
A computational evaluation of constructive and
improvement heuristics for the blocking flow shop to

minimise total flowtime∗

Victor Fernandez-Viagas1†, Rainer Leisten2, Jose M. Framinan1

1 Industrial Management, School of Engineering, University of Seville,

Camino de los Descubrimientos s/n, 41092 Seville, Spain, {vfernandezviagas,framinan}@us.es
2 Industrial Engineering, Faculty of Engineering, University of Duisburg-Essen

Bismarckstr. 90, 47057 Duisburg, Germany, rainer.leisten@uni-due.de

May 31, 2016

Abstract

This paper focuses on the blocking flow shop scheduling problem with the objec-
tive of total flowtime minimisation. This problem assumes that there are no buffers
between machines and, due to its application to many manufacturing sectors, it is re-
ceiving a growing attention by researchers during the last years. Since the problem is
NP-hard, a large number of heuristics have been proposed to provide good solutions
with reasonable computational times. In this paper, we conduct a comprehensive
evaluation of the available heuristics for the problem and for related problems, re-
sulting in the implementation and testing of a total of 35 heuristics. Furthermore,
we propose an efficient constructive heuristic which successfully combines a pool
of partial sequences in parallel, using a beam-search-based approach. The compu-
tational experiments show the excellent performance of the proposed heuristic as
compared to the best-so-far algorithms for the problem, both in terms of quality of
the solutions and of computational requirements. In fact, despite being a relative
fast constructive heuristic, new best upper bounds have been found for more than
27% of Taillard’s instances.

Keywords: Scheduling, Flowshop, Blocking, Heuristics, PFSP, Total Flowtime,
Computational Evaluation, Beam Search

∗Preprint submitted to Expert Systems With Applications. http://dx.doi.org/10.1016/j.eswa.2016.05.040
†Corresponding author.

1

1 Introduction

The flowshop is a layout employed in many manufacturing scenarios (see e.g. Krajewski et al.,

1987 and Storer et al., 1992) where n jobs must follow the same processing route on m machines.

The so-called flowshop scheduling problem consists in finding the best sequence of jobs on each

machine according to some objective(s). In its classical formulation, unlimited buffers capacity

between two consecutive machines is considered (see the full list of assumptions in Section 3).

However, zero-buffer flowshops are very common in several industrial sectors, such as iron and

steel industry, chemical and pharmaceutical industries, just-in-time production lines and in-

line robotic cells (see e.g. Reklaitis, 1982, Sethi et al., 1992, Hall and Sriskandarajah, 1996 and

Gong et al., 2010). This problem is usually denoted as blocking flowshop scheduling problem

(BFSP) since a job blocks a machine until the next machine is available. Therefore, interest in this

problem is increasing over the past years (Ribas and Companys, 2015), although there are not

many algorithms as compared to the number of heuristics and metaheuristics for the traditional

permutation flowshop scheduling problem –denoted as PFSP– (see e.g. Ruiz and Maroto, 2005,

Pan and Ruiz, 2013, Ferrer et al., 2016, and Fernandez-Viagas and Framinan, 2015c), which is

one of the most studied problems in Operations Research.

Commonly used objectives for the BFSP include makespan and total flowtime (see e.g.

Ribas et al., 2011 and Ronconi, 2004). Among them, the total flowtime stands out as the most

relevant and meaningful for today’s dynamic production environment (Liu and Reeves, 2001).

This problem is denoted as Fm|block|
∑

Cj according to the notation by Graham et al. (1979).

Note that, as there are zero-capacity buffers between two consecutive machines, several jobs

cannot wait at the same time before the machine and the job sequence must therefore be the

same on every machine. As a conclusion, n! schedules have to be considered, i.e. the number of

solutions is the permutation of n jobs.

In this paper, we propose an efficient constructive heuristic for the BFSP with flowtime objec-

tive based on beam search that outperforms existing heuristics for the problem. Additionally, we

test several adaptations of the most efficient algorithms for the Fm|block|Cmax problem as well as

for the PFSP to minimise makespan and total flowtime (respectively denoted as Fm|prmu|Cmax

2

and Fm|prmu|
∑

Cj according to Graham et al., 1979). We include them in the comparison since

many algorithms originally implemented for the PFSP –such as the the iterated greedy proposed

by Ruiz and Stützle (2007) (see e.g. Pan et al., 2008b) or the NEH heuristic by Nawaz et al.

(1983) (see e.g. Leisten, 1990)– have turned to be efficient for several decision problems. The

resulting computational evaluation is composed of a total of 36 heuristics which are fully recoded

and exhaustively compared under the same computer conditions. Additionally, we introduce a

speed-up method to accelerate the insertion phases of all algorithms.

The rest of the paper is organised as follows. The state of the art is analysed in Section 2.

In Section 3, the problem and the notation are described. The beam-search-based constructive

heuristic is proposed in Section 4. In Section 5, a complete comparison of heuristics is performed.

Finally, the conclusions are discussed in Section 6.

2 Literature Review

The classification of algorithms to solve operations research problems is ambiguous, as different

classifications have been proposed in the literature (see e.g. Zäpfel et al., 2010, Zanakis et al.,

1989). In this paper, we adopt the classification used e.g. by Framinan et al. (2005) and

Ruiz and Maroto (2005), thus dividing the algorithms between ad hoc heuristics and general-

purpose metaheuristics. We focus exclusively on heuristics, which can be classified into construc-

tive heuristics and improvement heuristics (Ruiz and Maroto, 2005). Constructive heuristics ob-

tain the final sequence by integrating jobs –usually in an iterative manner– on an incomplete

sequence. Improvement heuristics are usually composed of two phases: a construction phase

where a complete sequence is formed, and an improvement phase where the solution is improved

by means of some method, typically by specific knowledge of the problem. Using this classi-

fication, heuristics (constructive and improvements) naturally stop after a predefined number

of steps independent of a time limit, whereas metaheuristics require a termination criterion

(usually related to the CPU time effort) as an input parameter. Furthermore, metaheuristics

require a fast initial solution to start their procedures, and the quality of this initial solution

is known to influence the performance of the metaheuristic, so usually the initial solution for

3

the metaheuristics is provided by (constructive and/or improvement) heuristics. The aim of our

paper is precisely to assess the state-of-the-art of the heuristics -in the aforementioned sense- for

the problem, therefore we have not considered in the computational evaluation very interesting

and well-performing procedures as the ones of Ribas et al. (2015) and Khorasanian and Moslehi

(2012). Furthermore, note that it is problematic to include these procedures in the comparison

since these procedures a) require the other heuristics to provide an initial solution, and b) allow

different stopping criteria, whereas that of the heuristics is fixed.

In this section, a review of the literature on the problem under consideration is presented.

Since there are several heuristics for related scheduling problems that can be adapted to our

problem, we also review these contributions. More specifically, we review:

• Heuristics for the (classical) permutation flowshop scheduling problem to minimise makespan.

• Heuristics for the permutation flowshop scheduling problem to minimise total flowtime.

• Heuristics for the blocking flowshop scheduling problem, both with makespan and flowtime

objectives.

• Speed-up procedures developed for related flowshop scheduling problems.

Regarding heuristics for the Fm|prmu|Cmax problem, we focus on the most promising ones

and refer the reader to Framinan et al. (2004), Reza Hejazi and Saghafian (2005) or Ruiz and Maroto

(2005) for more extensive reviews. Among the available heuristics, the NEH heuristic (Nawaz et al.,

1983) is, without doubt, the most efficient heuristic for the problem. Its excellent performance

–established by Ruiz and Maroto (2005)– probably lies in the low computational cost of carrying

out its insertion phases due to the speed-up by Taillard (1990). Therefore, several papers have

focused on improving some of the phases of the NEH, or on proposing NEH-based heuristics.

More specifically, improvements in the initial order of the NEH have been proposed by e.g.

Framinan et al. (2003) and Vasiljevic and Danilovic (2015). Regarding improvements in the in-

sertion phase of the NEH, Rad et al. (2009) propose several heuristics (denoted as FRB1, FRB2,

FRB3, FRB4_k and FRB5) where a partial insertion local search method after the insertion of a

job is employed. In a similar way, Ying and Lin (2013) employ another partial local search based

4

on the interchange of jobs. Several works address the problem of breaking the ties of the partial

makespans when inserting a job, such as e.g. Ribas et al. (2010), Kalczynski and Kamburowski

(2007), Kalczynski and Kamburowski (2008), Kalczynski and Kamburowski (2009), Dong et al.

(2008) and Fernandez-Viagas and Framinan (2014).

Regarding the Fm|prmu|
∑

Cj problem, a recent evaluation carried out by Fernandez-Viagas and Framinan

(2015c) shows that, in terms of average relative percentage deviation and average relative per-

centage computation time, the set of efficient heuristics is formed by the Raj heuristic by

Rajendran (1993); the LR heuristic proposed by Liu and Reeves (2001); the RZ heuristic by

Rajendran and Ziegler (1997); the RZ-LW proposed by Li and Wu (2005); the LR-NEH heuris-

tic proposed by Pan and Ruiz (2013); the IC1, IC2 and IC3 improvement heuristics by Li et al.

(2009); and finally, the PR1 heuristic proposed by Pan and Ruiz (2013). As most of these

heuristics include the LR heuristic as initial or main procedure, Fernandez-Viagas and Framinan

(2015c) propose an improvement of this method, denoted as FF, which heavily decreases the

required CPU time. This procedure has been incorporated in each heuristic using the LR proce-

dure, obtaining excellent results for the following heuristics: FF, FF-FPE (replacing LR by FF

in the LR-FPE heuristic by Liu and Reeves, 2001), FF-ICi (ICi heuristics by Li et al., 2009 with

FF instead of LR) and FF-PR1 (PR1 heuristic by Pan and Ruiz, 2013 using the FF procedure).

