
Computers & Industrial Engineering 169 (2022) 108276

Available online 28 May 2022
0360-8352/© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).

A critical-path based iterated local search for the green permutation
flowshop problem

Victor Fernandez-Viagas a,*, Bruno de Athayde Prata b, Jose M. Framinan a,c

a Industrial Management, School of Engineering, University of Seville, Camino de los Descubrimientos s/n, 41092 Seville, Spain
b Department of Industrial Engineering, Federal University of Ceara, Ceara, Brazil
c Laboratory of Engineering for Environmental Sustainability, University of Seville, Spain

A R T I C L E I N F O

Keywords:
Green scheduling
Bi-objective
Sustainable manufacturing
Flow shop
Carbon emissions reduction

A B S T R A C T

The permutation flowshop scheduling problem is a widely studied combinatorial optimization problem with
several real-world applications. In this paper we address a green variant of the problem with controllable pro-
cessing times and two objective functions: one related to the service level of the factory (makespan) and another
one related to the total cost or the total energy/carbon consumption. For this problem we propose a novel
Critical-Path based Iterated Local Search. This metaheuristic incorporates several theoretical results to accelerate
the search of solutions in the intensification phase. The proposed algorithm has been compared on an extensive
benchmark with the most promising algorithms in the literature. The computational results show the excellent
performance of the proposal.

1. Introduction

The flowshop scheduling problem is one of the most studied prob-
lems in the optimization literature (see e.g. the reviews by Fernandez-
Viagas et al., 2017; Framinan et al., 2004; Reza and Saghafian, 2005;
Ruiz and Maroto, 2005). This problem consists of obtaining the best
sequence of jobs to be processed on a series of machines in order to
optimize one or more criteria, where each job follows the same route of
machines. Traditionally, this problem is addressed in the literature
considering the same order of jobs in all machines and it is denoted as
the Permutation Flowshop Scheduling Problem (PFSP). In the PFSP as
well as in most scheduling literature, the processing times required for
the jobs to be processed on the machines has been commonly considered
as known and constant. However, in many real-world scenarios, these
processing times may change if additional resources are assigned (Lu
et al., 2014; Nowicki and Zdrzalka, 1990), a case that is denoted as
Controllable Processing Times (CPT). Thereby, in a scheduling problem
assuming CPT, the processing time of a job on a machine depends on one
or several factors, such as the amount of resources assigned to the ma-
chine (which in this case usually models a manual operation), the skills
of these resources, or the machine configuration applied. Reviews of
manufacturing scheduling with CPT have been carried out by Nowicki
and Zdrzalka (1990), Shabtay and Steiner (2007), Shioura et al. (2018),

Fernandez-Viagas and Framinan (2015c).
Given the global pressure to reduce carbon emissions (Wang et al.,

2011; Zhu et al., 2014), in the last years, a growing attention is being
paid in the literature (see e.g. Amiri and Behnamian, 2020; Cota et al.,
2021; Öztop et al., 2020) to a special case of scheduling with CPT
–denoted as green scheduling– where the CPT are aimed to reduce the
energy consumed by the machines during their processing. In this paper,
we focus on green scheduling in a PFSP context with two criteria: one
related to the service level of the factory (makespan) and another one
related to the total cost or the total energy/carbon consumption. This
problem can be denoted as Fm

⃒
⃒
⃒prmu, pij(uij)

⃒
⃒
⃒#(Cmax,Cost) according to

Graham et al. (1979), T’Kindt and Billaut (2006) and it is NP-hard since
the single-objective decision problem (i.e. the problem without CPT,
Fm|prmu|Cmax) is already NP-hard for more than two machines (Rinnooy
Kan, 1976). In the literature, most researchers have addressed this
problem by developing approximated procedures able to provide good
solutions within a reasonable computational effort (see e.g. Mokhtari
et al., 2011; Öztop et al., 2020). Despite these contributions, we are not
aware that problem-specific properties have been studied to improve the
effectiveness of the approximated procedures. In this regard, recent
advances from related scheduling problems (see e.g. Benavides and Ritt,
2018; Fernandez-Viagas et al., 2020; Fernandez-Viagas and Framinan,
2015b; Fernandez-Viagas and Framinan, 2015a) show that much more

* Corresponding author.
E-mail address: vfernandezviagas@us.es (V. Fernandez-Viagas).

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier.com/locate/caie

https://doi.org/10.1016/j.cie.2022.108276
Received 4 November 2021; Received in revised form 1 April 2022; Accepted 23 May 2022

mailto:vfernandezviagas@us.es
www.sciencedirect.com/science/journal/03608352
https://www.elsevier.com/locate/caie
https://doi.org/10.1016/j.cie.2022.108276
https://doi.org/10.1016/j.cie.2022.108276
https://doi.org/10.1016/j.cie.2022.108276
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2022.108276&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computers & Industrial Engineering 169 (2022) 108276

2

efficient solutions can be obtained by incorporating problem-specific
properties in the algorithms rather than by using different meta-
heuristics or more complex local search procedures. Therefore, we
believe that there is room for improving the state-of-the-art of approx-
imate solution procedures for the problem and present a novel iterated
local search which is based on several theoretical results. To present this
contribution, the rest of the paper is organised as follows: the problem is
formally described and its related literature reviewed in Section 2; next,
in Section 3 we develop some theoretical results which are incorporated
in the proposed iterated local search detailed in Section 4. The efficiency
of the proposal is analysed by comparison against the most effective
metaheuristics in the literature in Section 5. Finally, the conclusions are
discussed in Section 6.

2. Problem description and background

The problem under consideration can be defined as follows: a set 𝒥
of n jobs (𝒥 := {1,2,…,n}) has to be scheduled in a set ℳ of m machines.
Each machine i can perform the processing of the jobs using K different
speed levels or speed modes. Let sik denote the speed of machine i if speed
mode k (k ∈ {1, …, K}) is used. Then, the processing time of job j on

machine i when speed mode k is employed is pijk =
p̂ ij
sik

, where p̂ij is a
known reference processing time of job j on machine i. Each speed mode
is associated to a time unit processing cost, i.e. processing each job on
machine i at speed mode k incurs a cost per time unit of pcik, therefore
the cost of processing job j on machine j at speed k would be pcik⋅pijk.
Furthermore, we assume that there is a time-unit cost ici due to having
machine i idle (i.e. in stand-by mode). These two sources of costs would
be discussed later in the context of energy consumption. Next, we briefly
detail the rest of commonly assumed constraints in the problem under
consideration:

• Each machine can process at most a job at the same time.
• Each job can be processed by at most one machine at the same time.
• To be processed, all jobs has to followed the same route of machines.
• Release times are set to 0.
• Data are assumed to be deterministic.
• No preemption is assumed.
• Setup times are considered as insignificant or non-anticipatory and

sequence-independent (and therefore they could be added to the
processing times).

• Transportation times can be considered either insignificant or con-
stant for all jobs.

Given the problem above, since each job j can be processed on each
machine using a different speed, let us uij denote the speed mode at
which job j is to be processed on machine i. Furthermore, since the
permutation constraint is considered in our study, 𝒮 := {Π,𝒰} a feasible
solution for the problem is univocally defined by giving a permutation
Π = (π1,…, πn) where πj indicates the job to be processed in order j in all
the machines, and by giving 𝒰 = (u11,…, uij,…, umn) the set of speed
modes to be employed for each machine when processing each job. For
the problem under study, we minimize a bi-objective function of the
makespan (Cmax) and total cost (TC). The makespan is the maximum
completion time of any job on the last machine (i.e. Cmax = maxjCm,j),
where Cij the completion time of job j on machine i is obtained using Eq.
(1).

Ci,πj = max

{

Ci− 1,πj ,Ci,πj− 1

}

+
p̂i,πj

si,ui,πj

, i =

{

1, 2,…,m

}

, j =

{

1, 2,…, n

}

(1)

and Ci,π0 = C0,πj = 0.
Regarding the total cost TC, it can be computed using Eq. (2).

TC =
∑m

i=1

∑n

j=1
pci,uij

⋅pij,uij +
∑m

i=1
ici⋅ITi (2)

where ITi is the total idle time on machine i, which can be defined ac-
cording to Eq. (3).

ITi = Ci,πn −
∑n

j=1
pij,uij (3)

The costs involved in the problem under consideration (processing costs
and idle costs) can be linked to sustainable aspects, particularly if we
take into account that, in many scenarios, most of these costs are due to
state-dependent machine energy consumption (i.e. the energy con-
sumption is different depending on if the machine is in stand-by, or
processing a job using a certain speed mode). In addition, if such energy
is obtained from the combustion of fossil fuels, then its consumption
should be reduced as it is related to the emission of carbon dioxide into
the atmosphere. Therefore, several authors have addressed the problem
considering an energy-efficient approach. It is the case of Mansouri et al.
(2016), Zhang et al. (2017), Zhang et al. (2019), Ramezanian et al.
(2019), Öztop et al. (2020), Amiri and Behnamian (2020), which
consider the processing cost as:

pcik =
λk⋅δi

60
(4)

where λk and δi represent a conversion factor of the energy required to
work at speed k and the power consumed by machine i, respectively.

Similarly, for the specific problem of carbon emissions minimisation,
Foumani and Smith-Miles (2019) add a conversion factor to CO2
(denoted as γ) and apply:

pcik =
λk⋅γ⋅δi

60
(5)

Regarding the idle cost, all previous authors assume for the green
problem:

ici =
φi⋅δi

60
(6)

where φi represent a conversion factor of the energy incurred by ma-
chine i when is in stand-by (or idle).

The problem under consideration is a multi-objective optimization
problem. In this kind of problem, the goal is to obtain the Pareto-optimal
solution set (denoted as ℘) which is composed by all non-dominated
solution (see e.g. Fathollahi-Fard et al., 2018). Note that, given two
solutions 𝒮1 and 𝒮2, we say that solution 𝒮1 dominates solution 𝒮2 (or
equivalently 𝒮1 ≺ 𝒮2) when all objectives obtained by 𝒮1 are equal or
better than the ones obtained by 𝒮2 and at least one is better (Minella
et al., 2008; Zitzler et al., 2003). As the decision problem associated with
at least one of our multi-objective functions corresponds to an NP-hard
problem, the multi-objective optimization problem is NP-hard. Thus,
heuristic algorithms are required to find good approximations of the
Pareto front, taking into account proximity to the front as well as its
spreading across the front.

