versus non-

state-of-the-art metaheuristics (see e.g. Cura, 2015; Karabulut, 2016).

In this paper, in Section 3 we first propose both a beam search algorithm with a fixed stopping

criterion, and a set of eight different iterated-greedy-based algorithms varying their construction

phase. In addition, we perform a comprehensive computational evaluation of the heuristics and

metaheuristics in Section 4. By doing so, we establish the set of efficient algorithms for the

problem.
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3 Proposed algorithms: beam search and iterated-

greedy-based algorithms

In this section, we propose several approximate procedures to solve the problem. The first

proposal is a population-based constructive heuristic, which constructs several partial sequences

in parallel, appending jobs, one by one, at the end of the sequences (see Subsection 3.1). Secondly,

we propose several iterative improvement algorithms based on a single solution. Using the

previous heuristic as initial solution, these algorithms iteratively search for the local optimum

of a sequence obtained by a destruction-construction-based phase (see Subsection 3.2). Note

that the division between heuristics and metaheuristics is unclear in the literature and several

classifications have been proposed (see e.g. Zanakis et al., 1989; Zäpfel et al., 2010). In this

paper, we adopt the same definition as in Ruiz and Maroto (2005) and Fernandez-Viagas et al.

(2017), where metaheuristics are defined as iterative improvement algorithms with stopping

criteria depending on CPU time or number of iterations. In contrast, heuristics naturally stop

when their steps are finished.

3.1 Beam search algorithm

In this subsection we present a beam search algorithm, denoted by BS(γ), with an advance prior-

ity evaluation function. Similarly to the B&B algorithm, this approximate procedure constructs

a search tree, where each node is formed by a partial sequence and the child nodes are obtained

by adding one of the unscheduled jobs at the end of the parent node. However, only the most

γ promising nodes (denoted as beam width in the following) are kept for the next iteration.

Beam search has been successfully applied to several scheduling problems in the literature (see

e.g. Valente and Alves, 2005, 2008). Traditionally, two different functions have been applied to

evaluate the nodes (Valente, 2010):

• Priority evaluation function. The node is evaluated by estimating the influence of the

last job in the partial sequence. This evaluation of just one job in the node (omitting

the influence of the other jobs) implies both that computing this function requires a low
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complexity order and that it is node-dependent, i.e. only children from the same parent

node can be compared.

• Total cost evaluation function. The final objective function value to be achieved for this

node is estimated taking into consideration all unscheduled jobs. Obviously, this function

is node-independent as complete sequences are estimated. In addition, its complexity

increases significantly.

Recently, Fernandez-Viagas et al. (2016b) and Fernandez-Viagas and Framinan (2017) have

achieved excellent results using a node-independent priority evaluation function. The idea is

to assign to each node a “genetic” code which keeps the historical behaviour of that node. By

means of both this code and the influence of the last element, child nodes from different parents

can be compared. This approach is applied in our proposal.

The proposed beam search algorithm is composed of several nodes in n different levels. Let

us denote by Skl the partial sequence of the lth node in iteration k, with l ∈ [1, γ]. Each node

is then formed by a partial sequence Skl , Skl := (sk1,l, ..., skk,l), of k jobs, and by a set Ukl (with

Ukl := {uk1,l, ..., ukn−k,l}) of n − k unscheduled jobs. Whenever it does not lead to confusion, let

us also denote that node by Skl . For each iteration k, n − k child nodes are created from each

partial sequence Skl by adding one job from set Ukl at the end of the sequence. The best γ child

nodes are selected to be the partial sequences of the nodes for the next iteration, i.e. Sk+1
l ,

∀l ∈ {1, ..., γ}. More specifically, the steps of the proposed algorithm are as follows:

Step 1 Initialization

Step 2 While k = 2, . . . , n− 1, repeat:

Step 2.1 Branching

Step 2.2 Node evaluation

Step 2.3 Node selection

Step 3 Final evaluation

To clarify both the branching and candidate selection phases, a simple example with five jobs

and γ = 2, i.e. BS(2), is shown in Figure 1.
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Figure 1: Example of BS

Next, each phase is explained in more detail:

• Initialization (Step 1). The first node is formed by job j∗ with the minimum sum of

completion time on the last machine and weighted idle times, wj . Let us denote such sum

as index ξj , i.e. j∗ := arg minj{ξj} where:

ξj :=
m∑
i=1

pij + wj =
m∑
i=1

pij + (n− 2)
4 ·

m∑
i=2

(
m ·

∑i−1
i′=1 pi

′j

i− 1

)
, ∀ j ∈ [1, n] (2)

In case of ties, the job with minimum wj is chosen. See Liu and Reeves (2001), Fernandez-

Viagas et al. (2016b), and Fernandez-Viagas and Framinan (2017) for similar initializations.

• Branching (Step 2.1). Each node Skl is branched to form n− k child nodes. Child node v

(with v ∈ [1, n− k]) is constructed from the node by adding ukv,l at the end of the partial

sequence Skl . Note that the number of child nodes in iteration k is γ(n− k).

• Node evaluation (Step 2.2). As mentioned before, the child nodes are evaluated according

to an index that weights two components:

9



– The “genetic” code. This first component measures the genetic offspring of the child

node. By doing so, we are able to compare child nodes with different sequenced jobs,

i.e. from different nodes. Obviously, each one of the child nodes of node Skl has the

same genetic code.

– The influence of the last element. It measures the influence of the last job inserted

at the end of the partial sequence.

In order to define both influences, we explore the specific characteristics of the problem.