Regarding BFSP, several algorithms have been proposed for makespan minimisation. McCormick et al.

(1989) implement a constructive heuristic, denoted as PF, to minimise cycle time, that constructs

a sequence by progressively inserting an unsequenced job with minimal sum of idle and block-

ing time. Ronconi (2004) proposes three constructive heuristics (denoted as MM, MME and

PFE) to solve the Fm|block|Cmax. MME and PFE are variations of the original NEH heuristic

where the initial order is replaced by the MM and PF heuristics respectively. In Ribas et al.

(2011), several NEH-based heuristics are proposed using different mechanisms to break ties in

the first and second phase of the NEH heuristic. The heuristics are compared with the MME and

PFE heuristics. Pan and Wang (2012) propose eight heuristics (the wPF and PW constructive

heuristics and the PF-NEH, wPF-NEH, PW-NEH, PF-NEHLS, wPF-NEHLS and PW-NEHLS

improvement heuristics) based on NEH and LR. The heuristics clearly outperform MME and

PFE in terms of quality of the solution and computational effort. In Ribas et al. (2013), these

5

heuristics have been improved by evaluating the sequences before and after the insertion phase

as well as using the reversibility property.

Regarding the minimisation of total flowtime in the BFSP, Wang et al. (2010) introduce

an adaptation of the NEH algorithm using the non-decreasing sum of processing times as ini-

tial order. Note that this order outperforms the original one for the Fm|prmu|
∑

Cj problem.

This heuristic is used as initial sequence for the metaheuristics proposed by Bao et al. (2012)

and Deng et al. (2012). Han et al. (2012) and Han et al. (2013) adapt the MME heuristic to

minimise total flowtime as well as propose two new NEH-based heuristics modifying the initial

order (denoted as MME-A and MME-B). Finally, Ribas and Companys (2015) propose six new

heuristics for the problem. Firstly, they adapt the PF heuristic (McCormick et al., 1989) to the

problem and propose two new constructive heuristics denoted as HPF1 and HPF2 modifying

the index to choose a job. Then, they propose three NEH-based heuristics (NPF, NHPF1 and

NHPF2) using the previous heuristics as initial sequences of the NEH.

Finally, regarding speed up methods to accelerate algorithms, they have been successfully

applied for several problems related to flowshop scheduling: the PFSP to minimise total flowtime

(see e.g. Li et al., 2009); the PFSP to minimise total tardiness (see e.g. Vallada and Ruiz, 2010);

the PFSP to minimise makespan subject to maximum tardiness (see e.g. Fernandez-Viagas and Framinan,

2015b); and the distributed PFSP to minimise makespan (see e.g. Naderi and Ruiz, 2010 and

Fernandez-Viagas and Framinan, 2015a). However, to the best of our knowledge, they have not

been applied to the BFSP so far.

3 Problem statement. Mathematical model

The problem under study can be stated as follows: a set N of n jobs have to be scheduled in a

flow shop consisting on a set M of m machines without intermediate buffers. Each machine is

always available and can process at most one job at the same time. Each job j ∈ N has a non

preemptive processing time pij on each machine i ∈M. Set up times are sequence-independent

and non-anticipatory (see Framinan et al., 2014) and thus can be included in the processing times

of each job. Given a sequence Π := (π1, ...πn), let cij(Π) and eij(Π) represent the departure and

6

start time of job j from (on) machine i, respectively. Note that the departure time of a job must

not necessarily be equal to its completion time, as the next machine can block this job after its

completion (denoted as blocking time, see Figure 1). Similarly, ci[r](Π) represents the departure

time of job in position r ∈ [1, n] of sequence Π from machine i, i.e. ci[r](Π) = ciπr . By means of

these variables, the total flowtime, denoted as TF , can be defined by Expression (1).

TF =
n∑

r=1
cm[r] (1)

Where the departure times can be recursively obtained according to the following expressions

(Ronconi, 2004):

c0[1](Π) = 0

ci[1](Π) =
i∑

q=1
pqπ1 , i = 1, ..., m− 1

c0[r](Π) = c1,[r−1](Π), r = 2, ..., n

ci[r](Π) = max{ci−1,[r](Π) + piπr , ci+1,[r−1](Π)}, r = 2, ..., n, i = 1, ..., m− 1

cm[r](Π) = cm−1,[r](Π) + pmπr , r = 1, ..., n

Figure 1: Example of the problem under study.

7

4 Proposed Heuristic

4.1 Introduction

In this section, a beam-search-based constructive heuristic, BS, is proposed to solve the Fm|block|
∑

Cj

which successfully combines the diversification of population-based metaheuristics with the speed

of constructive heuristics. The algorithm simultaneously constructs several partial sequences in

each iteration (denoted as candidate nodes) by appending jobs one by one and keeping the best

ones (denoted as selected nodes) over all candidates. A simple example of the algorithm with

four jobs is shown in Figure 2. More specifically, the algorithm is composed of the following

phases:

Figure 2: Example of the proposed algorithm.

• Obtain the initial selected nodes

• For n iterations:

– Construct candidate nodes

– Evaluate candidates nodes

– Select the best candidates nodes (selected nodes)

These steps are detailed in the next subsections. However, we first must introduce in Section

4.2 some notation required.

8

4.2 Notation

The proposed heuristic appends the jobs at the end of a partial sequence. Note that, when a new

job q is placed after the last position (position k + 1) of a partial sequence Πk := (π1, . . . , πk) of

length k, the departure and the start times of job q can be computed according to Expressions

(2) and (3), respectively. Obviously, ci[k](Π) represents the departure time of the job placed in

the last position of Πk (i.e. before job q). Additionally, let tq(Πk) and bq(Πk) be the total idle

and the total blocking time induced by job q, respectively, see Expressions (4) and (5).

ciq(Πk) =

ci[k](Πk) + piq, i = 1

max{ci−1,q(Πk) + piq, ci+1,[k](Πk)}, ∀ i = {2, . . . , m− 1}

ci−1,q(Πk) + piq, i = m

(2)

eiq(Πk) =

ci[k](Πk), i = 1

ci−1,q(Πk), ∀ i = {2, . . . , m}
(3)

tq(Πk) =
m∑

i=2
max{ei−1,q(Πk) + pi−1,q − ci[k](Πk), 0} (4)

bq(Πk) =
m∑

i=2
max{ci[k](Πk)− (ei−1,q(Πk) + pi−1,q), 0} (5)

Let us denote by x (beam width) the number of selected nodes in each iteration. At it-

eration k (k = 1, . . . , n), selected node l (l = 1, . . . , x) is composed of k sequenced jobs (par-

tial sequence) denoted as Sk
l := (sk

1l, . . . , sk
kl), and a set of n − k unsequenced jobs denoted as

Uk
l := {uk

1l, . . . , uk
n−k,l}. Additionally, as the proposed algorithm is composed of a set of partial

sequences in each iteration, let us extend the notation and denote by ck
iql and ek

iql the departure

and start times of job q on machine i of selected node l in iteration k (i.e. ck
iql = ciq(Sk

l) and

ek
iql = eiq(Sk

l)), respectively. Analogously, tk
ql and bk

ql represent the total idle and total blocking

times of job q on machine i of selected node l in iteration k (i.e. tk
ql = tq(Sk

l) and tk
ql = tq(Sk

l)),

respectively. Finally, let ck
ql represent the departure time of job q from the last machine m, i.e.

ck
ql := ck

mql.

9

4.3 Heuristic description

First, the algorithm sorts all jobs according to non-decreasing order of indicator ξj , see Expression

(6). Let α := (α1, . . . , αl, . . . , αn) denote this order.

ξj := (n− 2)
4

· wj +
m∑

i=1
pij , ∀ j ∈ [1, n] (6)

where wj is the weighted idle time defined by Expression (7) (see Liu and Reeves, 2001):

wj :=
m∑

i=2

m ·
∑i−1

i
′ =1 pi

′
j

i− 1
, ∀ j ∈ [1, n] (7)

The nodes selected in the first iteration are constructed according to the indicator as follows:

the partial sequence S1
l = (s1

1l) with l ∈ {1, . . . , x}, is formed by the job in position l of the initial

order, i.e. s1
1l = αl; the U1

l set of unsequenced jobs contains all jobs with the exception of the

job in S1
l .

Once the initial selected nodes are obtained, in each iteration k, each selected node l forms

n − k candidate nodes for the next generation. Each candidate node v ∈ {1, . . . , n − x} is

constructed from selected node l, appending each job in set Uk
l at the end of Sk

l . Let Ŝk
vl :=

(ŝk
1vl, . . . , ŝk

k+1,v,l) and Ûk
vl be the corresponding partial sequence and set of unsequenced jobs,

respectively. Then, the partial sequence of this candidate node and its set of unsequenced jobs

are defined by Expression (8).

Ŝk
vl = (ŝk

1vl, . . . , ŝk
k+1,v,l) = (Sk

l , uk
vl) = (sk

1l, . . . , sk
kl, uk

vl)

Ûk
vl = {ûk

1vl, . . . , ûk
k+1,v,l} = Uk

l − uk
vl

(8)

Consequently, in iteration k, a total of x · (n − k) candidate nodes are formed. Among

these candidate nodes, the best x ones are selected for the next iteration. Note that, as each

new selected node l
′ in iteration k + 1 (composed of partial sequence Sk+1

l′
, ∀l′ ∈ {1, . . . , x}) is

formed by adding job uk
vl to selected node l (composed of partial sequence Sk

l), node l
′ selected

in iteration k + 1 does not have necessarily to come from the partial sequence Sk
l
′ (i.e. l

′ may

be different from l). Therefore, it may happen that one node l is selected in iteration k, but its

partial sequence is not selected for the next iteration (k + 1). Let branch[l′] and job[l′] denote

10

the selected node l and job uk
vl, respectively, that forms selected node l

′ in iteration k + 1. In

order to select the candidate nodes for the next iteration (k + 1), three issues (typically different

for each one) have to be considered to evaluate them which are:

• Influence of the chosen job, uk
vl, i.e. the last job in the partial sequence Ŝk

vl (ŝk
k+1,v,l).