In the literature, several researchers have addressed either the
problem under consideration or related variants. Mixed integer linear
programming models have been proposed by Fang et al. (2013), Man-
souri et al. (2016), Foumani and Smith-Miles (2019). Using a single
objective function, Fang et al. (2013) investigate a related flowshop
scheduling problem taking into consideration the energy consumption
as a constraint (i.e. using a peak-power consumption constraint) instead
of as objective function. For this case, a maximal power consumption
constraint limits the utilization of the resources in a given production
period. Two mixed-integer linear programming formulations are pro-
posed for the makespan minimisation. Furthermore, two fast heuristics

V. Fernandez-Viagas et al.

Computers & Industrial Engineering 169 (2022) 108276

3

are introduced to find feasible schedules as well as to evaluate the trade-
off between makespan and peak-power consumption. Secondly, Man-
souri et al. (2016) address the scheduling of a two-machine flowshop
environment for the minimisation of makespan and energy consump-
tion. A mixed-integer linear programming formulation is proposed to
find the Pareto front to both objectives. A lower bound for both objec-
tives are proposed, as well as a fast heuristic that finds good approxi-
mations for the Pareto front. Finally, Foumani and Smith-Miles (2019)
address the flowshop scheduling problem with the bi-objective of
makespan and total carbon emission minimisation. A mixed-integer
linear programming formulation is proposed, and a weight aggrega-
tion approach converted the original problem into a single objective
one. These authors employed random data and real-based data in
computational experiments.

Regarding approximated algorithms proposed in the literature, the
most related approaches are the proposals by Mokhtari et al. (2011),
Öztop et al. (2020). The former considers a flowshop with CPT where a
trade-off between makespan and the required amount of resources is
sought to minimize. The authors decompose the problem into two sub-
problems (a sequencing problem and a resource allocation problem)
and propose a solution procedure combining a discrete differential
evolution algorithm (DDE) with a variable neighbourhood search (VNS).
Regarding the latter, Öztop et al. (2020) address an energy-efficient
flowshop scheduling problem for the minimisation of total flow time
and total energy consumption. These authors present a bi-objective
mixed-integer programming model formulation with a speed-scaling
framework. An improved version of the well-known NEH algorithm
(Nawaz et al., 1983) is proposed as initial solution. Furthermore, two
variants of the iterated greedy metaheuristic and variable block-
insertion algorithm are proposed. The iterated greedy algorithms pre-
sented better results in the computational experiments carried-out with
randomly generated test instances. Finally, note that several interesting
researches have also been proposed for related scheduling problem
considering either no-wait constraints (see e.g. Gao et al., 2018; Gomes
et al., 2020), either different setup times approaches (see e.g. Rameza-
nian et al., 2019), or hybrid flowshop layouts (see e.g. Behnamian and
Ghomi, 2011, 2015, 2019, 2002).

Summarising, the present literature review highlights that several
authors have addressed some related scheduling problems and there-
fore, although there is no optimization procedure for the problem under
consideration, we found some metaheuristics dealing with related ones.
These metaheuristics use novel mechanisms to conduct the local
searches, yet they do not use problem-specific properties in their phases,
a fact that can be exploited to substantially improve the performance of
these methods. To cover this gap, in the following section we introduce
some theoretical results, which will be incorporated in our proposal in
Section 4.

3. Theoretical results

In this section, we detail some theoretical results necessary to
develop our proposal. Firstly, we apply some common definitions of the
scheduling literature to the problem under consideration: critical path,
forward and backward decoding procedures, and slack time. Using
them, we can prove four theorems that are applied in the proposed
iterated local search-based metaheuristic (see Section 4) to improve its
efficiency.

Let us start by defining two different decoding procedures to obtain a
schedule from a solution of the problem 𝒮 = (Π,𝒰). Firstly the Forward
Decoding obtains a semi-active schedule (see definition in Pinedo
(2012)) inserting jobs from the left to the right of Π, while the Backward
Decoding considers the reverse sequence executed in the reverse order of
machines (see e.g. Ribas et al., 2010; Ribas et al., 2013). A formal
definition of both procedures, applied to the problem under consider-
ation, is detailed next:

Definition 3.1. (Forward Decoding) Let 𝒮 = (Π,𝒰), with Π := (π1,…,

πn), be a solution for the ℐ instance of the Fm
⃒
⃒
⃒prmu, pij(uij)

⃒
⃒
⃒#(Cmax,Cost)

problem. Then, the forward decoding constructs a solution by processing
each job πj on each machine i (with j ∈ {1,…, n} and i ∈ {1,…,m}) ac-
cording to Eq. (1), with CFD

i,π0
= C0,πj = 0 and CFD

ij = Cij (∀j ∈ {1,…,n},∀i ∈
{1,…,m}).

Definition 3.2. (Backward Decoding) Let 𝒮 = (Π,𝒰), with Π := (π1,

…, πn) and 𝒰 = (u11,…,uij,…,umn), be a solution for the ℐ instance of the

Fm
⃒
⃒
⃒prmu, pij(uij)

⃒
⃒
⃒#(Cmax,Cost) problem. Then, the backward decoding

constructs a solution by processing each job πj on each machine i
following the reverse sequence of jobs and machines (j ∈ {n, n − 1,…,1}
and i ∈ {m,m − 1,…,1}), i.e. starting by processing job πn on machine m.
The completion time of operation Oiπj (denoted by CBD

i,πj
) is defined by Eq.

(7). Note that Cij is the reverse completion time (i.e. starting from the
final operation) defined in Eq. (8), where Ci,πn+1 = Cm+1,πj = 0 (∀j ∈ {n,
n − 1,…,1},∀i ∈ {m,m − 1,…,1}).

CBD
i,πj

= Cmax − Ci,πj + pi,πj ,uiπj
,∀j ∈

{
n, n − 1,…, 1

}
,∀i ∈

{
m,m − 1,…, 1

}

(7)

Ci,πj = max
{

Ci+1,πj ,Ci,πj+1

}
+ pi,πj ,uiπj

, ∀j ∈
{

n, n − 1,…, 1
}
,∀i

∈
{

m,m − 1,…, 1
}

(8)

An example of forward and backward codifications is shown in Fig. 1
for five jobs and four machines. At the top of the figure, a schedule is
constructed from the sequence (1,2,3,4,5) using the forward decodifi-
cation, while alternatively at the bottom of the figure its backward
decoding is shown.

We can observe that the makespan obtained by a solution 𝒮 = (Π,𝒰)

using forward or backward decoding procedure is the same, which is a
known property of the PFSP, denoted as Reversibility of the PFSP (see e.g.
Ribas et al., 2010 for more details). Note that, when the speed modes (𝒰)

are fixed, the problem under consideration, Fm
⃒
⃒
⃒prmu, pij(uij)

⃒
⃒
⃒#(Cmax,

Cost), is obviously equivalent to the well-known Fm|prmu|Cmax problem,
and in consequence this property applies for our problem. The revers-
ibility in the problem is based on the existence of the Critical Path of a

Fig. 1. Example for theoretical results.

V. Fernandez-Viagas et al.

Computers & Industrial Engineering 169 (2022) 108276

4

solution 𝒮, denoted by ℛ(𝒮), whose definition in the traditional PFSP
can be found in Fernandez-Viagas et al. (2020). Nevertheless, for the
sake of completeness, we give the definition for the problem under
consideration:

Definition 3.3. (Critical Path) Let 𝒮 = (Π,𝒰), with Π := (π1,…,πn),

be a solution of ℐ an instance of the Fm
⃒
⃒
⃒prmu, pij(uij)

⃒
⃒
⃒(Cmax,Cost) prob-

lem. Then, considering semi-active schedules, we define the critical path
of 𝒮, 𝒞(𝒮), as a path composed of operations whose sum of processing
times is equal to the makespan and it can go from the first operation O1,π1

to the last one (Om,πn) moving always in direction of machines (from i to
i + 1) or jobs (from πj to πj+1).

In Fig. 1, using the same example, we can observe the critical path for
the sequence (1,2,3,4,5) in grey at the top of the figure, formed by
Operations (O11,O21,O22,O23,O24,O34,O35,O45).

These definitions are the basis of the accelerations proposed by
Taillard (1990) (denoted as Taillard’s accelerations) for the
Fm|prmu|Cmax problem (see Corollay 3.3 in Fernandez-Viagas et al.
(2020) for more details), which explains an efficient mechanism to
perform insertion-based methods in the Fm|prmu|Cmax problem. These
accelerations can be applied to the problem under consideration when
the modes 𝒰 to execute the operations are fixed (Theorem 3.1).

Theorem 3.1. Let 𝒮 = (Π,𝒰), with Π := (π1,…, πn− 1), be a solution of ℐ

an instance of the Fm
⃒
⃒
⃒prmu, pij(uij)

⃒
⃒
⃒(Cmax,Cost) problem. Furthermore, let

Ci,πj denote the reverse completion times of 𝒮 and Cσ
i,j the completion time of

job σ on machine i if this job σ is inserted in position j of Π using the set of
modes uiσ (∀i ∈ {1,…,m}). Then, the best makespan that can be obtained by
inserting σ in any position of Π, maintaining the same modes 𝒰 can be
computed as

Cmax = min
j=1,…,n

{

max
i=1,…,m

{

Cσ
ij +Ci,πj

}}

(9)

The proof of this theorem is trivial in view of Corollary 3.3 by Fer-
nandez-Viagas et al. (2020).

Next, let us define the final term Slack Time (stij) as:

Definition 3.4. (Slack Time) Let 𝒮 = (Π,𝒰), with Π := (π1,…,πn), be

a solution of ℐ an instance of the Fm
⃒
⃒
⃒prmu, pij(uij)

⃒
⃒
⃒#(Cmax,Cost) problem.

Then, we define sti,πj the operation slack time Oi,πj as the difference be-
tween the completion time of πj obtained using forward and backward
procedures, i.e. CFD

i,πj
, and CBD

i,πj
respectively. More specifically:

sti,πj = CBD
i,πj

− CFD
i,πj

(10)

In Fig. 1, the slack times of operations O13 and O42 in the previous
example are shown. Using this definition, we can present Theorems 3.2
and 3.4 that discuss which operations can be compressed or delayed in a
schedule without increasing the makespan. Note that these theorems
give conditions to reduce the speed modes of certain operations (and,
therefore, reducing the total costs in TC) without worsening the make-
span objective and will be used in the solution procedure presented in
Section 4.