Regarding the genetic code of node Skl , its goal is twofold. On the one hand, it should

consider the contribution of the partial sequence to the objective function. As jobs in the

following iterations are added always at the end of the partial sequence, the total tardiness

of the jobs in the partial sequence stays unalterable until the end. On the other hand,

it should address the indirect influences on the objective function of the future jobs to

be added to the partial sequence. These influences make possible to compare child nodes

of different offspring. To achieve these goals, the genetic code incorporates the following

aspects which may be considered and balanced:

1. Cumulative total tardiness (TT ). It represents the total tardiness of partial sequences

Sk+1
l′

. Note that Sk+1
l′

represents the l′th best node of iteration k + 1 formed by

appending job ukv,l at the end of node Skl . As l and l′ are not necessarily the same

nodes, let us denote by job[l′ ] such job ukv,l and by branch[l′ ] such l. Then the

cumulative total tardiness of Sk+1
l′

is computed as follows:

TT k+1
l′

= TT k
branch[l′ ] + T k

job[l′ ],branch[l′ ], ∀ k = {2, . . . , n− 1}, l′ = {1, . . . , γ} (3)

where T kjl is the tardiness of job j of node Skl in iteration k.

2. Cumulative total earliness (TE). Analogously, it represents the total earliness of

partial sequences Sk+1
l′

. Denoting by Ekjl the earliness of job j of node Skl in iteration

k, the cumulative total earliness of node Sk+1
l′

in iteration k+ 1 is defined as follows:

10



TEk+1
l′

= TEk
branch[l′ ] + Ek

job[l′ ],branch[l′ ], ∀ k = {2, . . . , n− 1}, l′ = {1, . . . , γ} (4)

3. Cumulative weighted idle time (TI). It represents the cumulative weighted idle time

of each job of partial sequence Sk+1
l′

, which is defined by:

TIk+1
l′

= TIk
branch[l′ ] + Ik

job[l′ ],branch[l′ ], ∀ k = {2, . . . , n− 1}, l′ = {1, . . . , γ} (5)

where Ikjl is the weighted idle time between the last job of sequence Skl and job j, which is

inserted in the last position of the sequence, see Equation (6).

Ikjl =
m∑
i=2

m ·max{Ci−1,j − Ci,[k], 0}
i− 1 + (k − 1) · (m− i+ 1)/(n− 2) (6)

Note that, after the node selection phase, the cumulative total tardiness, total earliness

and weighted idle time are updated by incorporating the corresponding value of the last

job. Thereby, it avoids to completely re-calculate of them in each iteration. Obviously,

the influence of the cumulative total tardiness increases when the sequence contains more

jobs, while the weight of the indirect influence (i.e. the cumulative total earliness and

idle time) decreases with each iteration. More specifically, in the first iterations of the

algorithm, it seems better to choose sequences with high values of total idle times and

total earliness times to have more promising partial sequences for the next iterations. In

contrast, in the last iterations, the influence of the total tardiness becomes more relevant

as objective function of the problem. Among TE and TI, the total earliness seems to be

a better estimation of the tardiness of the unscheduled jobs in these last iterations. In

addition, by keeping TE in the last iterations, we break the greedy behaviour of the total

tardiness. To deal with these issues and after some preliminary tests, we propose weights

for the three components following the simple linear functions shown in Figure 2.
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Figure 2: Values of the weights of total tardiness, total earliness, and total weighted idle
time, depending of the iteration k.

Hence, the genetic code, denoted as F k
l′
, of node l′ in iteration k has the following expres-

sion:

F k
l′

= TIk
l′
·n− k − 1

n
+a·TEk

l′
·2n− k − 1

2n +b·TT k
l′
·k − 1 + n

2n , ∀ k = {2, . . . , n−1}, l
′ = {1, . . . , γ}

(7)

where a and b are parameters of the algorithm to balance the contribution of TI, TE and

TT . Implicitly, low values for a and b indicate that the contribution of TI is higher than

TE and TT . So, in order to reduce the number of parameters of the algorithm, only a

and b (for TE and TT , respectively) are considered, and the influence of TI is measured

varying this parameter as TI was normalized.

Regarding the index, denoted as Lkvl, employed to estimate the contribution of the last

job, ukvl, when evaluating child node v of node Skl , we follow a similar procedure to the

genetic code, where the weighted idle time and the earliness time are chosen as criteria.

Note that the influence of the tardiness of the last job is included in the earliness since a

tardy job indicates an earliness equals to 0. In addition, once several jobs are tardy, they

stay tardy in the following iterations and the influence of other elements should be taken

into account to choose the job. Regarding these other elements, several studies (see e.g.

Liu and Reeves, 2001; Fernandez-Viagas and Framinan, 2015c) found excellent results by

incorporating an estimation of the contribution of the unscheduled jobs. To deal with that,
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we add the total tardiness of all jobs ukvl, ∀v ∈ 1, ..., n− k, denoted by W k
l . Note that job

ukvl is also included inW k
l index of child node v. By doing so, we reduce the computational

effort of this index. Hence, index Lkvl can be defined by Expression (8), where c and e are

parameters of the algorithm again to balance the contributions of Ek
uk

vl
,l
andW k

l . Similarly

to F k
l′
, after a preliminary test, we use a decreasing function for the weight of the idle time,

and an increasing one for W k
l (the tardiness of the unscheduled jobs is closer to the real

one in the last iterations than in the first ones).

Lkvl = (n−k−1)·Ik
uk

vl
l
+c·Ek

uk
vl
,l
+ e

n− k + 1 ·W
k
l , ∀ k = {2, . . . , n−1}, l = {1, . . . , γ}, v = {1, . . . , n−k}

(8)

Then, each child node v obtained by node Skl is computed using index Gkvl which adds

both contributions:

Gkvl = F kl + Lkvl, ∀ k = {2, . . . , n− 1}, l = {1, . . . , γ}, v = {1, . . . , n− k} (9)

• Node selection (Step 2.3). Among the γ(n− k) child nodes in iteration k, the best γ ones

are kept as the set of nodes of iteration k+ 1. More specifically, in iteration k, the γ nodes

with the lowest values of the Gkvl indicator (∀v ∈ {1, . . . , n−k}, l ∈ {1, . . . , γ}) are selected

for the next iteration.