Obviously, the departure time of this job on the last machine, ck
uk

vl
l
, has a direct influence

on the final objective function. Additionally, the job may incur in idle and blocking times

that may largely influence the departure times of the subsequent jobs to be inserted. This

influence is higher at the beginning of the algorithm when the partial sequence is relative

empty, and lower in the last iterations where the sequence is almost complete as it affects

to a smaller number of jobs (in fact, it does not affect to any job in the last iteration). The

index Lk
vl (see Expression (9)), which balances these three objectives, is used to measure

the influence of inserting job uk
vl.

Lk
vl = ck

uk
vl

l
+ a · n−k−2

n · (tk
uk

vl
l
+ bk

uk
vl

l
),

∀k = {1, . . . , n− 1}, v = {1, . . . , n− k}, l = {1, . . . , x}
(9)

where a is a parameter to balance the influence of the departure time against that of

blocking and idle time. tk
uk

vl
l

and bk
uk

vl
l

are the sum of idle and blocking times between

position k (job ŝk
kvl) and k + 1 (job ŝk

k+1,v,l = uk
vl) over all machines, respectively (see

Section 4.2). Note that vk
uk

vl
l
, tk

uk
vl

l
and bk

uk
vl

l
can be calculated by means of the start time,

ek
iuk

vl
l
, of job uk

vl (placed in the last position of the Sk
l sequence) on machine i and the

departure time, ck
i[k]l, of the previous job (i.e. the job in position k, ŝk

kvl or equivalently

sk
kl) which was already computed in the previous iteration of the algorithm (this fact leads

to a high reduction of computational effort since the calculation of the departure times of

the complete sequence is avoided).

• Influence of sequenced (previous) jobs, i.e. Sk
l (or equivalently ŝk

rvl, ∀r ≤ k). Due to the

process employed to construct the candidate nodes, the first k sequenced jobs of candidate

node v may be different to the first jobs of other candidate nodes (e.g. the first candidate

node is formed by jobs 1 and 2, and the second candidate node is formed by jobs 3 and 4).

11

The comparison of these partial sequences is not trivial. Obviously, when the sequences are

complete, the algorithm has to look for the minimisation of the total flowtime. However,

in case of partial sequence composed of different jobs, several other aspects may have a

greater influence. On the one hand, although the goal is the minimisation of total flowtime,

a comparison of the partial sequences based only on this measure would obviously be

influenced by the characteristics of the jobs of each partial sequence. It would prioritise

jobs with low processing times regardless the idle or blocking times that the inserted job

causes to the machines. On the other hand, the exclusive consideration of idle and/or

blocking times would miss the relation with the objective of the scheduling problem: the

minimisation of total flowtime. To cover both aspects, the proposed algorithm uses index

F k
l (see Expression 10) to measure the influence of the sequenced jobs of candidate node v

in iteration k. Note that this index is identical for all candidate nodes coming from selected

node l since it does not consider the contribution of the last job of the sequence (ŝk
k+1,v,l).

Furthermore, the contribution of idle and blocking times decrease with the number of

iterations, thus avoiding their high influence in the last iterations.

F k
l′

= ∆ck
l′

+ a · (∆tk
l′

+ ·∆bk
l′

), ∀ k = {2, . . . , n− 1}, l
′ = {1, . . . , x} (10)

where ∆t, ∆b and ∆c are the accumulated idle, blocking and departure time, respectively,

defined by the following expressions:

∆tk+1
l′

= ∆tk
branch[l′]+tk

job[l′],branch[l′] ·
n− k − 2

n
, ∀ k = {1, . . . , n−2}, l

′ = {1, . . . , x} (11)

∆bk+1
l′

= ∆bk
branch[l′]+bk

job[l′],branch[l′]·
n− k − 2

n
, ∀ k = {1, . . . , n−2}, l

′ = {1, . . . , x} (12)

∆ck+1
l
′ = ∆ck

branch[l′] + ck
job[l′],branch[l′] + ck

λ,branch[l′], ∀ k = {1, . . . , n− 2}, l
′ = {1, . . . , x}

(13)

where ∆t1
l
′ = ∆c1

l
′ = F 1

l
′ = 0, ∀ l

′ = {1, . . . , x}. ck
λl is the departure time of an artificial

job placed at the end of the sequence as an estimation of the unscheduled jobs (see the

12

following item).

• Influence of the unsequenced jobs. These are the next jobs to be sequenced in the selected

nodes and hence, they also influence the evaluation of the candidate node. However, their

impact on the final total flowtime is diffused since they have not been scheduled yet. As

a measure of its influence, we use an artificial departure time denoted as ck
λl, which is the

departure time of an artificial job λ placed in the last position (position k + 2) of the

sequence (after the last job, uk
vl or ŝk

k+1,v,l). The processing times of this job are equal to

the average processing times of all unscheduled jobs of selected node l (i.e. Uk
l). Note that

the chosen job uk
vl is also considered to have an artificial departure time. The main reason

is that the calculation of this term can be then globally done for all candidate nodes of

selected node l, thus decreasing the complexity of the procedure, which is one of the main

advantages of the proposed algorithm (see Fernandez-Viagas and Framinan, 2015c for a

more detailed explanation).

Therefore, each candidate node v is evaluated using index Gk
vl, (see Expression 14) where the

nodes selected for the next iteration are those with the best x values of the index. The pseudo

code of the algorithm is shown in Figure 1 (see e.g Lin et al., 2012 for similar description of

algorithms). The complexity of the algorithm is bounded by the creation and selection of the

candidate nodes, which have a complexity of O(x · n2 ·m) and O(x2 · n2) respectively. In this

manner, the global complexity of the algorithm is O(max{x · n2 ·m, x2 · n2}).

Gk
vl = F k

l + Lk
vl, ∀k = {1, . . . , n− 2}, c = {1, . . . , n− k}, l = {1, . . . , x} (14)

4.4 Speed Up Procedure

In this section, we introduce a simple speed up procedure to accelerate the insertion phases of

the algorithms. This procedure is based on the speed up methods proposed by Li et al. (2009)

and Vallada and Ruiz (2010). Basically, the proposed procedure stores the departure times, cij ,

of each job j on each machine i before inserting a job in each position. Then, when the job

is tested in each position j1, all completion times cij with j < j1 stay the same and are not

13

Algorithm 1: Beam-search-based constructive heuristic
Procedure BS(x)

STEP 1: //Initial Order
Determination of wj and ξj, ∀j ∈ [1, n];
α := Jobs ordered according to non-decreasing ξj breaking ties in favor of jobs
with lower wj;
Update S1

l (s1
1l = αl) ∀l and U1

l with the remaining jobs;
∆t1

l , ∆c1
l , F 1

l = 0, ∀l ∈ [1, x];
for k = 1 to n− 2 do

STEP 2: //Candidate Nodes Creation
Determination of tk

uk
vl

l
, bk

uk
vl

l
, ck

iuk
vl

l
, ck

uk
vl

l
, ∀v ∈ [1, n− k], l ∈ [1, x];

STEP 3: //Candidate Nodes Evaluation
Gk

vl := F k
l + ck

uk
vl

l
+ a · (tk

uk
vl

l
+ bk

uk
vl

l
), ∀v ∈ [1, n− k], l ∈ [1, x];

STEP 4: //Candidate Nodes Selection
Determination of the l

′-th best candidate node according to non-decreasing
Gk

vl in iteration k. Denote by branch[l′] the value of the index l of that
candidate node and by job[l′] the value of uk

vl, ∀l
′ ∈ [1, x];

ck+1
i,[k+1],l′ ←− ck

i,job[l′],branch[l′];
STEP 5: //Forecasting Phase. Update of the Forecast Index

for l
′ = 1 to x do

Update Sk+1
l
′ and Uk+1

l
′ by removing job job[l′] from Uk+1

l
′ and including

in Sk
l
′ ;

Determination of ck+1
λ,branch[l′] for new selected node l

′ formed by the old
selected node branch[l′] with job job[l′]. Note that the processing times
of the artificial job are equal to the average processing times of all
unscheduled jobs (Uk+1

l′
);

∆tk+1
l′

= ∆tk
branch[l′] + tk

job[l′],branch[l′] ·
n−k−2

n
;

∆bk+1
l
′ = ∆bk

branch[l′] + bk
job[l′],branch[l′] ·

n−k−2
n

;
∆ck+1

l
′ = ∆ck

branch[l′] + ck
job[l′],branch[l′] + ck

λ,branch[l′];
F k+1

l
′ = ∆ck+1

l
′ + a · (∆tk+1

l
′ + ∆bk+1

l
′);

end
end

STEP 6: //Final evaluation
Evaluate the flowtime of the x selected nodes and return the best one;

end

14

computed again. Although the complexity of the insertion phase remains the same using this

procedure, a strong CPU reduction of about 30%-50% has been achieved for similar procedures in

the literature (see e.g. Li et al., 2009). Note that the procedures proposed by e.g. Taillard (1990)

and Naderi and Ruiz (2010) cannot be adapted since they are based only on the calculation of the

makespan and cannot be applied for the calculation of each departure time on last machine. The

proposed speed up procedure has been incorporated in each insertion phase of all implemented

heuristics.