Theorem 3.2. Let ℱ be the forward schedule obtained from solution 𝒮 =

(Π,𝒰), with Π := (π1,…, πn), using instance ℐ . Then, without altering so-
lution 𝒮, the operation Oi,πj can be delayed for a maximum of sti,πj time units
without increasing the makespan.

Proof. According to the reversibility property, the makespan obtained
using the backward decoding is the same as using the forward schedule.
Then, by Definition 3.4, the backward schedule represents a feasible
schedule where operation Oi,πj finishes sti,πj time units later than in the
forward schedule, but with the same final makespan. Therefore,

operation Oi,πj can be delayed for a maximum of sti,πj time units without
increasing the makespan. Now, let us analyze the possibility to delay
operation Oi,πj more time units than sti,πj without increasing the make-
span. According to Definition 3.2, the backward decoding generates a
semi-active schedule from the right to the left (see Eq. 7). Hence, any
delay of an operation in the backward schedule (without altering either
the orders of jobs in the machines or the modes applied) must necessary
delay that time the final makespan. As a consequence, an operation Oi,πj

can be delayed for at maximum sti,πj time units without increasing the
makespan. square

Theorem 3.3. Let ℱ be the forward schedule obtained from solution
𝒮 = (Π,𝒰), with Π := (π1,…, πn), using instance ℐ with critical path ℛ(𝒮).
All operations in ℛ(𝒮) do not have slack time, i.e. stOij = 0,∀Oij ∈ ℛ.

Proof. By the definition of the critical path, there can be no idle or
waiting times between operations belonging to the critical path, i.e. they
cannot be contracted or expanded without altering solution 𝒮. As a
consequence, the completion times of these operations must remain
unaltered if either forward or backward decoding is applied and,
consequently their slack time is 0. square

Corollary 3.1. Let ℱ be a forward schedule for instance ℐ obtained
from solution 𝒮 and ℛ(𝒮) be the corresponding critical path. Then, a
delay of δ time units in any operation in ℛ(𝒮) increases the makespan by
exactly δ units.

The proof of the corollary is trivial according to Theorem 3.3 and
Definition 3.3.

Theorem 3.4. Let ℱ be the forward schedule obtained from solution
𝒮 = (Π,𝒰), with Π := (π1,…, πn), using instance ℐ with critical path ℛ(𝒮).
Then, applying ℱ , any reduction in the completion time of an operation Oi,πj

not belonging the critical path cannot reduce the final makespan.

The proof of this theorem is trivial by Definition 3.3 and using the
same reasoning as in 3.3.

Theorem 3.5. Let ℱ be the forward schedule obtained from solution
𝒮 = (Π,𝒰), with Π := (π1,…, πn), using instance ℐ with critical path ℛ(𝒮).
Then, any reduction in the completion time of an operation Oi,πj belonging the
critical path could potentially reduce the final makespan Cmax.

Proof. By Definition 3.3, if some operation in the critical path is
reduced, there are two possibilities:

1. Some idle time is inserted between operations in the critical path. In
this case, there exists a new critical path with makespan less or equal
than Cmax;

2. Otherwise, the critical path remains the same, and then, the make-
span is reduced such amount of time. square

The previous theorems and corollaries establish a guideline to be
followed if some operation is advanced or delayed in the schedule. Note
that in the problem under consideration, this fact is very relevant as the
processing times of the operations (and consequently their completion
times) depend on the modes employed to execute them.

As a summary of the previous theoretical results, we can conclude
that:

• Given a solution 𝒮 = (Π, 𝒰), Taillard’s accelerations represent an
efficient method for reducing the complexity of computing the
makespan if job σ is inserted in the best position of Π without
changing the set of modes 𝒰 (Theorem 3.1).

• Regarding the operations in the critical path:
- A delay in the completion time in any of these operations causes an

analogous increase in the final makespan.

V. Fernandez-Viagas et al.

Computers & Industrial Engineering 169 (2022) 108276

5

- A reduction of the completion time in any of these operations (due,
e.g., to reducing its processing time) can eventually reduce the final
makespan.

• For any operation Oij outside the critical path:
- A delay δ (with δ < stij) in the completion time of such an operation

does not increase the final makespan.
- Reducing the processing time of such an operation does not reduce

the final makespan.

These theoretical results are embedded in a local search-based met-
aheuristic presented in the next section.

4. Critical-Path based Iterated Local Search, CP_ILS

In this section, we detail the proposed critical-path based iterated
local search, denoted as CP_ILS, to obtain a Pareto set of solutions,
denoted as ℘. Starting from an initial solution, the traditional iterated
local search iteratively perturbs a solution and searches in its neigh-
bourhood for the best local solution. Despite being a basic procedure,
this type of metaheuristic has found excellent results in solving
permutation-based scheduling problems when a very efficient local
search is applied, being state-of-the-art in several related scheduling
problems (see e.g. Dong et al., 2013; M’Hallah, 2014; Subramanian

et al., 2014). In each iteration of our proposal, after applying a simple
perturbation mechanism (see Section 4.2 for more details), we carry out
an intensive search using two different types of local search methods
(types 𝒯 S and 𝒯 U) that do not modify either the sequence of jobs or the
speed modes. More specifically, the specific search of the proposal is
composed of the following four different local search methods (one of
type 𝒯 S and three of type 𝒯 U) as follows:

• Type 𝒯 S: An improvement in the current solution 𝒮 := (Π,𝒰) is
sought by altering thesequence Π while maintaining 𝒰.
- The first proposed local search method performs insertion-based

movements in Π without changing 𝒰. Under these conditions, the
requirements of Theorem 3.1 are fulfilled. In order to take advan-
tage of it, we search for the best solution after inserting each job in
each position. This local search is denoted LS_S. See Section 4.3 for
more details.

• Type 𝒯 U: An improvement in the current solution 𝒮 := (Π,𝒰) is
sought by altering the modes configuration 𝒰 while maintaining Π.
For this type, the following local search methods are proposed:
- LS_M: In this local search, we look for new solutions by changing

the current speed mode of a job and assuming that this mode is
used for all machines. The procedure is explained in detail in
Section 4.4.

Fig. 2. Critical-path based iterated local search.

V. Fernandez-Viagas et al.

Computers & Industrial Engineering 169 (2022) 108276

6

- LS_NCP: In this critical-path based local search, we use Theorem
3.2 and decrease the speed mode of the operations outside the
critical path. The procedure is explained in detail in Section 4.5.

- LS_CP: The second critical-path based local search applies Theorem
3.5 and increases the speed mode of the operations in the critical
path. The procedure is explained in detail in Section 4.6.

A global pseudo-code of CP_ILS is shown in Fig. 2, and in the next
sections we describe its main parts.

4.1. Initial solution

To generate an initial solution, we first generate the mode of each
operation Oij. For simplicity, we assign a random mode for every job,
and this mode is used for all machines, i.e. uij = uj,∀i, j. Once the set of
nodes has been assigned, a simple NEH algorithm is applied to construct
the initial sequence. This well-known algorithm (originally proposed by
Nawaz et al. (1983) for the Fm|prmu|Cmax problem) obtains a sequence
by sorting the jobs in Longest Processing Times order (denoted by
ΠLPT = (πLPT

1 ,…, πLPT
n)). The initial sequence, denoted by ΠNEH, is then

constructed by iteratively inserting job πLPT
j (j ∈ {2,…,n}) in ΠNEH, in the

position that yields the minimal (partial) makespan. In the first iteration,
ΠNEH is composed of a single job, i.e. ΠNEH = (πLPT

1). The pseudo-code to
construct the initial solution is shown in Fig. 3. Note that, as stated in
Theorem 3.1, Taillard’s accelerations can be applied to compute such a
minimal makespan. Hence, a calculation of the total cost is not per-
formed in this phase.

After a sequence is obtained using the NEH algorithm, the local
search method LS_S is applied and the so-obtained solution is appended
to ℘ the Pareto set of solutions found by the algorithm, initially empty.
Then, the local search method LS_M is applied to improve the solution.
These two methods are discussed in detail in Sections 4.3 and 4.4,
respectively. Once the two methods are applied, the algorithm performs
a series of iterations until the stopping criterion (i.e. running time) is
met. The first step in the iterations consists of the so-called perturbation
phase, which is described in the next section.

4.2. Perturbation phase

In the perturbation phase, a different element from the space of so-
lutions is intensively explored using advanced local search mechanisms.
To ensure the algorithm performance, this new element should satisfy
the following issues: firstly, it should have some similarity to a previous
element to avoid a completely new restart in each iteration, which
would make it difficult to find a high-quality local optimum; secondly,
the new element should be different enough from the previous one so
that the new local optimum could potentially be different. In this regard,
Fernandez-Viagas et al. (2018) explored this trade-off by comparing
eight different perturbation mechanisms. Among them, the best result
was obtained by a simple perturbation composed of several random
adjacent swaps. This perturbation is also considered in the proposed
metaheuristic. More specifically, in this phase, a job is selected
randomly and interchanged with the next job of the sequence. This
procedure is repeated d times, where d is a parameter of the algorithm to
be calibrated.

4.3. Local search: LS_S

In this section, we detail the local search method denoted by LS_S.
This search starts with a sequence of jobs (Π) and a speed mode for each
job that is maintained for all machines (uij = uj,∀i). Then, a local search
is carried out by changing the sequence of jobs, without altering the set
of speed modes (type 𝒯 S of local search methods). Thereby, each job of
the sequence is removed from the sequence and reinserted in the posi-
tion that minimises the makespan. Note that, as the modes configuration
is the same for all sequences tested, Theorem 3.1 can be applied to
accelerate the computation. This procedure is repeated until no
improvement is found. A detailed pseudo-code is shown in Fig. 4.

4.4. Local search: LS_M

The LS M method is our first proposed local search of type 𝒯 U. This
simple search receives a sequence of jobs, Π, and a mode configuration

Fig. 3. NEH algorithm.

Fig. 4. LS_S function.