• Final evaluation (Step 3). The total tardiness of the nodes selected in the last iteration, i.e.

nodes Sn−1
l (∀l ∈ 1, ..., γ), is evaluated. The sequence yielding the minimal total tardiness

is the final sequence of the beam search algorithm.

3.2 Iterated-greedy-based algorithms, IA

The iterated greedy algorithm is a single-solution-based metaheuristic, originally proposed for

flow-shop-type scheduling problems by Ruiz and Stützle (2007). Starting with an initial solution,

this metaheuristic iteratively perturbs a sequence and searches for its local optimum. Then, the
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iterated greedy algorithm destructs several jobs of a sequence in each iteration, and constructs

them following a greedy approach. More specifically, in a destruction phase, d jobs are randomly

removed from the iteration sequence, denoted as Πi. Let us denote by Πr, Πr := (πr1, . . . , πrd), the

sequence formed by the removed jobs and by Πd the partial sequence of length n− d, formed by

Πi without the removed jobs. After that, in a construction phase, each job in Πr is inserted in the

position of Πd yielding the lowest value of the objective function. Πc is the so obtained sequence.

Finally, this metaheuristic looks for the local optimum of the constructed sequence and performs

a basic simulated annealing phase. In this subsection we propose eight simple Iterated Algorithms

based on the iterated greedy metaheuristic4, denoted as IA, consisting on the following same four

phases which are repeated until a stopping criterion is reached: destruction phase; construction

phase; local search phase; and a simple simulated annealing phase. As described earlier, the

destruction-construction phase plays an important role in the efficiency of the metaheuristic. In

order to take it into account, in this paper we propose and compare the following eight different

procedures:

1. Random insertion (let us denote by IARI the proposed algorithm using this construction

phase) This procedure replaces the greedy insertion of the traditional iterated greedy by

a random one. More specifically, each removed job πri , ∀i ∈ 1, . . . , d, is randomly inserted

in Πd.

2. Greedy insertion (IAGI). This is the traditional construction phase of the iterated greedy

algorithm, i.e. each removed job πri , ∀i ∈ 1, . . . , d, is inserted in the position of Πd yielding

the lowest total tardiness.

3. Random general swap (IARGS). This procedure replaces the destruction and construction

phase of the algorithm by performing d random exchanges between jobs, i.e., d jobs are

randomly chosen from Πi and exchanged with other jobs of this sequence.
4Note that the iterated greedy algorithm is closely related to the iterated local search and in fact, it

could be considered as a special case of the iterated local search. This latter algorithm begins with an
initial solution and iteratively modifies the current solution and looks for its local optimum. Therefore,
assuming that a special type of modification of a solution is to perform the destruction and construction
phase of the iterated greedy, both algorithms would be considered the same metaheuristic. However, in
order to maintain the coherence with previous proposals in the literature, we also use the term “iterated-
greedy-based algorithm” in the notation of our proposals.
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4. Greedy general swap (IAGGS). In this procedure, a job is randomly chosen from Πi and

exchanged with each job of the sequence. Sequence Πi is replaced by the exchange yielding

the lowest total tardiness. The procedure is repeated d times for d different jobs.

5. Random adjacent swap (IARAS). This procedure randomly chooses a job and exchanges

it with the next job of the sequence. The procedure is repeated d times.

6. Greedy insertion + Partial adjacent-swap-based local search method (IAGI_ALS). This

procedure is based on Framinan and Leisten (2008). Thereby, each job removed πri , ∀i ∈

{1, . . . , d} is inserted in the position of Πd yielding the lowest total tardiness (denoted as

position b), as in the greedy insertion procedure. After that, an adjacent pairwise exchange

is performed for the jobs between the last position of the partial sequence and position

b+ 1.

7. Insertion-based Local search + Greedy insertion (IAILS_GI). This procedure adapts the

procedure of destruction and construction proposed by Dubois-Lacoste et al. (2017). The

method performs an insertion-based local search on the partial sequence Πd, i.e. each job

of the sequence is removed and inserted in the best position. The procedure is repeated

until there is no improvement in a complete iteration. The best sequence found by the

algorithm replaces Πd. After that, the traditional construction phase (i.e. greedy insertion)

is applied.

8. Greedy insertion + Local search insertion(IAGI_ILS). This procedure is an adaptation of

the method proposed by Pan and Ruiz (2014) and Pan et al. (2017). Similarly as IAGI_ALS,

each removed job πri , ∀i ∈ {1, . . . , d} is inserted in the position b of Πd yielding the lowest

total tardiness. After that, jobs in positions b− 1 and b+ 1 are removed and reinserted in

the position yielding the lowest total tardiness.

After the destruction-construction procedure, a local optimum of sequence Πc is obtained

in the local search phase. This phase iteratively removes each job in sequence Πc and inserts

it in the position with the lowest vaue of the objective function. The phase is stopped after a

complete iteration without any improvement. Finally, the simulated annealing-like acceptance
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criterion proposed by Karabulut (2016) is applied due to its excellent performance. This simple

criterion is a variation of the proposal of Ruiz and Stützle (2007) for Fm|prmu|Cmax, which

has been successfully applied to other several objectives and/or scheduling problems (see e.g.