5 Computational Experiments

In this section, a computational evaluation of heuristics is carried out. To perform the comparison

we adopt the following procedure: in Section 5.1, the set of instances used are presented. The

design of experiments is carried out in Section 5.2. In Section 5.3, the implemented heuristics

are enumerated. The indicators to evaluate the heuristics are defined in Section 5.4. Finally, the

computational results of heuristics are shown in Section 5.5.

5.1 Benchmarks

As explained above, two computational experiments are generated in this paper: the experimental

parameter tuning of Section 5.2 and the computational evaluation of heuristics of Section 5.5.

In order to avoid an overfitting of parameter a of the proposed heuristic if the same benchmark

would be used for both cases, the experiments are performed on the following two different set

of instances:

• Benchmark B1, used for the calibration of the proposed heuristics. It is composed of 340

instances generated according to the procedure described by Ruiz and Stützle (2007). This

benchmark consists of 68 combinations of the parameters n = {20, 50, 80, ..., 410, 440, 470, 500}

and m = {5, 10, 15, 20}. Processing times are uniformly distributed between 1 and 99, and

5 instances are generated for each combination of n and m.

• Benchmark B2, used for comparison among the implemented heuristics. This benchmark is

15

composed of the set of 120 instances of Taillard (1993), which is the most common bench-

mark for the studied problems (see e.g. Wang et al., 2010, Han et al., 2011, Han et al.,

2012, Han et al., 2013, Ribas et al., 2015, Ribas and Companys, 2015). The benchmark

consists of a set of 12 instance sizes for n ∈ {20, 50, 100, 200, 500} and m ∈ {5, 10, 20},

where the processing times are generated with an uniform distribution [1,99]. For each

instance size, 10 instances are constructed.

5.2 Experimental Parameter Tuning

In this section, we perform an experimental tuning of parameter a in the proposed heuristic

on set B1. Regarding the values for the parameter x, we consider x ∈ {2, 5, 15, n/10, n} (see

e.g. Liu and Reeves, 2001; Fernandez-Viagas and Framinan, 2015c for similar values of the pa-

rameters in other constructive heuristics working with a pool of partial sequences), since this

parameter is directly proportional to the CPU time and complexity of the algorithm. The com-

putational experiments for the parameter a are carried out for the proposed BS(x = 5) and

the same value is used for each other value of x. We use the following values for parameter

a ∈ {1, 2, 3, ..., 23, 24, 25}.

The relationship between the levels of the parameters is evaluated by means of a non-

parametric Kruskal-Wallis test since normality and homoscedasticity assumptions are not ful-

filled. Note that the Relative Percentage Deviation RPD1 –Expression (15)– is used to measure

the quality of the solution of the heuristic for each instance.

RPD1 = O −Base

Base
· 100 (15)

As a result of the experiments, it turns out that there are statistically significant differences

between the levels of the three parameters, since the p-values obtained for the parameters n, m

and a are 0.000. The best value found for parameter a is 14, which is used in Section 5.5 in

BS(x) ∀x ∈ {2, 5, 15, n/10, n}.

16

5.3 Implemented Heuristics

In this section, the heuristics included in the computational evaluation are listed. According

to the literature review in Section 2, 11 heuristics have been published so far for this problem.

Additionally, we adapt 8 and 18 heuristics for the Fm|block|Cmax and for the classical PFSP

problem, respectively, given their excellent performance. Finally, the proposed beam-search-

based constructive heuristic is added to the comparison. In summary, the heuristics implemented

are:

• Heuristics of the Fm|block|
∑

Cj problem:

– Heuristic NEH_WPT: Wang et al. (2010).

– Heuristic MME: Han et al. (2011) (adapted from Ronconi, 2004 for Fm|block|Cmax).

– Heuristic MME-A: Han et al. (2013).

– Heuristic MME-B: Han et al. (2013) (adapted from Han et al., 2012 for Fm|block|Cmax).

– Heuristic NEH-MK: Moslehi and Khorasanian (2013).

– Heuristic PF: Ribas and Companys (2015) (adapted from Ronconi, 2004 for Fm|block|Cmax).

– Heuristics HPF1 and HPF2: Ribas and Companys (2015).

– Heuristics NPF, NHPF1 and NHPF2: Ribas and Companys (2015).

– Heuristics BS(x), ∀x ∈ {2, 5, 15, n/10, n}: Proposed heuristic.

• Heuristics adapted from the Fm|block|Cmax problem:

– Heuristics wPF and PW: Pan and Wang (2012). These heuristics are implemented

as the original ones. For the final sequence, the total flowtime is calculated.

– Heuristics PF-NEH(x), wPF-NEH(x) and PW-NEH(x), ∀x ∈ {1, 2, 5}: Pan and Wang

(2012). In the NEH-based phase of the algorithms, each evaluation of makespan is

replaced by the evaluation of total flowtime. Note that these heuristics include the

evaluation of the objective function before applying the NEH-based phase (proposed

by Ribas et al., 2013). The other improvement proposed by Ribas et al. (2013) (re-

versibility property) cannot be applied for total flowtime minimisation.

17

– Heuristics PF-NEHLS(x), wPF-NEHLS(x) and PW-NEHLS(x), ∀x ∈ {1, 2, 5}: Pan and Wang

(2012). In both the NEH-based and the local search phases of the algorithms, each

evaluation of makespan is replaced by the evaluation of total flowtime.

• Heuristics adapted from the traditional PFSP to minimize total flowtime (Fm|prmu|
∑

Ci).

To adapt the heuristics, each evaluation of the total flowtime of a partial sequence is re-

placed by the evaluation of the total flowtime with blocking. Note that the indexes of

initial sequences and FF and LR-based heuristics are not changed since the objective is

the same.

– Heuristic LR(1): Liu and Reeves (2001).

– Heuristic FF(x), ∀x ∈ {1, 2, n/10, n/m}: Fernandez-Viagas and Framinan (2015c).

– Heuristic FF-FPE(x, y), ∀(x, y) ∈ {(2, n/10), (15, n/10), (n/10, 1), (n/10, 1), (n/10, n/10),

(n/10, n), (n/m, n), (n, n)}: Liu and Reeves (2001) with FF(x) instead of LR(x)

heuristic.

– Heuristics FF-ICH1, FF-ICH2 and FF-ICH3: Li et al. (2009) with FF(x) instead of

LR(x) heuristic.

– Heuristic FF-NEH(x) for x = 5, 10: Pan and Ruiz (2013) with FF(x) instead of

LR(x) heuristic.

– Heuristic Raj: Rajendran (1993).

– Heuristic RZ: Rajendran and Ziegler (1997).

– Heuristic RZ_LW: Li and Wu (2005).

– Heuristics FF-PR1(x) for x = [5, 10, 15]: Pan and Ruiz (2013) with FF(x) instead of

LR(x) heuristic.

• Heuristics adapted from the traditional PFSP to minimize makespan (Fm|prmu|Cmax).

Given a partial sequence, each evaluation of the makespan of this sequence is replaced by

the evaluation of total flowtime with blocking:

– Heuristic NEH proposed by Nawaz et al. (1983).

18

– Heuristics FRB2, FRB3, FRB4k (with k = [2, 4, 6, 8, 10, 12]) and FRB5: Rad et al.

(2009). Due to the good results found by the NEH_WPT as compared to the original

NEH, these heuristics are initialized in a non-decreasing sum of processing times.

Hence, a total of 36 heuristics are compared in this paper. In order to have a fair comparison

under the same conditions, the following items are fulfilled:

• All 36 heuristics are fully re-coded in C# under the same compiler. Some of them have

been executed for different values of the parameters, yielding a total of 70 heuristics which

are tested.

• The same libraries and common functions are used for all implemented heuristics.

• All heuristics are tested under the same computer, an Intel Core i7-3770 with 3.4 GHz and

16 GB RAM.

5.4 Indicators to evaluate heuristics

Heuristics are evaluated and compared according to the quality of their solutions and their

computational effort. Traditionally, the former is measured by the Average Relative Percentage

Deviation –denoted as ARPDh for heuristic h, see Equation (16)–, while the Average CPU time

–denoted as ACPUh for heuristic h, see Equation (17)– is the indicator used to measure the

latter.

ARPDh =
∑

∀s RPD2h,s

S
(16)

ACPUh =
∑

∀s Th,s

S
(17)

where S is the total number of instances (with s = 1..S), Th,s is the CPU time of heuristic

h in instance s, and RPD2h,s is defined by (18) being Bests the minimum total flowtime time

among the implemented heuristics (available as on-line materials).

RPD2h,s = OFh,s −Bests

Bests
· 100 (18)

19

5.5 Computational Evaluation of Heuristics

Each implemented heuristic is tested on benchmark B2. Computational results are shown in

Table 1 in terms of ARPD (second and fifth columns) and ACPU (third and sixth columns).

The best ARPDs are found by the proposed heuristic BS(x) (∀x ∈ {5, 15, n/10, n}) being 1.239,

0.687, 1.029 and 0.333 respectively. Note the distance among the best heuristic BS(n) and the

best non-proposed heuristics which is 1.682 found by PF-NEHLS(5) heuristic. Furthermore, the

BS(n) needs in average 42.73% less CPU time than PF-NEHLS(5), i.e. ACPUBS(n) is 13.148

seconds while ACPUPF-NEHLS(5) is 22.959 seconds. Graphically, the heuristics are shown in

Figure 3. More detailed results of ARPD and ACPU for each size for the problem are shown

in Tables 2 and 3 respectively. The proposed heuristic BS(x) (∀x ∈ {2, 5, 15, n}) is efficient as

there is no other heuristic with lower ACPU and ARPD. The excellent performance of the

proposed heuristic is also highlighted by the 33 the new upper bounds found for the problem.