V. Fernandez-Viagas et al.

Computers & Industrial Engineering 169 (2022) 108276

7

for each job j, uj (with j ∈ {1,…,n}), which is used to obtain the speed to
be set in every machine. Iteratively, the procedure selects a job j (with
j ∈ {1,…, n}) and increases its mode one unit. If the resulting mode is
greater than K, it is set to the first mode. Then, the procedure firstly
checks if the new solution belongs to the set of non-dominated solutions
and, second, it replaces the current solution if it has been dominated. A
detailed pseudo-code is shown in Fig. 5.

Note that this local search is not very intensive. The idea here is to
have a good initial configuration of modes to start the next local method.
Hence, by considering both the same mode in all machines and a unique
change in each mode, we can accelerate the search to set up a good
initial configuration of modes. An excess of intensification in this phase
could be counterproductive, since in the following phases (i.e. LS_NCP
and LS_CP) the mode in each machine is going to be altered.

4.5. Critical-path based local search: LS_NCP

The second local search of type 𝒯 U is based on the concept of critical

path (see Definition 3.3) and and more specifically, on Theorem 3.2.
Note that this theorem states that an operation outside the critical path
can be delayed by stij time units without increasing the makespan of the
solution. Hence, the proposed method first calculates the slack time stij

of every operation Oij by performing the forward and backward
decoding of the initial solution (see Eq. (10)). Then, these slack times are
tried to be reduced by increasing the processing times of the corre-
sponding operations. To do so, in each iteration, the speed of job j on
machine is tried to be increased. If the increase in the processing time is
lower than the corresponding slack time, the new speed replaces the last
one and the values of the objective functions are computed. Finally, if
the so-obtained solution is non-dominated, it is introduced in ℘, see the
pseudo-code in Fig. 6 for more details. Note that the slack times (stij) are
not recomputed in each iteration in order to reduce the computational
effort of the search.

4.6. Critical-path based local search: LS_CP

The last local search of type 𝒯 U is based on the operations in the
critical path (see Definition 3.3). In this case, according to Theorem 3.5
only these operations could potentially decrease the makespan. There-
fore, as in the previous local search method, the slack time of each

operation is first calculated using Eq. (10). Once these are computed, the
speed of job j on machine i is iteratively decreased and the corre-
sponding values of the objective functions are computed. If the so-
obtained solution is non-dominated, it is introduced in ℘, and is set as
the current solution. Then, the whole procedure is repeated while there
are some improvements, as illustrated in Fig. 7. As in the previous case,
the slack time (stij) is not recomputed once a new solution is found to
reduce the computational effort of the method.

4.7. Simulated annealing procedure

Finally, in the last step of the metaheuristic, a simple simulated
annealing procedure is applied to decide the current solution (𝒮 = {Π,

uj})1. To deal with that, a simulated annealing phase with a constant

Fig. 5. LS_M function.

Fig. 6. LS_NCP function.

1 Note that the current solution includes only one mode for each job j, and is
consequently assuming that the same mode is applied to all machines

V. Fernandez-Viagas et al.

Computers & Industrial Engineering 169 (2022) 108276

8

temperature is applied (see e.g. Fernandez-Viagas and Framinan, 2015b;
Pan et al., 2008; Ruiz and Stützle, 2007). In this phase, a new solution 𝒮

′

,
is kept in the next iteration if the makespan in the last iteration has been
outperformed:

random⩽exp{ − (Cmax(𝒮
′

) − Cmax(𝒮))/Temperature} (11)

where Temperature can be computed using parameter T as:

Temperature = T⋅

∑

∀i

∑

∀j
pij

n⋅m⋅10
(12)

5. Computational evaluation

In this section, we check the effectiveness of the proposed meta-
heuristic by comparing it against the most relevant metaheuristics
proposed in the related literature for the same problem. This comparison
is performed using three sets of medium-large instances. Both sets are
detailed in Section 5.1. The indicators chosen to compare the algorithms
are shown in Section 5.2, while the algorithms implemented are detailed
in Section 5.3. Finally, the computational results are presented in Sec-
tion 5.4.

5.1. Benchmark

According to Section 2, the following parameters completely define
an instance of the problem: n,m,S,pijk,sik,pcik, and ici. In this paper, these
parameters have been chosen to cover a wide scope of the problem
under consideration as well as its special case of energy consumption
minimisation (green approach). Next, we explain the generation of the
parameters:

• Number of machines: Analogously, we consider equidistant values
(m ∈ {5,10,15,20}) based on Ramezanian et al. (2019).

• Processing times: They are generated from a uniform distribution
between 1 and 99 (see e.g. Foumani and Smith-Miles, 2019; Man-
souri et al., 2016; Öztop et al., 2020).

• Number of modes: Three modes (K = 3) are generated to represent
the different types of speeds of each machine, following the most
common approach used in the literature (see e.g. Amiri and Behna-
mian, 2020; Foumani and Smith-Miles, 2019; Mansouri et al., 2016;
Öztop et al., 2020; Ramezanian et al., 2019; Zhang et al., 2019)

• Type of benchmark: For these parameters, three types of instances
are generated (ℬ1, ℬ2, and ℬ3) representing different cases of the
problem under consideration. The rest of the parameters (i.e. n, sik,

pcik, and ipi) are defined according to the following:
– Set of instances ℬ1. These instances are designed to test the algo-

rithms on a generic random benchmark. For the number of jobs,
we select equidistant values using bounds similar to Zhang et al.
(2019), Mansouri et al. (2016), i.e., we select n ∈ {40, 80, 120,
160}. Then, 30 iterations are generated for each combination of n
and m, resulting in a total of 480 instances. The speed parameter
(sik) is generated using a uniform distribution U[0.8,1.2] (the same
distribution as Öztop et al. (2020) but with bounds taken from
Mansouri et al. (2016)). Three values are generated for each ma-
chine i and the highest value is assigned to the mode k = 1, the
medium value to the mode k = 2, and the lowest value to the mode
k = 3. Regarding the costs, three processing costs (pcik) are
generated using a uniform distribution U[0.5,2.0] for each ma-
chine i. Analogously, the highest, medium and lowest values are
assigned to modes 1, 2 and 3, respectively. Finally, the idle costs
are generated using U[0.025,0.100].

Fig. 7. LS_CP function.

V. Fernandez-Viagas et al.

Computers & Industrial Engineering 169 (2022) 108276

9

– Set of instances ℬ2. This set is designed to tackle the green special
case of the problem and is composed of 480 instances varying the
previous combinations of n and m (n ∈ {40,80, 120,160} and m ∈

{5,10,15,20}). To generate this set, we use the same approach as
Öztop et al. (2020), Amiri and Behnamian (2020). More specif-
ically, we use λk ∈ {1.5,1.0,0.6},φ = 0.05, and δi = 60. Replacing
these values in Eqs. 4 and 6, we have ici = 0.05 and pcik = pck =

{1.5,1.0, 0.6} for modes 1, 2, and 3, respectively. Regarding the
speed parameter, sik, it is generated for three modes, regardless of
the machine, as sik = sk ∈ {1.2,1.0,0.8}.

– Set of instances ℬ3. This set is designed to test the algorithms in
big-size instances (n ∈ {300,400,500}). The rest of the parameters
are generated using the same distributions as ℬ1. This benchmark
is composed of 30 instances for each combination of n and m,
resulting in a total of 360 instances.

5.2. Indicators

The literature is abundant in the use of indicators to analyse the
performance of multi-objective approaches (for the interested reader,
we refer to Zitzler et al. (2003)). In our case, in order to have a fair
comparison with the algorithms implemented, we applied indicators
similar to those of Öztop et al. (2020). Before introducing such in-
dicators to evaluate the algorithms, let us assume that ℘A is the Pareto
set of solutions found by Algorithm A. In addition, let ℘* be the reference
Pareto set composed by the best non-dominated solutions found in an
instance, formed by the solutions reached by any of the implemented
algorithms. By doing so, based on the literature, we can measure the
efficiency of the algorithms by using the following indicators to compare
the Pareto set of each different algorithm. Note that these indicators try
to measure the density, spread and quality of each set of solutions. These
indicators are as follows:

• Number of non-dominated solutions (see e.g. Fathollahi-Fard et al.,
2018; Kacem and Dammak, 2019; Pan et al., 2009), NNDS. This in-
dicator represents the number of global non-dominated solutions
found by Algorithm A.

• IR: Ratio of non-dominated solutions (see e.g. Pan et al., 2009). It
represents the ratio of global non-dominated solutions found for
Algorithm A with respect to the total solutions in ℘*, denoted as
IR(see Eq. 13).

IR

(

A
)

=
NNDS(A)
|℘*|

(13)

• IA: Average distance to ℘* (Pan et al., 2009; Zhang and Li, 2007). It is
the mean of the normalized Euclidean distance between each
element in ℘* and the closest element in the Pareto set of algorithm
A, i.e. ℘A. This normalized distance for each element y ∈ ℘*, denoted
dy(℘

A), can be defined by Eq. (14), where Cmaxmax (Cmaxmin) is the
maximum (minimum) makespan value found in ℘* and similarly,
Costmax (Costmin) is the maximum (minimum) cost in ℘*. Once dy(℘

A)

is known, IA is its mean value (IA = d(℘A)) according to Eq. (15). A
lower value of this indicator is desirable.

dy

(

℘A

)

= min
x∈℘A

{(
Cmax(x) − Cmax(y)
Cmaxmax − Cmaxmin

)2

+

(
Cost(x) − Cost(y)
Costmax − Costmin

)2
}

(14)

IA = d

⎛

⎜
⎝℘A

⎞

⎟
⎠ =

∑

y∈℘*
dy

(

℘A

)

|℘*|
(15)

Ta
bl

e
1

N
N

DS
 o

f e
ac

h
m

et
ah

eu
ri

st
ic

 g
ro

up
ed

 b
y

n
an

d
m

 in
 b

en
ch

m
ar

k
ℬ

1.
 In

 b
ol

d,
 w

e
re

pr
es

en
t t

he
 b

es
t f

ou
nd

 v
al

ue
 fo

r
ea

ch
 in

st
an

ce
 a

nd
 s

to
pp

in
g

cr
ite

ri
on

.

n
×

m

t
=

60

t
=

90

t
=

12
0

H
D

D
E

IG

IG
A

LL

VB
IH

CP

_IL
S

To
ta

l
H

D
D

E
IG

IG

A
LL

VB

IH

CP
_IL

S
To

ta
l

H
D

D
E

IG

IG
A

LL

VB
IH

CP

_IL
S

To
ta

l

40
 ×

5
13

.5
8

2.
17

2.