Fernandez-Viagas and Framinan, 2015a,b; Ribas et al., 2017). The criterion uses a constant

Temperature which depends on parameter T of the algorithm:

Temperature = T ·
∑n
j=1(LBCmax − dj)

n · 10 (10)

where LBCmax is the lower bound of the makespan following the procedure established by

Taillard (1993). The pseudo-code of the proposed metaheuristic is shown in Figure 3. Note that

BS is used as the initial solution of the proposed iterated-greedy-based algorithms.
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Procedure IAX(d, γ, T )
//Initial solution

Π := BS(γ, a, b, c, e);

//Best solution

Πb := Π;

while stopping criterion is not reached do
Πi := Π;

//Destruction phase

Πd := randomly remove d jobs from Πi and insert it in Πr;

//Construction phase

Πc := ConstructionPhase(Πd,Πr);

//Local search phase

Πl := LS(Πc);

//Simulated annealing criterion

if ∑Tj(Πl) < ∑
Tj(Π) then

Π = Πl;

if ∑Tj(Πl) < ∑
Tj(Πb) then

Πb = Πl;

end

else if random ≤ exp{−(Cmax(πl)− Cmax(π))/Temperature} then
Π = Πl;

end

end

end

Figure 3: Proposed iterated-greedy-based algorithms
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4 Computational Experience

In this section we compare the state-of-the-art algorithms against our proposals. Prior to per-

forming this computational evaluation, we establish the conditions adopted to achieve a fair

comparison. Firstly, in Subsection 4.1 we present the sets of instances generated. Secondly, the

measures to evaluate both the quality of the solutions and the computational requirements of

each algorithm are shown in Subsection 4.2. Regarding our proposals, two full experimental

parameter tunings are described in Subsection 4.3. Next, in Subsection 4.4, the state-of-the-art

algorithms, which are fully re-implemented, are shown. We compare them against our proposals

by carrying out two different computational evaluations for heuristics and metaheuristics, see

Subsections 4.5 and 4.6, respectively.

4.1 Sets of instances

In this paper, two benchmark testbeds, denoted as β1 and β2, are generated for the experiments

of our study. β1 is used for the calibration of the parameters of the proposed algorithms. The

computational evaluations of both heuristics and metaheuristics are carried out on benchmark β2.

By doing so, we avoid an over calibration of the parameters of our algorithms in the benchmark

of comparison.

• Benchmark β1: This benchmark is generated by the procedure described in Vallada

and Ruiz (2010). It contains 108 different sizes of the problem varying the parame-

ters n, m, T and R. Ten instances are generated for each combination of parameters

n ∈ {50, 150, 250, 350}, m ∈ {10, 30, 50}, T ∈ {0.2, 0.4, 0.6}, and R ∈ {0.2, .0.6, 1.0}, i.e. a

total of 1,080 instances are generated in this benchmark. T and R are parameters to gener-

ate different types of due dates for each size of the problem (see Potts and Van Wassenhove,

1982). They generate the processing times and the due dates with a uniform distribution

[1, 99] and [P · (1 − T − R/2, P · (1 − T + R/2], respectively, where P is the lower bound

for the makespan proposed in Taillard (1993).

• Benchmark β2: This benchmark is composed of the 540 instances of Vallada et al. (2008).

It contains 108 combinations of parameters n ∈ {50, 150, 250, 350}, m ∈ {10, 30, 50}, T ∈
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{0.2, 0.4, 0.6}, and R ∈ {0.2, .0.6, 1.0}, with five instances for each combination. Processing

times and due dates are generated following the same distributions than in benchmark β1.

4.2 Performance indicators

In our study, two computational evaluations are carried out to compare the most promising

heuristics and metaheuristics. As a result, 23 algorithms are tested. To conduct a fair comparison

among them, the algorithms are compared under the same conditions. More specifically, the

following aspects are considered:

• We use the same computer (an Intel Core i7-3770 with 3.4 GHz, 16 GB RAM, and with

Microsoft Windows 8.1 64 bit operating system).

• We re-code each algorithm using the same programming language (C# under Visual Studio

2013).

• We use the same computational skills, libraries and common functions.

• We use the same stopping criteria for each metaheuristic.

In addition, each algorithm typically requires a different CPU time and obtains a different

solution. In order to compare both the quality of the solutions and the computational efforts of

the implemented algorithms, the indicators for comparison have to be established. On the one

hand, heuristics are compared using the Average Relative Deviation Index (denoted as ARDI1h

for heuristic h) and the Average Relative Percentage computation Time (denoted as ARPTh for

heuristic h following the recommendation established by Fernandez-Viagas and Framinan (2015c)

and Fernandez-Viagas et al. (2017) (see Equations 11 and 12, respectively). On the other hand,

metaheuristics are only compared using the ARDI1h as the same CPU times are used.

ARDI1h =
I∑
i=1

RDI1ih
I

, ∀ h = 1, . . . ,H (11)

ARPTh = 1 +
I∑
i=1

RPTih
I

, ∀ h = 1, . . . ,H (12)
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Let I be the number of instances, andH be the number of considered heuristics. The Relative

Deviation Index of heuristic h in instance i, RDI1ih, and the Relative Percentage computation

Time, RPT1ih, are defined by the following expressions, respectively:

RDI1ih = OFih −Besti
Worsti −Besti

, ∀ i = 1, . . . , I, h = 1, . . . ,H (13)

RPTih = Tih −ACTi
ACTi

, ∀ i = 1, . . . , I, h = 1, . . . ,H (14)

where Besti and Worsti are the best and worst known solution for one run in instance i5,

respectively. Let Tih and OFih be the CPU time and the objective function value obtained by

heuristic h in iteration i, respectively. Finally, ACTi is the average CPU time required by all

compared algorithms in iteration i, which is defined by:

ACTi =
∑H
h=1 Tih
H

, ∀ i = 1, . . . , I (15)