Their sequences and the objectives functions are available as on-line material. Note that its

good performance presumably lies in the high number and the quality of the sequences evaluated

using lower complexity order. On the one hand, let us compare the sequences evaluated and the

complexity between BS(x) and the well-known NEH heuristic: the number of sequences evaluated

by NEH is n(n+1)
2 − 1, and its complexity order is O(n3m), whereas the number of sequences

evaluated by BS(x) is xn(n+1)
2 −1, and its complexity order is O(max{xn2m, x2n2}). Thereby, e.g.

BS(1) evaluates the same number of sequences than NEH, but with complexity O(n2m) instead

of O(n3m). For BS(n/10), the number of sequences evaluated is n
10

n(n+1)
2 − 1 and its complexity

is still lower than O(n3m), since both xn2m = n3m/10 < n3m and x2n2 = n4/100 < n3m for

each instance in benchmark B2. On the other hand, each sequence evaluated in BS(x) comes

from one of the best sequences in the previous iteration, which ensures the high quality of the

sequences to be evaluated.

Table 4 summarises the ARPD values of the most promising heuristics for different values of

n and m. Each element of the table indicates the average RPD2 for each one of the heuristics

in the first row, for the parameter value indicated in the first column, e.g. the value 1.11 of the

third row and column is ARPDBS(5) =
∑

∀s |n=50 RP D2BS(5),s∑
∀s |n=50 1 . Note that the number of instances

for each parameter is not the same in benchmark B2. Results show the good performance of

20

Figure 3: ARPD against ACPU . X-axis (ACPU) is shown in logarithmic scale. For sake
of clarity, only the name of the most representative heuristics is depicted. The full results

are shown in Tables 1.

the proposed heuristics BS(n/10) and BS(n) with the increase in n, which probably lies in the

proportional relationship between n and the beam width in both heuristics. Regarding m, the

ARPD of the proposed heuristic decreases with m, whereas the performance of the improvement

heuristics PF-NEHLS(2), FF-FPE(n/10,n), FF-ICH1 and FF-ICH2 decrease as m increases.

Regarding heuristics adapted from related decision problems, some of them yield an excellent

performance as compared to heuristics specifically implemented for the problem under study.

Thereby, e.g. the heuristics PF-NEH(2), FF-FPE(n/10,1) and PF-NEH(5) (with an ARPD of

3.22, 3.27 and 2.67 respectively) clearly outperform NEH_WPT, MME_A, MME, MME_B and

NPF (ARPDs of 4.82, 4.55, 4.58, 4.80 and 3.56 respectively) using less ACPU . PF-NEH(5)

even slightly outperforms NHPF1 and NHPF2 with 3.08, and 2.92 of ARPD respectively. In

fact, the best ARPD among the non-proposed heuristics is found by PF-NEHLS(5), which was

originally proposed for the Fm|block|Cmax problem.

In order to statistically justify the efficiency of the proposed heuristic, we compare it with

the best heuristics requiring higher ACPU . We use a Holm’s procedure (Holm, 1979) to contrast

the following hypotheses:

• H1: BS(5) = PF-NEH(2)

21

Table 1: ARPDs and ACPUs of the implemented heuristics (ordered by increasing
ACPU). In bold it is indicated the proposed set of heuristics.

Heuristic ARPD ACPU Heuristic ARPD ACPU
PF 4.529 0.004 FF-NEH(5) 3.340 0.813
HPF2 3.349 0.005 FF-FPE(n/10,n/10) 2.945 0.890
HPF1 3.813 0.005 PW-NEH(5) 3.828 1.091
FF(1) 4.028 0.006 FRB42 3.452 1.509
wPF 6.423 0.007 FF-NEH(10) 3.286 1.623
FF(2) 3.750 0.012 FRB44 3.025 2.386
BS(2) 2.614 0.019 FRB48 2.807 3.205
BS(5) 1.239 0.043 FRB48 2.684 3.946
wPF-NEH(1) 4.915 0.044 FF-ICH1 2.313 4.271
PF-NEH(1) 3.670 0.051 PF-NEHLS(1) 2.462 4.548
Raj 6.184 0.063 FRB410 2.584 4.723
wPF-NEH(2) 4.304 0.087 FF-FPE(n/10,n) 2.258 4.776
PF-NEH(2) 3.221 0.101 PW-NEHLS(1) 3.560 4.847
FF(n/m) 3.573 0.117 FF-FPE(n/m,n) 2.250 5.058
BS(15) 0.687 0.127 wPF-NEHLS(1) 3.508 5.225
PW 5.926 0.182 FRB412 2.558 5.372
LR(1) 4.039 0.184 FF-FPE(n,n) 2.209 6.943
wPF-NEH(5) 3.732 0.216 PF-NEHLS(2) 2.120 9.504
PW-NEH(1) 4.885 0.219 RZ_LW 3.891 9.651
FF(n/10) 3.548 0.224 PW-NEHLS(2) 3.197 10.164
FF-FPE(n/10,1) 3.266 0.234 FF-ICH2 1.896 10.745
PF-NEH(5) 2.669 0.250 wPF-NEHLS(2) 3.056 11.037
NEH 9.043 0.262 BS(n) 0.333 13.148
NEH_WPT 4.816 0.264 FRB2 3.814 13.749
MME_A 4.553 0.266 PF-NEHLS(5) 1.682 22.959
MME 4.576 0.267 FF-PR1(5) 1.978 26.477
MME_B 4.797 0.268 PW-NEHLS(5) 2.647 28.197
NHPF1 3.080 0.277 wPF-NEHLS(5) 2.516 29.102
NHPF2 2.921 0.277 FF-ICH3 1.902 29.157
NPF 3.563 0.277 FF-PR1(10) 1.801 34.279
BS(n/10) 1.029 0.403 FF-PR1(15) 1.720 35.965
PW-NEH(2) 4.375 0.439 FRB3 2.321 96.546
FF-FPE(15,n/10) 2.879 0.732 NEH-MK 2.229 96.771
RZ 6.066 0.792 FRB5 2.269 176.403
FF-FPE(2,n/10) 3.057 0.801

22

Table 2: Detailed values of ARPD for each size of the problem. The proposed set of
heuristics is indicated in bold.

Heuristic Size of the problem (n x m)
ARP D20x5 20x10 20x20 50x5 50x10 50x20 100x5 100x10 100x20 200x10 200x20 500x20