46

0.
69

17

9.
75

19

8.
65

17

.2
8

2.
45

2.

41

0.
61

17

7.
07

19

9.
81

15

.7
7

2.
59

2.

80

0.
68

17

8.
63

20

0.
46

40

 ×
10

10

.0
8

1.
73

1.

95

0.
59

25

5.
25

26

9.
60

8.

24

1.
95

2.

50

0.
54

25

0.
18

26

3.
41

11

.1
0

2.
03

2.

65

0.
56

25

6.
24

27

2.
58

40

 ×
15

1.

52

1.
77

1.

95

0.
45

40

3.
08

40

8.
77

4.

01

1.
99

2.

10

0.
45

40

0.
40

40

8.
95

4.

91

2.
43

2.

41

0.
48

39

8.
79

40

9.
01

40

 ×
20

1.

13

1.
93

1.

79

0.
55

47

6.
93

48

2.
32

1.

82

1.
97

2.

22

0.
51

48

0.
65

48

7.
18

3.

26

2.
23

2.

46

0.
46

47

3.
49

48

1.
90

80

 ×
5

24
.7

9
1.

82

1.
93

0.

87

27
5.

81

30
5.

22

30
.1

4
2.

13

2.
22

0.

84

28
8.

14

32
3.

47

35
.7

9
2.

36

2.
45

0.

74

28
0.

70

32
2.

03

80
 ×

10

2.
16

1.

27

1.
32

0.

45

51
7.

72

52
2.

91

2.
32

1.

35

1.
78

0.

51

52
0.

51

52
6.

47

5.
54

1.

65

1.
88

0.

47

52
2.

13

53
1.

67

80
 ×

15

0.
19

1.

12

1.
36

0.

51

69
6.

96

70
0.

15

0.
43

1.

57

1.
54

0.

51

69
1.

22

69
5.

26

1.
04

1.

61

1.
66

0.

48

70
3.

53

70
8.

33

80
 ×

20

0.
41

1.

25

1.
30

0.

53

94
9.

59

95
3.

07

0.
46

1.

29

1.
45

0.

49

94
8.

30

95
1.

99

0.
41

1.

35

1.
75

0.

45

95
8.

71

96
2.

66

12
0
×

5
8.

12

1.
65

1.

77

0.
86

45

4.
79

46

7.
18

19

.1
8

2.
06

1.

88

0.
89

44

7.
92

47

1.
93

23

.6
9

2.
09

2.

03

0.
97

44

4.
23

47

3.
00

12

0
×

10

1.
37

1.

56

1.
57

0.

75

74
1.

49

74
6.

74

1.
00

2.

01

2.
19

0.

66

74
6.

77

75
2.

62

2.
35

2.

19

1.
95

0.

73

74
9.

01

75
6.

23

12
0
×

15

0.
04

0.

79

1.
00

0.

43

10
75

.6
3

10
77

.9
0

0.
48

1.

11

1.
45

0.

44

10
70

.2
6

10
73

.7
4

0.
31

1.

13

1.
16

0.

47

10
76

.4
3

10
79

.5
1

12
0
×

20

0.
00

0.

93

1.
10

0.

51

13
87

.4
1

13
89

.9
5

0.
00

1.

05

1.
18

0.

44

13
90

.7
7

13
93

.4
5

0.
10

1.

45

1.
22

0.

48

13
91

.9
1

13
95

.1
7

16
0
×

5
0.

00

2.
25

2.

27

1.
19

67

5.
84

68

1.
55

8.

47

2.
17

2.

09

1.
14

67

1.
61

68

5.
49

18

.2
1

2.
17

2.

18

1.
17

65

1.
23

67

4.
96

16

0
×

10

0.
00

1.

39

1.
59

0.

70

10
40

.6
3

10
44

.3
2

1.
01

1.

43

1.
49

0.

71

10
31

.0
2

10
35

.6
6

0.
75

1.

57

1.
49

0.

74

10
41

.4
7

10
46

.0
2

16
0
×

15

0.
40

0.

96

1.
24

0.

59

12
88

.0
7

12
91

.2
7

1.
16

1.

11

1.
19

0.

49

13
07

.7
3

13
11

.6
8

1.
37

0.

97

1.
24

0.

44

13
06

.1
5

13
10

.1
8

16
0
×

20

0.
25

1.

23

1.
27

0.

63

16
26

.6
7

16
30

.0
4

0.
34

1.

13

1.
25

0.

55

16
12

.2
9

16
15

.5
5

0.
20

0.

95

1.
29

0.

63

16
40

.3
1

16
43

.3
8

A
ve

ra
ge

4.

00

1.
49

1.

62

0.
64

75

2.
85

76

0.
60

6.

02

1.
67

1.

81

0.
61

75

2.
18

76

2.
29

7.

80

1.
80

1.

91

0.
62

75

4.
56

76

6.
69

V. Fernandez-Viagas et al.

Computers & Industrial Engineering 169 (2022) 108276

10

• IS: Spread in the Pareto set (see e.g. Zhang et al., 2019 for a related
approach). It measures the diversity in the Pareto set of Algorithm A
(℘A) as compared to the Pareto set ℘*. Hence, a lower value is
desirable and means a more uniform distribution in the distances ℘A

and ℘*, i.e. dy(℘
A). This spread is measured by the standard devia-

tion of dy(℘
A), i.e. σ(dy(℘

A)) defined by Eq. (16):

IS = σ

⎛

⎜
⎜
⎝dy

⎛

⎜
⎜
⎝℘A

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ =

∑

y∈℘*

̅̅(
dy
(
℘A) − d

(
℘A))2

√

|℘*| − 1
(16)

To increase the power of the experimentation, we carry out five runs
per instance, and the average values for these indicators are stored.

5.3. Implemented algorithms

Based on the literature review carried out in Section 2, we adapt the
following algorithms from related scheduling problems:

• HDDE: This metaheuristic is proposed by Mokhtari et al. (2011) for
the Fm

⃒
⃒
⃒prmu, pij(uj)

⃒
⃒
⃒w1⋅Cmax +w2⋅Cost problem. In order to adapt the

algorithm to our problem, its initial set of assignments is replaced by
a random initial assignment since it is dependent on the multi-
objective function.

• IG: This metaheuristic is proposed by Öztop et al. (2020) for the

Fm
⃒
⃒
⃒prmu, pij(uj)

⃒
⃒
⃒(
∑

Cj,Cost) problem. In order to adapt the meta-

heuristic to the problem under consideration, the initial solution
PFH_NEH is replaced by the NEH algorithm since the first part of the
former heuristic (which is a profile-fitting constructive heuristic,
PFH) cannot be efficiently adapted to the makespan minimisation.

• IGALL: This metaheuristic is proposed by Öztop et al. (2020) to solve

the Fm
⃒
⃒
⃒prmu, pij(uj)

⃒
⃒
⃒(
∑

Cj,Cost) problem. As in the previous case, we

replace PFH_NEH by the NEH algorithm.
• VBIH: This metaheuristic is proposed by Öztop et al. (2020) to solve

the Fm
⃒
⃒
⃒prmu, pij(uj)

⃒
⃒
⃒(
∑

Cj,Cost) problem. Analogously, we replace
PFH_NEH by the NEH algorithm.

These algorithms are compared with the proposed CP_ILS algorithm
under the same condition, i.e. implementing the algorithms in the same
programming language (C# under Visual Studio 2019) by the same

Table 3
IR of each metaheuristic grouped by n and m in benchmark ℬ1. In bold, we represent the best found value for each instance and stopping criterion.

n × m t = 60 t = 90 t = 120

HDDE IG IGALL VBIH CP_ILS HDDE IG IGALL VBIH CP_ILS HDDE IG IGALL VBIH CP_ILS

40 × 5 0.08 0.01 0.01 0.00 0.90 0.09 0.01 0.01 0.00 0.88 0.08 0.01 0.01 0.00 0.89
40 × 10 0.05 0.01 0.01 0.00 0.94 0.04 0.01 0.01 0.00 0.94 0.05 0.01 0.01 0.00 0.93
40 × 15 0.01 0.00 0.00 0.00 0.98 0.01 0.00 0.01 0.00 0.98 0.02 0.01 0.01 0.00 0.97
40 × 20 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.99 0.01 0.00 0.01 0.00 0.98
80 × 5 0.10 0.01 0.01 0.00 0.89 0.11 0.01 0.01 0.00 0.87 0.14 0.01 0.01 0.00 0.84
80 × 10 0.01 0.00 0.00 0.00 0.98 0.01 0.00 0.00 0.00 0.98 0.02 0.00 0.00 0.00 0.97
80 × 15 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.99
80 × 20 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
120 × 5 0.02 0.00 0.00 0.00 0.97 0.04 0.01 0.00 0.00 0.94 0.06 0.00 0.00 0.00 0.93
120 × 10 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.99
120 × 15 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
120 × 20 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 1.00
160 × 5 0.00 0.00 0.00 0.00 0.99 0.02 0.00 0.00 0.00 0.97 0.04 0.00 0.00 0.00 0.96
160 × 10 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 1.00
160 × 15 0.00 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.00 0.99 0.01 0.00 0.00 0.00 0.99
160 × 20 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.00 1.00

Average 0.02 0.00 0.00 0.00 0.97 0.02 0.00 0.00 0.00 0.97 0.03 0.00 0.00 0.00 0.96

Table 5
IA of each metaheuristic grouped by n and m in benchmark ℬ1. In bold, we represent the best found value for each instance and stopping criterion.