Regarding the experimental parameter tuning on benchmark β1, we apply a different indicator

of the quality of the solution. More specifically, we used ARDI2, which is a small modification

of ARDI1:

ARDI2h =
I∑
i=1

RDI2ih
I

, ∀ h = 1, . . . ,H (16)

RDI2ih = OFih −Best
′
i

Worst
′
i −Best

′
i

, ∀ i = 1, . . . , I, h = 1, . . . ,H (17)

where Best′i and Worst
′
i are the best and worst total tardiness among the algorithms tested

in the calibration, respectively.
5These values are presented as on-line materials, which are taken from http://soa.iti.es/problem-

instances.
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4.3 Experimental parameter tuning

In this subsection, two full factorial design of experiments are presented to determine the best

combinations of parameters for the proposed algorithms. Both experiments are evaluated on

benchmark β1. Regarding BS, firstly four parameters (a, b, c and e) have been proposed to

balance the contributions in the evaluation of partial sequences. In addition, parameter γ (beam

width) directly influences its complexity, O(max{γ · n2 ·m, γ2 · n2}), and consequently the CPU

time of the proposed beam search. For each value of γ, there is a trade-off between the quality

of solutions and the computational effort. Thus, this parameter is removed of this experimen-

tal parameter tuning (see e.g. Liu and Reeves, 2001; Fernandez-Viagas and Framinan, 2015c;

Fernandez-Viagas et al., 2016b for similar approaches) to avoid a calibration of each parameter

γ, and its value is set to 15. So the following levels of the parameters are tested:

• a ∈ {0, 0.25, 0.5, 0.75, 1, 1.25}

• b ∈ {0, 0.15, 0.3}

• c ∈ {0.25, 0.5, 0.75, 1, 1.25, 1.5}

• e ∈ {2, 3, 4, 5}

Regarding the proposed iterated-greedy-based algorithms, they use three parameters: d, γ,

and T . Firstly, we use in this test d ∈ {4, 5, 6} for the number of destructed jobs. Regarding

the parameter γ, the CPU time of IAi depends on its stopping criterion instead of γ, since

BS is applied as its initial solution. So, different values of γ only perturbs its objective func-

tion value, i.e. we may now measure the influence of γ in the quality of the solutions of the

metaheuristics without altering its CPU time. In this calibration test, we use the following lev-

els, γ ∈ {2, n/10, n/m, 10, 15, n}. For parameter T , we use the best value found by Karabulut

(2016), i.e. T = 1.0, since its influence has not been found to be statistically significant in several

previous studies (see e.g. Pan and Ruiz, 2014; Fernandez-Viagas and Framinan, 2015a). The

calibration test is carried out for IARI and using n · (m/2) · 60 ms.

In this paper, we carry out two non-parametric Kruskal-Wallis analyses to determine the

statistical differences between the levels of the parameters. Note that the normality and ho-
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Parameter a Parameter b Parameter c Parameter e Parameter d Parameter γ
Level ARDI2 Level ARDI2 Level ARDI2 Level ARDI2 Level ARDI2 Level ARDI2
0.00 27.68 0.00 27.59 0.25 43.23 2 30.98 4 36.75 2 54.36
0.25 28.37 0.15 26.22 0.50 30.65 3 29.17 5 39.84 n/10 32.22
0.50 28.27 0.30 34.29 0.75 26.08 4 28.61 6 42.82 n/m 42.85
0.75 29.33 1.00 24.93 5 28.72 10 38.50
1.00 30.70 1.25 24.67 15 35.55
1.25 32.14 1.50 27.05 n 35.33

Table 1: Average results of RDI2 for each tested parameter.

moscedasticity assumptions were not satisfied. In addition, the indicator ARDI2 has been used

to evaluate the quality of the solutions. The results show that there are statistically significant

differences between the level of each parameter (a, b, c, e, d, and γ), since each p-value obtained

in the tests is 0.000. The best combination of parameters has been found for a = 0, b = 0.15,

c = 1.25, e = 4, d = 4, and γ = n/10. These values of the parameters are used in the next

sections. The average results for each level of the parameters, in terms of ARDI2, are shown in

Table 1.

4.4 Implemented algorithms

The proposed algorithms, BS and IAi, are compared against the state-of-the-art algorithms in

two different computational evaluations. Following the discussion in Section 2, the following

heuristics and metaheuristics are implemented in this study:

• Heuristics

– NEHedd proposed by Kim (1993).

– TBIT1 and TBTa proposed by Fernandez-Viagas and Framinan (2015d).

– CHi ∀i = 1, . . . , 6 proposed by Li et al. (2015).

– The BS(γ) algorithms proposed in Subsection 3.1, with γ ∈ {2, 5, n/10, 15, n/m, n}.

• Metaheuristics

– The hybrid algorithm HA proposed by Framinan and Leisten (2008).
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– The genetic algorithm GAPR proposed by Vallada and Ruiz (2010).

– The evolutionary algorithm EA proposed by Cura (2015).

– The trajectory scheduling method TSM63 proposed by Li et al. (2015).

– The iterated greedy algorithm KIG proposed by Karabulut (2016).

– The IAi (with i ∈ {RI,GI,RGS,GGS,RAS,GI_ALS, ILS_GI,GI_ILS}) algorithms

proposed in Subsection 3.2.

Note that the speed up procedure, proposed by Framinan and Leisten (2008), is applied in

each insertion and exchange phase of all the implemented algorithms.

4.5 Heuristics

The computational results of the constructive heuristics are shown in Table 2, and in Figure

4. Table 2 shows the results of the ARDI1h for each heuristic h grouped by n and m. The

average results in terms of ACTh, ARPTh, and ARDI1h are shown in the last three rows. The

dominance of each heuristic can be graphically seen in Figure 4 (X-axis and Y-axis indicate the

ARPTh and ARDI1h of each heuristic h).