NEH_WPT 2.92 2.84 3.39 5.03 4.31 3.56 6.70 5.31 4.39 6.97 5.36 7.00 4.816
MME 2.88 2.74 2.17 5.16 3.81 3.31 5.94 5.27 3.81 7.08 5.67 7.06 4.576
MME_A 2.76 2.69 2.20 5.02 3.88 3.21 5.90 5.26 4.30 7.03 5.35 7.05 4.553
MME_B 3.39 3.26 3.34 4.89 4.15 3.35 6.40 5.41 4.84 6.69 5.17 6.69 4.797
NEH-MK 1.13 0.92 0.69 2.42 1.51 0.93 3.50 2.42 1.84 4.22 2.82 4.35 2.229
PF 4.78 4.63 4.23 5.26 3.90 4.81 7.80 4.47 3.96 4.16 3.39 2.94 4.529
HPF1 4.04 4.74 3.87 3.12 4.12 4.64 2.92 3.59 4.48 3.26 3.86 3.11 3.813
HPF2 3.71 3.02 3.80 2.99 2.50 3.96 2.73 2.94 4.72 2.94 3.64 3.25 3.349
NPF 2.62 2.49 2.65 4.15 2.94 3.34 6.41 4.18 3.49 4.16 3.39 2.94 3.563
NHPF1 2.60 2.58 2.67 2.89 2.99 3.26 2.86 3.42 3.69 3.15 3.74 3.11 3.080
NHPF2 2.73 2.21 2.58 2.71 2.50 3.14 2.74 2.94 3.80 2.83 3.63 3.25 2.921
BS(2) 1.64 1.90 2.34 2.65 2.25 2.99 2.65 2.51 3.04 2.73 3.50 3.18 2.614
BS(5) 0.50 1.04 1.72 1.17 0.71 1.44 1.25 1.09 1.60 1.33 1.46 1.56 1.239
BS(15) 0.17 1.13 1.64 0.33 0.41 0.94 0.68 0.49 0.41 0.67 0.54 0.84 0.687
BS(n/10) 1.64 1.90 2.34 1.17 0.71 1.44 0.71 0.48 0.74 0.44 0.39 0.39 1.029
BS(n) 0.21 1.09 1.56 0.11 0.12 0.58 0.12 0.03 0.07 0.00 0.09 0.00 0.333
wPF 6.11 4.77 3.58 8.64 7.08 4.06 10.47 7.10 4.18 9.29 5.73 6.07 6.423
PW 7.22 2.73 2.62 9.58 6.11 2.46 10.57 6.60 3.63 8.67 5.14 5.77 5.926
PF-NEH(1) 2.87 2.49 2.73 4.35 2.90 3.87 7.10 4.02 3.75 4.17 2.98 2.81 3.670
PF-NEH(2) 2.45 2.08 2.13 4.29 2.15 2.88 6.55 3.45 3.03 4.02 2.89 2.72 3.221
PF-NEH(5) 1.96 1.45 1.63 3.52 1.97 2.26 5.57 2.43 2.67 3.51 2.62 2.43 2.669
wPF-NEH(1) 2.87 2.22 2.40 6.16 4.98 3.04 8.75 5.40 3.60 8.73 5.18 5.64 4.915
wPF-NEH(2) 2.61 1.92 1.88 5.50 3.58 2.44 8.00 5.26 3.11 7.47 4.53 5.35 4.304
wPF-NEH(5) 1.81 1.74 1.47 4.68 3.06 1.73 7.25 4.86 2.51 6.69 3.86 5.14 3.732
PW-NEH(1) 2.84 2.58 2.86 6.78 4.44 1.89 9.52 5.85 3.29 8.15 4.82 5.61 4.885
PW-NEH(2) 2.62 2.39 1.63 5.61 3.88 1.77 9.25 5.32 2.80 7.68 4.23 5.34 4.375
PW-NEH(5) 1.96 1.73 1.44 5.26 3.09 1.50 7.54 4.97 2.60 6.74 3.90 5.21 3.828
PF-NEHLS(1) 1.52 1.08 1.04 3.30 2.04 1.21 5.41 3.17 2.30 3.70 2.37 2.39 2.462
PF-NEHLS(2) 1.03 0.89 0.71 3.10 1.30 1.01 4.92 2.58 1.85 3.54 2.22 2.27 2.120
PF-NEHLS(5) 0.65 0.47 0.33 2.48 0.97 0.71 4.03 1.88 1.48 3.12 1.95 2.10 1.682
wPF-NEHLS(1) 1.78 1.21 0.98 4.59 3.13 1.47 5.52 4.32 2.87 6.53 4.45 5.25 3.508
wPF-NEHLS(2) 1.09 1.01 0.66 3.88 2.38 1.22 4.87 4.13 2.38 6.15 4.00 4.93 3.056
wPF-NEHLS(5) 0.62 0.49 0.30 3.16 1.97 0.65 4.22 3.64 1.92 5.23 3.31 4.69 2.516
PW-NEHLS(1) 1.91 0.81 0.77 5.12 3.29 1.31 6.20 4.34 2.74 6.67 4.24 5.33 3.560
PW-NEHLS(2) 1.37 0.68 0.63 4.40 2.63 1.20 6.16 3.98 2.33 6.06 3.82 5.10 3.197
PW-NEHLS(5) 0.94 0.48 0.37 3.60 1.93 0.78 4.72 3.40 1.97 5.25 3.49 4.82 2.647
LR(1) 4.30 2.99 2.25 6.00 3.50 2.25 7.13 5.11 2.60 5.59 2.94 3.81 4.039
FF(1) 3.99 2.74 2.34 6.21 3.36 2.38 6.74 5.68 2.63 5.28 3.21 3.77 4.028
FF(2) 3.64 2.63 1.96 5.65 3.30 2.28 6.33 5.23 2.35 4.92 3.10 3.61 3.750
FF(n/10) 3.64 2.63 1.96 5.21 3.14 2.21 6.17 4.43 2.10 4.74 2.95 3.38 3.548
FF(n/m) 3.47 2.63 2.34 5.15 3.14 2.28 6.10 4.43 2.18 4.74 2.97 3.43 3.573
FF-FPE(2,n/10) 2.54 2.04 1.53 4.82 2.91 1.71 5.19 3.83 2.03 4.13 2.78 3.18 3.057
FF-FPE(15,n/10) 2.46 2.04 1.51 4.30 2.72 1.55 4.91 3.46 1.83 3.99 2.70 3.07 2.879
FF-FPE(n/10,1) 3.07 2.19 1.54 4.92 2.98 1.95 5.88 4.05 1.97 4.52 2.86 3.26 3.266
FF-FPE(n/10,n/10) 2.54 2.04 1.53 4.57 2.95 1.56 5.10 3.60 1.83 3.99 2.71 2.93 2.945
FF-FPE(n/10,n) 1.53 1.43 1.10 3.22 1.99 1.28 3.30 2.93 1.65 3.41 2.53 2.73 2.258
FF-FPE(n/m,n) 1.57 1.43 1.12 3.07 1.99 1.27 3.17 2.93 1.70 3.41 2.50 2.84 2.250
FF-FPE(n,n) 1.57 1.43 1.11 3.07 1.91 1.14 3.17 2.88 1.65 3.36 2.51 2.72 2.209
FF-ICH1 1.74 0.96 0.78 3.19 2.03 1.12 4.28 2.85 1.64 3.72 2.51 2.93 2.313
FF-ICH2 1.46 0.76 0.72 2.38 1.64 0.92 2.94 2.39 1.51 2.99 2.27 2.78 1.896
FF-ICH3 1.55 0.76 0.77 2.41 1.74 0.84 2.93 2.21 1.48 3.08 2.29 2.76 1.902
FF-NEH(5) 2.60 2.01 1.60 5.09 2.89 1.93 5.98 4.53 2.16 4.75 2.96 3.57 3.340
FF-NEH(10) 2.60 2.01 1.59 5.02 2.89 1.92 5.93 4.23 2.06 4.69 2.96 3.54 3.286
Raj 4.42 3.20 3.54 6.22 4.91 4.96 9.43 6.62 6.21 9.28 6.52 8.89 6.184
RZ 3.68 2.29 2.01 6.52 5.11 3.46 9.07 7.48 5.40 10.33 7.62 9.83 6.066
RZ_LW 1.48 1.81 0.92 4.12 3.39 2.51 5.67 4.77 3.65 6.35 5.06 6.96 3.891
FF-PR1(5) 0.59 0.65 0.29 2.37 1.35 0.60 4.02 2.98 1.55 3.78 2.36 3.19 1.978
FF-PR1(10) 0.43 0.39 0.22 2.05 1.31 0.42 3.85 2.60 1.38 3.53 2.26 3.17 1.801
FF-PR1(15) 0.37 0.36 0.21 2.05 1.09 0.41 3.57 2.38 1.31 3.51 2.22 3.17 1.720
NEH 6.26 5.27 3.69 11.27 8.53 6.51 12.93 10.74 8.09 13.83 9.87 11.55 9.043
FRB2 1.48 1.75 0.62 4.07 3.07 1.52 6.24 5.06 3.05 7.19 4.92 6.81 3.814
FRB3 1.30 0.88 0.71 2.73 1.58 1.15 3.82 2.57 1.87 4.05 2.88 4.31 2.321
FRB42 1.95 1.67 1.65 3.40 2.92 1.71 5.27 3.58 3.02 6.13 4.17 5.95 3.452
FRB44 1.62 1.16 1.13 3.10 2.43 1.73 4.65 3.62 2.47 5.24 3.69 5.46 3.025
FRB48 1.49 1.23 0.75 2.96 2.37 1.52 4.23 3.07 2.52 4.87 3.46 5.21 2.807
FRB48 1.31 1.02 0.86 2.90 1.84 1.41 4.32 3.01 2.28 4.84 3.49 4.93 2.684
FRB410 1.30 0.96 0.77 2.93 1.75 1.40 4.22 2.81 2.08 4.49 3.28 5.01 2.584
FRB412 1.30 0.96 0.81 2.74 1.69 1.40 4.13 2.72 2.36 4.44 3.21 4.93 2.558
FRB5 1.25 0.94 0.69 2.58 1.63 0.79 3.87 2.56 1.76 4.13 2.86 4.16 2.269

23

Table 3: Detailed values of CPU times for each size of the problem. The proposed set of
heuristics is indicated in bold.

Heuristic Size of the problem (n x m)
ACP U20x5 20x10 20x20 50x5 50x10 50x20 100x5 100x10 100x20 200x10 200x20 500x20