n × m t = 60 t = 90 t = 120

HDDE IG IGALL VBIH CP_ILS HDDE IG IGALL VBIH CP_ILS HDDE IG IGALL VBIH CP_ILS

40 × 5 0.32 0.25 0.25 0.30 0.01 0.31 0.25 0.24 0.30 0.01 0.29 0.23 0.23 0.29 0.01
40 × 10 0.44 0.26 0.26 0.31 0.01 0.43 0.25 0.25 0.31 0.01 0.42 0.24 0.24 0.30 0.01
40 × 15 0.53 0.28 0.28 0.32 0.00 0.52 0.27 0.27 0.31 0.01 0.51 0.26 0.26 0.30 0.01
40 × 20 0.55 0.28 0.28 0.32 0.00 0.56 0.28 0.28 0.32 0.00 0.55 0.27 0.27 0.31 0.00
80 × 5 0.33 0.36 0.36 0.40 0.02 0.31 0.37 0.36 0.41 0.02 0.29 0.36 0.36 0.40 0.02
80 × 10 0.41 0.35 0.35 0.39 0.00 0.40 0.33 0.33 0.37 0.00 0.40 0.33 0.32 0.37 0.00
80 × 15 0.54 0.38 0.38 0.41 0.00 0.53 0.36 0.36 0.40 0.00 0.52 0.35 0.35 0.39 0.00
80 × 20 0.63 0.39 0.39 0.43 0.00 0.62 0.37 0.37 0.41 0.00 0.59 0.35 0.35 0.39 0.00
120 × 5 0.36 0.38 0.39 0.41 0.01 0.34 0.34 0.33 0.36 0.01 0.33 0.34 0.35 0.37 0.01
120 × 10 0.40 0.37 0.37 0.39 0.00 0.36 0.36 0.36 0.39 0.00 0.36 0.35 0.35 0.37 0.00
120 × 15 0.57 0.43 0.43 0.46 0.00 0.56 0.41 0.41 0.44 0.00 0.51 0.41 0.41 0.45 0.00
120 × 20 0.61 0.42 0.42 0.44 0.00 0.61 0.42 0.42 0.45 0.00 0.60 0.40 0.40 0.43 0.00
160 × 5 0.49 0.31 0.31 0.32 0.00 0.31 0.30 0.30 0.31 0.00 0.29 0.31 0.31 0.33 0.01
160 × 10 0.41 0.37 0.38 0.39 0.00 0.38 0.37 0.37 0.40 0.00 0.35 0.37 0.37 0.39 0.00
160 × 15 0.55 0.41 0.41 0.43 0.00 0.47 0.41 0.41 0.43 0.00 0.47 0.42 0.42 0.44 0.00
160 × 20 0.72 0.46 0.46 0.48 0.00 0.64 0.45 0.45 0.48 0.00 0.62 0.48 0.47 0.50 0.00

Average 0.49 0.36 0.36 0.39 0.00 0.46 0.35 0.35 0.38 0.00 0.45 0.34 0.34 0.38 0.01

V. Fernandez-Viagas et al.

Computers & Industrial Engineering 169 (2022) 108276

11

person (using the same common functions and/or libraries), and
executing them in the same computer (Intel Core i7-3770 with 3.4 GHz
and 16 GB RAM). Regarding the parameters d and T of the proposed
algorithm, to avoid an overcalibration, we generate a different bench-
mark following the same procedure as ℬ1 and test our proposal for d ∈

{3,4, 5} and T ∈ {0.3, 0.4, 0.5}. After a full factorial design, the best
combination of the parameters has been found for d = 4 and T = 0.4,
regardless of the indicator considered. These values are used in the rest
of the paper.

5.4. Computational results

In this section, we perform three computational evaluations on the
benchmarks ℬ1,ℬ2 and ℬ3 to analyse the performance of the imple-
mented algorithms. All these algorithms have been run under the same
stopping criterion n⋅m⋅t/2 milliseconds with t = 60, 90, 120, using the
indicators of the previous section. Regarding the computational evalu-
ation on the generic instances ℬ1, the computational results found by the
algorithms in terms of NNDS and IR are summarised in Tables 1 and 3,
respectively. The number of non-dominated solutions of the proposed

CP_ILS algorithm clearly outperforms every other algorithm regardless
of the stopping criterion. For instance, the number of global non-
dominated solutions found in average by CP_ILS is 752.85 (for t = 60)
versus 4.00 found by HDD, 1.49 by IG, 1.62 by IGALL or 0.64 by VBIH,
being 760.60 the total number of solutions in the Pareto set using t = 60.
Similarly, the best ratio of non-dominated solutions is (for t = 60) 0.97,
i.e. the algorithm finds around 97% of all non-dominated solutions
found. This excellent result contrasts with the values found by the rest of
the metaheuristics implemented, being 0.02 for HDDE, and 0.00 for the
rest of the metaheuristics. All these results are equivalent regardless of
the stopping criterion. This behaviour is analogous for the other stop-
ping criteria (t = 90 and t = 120). Regarding IA and IS, detailed results
are shown in Tables 5 and 7, respectively. Again, the best results are
found by CP_ILS, where the average distance between CP_ILS and PR (i.
e. IA(CP_ILS)) is 0.00, 0.00 and 0.01 for t = 60, t = 90 and t = 120,
respectively. However, the IA indicator found by the other meta-
heuristics is between 0.34 and 0.48, being 0.34 only in t = 120 by the IG
and IGALL algorithms. This is also the case of the spread of the Pareto set
(IS) found by each algorithm (see also Table 9 for average values of this
indicator for each n and m). The best result is 0.01 found by CP_ILS

Table 7
IS of each metaheuristic grouped by n and m in benchmark ℬ1. In bold, we represent the best found value for each instance and stopping criterion.

n × m t = 60 t = 90 t = 120

HDDE IG IGALL VBIH CP_ILS HDDE IG IGALL VBIH CP_ILS HDDE IG IGALL VBIH CP_ILS

40 × 5 0.16 0.06 0.06 0.06 0.02 0.16 0.06 0.06 0.06 0.02 0.16 0.06 0.06 0.06 0.02
40 × 10 0.20 0.05 0.05 0.05 0.01 0.20 0.05 0.05 0.05 0.01 0.19 0.05 0.05 0.05 0.01
40 × 15 0.18 0.03 0.03 0.03 0.01 0.18 0.03 0.03 0.03 0.01 0.19 0.03 0.03 0.03 0.01
40 × 20 0.17 0.03 0.03 0.03 0.01 0.18 0.04 0.03 0.03 0.01 0.18 0.03 0.03 0.03 0.01
80 × 5 0.17 0.07 0.07 0.07 0.03 0.17 0.07 0.07 0.07 0.03 0.16 0.07 0.07 0.07 0.03
80 × 10 0.14 0.06 0.06 0.06 0.01 0.14 0.05 0.06 0.05 0.01 0.15 0.06 0.06 0.06 0.01
80 × 15 0.15 0.05 0.05 0.05 0.00 0.16 0.05 0.05 0.05 0.00 0.17 0.05 0.05 0.05 0.00
80 × 20 0.15 0.05 0.05 0.05 0.00 0.16 0.05 0.05 0.05 0.00 0.16 0.05 0.05 0.05 0.00
120 × 5 0.14 0.07 0.07 0.07 0.01 0.15 0.07 0.07 0.07 0.02 0.15 0.07 0.07 0.07 0.02
120 × 10 0.12 0.06 0.06 0.06 0.00 0.13 0.06 0.06 0.05 0.00 0.13 0.06 0.06 0.05 0.00
120 × 15 0.13 0.07 0.07 0.07 0.00 0.15 0.07 0.07 0.07 0.00 0.15 0.07 0.07 0.07 0.00
120 × 20 0.11 0.05 0.06 0.05 0.00 0.14 0.05 0.05 0.05 0.00 0.15 0.05 0.05 0.05 0.00
160 × 5 0.12 0.07 0.07 0.07 0.00 0.13 0.07 0.07 0.07 0.01 0.14 0.07 0.07 0.07 0.01
160 × 10 0.10 0.07 0.07 0.06 0.00 0.11 0.07 0.07 0.06 0.00 0.12 0.07 0.07 0.06 0.00
160 × 15 0.10 0.06 0.06 0.06 0.00 0.13 0.06 0.06 0.06 0.00 0.14 0.07 0.07 0.07 0.00
160 × 20 0.08 0.08 0.08 0.08 0.00 0.10 0.08 0.08 0.08 0.00 0.12 0.08 0.09 0.08 0.00

Average 0.14 0.06 0.06 0.06 0.01 0.15 0.06 0.06 0.06 0.01 0.15 0.06 0.06 0.06 0.01

Table 9
Average IS of each metaheuristic in both benchmarks

Benchmark Parameter t = 60 t = 90 t = 120

HDDE IG IGALL VBIH CP_ILS HDDE IG IGALL VBIH CP_ILS HDDE IG IGALL VBIH CP_ILS

β1 n = 40 0.18 0.04 0.04 0.04 0.01 0.18 0.04 0.04 0.04 0.01 0.18 0.04 0.04 0.04 0.01
n = 80 0.15 0.06 0.06 0.06 0.01 0.16 0.06 0.06 0.05 0.01 0.16 0.05 0.06 0.05 0.01
n = 120 0.13 0.06 0.06 0.06 0.00 0.14 0.06 0.06 0.06 0.01 0.15 0.06 0.06 0.06 0.01
n = 160 0.10 0.07 0.07 0.07 0.00 0.12 0.07 0.07 0.07 0.00 0.13 0.07 0.07 0.07 0.00
m = 5 0.15 0.07 0.07 0.07 0.01 0.15 0.07 0.07 0.07 0.02 0.15 0.07 0.07 0.07 0.02
m = 10 0.14 0.06 0.06 0.06 0.01 0.15 0.06 0.06 0.06 0.01 0.15 0.06 0.06 0.06 0.01
m = 15 0.14 0.06 0.05 0.05 0.00 0.16 0.05 0.05 0.05 0.00 0.16 0.05 0.05 0.05 0.00
m = 20 0.13 0.06 0.06 0.05 0.00 0.14 0.06 0.06 0.05 0.00 0.15 0.05 0.06 0.05 0.00

β2 n = 40 0.10 0.04 0.04 0.04 0.01 0.10 0.04 0.04 0.04 0.02 0.11 0.04 0.04 0.04 0.02
n = 80 0.09 0.06 0.06 0.06 0.01 0.09 0.06 0.06 0.06 0.01 0.09 0.06 0.06 0.06 0.01
n = 120 0.09 0.06 0.06 0.07 0.01 0.09 0.06 0.06 0.06 0.01 0.09 0.06 0.06 0.06 0.01
n = 160 0.10 0.06 0.06 0.07 0.01 0.10 0.07 0.07 0.07 0.01 0.10 0.06 0.06 0.06 0.01
m = 5 0.13 0.06 0.06 0.07 0.01 0.13 0.06 0.06 0.07 0.01 0.13 0.06 0.06 0.07 0.01
m = 10 0.10 0.06 0.06 0.06 0.01 0.10 0.06 0.06 0.06 0.01 0.10 0.06 0.06 0.06 0.01
m = 15 0.08 0.06 0.06 0.06 0.01 0.08 0.06 0.05 0.06 0.01 0.08 0.05 0.05 0.06 0.01
m = 20 0.07 0.05 0.05 0.05 0.01 0.07 0.05 0.05 0.05 0.02 0.07 0.05 0.05 0.05 0.02

Average 0.12 0.06 0.06 0.06 0.01 0.12 0.06 0.06 0.06 0.01 0.13 0.06 0.06 0.06 0.01

V. Fernandez-Viagas et al.

Computers & Industrial Engineering 169 (2022) 108276

12

regardless of the stopping criterion, improving the results obtained by
the other implemented algorithms (between 0.06 and 0.15). All these
results show the effectiveness of the proposal which clearly outperforms
every other metaheuristic in terms of all indicators, i.e. NNDS, IR, IA and
IS. This hypothesis has been tested using a non-parametric Mann-Whit-
ney test at the 95% confidence level. A p-value of 0.000 has been ob-
tained in any comparison between our proposal and the second best
metaheuristic for every indicator.