The results show that the BS(2), BS(5), BS(10), BS(n/10), and BS(15) algorithms are ef-

ficient for the problem (see red line in Figure 4). To statistically support it (i.e. to discard

that they are not statistically better), we perform a non-parametric Wilcoxon signed-rank test

for each one of the following hypotheses: BS(5)=BS(n/m); BS(15)=NEHedd; BS(15)=TBTa;

and BS(15)=TBIT1, where each efficient beam search algorithm has been compared against the

closest heuristic. The p-value found for each one was 0.000 rejecting each one of the previous hy-

potheses. In addition, several of the proposed beam search algorithms, BS(5), BS(10), BS(n/10),

and BS(15), clearly outpeform the NEHedd and TBIT1 heuristics both in terms of ARDI1 and

ARPT (or ACT ). Note that, as stated in Section 1, both heuristics are the key heuristics for

the problem under consideration (the NEHedd heuristic is used as initial solution for most of the

algorithms developed for the problem). The excellent performance of the proposed beam search

heuristic probably lies in the reduction of the complexity of the evaluation. The complexity of
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evaluating a full sequence in the Fm|prmu|
∑
Tj problem is O(nm), while in the proposed algo-

rithm it is only O(m) since the jobs are inserted, one by one, at the end of a partial sequence. By

reducing the complexity of this evaluation, the algorithm can evaluate much more sequences in

the same CPU time. Regarding the six proposals by Li et al. (2015), which also use the NEHedd

as initial solution, they perform better than each other one in terms of quality of the solution

(ARDI1) but requiring much higher CPU times.

n x m NEHedd TBTa TBIT1 CH1 CH2 CH3 CH4 CH5 CH6 BS(2) BS(5) BS(10) BS(15) BS(n/10) BS(n/m) BS(n)

50 x 10 17.46 14.53 13.72 6.26 7.72 5.30 5.35 5.88 5.46 15.29 11.20 10.70 10.22 11.20 11.20 16.52

50 x 30 19.79 18.68 18.61 11.12 14.43 9.84 10.17 10.51 10.40 24.26 19.11 15.90 15.95 19.11 30.13 25.09

50 x 50 18.17 17.97 17.57 10.94 14.34 10.66 10.99 10.61 10.75 22.96 18.47 16.14 15.78 18.47 29.15 26.86

150 x 10 13.80 10.69 9.91 3.67 4.14 2.86 2.87 3.04 2.82 8.89 6.17 5.22 5.58 5.58 5.58 8.96

150 x 30 20.70 17.02 15.81 8.21 10.35 7.51 7.20 8.04 7.15 18.93 11.23 9.22 8.50 8.50 11.23 12.55

150 x 50 22.04 19.64 18.57 9.62 12.57 9.02 8.83 9.15 8.75 23.93 15.90 12.56 10.70 10.70 19.74 16.98

250 x 10 10.06 7.26 6.70 2.23 1.97 1.28 1.08 1.81 1.37 6.51 4.81 4.11 4.14 4.14 4.14 7.33

250 x 30 17.81 13.29 11.62 4.72 6.10 4.38 4.05 4.37 4.17 13.33 8.02 5.43 4.48 3.75 6.76 6.80

250 x 50 20.21 15.90 13.96 6.20 8.76 5.84 5.67 5.95 6.02 19.28 11.76 8.68 6.97 5.36 11.76 8.86

350 x 10 9.01 6.65 6.14 1.98 1.12 0.80 0.67 1.06 0.69 4.81 2.76 2.45 2.31 2.49 2.49 4.91

350 x 30 15.74 11.40 9.84 3.34 3.95 2.65 2.38 3.09 2.49 10.26 5.07 3.27 2.52 1.58 3.04 3.82

350 x 50 17.38 13.11 11.10 3.99 5.78 3.50 3.53 3.83 3.61 15.68 9.52 6.27 5.43 3.18 8.31 4.84

ARDI1h 16.85 13.84 12.80 6.02 7.60 5.30 5.23 5.61 5.31 15.34 10.34 8.33 7.71 7.84 11.96 11.96

ACTh 1.56 1.53 1.56 119.94 10.01 66.74 63.78 139.59 88.35 0.05 0.12 0.26 0.40 0.84 0.27 17.16

ARPTh 0.13 0.13 0.13 2.93 0.41 2.13 2.07 3.63 2.51 0.01 0.03 0.06 0.10 0.08 0.04 1.60

Table 2: ARDI1h for each constructive heuristics grouped by the number of jobs and
machines in each factory. Last three files represent the average results of ARDI1h, ACTh,

and ARPTh for constructive heuristics.
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Figure 4: ARDI1 versus ARPT for the constructive heuristics

4.6 Metaheuristics

The re-coded algorithms (KIG, TSM63, EA, GAPR, and HA) and our proposals (IARI, IAGI,

IARGS, IAGGS, IARAS, IAGI_ALS, IAILS_GI, and IAGI_ILS) have been run under three different

stopping criteria, i.e. time equals to 60 ·n ·m, 90 ·n ·m, and 120 ·n ·m. The computational results

for these three stopping criteria are shown, grouped by the different levels of each parameter, in

Tables 3, 4, and 5, respectively. These results show the good performance of GAPR against the

HA metaheuristic (see hypothesis H1 in Table 6). Regarding the comparison between the last

metaheuristics developed for the problem (i.e. KIG, TSM63, and EA), the KIG metaheuristic

clearly outperforms the other two for the three stopping criteria (hypothesis H2). Regarding our

proposals, the following conclusions can be obtained:

1. The random adjacent swap is the best perturbation among our eight proposals, for all time

limits tested (hypothesis H3).
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2. In addition, the IARAS is efficient and outperforms each other metaheuristic for the problem

(hypothesis H4).