NEH_WPT 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.07 0.16 2.89 0.264
MME 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.07 0.16 2.91 0.267
MME_A 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.07 0.16 2.90 0.266
MME_B 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.07 0.16 2.92 0.268
NEH-MK 0.00 0.00 0.01 0.03 0.06 0.11 0.39 0.72 1.53 10.39 24.24 1123.77 96.771
PF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.004
HPF1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.005
HPF2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.04 0.005
NPF 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.08 0.17 3.02 0.277
NHPF1 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.08 0.17 3.02 0.277
NHPF2 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.08 0.17 3.02 0.277
BS(2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.14 0.019
BS(5) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.05 0.07 0.33 0.043
BS(15) 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.04 0.06 0.12 0.18 1.04 0.127
BS(n/10) 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.16 0.25 4.33 0.403
BS(n) 0.00 0.00 0.00 0.04 0.05 0.06 0.28 0.33 0.45 4.10 5.03 147.44 13.148
wPF 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.05 0.007
PW 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.07 0.14 1.92 0.182
PF-NEH(1) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.07 0.48 0.051
PF-NEH(2) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.05 0.13 0.96 0.101
PF-NEH(5) 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.07 0.13 0.32 2.39 0.250
wPF-NEH(1) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.06 0.41 0.044
wPF-NEH(2) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.05 0.11 0.82 0.087
wPF-NEH(5) 0.00 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.06 0.12 0.28 2.05 0.216
PW-NEH(1) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.09 0.19 2.27 0.219
PW-NEH(2) 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.06 0.18 0.37 4.58 0.439
PW-NEH(5) 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.07 0.15 0.44 0.91 11.41 1.091
PF-NEHLS(1) 0.00 0.00 0.00 0.01 0.02 0.04 0.06 0.11 0.23 1.00 2.37 50.74 4.548
PF-NEHLS(2) 0.00 0.00 0.01 0.02 0.03 0.07 0.11 0.23 0.48 1.84 5.07 106.19 9.504
PF-NEHLS(5) 0.00 0.01 0.01 0.03 0.07 0.17 0.28 0.50 1.30 4.50 12.51 256.12 22.959
wPF-NEHLS(1) 0.00 0.00 0.00 0.01 0.02 0.04 0.07 0.11 0.25 1.25 2.25 58.69 5.225
wPF-NEHLS(2) 0.00 0.00 0.01 0.02 0.03 0.07 0.13 0.21 0.47 2.27 5.03 124.21 11.037
wPF-NEHLS(5) 0.00 0.01 0.01 0.04 0.08 0.16 0.34 0.55 1.28 5.75 13.88 327.12 29.102
PW-NEHLS(1) 0.00 0.00 0.00 0.01 0.02 0.03 0.08 0.13 0.29 1.25 3.12 53.22 4.847
PW-NEHLS(2) 0.00 0.00 0.01 0.02 0.04 0.07 0.15 0.24 0.58 2.72 6.28 111.86 10.164
PW-NEHLS(5) 0.00 0.01 0.01 0.04 0.08 0.16 0.37 0.59 1.43 6.35 14.57 314.74 28.197
LR(1) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.07 0.14 1.95 0.184
FF(1) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.05 0.006
FF(2) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.10 0.012
FF(n/10) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.08 0.16 2.40 0.224
FF(n/m) 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.08 0.08 1.20 0.117
FF-FPE(2,n/10) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.14 0.38 9.01 0.801
FF-FPE(15,n/10) 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.06 0.20 0.45 7.99 0.732
FF-FPE(n/10,1) 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.03 0.09 0.17 2.49 0.234
FF-FPE(n/10,n/10) 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.22 0.49 9.86 0.890
FF-FPE(n/10,n) 0.00 0.00 0.00 0.01 0.01 0.03 0.07 0.11 0.23 1.04 2.41 53.40 4.776
FF-FPE(n/m,n) 0.00 0.00 0.00 0.01 0.01 0.03 0.08 0.11 0.22 1.04 2.33 56.86 5.058
FF-FPE(n,n) 0.00 0.00 0.00 0.02 0.03 0.05 0.11 0.20 0.40 1.73 3.76 77.00 6.943
FF-ICH1 0.00 0.00 0.00 0.01 0.02 0.03 0.07 0.11 0.25 0.90 1.97 47.88 4.271
FF-ICH2 0.00 0.00 0.01 0.02 0.03 0.06 0.14 0.23 0.46 2.42 5.90 119.68 10.745
FF-ICH3 0.00 0.00 0.01 0.03 0.04 0.08 0.34 0.50 0.82 6.42 10.97 330.67 29.157
FF-NEH(5) 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03 0.07 0.22 0.50 8.88 0.813
FF-NEH(10) 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.06 0.13 0.43 1.00 17.76 1.623
Raj 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.04 0.67 0.063
RZ 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.06 0.20 0.47 8.71 0.792
RZ_LW 0.00 0.00 0.00 0.01 0.02 0.04 0.08 0.14 0.41 1.60 4.42 109.08 9.651
FF-PR1(5) 0.00 0.01 0.01 0.04 0.07 0.15 0.26 0.55 1.20 4.97 12.14 298.32 26.477
FF-PR1(10) 0.01 0.01 0.02 0.08 0.14 0.31 0.54 1.13 2.44 10.20 23.93 372.53 34.279
FF-PR1(15) 0.01 0.02 0.03 0.11 0.21 0.47 0.83 1.68 3.81 15.22 36.66 372.54 35.965
NEH 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.07 0.16 2.87 0.262
FRB2 0.00 0.00 0.01 0.01 0.03 0.14 0.06 0.23 0.97 1.67 8.19 153.68 13.749
FRB3 0.00 0.00 0.01 0.03 0.06 0.11 0.38 0.70 1.49 10.25 23.88 1121.64 96.546
FRB42 0.00 0.00 0.00 0.01 0.01 0.02 0.03 0.05 0.11 0.38 0.89 16.60 1.509
FRB44 0.00 0.00 0.00 0.01 0.01 0.03 0.04 0.08 0.17 0.59 1.41 26.29 2.386
FRB48 0.00 0.00 0.00 0.01 0.02 0.03 0.06 0.11 0.23 0.77 1.86 35.38 3.205
FRB48 0.00 0.00 0.00 0.01 0.02 0.04 0.07 0.13 0.28 0.95 2.29 43.56 3.946
FRB410 0.00 0.00 0.01 0.01 0.02 0.04 0.08 0.15 0.32 1.12 2.69 52.23 4.723
FRB412 0.00 0.00 0.01 0.02 0.03 0.05 0.09 0.17 0.37 1.28 3.06 59.39 5.372
FRB5 0.00 0.00 0.01 0.04 0.08 0.17 0.62 1.11 2.61 17.50 41.14 2053.54 176.403

24

Parameter BS(2) BS(5) BS(15) BS(n/10) BS(n) HPF2 PF-NEH(5) PF-NEHLS(2) FF-FPE(n/10,n) FF-ICH1 FF-ICH2
n=20 1.96 1.09 0.98 1.96 0.95 3.51 1.68 0.49 1.35 1.16 0.98
n=50 2.63 1.11 0.56 1.11 0.27 3.15 2.58 1.39 2.16 2.11 1.65
n=100 2.73 1.31 0.52 0.64 0.08 3.46 3.56 2.46 2.63 2.92 2.28
n=200 3.11 1.39 0.61 0.41 0.05 3.29 3.06 2.53 2.97 3.12 2.63
n=500 3.18 1.56 0.84 0.39 0.00 3.25 2.43 2.10 2.73 2.93 2.78
m=5 2.31 0.97 0.39 1.18 0.15 3.14 3.68 2.39 2.68 3.07 2.26
m=10 2.35 1.04 0.68 0.88 0.31 2.85 2.34 1.61 2.44 2.39 1.95
m=20 3.01 1.56 0.87 1.06 0.46 3.87 2.32 1.31 1.86 1.80 1.64

Table 4: ARPDs of the most promising heuristics depending on the parameters n and m

i Hi p-value Mann-Whitney α/(k − i + 1) Holm’s Procedure
1 BS(5) = PF-NEH(2) 0.000 R 0.0167 R
2 BS(15) = FF-ICH2 0.000 R 0.0250 R
3 BS(n) = PF-NEHLS(5) 0.000 R 0.0500 R

Table 5: Holm’s procedure.

• H2: BS(15) = FF-ICH2

• H3: BS(n) = PF-NEHLS(5)

We use a non-parametric Mann-Whitney test assuming a 0.95 confidence level (i.e. α = 0.05)

to establish the p-value of each hypothesis (see e.g. Pan et al., 2008a and Fernandez-Viagas and Framinan,

2015b for similar statistical approach). In Holm’s procedure, a hypothesis i among a total of

k (ordered in ascending order of p-values) is rejected if its p-value is lower than α/(k − i + 1).

The results of the procedure are shown in Table 5. Each p-value is 0.000 and therefore, each

hypothesis can be rejected.

Regarding the fastest heuristics, i.e. HPF1, HPF2, PF, wPF, FF(1) and FF(2), the best

ARPD is found by HPF2. We perform again a Mann-Whitney test to establish the efficiency of

HPF1 using the same confidence. We compare it with both HPF2 and FF(2). Results are shown

in Table 6. There is no statistical significant difference between HPF2 and FF(2).

Hypothesis p-value Mann-Whitney
HPF2 = HFP1 0.043 R
HPF2 = FF(2) 0.129

Table 6: Comparison of HPF2 against HPF1 and FF(2) using a Mann-Whitney non-
parametric test.

25

6 Conclusions

In this paper, an efficient beam-search-based constructive heuristic is proposed. The heuristic

constructs a pool of partial sequences in each iteration appending jobs at the end of the most

promising sequences. An index based on the idle, blocking and departure times of the jobs

is proposed to determine the jobs selected in each iteration. Thereby, the heuristic adopts a

beam-search-based strategy which successfully combines the diversification of population-based

algorithms and the speed of constructive heuristics.

The proposed heuristic is compared with the best known constructive and improvement

heuristics both for the problem under consideration and for related scheduling problems. A total

of 36 heuristics are tested in an exhaustive computational evaluation using the set of instances of

Taillard (1993), where each heuristic has been reimplemented in C# to perform a fair comparison.

Additionally, a speed up procedure has been proposed to accelerate the insertion phases of each

heuristic. This procedure has been included in each insertion phase if applicable.

Among the implemented heuristics, the best ARPD are found by the proposed heuristic

BS(x) (∀x ∈ {5, 15, n/10, n}). 33 new upper bounds for the well-known Taillard benchmark

are found by these heuristics (which means that new best-so-far solutions have been found for

more than 27% of these instances). The computational experience also highlights the good

performance of several heuristics adapted from related scheduling problems, particularly from

the Fm|block|Cmax problem. This fact may speak for certain correlation between both problems

and opens some avenues for further research.

Acknowledgements

The authors are sincerely grateful to the anonymous referees, who provide very valuable com-

ments on the earlier version of the paper. This research has been funded by the Spanish Ministry

of Science and Innovation, under project “ADDRESS” with reference DPI2013-44461-P/DPI.

26

References
Bao, Y., Zheng, L., and Jiang, H. (2012). An improved hs algorithms for the blocking flow shop

scheduling problems. Proceedings - 2012 International Conference on Computer Science and
Information Processing, CSIP 2012, pages 1289–1291.

Deng, G., Xu, Z., and Gu, X. (2012). A discrete artificial bee colony algorithm for minimizing the
total flow time in the blocking flow shop scheduling. Chinese Journal of Chemical Engineering,
20(6):1067–1073.

Dong, X., Huang, H., and Chen, P. (2008). An improved NEH-based heuristic for the permutation
flowshop problem. Computers & Operations Research, 35(12):3962–3968.

Fernandez-Viagas, V. and Framinan, J. (2015a). A bounded-search iterated greedy algorithm for
the distributed permutation flowshop scheduling problem. International Journal of Production
Research, 53(4):1111–1123.

Fernandez-Viagas, V. and Framinan, J. (2015b). Efficient non-population-based algorithms for
the permutation flowshop scheduling problem with makespan minimisation subject to a max-
imum tardiness. Computers & Operations Research, 64(0):86 – 96.

Fernandez-Viagas, V. and Framinan, J. (2015c). A new set of high-performing heuristics to
minimise flowtime in permutation flowshops. Computers & Operations Research, 53:68–80.

Fernandez-Viagas, V. and Framinan, J. M. (2014). On insertion tie-breaking rules in heuristics
for the permutation flowshop scheduling problem. Computers & Operations Research, 45(0):60
– 67.