Regarding the computational evaluation performed on the green set
of instances ℬ2, we found very similar trends than in the previous case.
The detailed computational results are shown in Tables 2, 4, 6 and 8, for
indicators NNDS, IR, IA and IS, respectively. As concerns the NNDS and IR
indicators, the best result among the algorithms implemented of the
literature is found by IGALL. For this algorithm, NNDS (IR) takes 7.44
(0.02), 8.39 (0.02) and 9.08 (0.02) for t equals to 60, 90 and 120,
respectively. These values are clearly outperformed by CP_ILS, which
obtains in average 494.46, 505.68, and 505.90 non-dominated solutions
for t equals to 60, 90 and 120, respectively. Regarding IR, our proposal
obtained 0.95 for t = 30 and 0.94 for the other criteria. Similarly, our
proposal finds the best IA value, 0.01 for every stopping criterion, which
clearly outperforms the metaheuristics in the literature (in this regard,
the IA value obtained by IGALL is between 0.12 and 0.13). The worst
result is found by HDDE with average values between 0.25 and 0.27.
This is also the case of the spread in the Pareto set (IS) which is 0.01 for
CP_ILS and 0.06 for the second best metaheuristic (IGALL), and this dif-
ference remains fairly homogeneous regardless of the value of the
parameter n or m (see in this regard Table 9). Four non-parametric
Mann-Whitney tests have been performed to check the effectiveness of
the proposal, one for each indicator. A p-value of 0.000 has been ob-
tained in each comparison with the second best metaheuristic (IGALL),
which statistically highlights the effectiveness of our proposal. Finally, a
last experimentation has been performed checking the performance of
the implemented algorithm in big-size instances (using ℬ3). Computa-
tional results are shown in Tables 10 and 11 (for t = 60). We can see that
the proposed CP_ILS metaheuristic even improves its performance when
n increases, as compared as the other implemented metaheuristics from
the literature (regardless of the indicator applied).

6. Conclusions

This paper tackles the bi-objective green permutation flow shop
scheduling problem to minimise the makespan and the total cost or the
total energy/carbon consumption, which is attracting the interest of
many researchers and practitioners. The problem considers that each
machine can process the jobs using different speeds, and consequently
changing its normal processing times (typically denoted in the literature
as controllable processing times). To analyse in detail the problem, we
first propose several properties of the problem based on the concept of
critical path and slack time. Equipped with these problem properties, we
propose a critical-path based iterated local search (denoted CP_ILS). This
metaheuristic performs several different specific local search methods
after a simple perturbation mechanism. The main idea of the proposal is
to calculate the critical path of each sequence and to construct methods
based on operations inside and outside this path. To test the efficiency of
the proposal, we have generated three extensive different data sets
comparing the proposal with the most promising metaheuristics in the
literature. In the first experimentation, we consider the general CPT
problem, while using the second benchmark we address the green spe-
cial case. The computational results obtained in both experimentations
show the excellent performance found by CP_ILS, which outperforms
every other metaheuristic proposed in the related literature regardless of
the indicator used to test the proposals. Regarding future research lines,
although we have addressed the traditional green permutation flowshop
scheduling problem, the literature is still scarce in solving more con-
strained green scheduling variants. Thus, specific algorithms for related
green scheduling problems are pertinent. In this regard, the algorithm Ta

bl
e

2
N

N
DS

 o
f e

ac
h

m
et

ah
eu

ri
st

ic
 g

ro
up

ed
 b

y
n

an
d

m
 in

 b
en

ch
m

ar
k
ℬ

2.
 In

 b
ol

d,
 w

e
re

pr
es

en
t t

he
 b

es
t f

ou
nd

 v
al

ue
 fo

r
ea

ch
 in

st
an

ce
 a

nd
 s

to
pp

in
g

cr
ite

ri
on

.

n
×

m

t
=

60

t
=

90

t
=

12
0

H
D

D
E

IG

IG
A

LL

VB
IH

CP

_IL
S

To
ta

l
H

D
D

E
IG

IG

A
LL

VB

IH

CP
_IL

S
To

ta
l

H
D

D
E

IG

IG
A

LL

VB
IH

CP

_IL
S

To
ta

l

40
 ×

5
1.

95

6.
24

6.

45

1.
56

30

9.
47

32

5.
66

0.

95

6.
72

7.

18

1.
70

31

7.
69

33

4.
25

1.

63

7.
54

7.

69

1.
68

31

6.
50

33

5.
04

40

 ×
10

0.

00

6.
36

6.

80

1.
40

38

0.
53

39

5.
09

0.

00

6.
90

7.

42

1.
30

40

0.
75

41

6.
37

0.

21

8.
23

8.

39

1.
26

38

3.
82

40

1.
91

40

 ×
15

0.

05

8.
17

8.

01

1.
22

37

0.
98

38

8.
43

0.

00

10
.3

9
8.

79

1.
29

37

1.
52

39

1.
99

0.

15

10
.8

4
10

.8
7

1.
31

36

4.
51

38

7.
69

40

 ×
20

0.

43

9.
37

9.

63

1.
60

33

7.
12

35

8.
15

0.

40

11
.5

7
10

.7
8

1.
35

33

4.
33

35

8.
43

0.

21

12
.2

8
12

.0
0

1.
22

35

3.
40

37

9.
11

80

 ×
5

4.
54

4.

82

4.
71

2.

01

52
1.

78

53
7.

85

3.
51

5.

37

5.
31

1.

87

54
6.

67

56
2.

74

2.
81

6.

17

6.
07

1.

91

54
6.

45

56
3.

42

80
 ×

10

3.
19

6.

29

7.
03

2.

42

49
9.

45

51
8.

37

2.
54

7.

21

7.
96

2.

21

51
8.

63

53
8.

55

1.
58

8.

26

9.
41

2.

04

52
0.

13

54
1.

43

80
 ×

15

3.
95

8.

71

9.
27

3.

62

43
3.

97

45
9.

52

3.
31

9.

79

11
.6

4
3.

25

44
2.

25

47
0.

23

3.
30

11

.0
6

12
.6

9
3.

03

46
6.

40

49
6.

48

80
 ×

20

3.
33

10

.8
7

10
.0

7
3.

95

39
4.

83

42
3.

06

5.
25

12

.0
7

12
.0

7
2.

92

38
6.

25

41
8.

57

5.
37

14

.0
5

12
.1

4
3.

35

39
8.

14

43
3.

05

12
0
×

5
3.

96

4.
27

4.

33

2.
43

73

9.
56

75

4.
55

4.

31

5.
48

5.

47

2.
25

74

7.
74

76

5.
24

6.

14

5.
78

5.

70

2.
35

74

2.
67

76

2.
65

12

0
×

10

8.
15

5.

76

6.
37

3.

58

61
2.

96

63
6.

82

9.
23

7.

13

7.
94

2.

93

65
3.

77

68
1.

00

10
.1

3
7.

55

9.
03

3.

29

63
8.

91

66
8.

92

12
0
×

15

7.
11

7.

65

9.
29

4.

15

45
6.

73

48
4.

92

11
.6

8
9.

15

10
.1

7
4.

63

45
9.

26

49
4.

89

14
.0

6
9.

54

10
.6

3
3.

87

46
2.

81

50
0.

91

12
0
×

20

3.
48

9.

09

7.
99

4.

47

42
6.

57

45
1.

60

6.
04

10

.4
0

10
.1

8
4.

27

41
9.

43

45
0.

32

11
.5

8
10

.8
3

9.
99

4.

87

41
5.

72

45
2.

99

16
0
×

5
0.

00

5.
41

5.

41

2.
88

80

9.
91

82

3.
61

6.

42

5.
16

5.

04

2.
81

85

5.
77

87

5.
19

9.

59

5.
29

5.

16

2.
67

83

5.
73

85

8.
44

16

0
×

10

9.
39

6.

11

7.
75

3.

85

64
5.

09

67
2.

19

14
.9

7
6.

37

7.
31

3.

49

67
4.

43

70
6.

56

16
.0

2
5.

88

7.
36

3.

43

68
8.

89

72
1.

59

16
0
×

15

3.
98

6.

57

7.
96

4.

47

52
9.

87

55
2.

85

10
.0

8
6.

14

8.
36

4.

67

52
4.

29

55
3.

55

16
.4

9
6.

97

8.
85

4.

63

52
3.

08

56
0.

02

16
0
×

20

0.
14

7.

79

7.
92

4.

84

44
2.

49

46
3.

17

6.
01

7.

99

8.
66

4.

71

43
8.

11

46
5.

47

8.
45

8.

12

9.
23

4.

34

43
7.

17

46
7.

31

A
ve

ra
ge

3.

35

7.
09

7.

44

3.
03

49

4.
46

51

5.
37

5.

29

7.
99

8.

39

2.
85

50

5.
68

53

0.
21

6.

73

8.
65

9.