3. The iterated algorithm based on greedy general swap (IAGGS) performs worst than each

other perturbation method (hypothesis H5).

4. Similarly as in the Fm|prmu|Cmax (Dubois-Lacoste et al., 2017), the greedy insertion plus

local search insertion(IAILS_GI) outperforms the greedy insertion (hypothesis H6).

5. The random and greedy insertions (IARI and IAGI, respectively) perform very similar

(hypothesis H7).

To justify each previous conclusion, the following hypotheses are checked for statistical evi-

dence: GAPR=HA (H1);KIG=EA (H2); IAGGS=IAILS_GI (H3);IARAS=KIG (H4); IARAS=IAGI_ILS

(H5); IAGI_ILS=IAGI (H6); and IARI=IAGI (H7). Results are shown in Table 6 for stopping cri-

terion 60 · n ·m (the same statistical evidences have been found for the other parameters). The

last two columns show the results obtained using Holm’s procedure (see e.g. Pan et al., 2008

and Fernandez-Viagas and Framinan, 2015b for related studies). No statistical evidence has

been found only for the hypothesis that the random insertion outperforms the greedy insertion.

In addition, it is worth highlighting that the excellent performance of IARAS probably lies in

performing several small variations in the sequence to decrease the number of “bad” solutions

evaluated. The perturbation phase of this iterated algorithm is performed over a sequence which

is a local optimum, therefore this sequence is presumably “good” and introducing a high number

of changes in this sequence seems to produce, in many cases, sequences that are worse than the

initial, but that have to computed, thus wasting CPU effort. Similar results have been found

for example both in Rad et al. (2009) and Fernandez-Viagas and Framinan (2015d), which could

lead to similar conclusions.
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Parameter KIG TSM63 EA GAPR HA IARI IAGI IARGS IAGGS IARAS IAGI_ALS IAILS_GI IAGI_ILS

T 0.2 0.27 2.53 2.13 1.69 2.52 0.32 0.49 0.59 2.47 0.27 0.43 0.25 0.37

T 0.4 -0.08 4.39 4.42 2.87 5.75 0.02 0.10 0.56 3.08 -0.43 -0.01 -0.23 -0.24

T 0.6 0.13 6.38 5.07 3.80 7.98 -0.41 -0.62 0.09 2.02 -1.04 -0.70 -0.65 -0.87

R 0.2 0.29 5.94 4.53 3.47 7.91 0.02 -0.16 0.47 2.40 -0.60 -0.28 -0.37 -0.40

R 0.6 -0.05 4.19 3.80 2.67 5.17 -0.14 -0.13 0.32 2.63 -0.46 -0.17 -0.25 -0.37

R 1.0 0.07 3.17 3.29 2.22 3.16 0.05 0.26 0.45 2.53 -0.13 0.16 -0.02 0.04

n 50 0.75 3.97 3.85 5.47 3.20 1.12 1.15 1.77 7.81 0.81 1.06 0.83 0.75

n 150 0.43 5.36 5.47 2.81 5.94 1.19 1.20 1.70 3.43 0.53 1.02 0.90 0.82

n 250 -0.26 4.56 3.69 1.43 6.08 -0.68 -0.68 -0.29 0.14 -1.01 -0.77 -0.83 -0.80

n 350 -0.50 3.84 2.49 1.43 6.45 -1.72 -1.70 -1.53 -1.28 -1.93 -1.69 -1.75 -1.75

m 10 -0.17 2.08 0.94 2.02 3.55 0.26 0.22 0.49 1.81 0.07 0.23 0.23 0.12

m 30 0.05 5.02 4.33 3.07 5.91 -0.26 -0.20 0.21 2.72 -0.63 -0.33 -0.50 -0.52

m 50 0.43 6.19 6.36 3.27 6.79 -0.07 -0.04 0.53 3.04 -0.64 -0.19 -0.37 -0.34

Average 0.10 4.43 3.88 2.79 5.42 -0.02 -0.01 0.41 2.52 -0.40 -0.09 -0.21 -0.25

Table 3: Average RDI1h of each metaheuristic for stopping criterion 60 ·n ·m ms grouped
by the values of the parameters.