Ferrer, A., Guimarans, D., Ramalhinho, H., and Juan, A. (2016). A brils metaheuristic for
non-smooth flow-shop problems with failure-risk costs. Expert Systems with Applications,
44:177–186.

Framinan, J., Gupta, J., and Leisten, R. (2004). A review and classification of heuristics for per-
mutation flow-shop scheduling with makespan objective. Journal of the Operational Research
Society, 55(12):1243–1255.

Framinan, J., Leisten, R., and Ruiz, R. (2014). Manufacturing Scheduling Systems: An Integrated
View on Models, Methods, and Tools. Springer.

Framinan, J., Leisten, R., and Ruiz-Usano, R. (2005). Comparison of heuristics for flowtime
minimisation in permutation flowshops. Computers & Operations Research, 32(5):1237–1254.

Framinan, J. M., Leisten, R., and Rajendran, C. (2003). Different initial sequences for the
heuristic of Nawaz, Enscore and Ham to minimize makespan, idletime or flowtime in the static
permutation flowshop sequencing problem. International Journal of Production Research,
41(1):121–148.

Gong, H., Tang, L., and Duin, C. (2010). A two-stage flow shop scheduling problem on a
batching machine and a discrete machine with blocking and shared setup times. Computers
& Operations Research, 37(5):960–969.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1979). Optimization
and Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of Discrete
Mathematics, 5:287–326.

Hall, N. and Sriskandarajah, C. (1996). A survey of machine scheduling problems with blocking
and no-wait in process. Operations Research, 44(3):510–525.

27

Han, Y.-Y., Duan, J.-H., Yang, Y.-J., Zhang, M., and Yun, B. (2011). Minimizing the total
flowtime flowshop with blocking using a discrete artificial bee colony. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes
in Bioinformatics), 6839 LNAI:91–97.

Han, Y.-Y., Liang, J., Pan, Q.-K., Li, J.-Q., Sang, H.-Y., and Cao, N. (2013). Effective hybrid
discrete artificial bee colony algorithms for the total flowtime minimization in the blocking
flowshop problem. International Journal of Advanced Manufacturing Technology, 67(1-4):397–
414.

Han, Y.-Y., Pan, Q.-K., Li, J.-Q., and Sang, H.-Y. (2012). An improved artificial bee colony
algorithm for the blocking flowshop scheduling problem. International Journal of Advanced
Manufacturing Technology, 60(9-12):1149–1159.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal
of Statistics, 6:65–70.

Kalczynski, P. J. and Kamburowski, J. (2007). On the NEH heuristic for minimizing the
makespan in permutation flow shops. OMEGA, The International Journal of Management
Science, 35(1):53–60.

Kalczynski, P. J. and Kamburowski, J. (2008). An improved NEH heuristic to minimize makespan
in permutation flow shops. Computers & Operations Research, 35(9):3001–3008.

Kalczynski, P. J. and Kamburowski, J. (2009). An empirical analysis of the optimality rate of
flow shop heuristics. European Journal of Operational Research, 198(1):93 – 101.

Khorasanian, D. and Moslehi, G. (2012). An iterated greedy algorithm for solving the blocking
flow shop scheduling problem with total flow time criteria. International Journal of Industrial
Engineering & Production Research, 23(4):301–308.

Krajewski, L., King, B., Ritzman, L., and Wong, D. (1987). Kanban, MRP, and shaping the
manufacturing environment. Management Science, 33:39–57.

Leisten, R. (1990). Flowshop sequencing problems with limited buffer storage. International
Journal of Production Research, 28(11):2085–2100.

Li, X., Wang, Q., and Wu, C. (2009). Efficient composite heuristics for total flowtime minimiza-
tion in permutation flow shops. Omega, 37(1):155–164.

Li, X. and Wu, C. (2005). An efficient constructive heuristic for permutation flow shops to
minimize total flowtime. Chinese Journal of Electronics, 14(2):203–208.

Lin, S.-W., Huang, C.-Y., Lu, C.-C., and Ying, K.-C. (2012). Minimizing total flow time in per-
mutation flowshop environment. International Journal of Innovative Computing, Information
and Control, 8(10 A):6599–6612.

Liu, J. and Reeves, C. (2001). Constructive and composite heuristic solutions to the P ||
∑

ci

scheduling problem. European Journal of Operational Research, 132:439–452.
McCormick, S., Pinedo, M. L., Shenker, S., and Wolf, B. (1989). Sequencing in an assembly line

with blocking to minimize cycle time. Operations Research, 37(6):925–935.
Moslehi, G. and Khorasanian, D. (2013). Optimizing blocking flow shop scheduling problem with

total completion time criterion. Computers & Operations Research, 40(7):1874–1883.
Naderi, B. and Ruiz, R. (2010). The distributed permutation flowshop scheduling problem.

Computers & Operations Research, 37(4):754–768.

28

Nawaz, M., Enscore Jr., E., and Ham, I. (1983). A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. OMEGA, The International Journal of Management Science,
11(1):91–95.

Pan, Q.-K. and Ruiz, R. (2013). A comprehensive review and evaluation of permutation flowshop
heuristics to minimize flowtime. Computers & Operations Research, 40(1):117–128.

Pan, Q.-K., Tasgetiren, M., and Liang, Y.-C. (2008a). A discrete differential evolution algorithm
for the permutation flowshop scheduling problem. Computers and Industrial Engineering,
55(4):795–816.

Pan, Q.-K. and Wang, L. (2012). Effective heuristics for the blocking flowshop scheduling problem
with makespan minimization. Omega, 40(2):218–229.

Pan, Q.-K., Wang, L., and Zhao, B.-H. (2008b). An improved iterated greedy algorithm for
the no-wait flow shop scheduling problem with makespan criterion. International Journal of
Advanced Manufacturing Technology, 38(7-8):778–786.

Rad, S. F., Ruiz, R., and Boroojerdian, N. (2009). New high performing heuristics for minimizing
makespan in permutation flowshops. OMEGA, The International Journal of Management
Science, 37(2):331–345.

Rajendran, C. (1993). Heuristic algorithm for scheduling in a flowshop to minimize total flowtime.
International Journal of Production Economics, 29(1):65–73.

Rajendran, C. and Ziegler, H. (1997). An efficient heuristic for scheduling in a flowshop to
minimize total weighted flowtime of jobs. European Journal of Operational Research, 103:129–
138.

Reklaitis, G. (1982). Review of scheduling of process operations. AIChE Symposium Series,
78(214):119–133.

Reza Hejazi, S. and Saghafian, S. (2005). Flowshop-scheduling problems with makespan criterion:
A review. International Journal of Production Research, 43(14):2895–2929.

Ribas, I. and Companys, R. (2015). Efficient heuristic algorithms for the blocking flow shop
scheduling problem with total flow time minimization. Computers and Industrial Engineering,
87:30–39.

Ribas, I., Companys, R., and Tort-Martorell, X. (2010). Comparing three-step heuristics for the
permutation flow shop problem. Computers & Operations Research, 37(12):2062–2070.

Ribas, I., Companys, R., and Tort-Martorell, X. (2011). An iterated greedy algorithm for the
flowshop scheduling problem with blocking. Omega, 39(3):293–301.

Ribas, I., Companys, R., and Tort-Martorell, X. (2013). A competitive variable neighbourhood
search algorithm for the blocking flow shop problem. European Journal of Industrial Engi-
neering, 7(6):729–754.

Ribas, I., Companys, R., and Tort-Martorell, X. (2015). An efficient discrete artificial bee colony
algorithm for the blocking flow shop problem with total flowtime minimization. Expert Systems
with Applications, 42(15-16).

Ronconi, D. (2004). A note on constructive heuristics for the flowshop problem with blocking.
International Journal of Production Economics, 87(1):39–48.

Ruiz, R. and Maroto, C. (2005). A comprehensive review and evaluation of permutation flowshop
heuristics. European Journal of Operational Research, 165(2):479–494.

29

Ruiz, R. and Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permu-
tation flowshop scheduling problem. European Journal of Operational Research, 177(3):2033–
2049.

Sethi, S., Sriskandarajah, C., Sorger, G., Blazewicz, J., and Kubiak, W. (1992). Sequencing
of parts and robot moves in a robotic cell. International Journal of Flexible Manufacturing
Systems, 4(3-4):331–358.

Storer, R., Wu, S., and Vaccari, R. (1992). New search spaces for sequencing problems with
application to job shop scheduling. Management Science, 38:1495–1509.

Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem.
European Journal of Operational Research, 47(1):65–74.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of Operational
Research, 64(2):278–285.

Vallada, E. and Ruiz, R. (2010). Genetic algorithms with path relinking for the minimum
tardiness permutation flowshop problem. Omega, 38(1-2):57–67.

Vasiljevic, D. and Danilovic, M. (2015). Handling ties in heuristics for the permutation flow shop
scheduling problem. Journal of Manufacturing Systems, 35:1–9.

Wang, L., Pan, Q., and Tasgetiren, M. (2010). Minimizing the total flow time in a flow shop
with blocking by using hybridm harmony search algorithms. Expert Systems with Applications,
37(12):7929–7936.

Ying, K.-C. and Lin, S.-W. (2013). A high-performing constructive heuristic for minimiz-
ing makespan in permutation flowshops. Journal of Industrial and Production Engineering,
30(6):355–362.

Zanakis, S., Evans, J., and Vazacopoulos, A. (1989). Heuristic methods and applications: A
categorized survey. European Journal of Operational Research, 43(1):88–110.

Zäpfel, G., Braune, R., and Bögl, M. (2010). Metaheuristic Search Concepts. Springer.

30

View publication statsView publication stats

https://www.researchgate.net/publication/303686748