Parameter KIG TSM63 EA GAPR HA IARI IAGI IARGS IAGGS IARAS IAGI_ALS IAILS_GI IAGI_ILS

T 0.2 0.06 2.32 2.00 1.59 2.23 0.16 0.34 0.46 2.47 0.11 0.28 0.07 0.20

T 0.4 -0.58 4.06 4.20 2.58 5.24 -0.24 -0.15 0.39 3.07 -0.70 -0.30 -0.51 -0.50

T 0.6 -0.39 6.02 4.76 3.40 7.48 -0.64 -0.92 -0.06 2.01 -1.31 -0.98 -0.95 -1.12

R 0.2 -0.28 5.53 4.25 3.12 7.31 -0.23 -0.43 0.31 2.40 -0.88 -0.56 -0.62 -0.71

R 0.6 -0.47 3.90 3.55 2.40 4.72 -0.34 -0.35 0.19 2.63 -0.69 -0.39 -0.54 -0.56

R 1.00 -0.16 2.96 3.16 2.05 2.93 -0.15 0.05 0.30 2.52 -0.33 -0.04 -0.23 -0.15

n 50 0.52 3.67 3.69 5.41 2.85 0.90 0.91 1.59 7.81 0.65 0.80 0.58 0.62

n 150 0.06 4.85 5.32 2.77 5.50 0.87 0.83 1.48 3.43 0.18 0.70 0.47 0.44

n 250 -0.73 4.20 3.39 0.94 5.44 -0.86 -0.89 -0.40 0.13 -1.27 -0.97 -1.01 -1.03

n 350 -1.06 3.81 2.22 0.97 6.16 -1.87 -1.82 -1.61 -1.30 -2.09 -1.85 -1.90 -1.94

m 10 -0.33 1.95 0.84 1.83 3.29 0.14 0.09 0.42 1.79 -0.07 0.11 0.14 -0.03

m 30 -0.41 4.68 4.05 2.80 5.44 -0.48 -0.44 0.03 2.72 -0.88 -0.57 -0.82 -0.78

m 50 -0.17 5.76 6.07 2.94 6.22 -0.38 -0.38 0.33 3.04 -0.95 -0.53 -0.71 -0.62

Average -0.30 4.13 3.65 2.52 4.99 -0.24 -0.24 0.26 2.52 -0.63 -0.33 -0.47 -0.47

Table 4: Average RDI1h of each metaheuristic for stopping criterion 90 ·n ·m ms grouped
by the values of the parameters.
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Parameter KIG TSM63 EA GAPR HA IARI IAGI IARGS IAGGS IARAS IAGI_ALS IAILS_GI IAGI_ILS

T 0.2 -0.08 2.14 1.92 1.52 2.02 0.05 0.25 0.38 2.47 0.00 0.19 -0.01 0.10

T 0.4 -0.89 3.88 4.11 2.42 4.99 -0.39 -0.34 0.24 3.06 -0.84 -0.46 -0.65 -0.67

T 0.6 -0.72 5.72 4.54 3.20 7.20 -0.80 -1.09 -0.21 2.01 -1.52 -1.19 -1.11 -1.30

R 0.2 -0.62 5.25 4.07 2.89 6.97 -0.39 -0.62 0.20 2.39 -1.07 -0.75 -0.75 -0.88

R 0.6 -0.68 3.71 3.40 2.27 4.50 -0.47 -0.47 0.02 2.62 -0.86 -0.55 -0.67 -0.71

R 1.00 -0.38 2.79 3.10 1.98 2.74 -0.28 -0.09 0.19 2.52 -0.44 -0.17 -0.35 -0.27

n 50 0.40 3.40 3.59 5.41 2.69 0.79 0.76 1.42 7.81 0.54 0.66 0.47 0.54

n 150 -0.20 4.48 5.25 2.77 5.28 0.60 0.60 1.32 3.43 -0.05 0.48 0.26 0.20

n 250 -1.04 3.99 3.26 0.69 5.16 -0.97 -1.04 -0.52 0.13 -1.44 -1.13 -1.14 -1.18

n 350 -1.41 3.79 2.00 0.66 5.82 -1.94 -1.89 -1.67 -1.31 -2.21 -1.97 -1.96 -2.04

m 10 -0.41 1.85 0.77 1.76 3.13 0.09 0.00 0.33 1.78 -0.15 0.02 0.07 -0.11

m 30 -0.72 4.42 3.88 2.67 5.17 -0.67 -0.61 -0.09 2.72 -1.06 -0.78 -0.98 -0.93

m 50 -0.55 5.47 5.92 2.71 5.91 -0.56 -0.57 0.17 3.03 -1.16 -0.70 -0.87 -0.82

Average -0.56 3.91 3.52 2.38 4.74 -0.38 -0.39 0.14 2.51 -0.79 -0.49 -0.59 -0.62

Table 5: Average RDI1h of each metaheuristic h for stopping criterion 120 · n · m ms
grouped by the values of the parameters.

Hi Hypothesis p-value Wilcoxon α/(7− i+ 1) Holm’s procedure

H1 GAPR=HA 0.000 R 0.0071 R

H2 KIG=EA 0.000 R 0.0083 R

H3 IARAS=IAGI_ILS 0.000 R 0.0100 R

H4 IARAS=KIG 0.000 R 0.0125 R

H5 IAGGS=IARGS 0.000 0.0167

H6 IAILS_GI=IAGI 0.000 0.0250

H7 IARI=IAGI 0.939 0.0500

Table 6: Holm’s procedure.

5 Conclusions

In this paper we have proposed two different sets of algorithms to solve the permutation flow

shop scheduling problem to minimise the total tardiness. Firstly, we have proposed a set of
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beam-search-based heuristics varying the size of their population. These are fast heuristics

that construct solutions by adding jobs at the end of several partial sequences constructed in

parallel. In addition, this set uses properties of the problem both to estimate the performance

of each partial sequence and to be able to compare sequences with different jobs. Secondly, we

have proposed several simple iterated-greedy-based algorithms with several types of destruction-

construction phases. The methods developed to perturb the solutions are based on insertion,

general swap, adjacent swap, and partial local searches.

Our proposals have been compared with the state-of-the-art algorithms of the problem under

study in a well-known benchmark testbed. More specifically, a total of 14 algorithms have been

reimplemented and compared with our proposals (a set of beam search algorithms varying the

size of the population, and eight different iterated algorithms). Regarding constructive heuristics,

the results show that BS(15) clearly outperforms the NEHedd in terms of quality of solutions

and computational effort. In addition, the proposed heuristics BS(2), BS(5), BS(10), BS(n/10),

and BS(15) are efficient heuristics for the problem. Regarding the computational evaluation

of metaheuristics, the iterated algorithm with a simple random adjacent swap (IARAS) clearly

outperforms the other seven simple and complex perturbation methods of the iterated algorithm,

and statistically outperforms each other existing metaheuristic for the problem under study.

Due to the excellent performance of the original iterated greedy in different scheduling prob-

lems, it is noteworthy to mention that the conclusions obtained by applying the simple random

adjacent swap, such as the destruction-construction phase of the proposed iterated algorithm,

could probably be extended for future iterated-greedy-based algorithms developed for either the

problem under consideration, or for related scheduling problems.
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