08

2.
83

50

5.
90

53

3.
18

V. Fernandez-Viagas et al.

Computers & Industrial Engineering 169 (2022) 108276

13

Table 4
IR of each metaheuristic grouped by n and m in benchmark ℬ2. In bold, we represent the best found value for each instance and stopping criterion.

n × m t = 60 t = 90 t = 120

HDDE IG IGALL VBIH CP_ILS HDDE_VNS IG IGALL VBIH CP_ILS HDDE_VNS IG IGALL VBIH CP_ILS

40 × 5 0.01 0.02 0.02 0.00 0.95 0.00 0.02 0.02 0.01 0.95 0.00 0.02 0.02 0.01 0.94
40 × 10 0.00 0.02 0.02 0.00 0.96 0.00 0.02 0.02 0.00 0.96 0.00 0.02 0.02 0.00 0.95
40 × 15 0.00 0.02 0.02 0.00 0.95 0.00 0.03 0.03 0.00 0.94 0.00 0.03 0.03 0.00 0.93
40 × 20 0.00 0.03 0.03 0.01 0.93 0.00 0.04 0.03 0.00 0.92 0.00 0.04 0.04 0.00 0.92
80 × 5 0.01 0.01 0.01 0.00 0.97 0.01 0.01 0.01 0.00 0.97 0.01 0.01 0.01 0.00 0.97
80 × 10 0.01 0.01 0.02 0.01 0.96 0.01 0.02 0.02 0.00 0.96 0.00 0.02 0.02 0.00 0.95
80 × 15 0.01 0.02 0.02 0.01 0.93 0.01 0.02 0.03 0.01 0.93 0.01 0.03 0.03 0.01 0.93
80 × 20 0.01 0.03 0.03 0.01 0.92 0.02 0.03 0.03 0.01 0.91 0.02 0.04 0.03 0.01 0.91
120 × 5 0.01 0.01 0.01 0.00 0.98 0.01 0.01 0.01 0.00 0.97 0.01 0.01 0.01 0.00 0.97
120 × 10 0.02 0.01 0.01 0.01 0.95 0.02 0.01 0.01 0.01 0.95 0.02 0.01 0.02 0.01 0.95
120 × 15 0.02 0.02 0.02 0.01 0.93 0.03 0.02 0.02 0.01 0.92 0.03 0.02 0.02 0.01 0.91
120 × 20 0.01 0.02 0.02 0.01 0.94 0.02 0.03 0.03 0.01 0.92 0.03 0.03 0.02 0.01 0.91
160 × 5 0.00 0.01 0.01 0.00 0.98 0.01 0.01 0.01 0.00 0.97 0.02 0.01 0.01 0.00 0.97
160 × 10 0.02 0.01 0.01 0.01 0.95 0.03 0.01 0.01 0.01 0.95 0.03 0.01 0.01 0.01 0.95
160 × 15 0.01 0.01 0.02 0.01 0.95 0.02 0.01 0.02 0.01 0.94 0.03 0.01 0.02 0.01 0.93
160 × 20 0.00 0.02 0.02 0.01 0.95 0.02 0.02 0.02 0.01 0.93 0.02 0.02 0.02 0.01 0.93

Average 0.01 0.02 0.02 0.01 0.95 0.01 0.02 0.02 0.01 0.94 0.01 0.02 0.02 0.01 0.94

Table 6
IA of each metaheuristic grouped by n and m in benchmark ℬ2. In bold, we represent the best found value for each instance and stopping criterion.

n × m t = 60 t = 90 t = 120

HDDE IG IGALL VBIH CP_ILS HDDE_VNS IG IGALL VBIH CP_ILS HDDE_VNS IG IGALL VBIH CP_ILS

40 × 5 0.26 0.09 0.09 0.13 0.01 0.26 0.08 0.08 0.12 0.01 0.26 0.08 0.08 0.12 0.01
40 × 10 0.26 0.10 0.10 0.14 0.01 0.26 0.10 0.10 0.14 0.01 0.25 0.10 0.10 0.13 0.01
40 × 15 0.23 0.11 0.11 0.14 0.01 0.23 0.10 0.10 0.14 0.01 0.25 0.10 0.10 0.14 0.01
40 × 20 0.22 0.12 0.11 0.15 0.01 0.22 0.11 0.11 0.15 0.01 0.22 0.11 0.11 0.15 0.01
80 × 5 0.24 0.13 0.13 0.14 0.01 0.24 0.12 0.12 0.14 0.00 0.25 0.12 0.12 0.14 0.01
80 × 10 0.23 0.13 0.13 0.15 0.01 0.22 0.13 0.12 0.14 0.01 0.23 0.12 0.12 0.14 0.01
80 × 15 0.24 0.14 0.14 0.16 0.01 0.23 0.14 0.13 0.16 0.01 0.23 0.13 0.13 0.16 0.01
80 × 20 0.25 0.14 0.14 0.16 0.01 0.24 0.13 0.13 0.16 0.01 0.23 0.13 0.13 0.15 0.01
120 × 5 0.25 0.13 0.13 0.14 0.00 0.24 0.13 0.13 0.14 0.00 0.23 0.13 0.13 0.14 0.00
120 × 10 0.26 0.15 0.15 0.16 0.00 0.24 0.14 0.14 0.15 0.01 0.24 0.14 0.14 0.15 0.01
120 × 15 0.27 0.14 0.14 0.15 0.01 0.28 0.14 0.13 0.15 0.01 0.26 0.13 0.13 0.14 0.01
120 × 20 0.30 0.13 0.13 0.14 0.01 0.27 0.12 0.12 0.13 0.01 0.26 0.12 0.12 0.13 0.01
160 × 5 0.30 0.14 0.14 0.15 0.00 0.25 0.14 0.14 0.14 0.00 0.25 0.13 0.13 0.14 0.00
160 × 10 0.29 0.16 0.16 0.17 0.00 0.28 0.16 0.16 0.17 0.00 0.27 0.16 0.16 0.16 0.00
160 × 15 0.33 0.14 0.13 0.14 0.00 0.29 0.13 0.13 0.14 0.01 0.29 0.13 0.13 0.13 0.01
160 × 20 0.37 0.11 0.11 0.12 0.00 0.31 0.11 0.11 0.12 0.01 0.30 0.11 0.11 0.11 0.01

Average 0.27 0.13 0.13 0.14 0.01 0.25 0.12 0.12 0.14 0.01 0.25 0.12 0.12 0.14 0.01

Table 8
IS of each metaheuristic grouped by n and m in benchmark ℬ2. In bold, we represent the best found value for each instance and stopping criterion.

n × m t = 60 t = 90 t = 120

HDDE IG IGALL VBIH CP_ILS HDDE_VNS IG IGALL VBIH CP_ILS HDDE_VNS IG IGALL VBIH CP_ILS

40 × 5 0.13 0.04 0.04 0.05 0.01 0.13 0.03 0.03 0.05 0.01 0.13 0.03 0.03 0.05 0.01
40 × 10 0.10 0.04 0.04 0.04 0.01 0.10 0.03 0.03 0.04 0.01 0.11 0.03 0.03 0.04 0.02
40 × 15 0.09 0.04 0.04 0.04 0.02 0.09 0.04 0.04 0.04 0.02 0.10 0.04 0.04 0.04 0.02
40 × 20 0.08 0.04 0.04 0.04 0.02 0.08 0.04 0.04 0.04 0.02 0.09 0.04 0.04 0.04 0.02
80 × 5 0.12 0.06 0.06 0.06 0.01 0.13 0.05 0.06 0.06 0.01 0.13 0.05 0.06 0.06 0.01
80 × 10 0.09 0.06 0.06 0.06 0.01 0.09 0.06 0.06 0.06 0.01 0.09 0.06 0.06 0.06 0.01
80 × 15 0.08 0.06 0.06 0.06 0.01 0.08 0.06 0.06 0.06 0.01 0.08 0.06 0.06 0.06 0.01
80 × 20 0.07 0.06 0.06 0.06 0.01 0.07 0.06 0.06 0.06 0.02 0.07 0.06 0.06 0.06 0.02
120 × 5 0.13 0.07 0.07 0.07 0.01 0.13 0.07 0.07 0.07 0.01 0.13 0.07 0.07 0.07 0.01
120 × 10 0.09 0.07 0.07 0.07 0.01 0.10 0.07 0.07 0.07 0.01 0.09 0.07 0.07 0.07 0.01
120 × 15 0.07 0.06 0.06 0.06 0.01 0.08 0.06 0.06 0.06 0.01 0.08 0.06 0.06 0.06 0.01
120 × 20 0.06 0.06 0.06 0.06 0.01 0.07 0.06 0.06 0.06 0.01 0.07 0.06 0.06 0.06 0.01
160 × 5 0.14 0.07 0.07 0.08 0.01 0.14 0.07 0.07 0.08 0.01 0.14 0.07 0.07 0.08 0.01
160 × 10 0.10 0.07 0.07 0.07 0.01 0.10 0.07 0.07 0.07 0.01 0.10 0.07 0.07 0.07 0.01
160 × 15 0.08 0.06 0.06 0.06 0.01 0.08 0.06 0.06 0.06 0.01 0.08 0.06 0.06 0.06 0.01
160 × 20 0.07 0.05 0.05 0.05 0.01 0.07 0.05 0.05 0.05 0.01 0.07 0.05 0.05 0.05 0.01

Average 0.09 0.06 0.06 0.06 0.01 0.10 0.06 0.06 0.06 0.01 0.10 0.06 0.06 0.06 0.01

V. Fernandez-Viagas et al.

Computers & Industrial Engineering 169 (2022) 108276

14

proposed in this paper could be extended for solving related multi-
objective problems in the search of near-optimal solutions. Further-
more, in view of the excellent results obtained by embedding the critical
path into a local search algorithm, related problems addressing perfor-
mance objectives different than the makespan could be tackled by
applying the equivalent concepts such as the ones in Fernandez-Viagas
et al. (2020).

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This research has been funded by the Spanish Ministry of Science and
Innovation, under the project “ASSORT” with reference PID2019-
108756RB-I00, by the Junta de Andalucia under the project “‘EFEC-
TOS”, with reference US-1264511, and by the Coordination for the
Improvement of Higher Education Personnel (CAPES) and the National
Council for Scientific and Technological Development (CNPq), through
grants 303594/2018-7, 309755/2021-2, and 407151/2021-4.

References

Amiri, M. F., & Behnamian, J. (2020). Multi-objective green flowshop scheduling
problem under uncertainty: Estimation of distribution algorithm. Journal of Cleaner
Production, 251, 119734.

Behnamian, J., & Ghomi, S. F. (2011). Hybrid flowshop scheduling with machine and
resource-dependent processing times. Applied Mathematical Modelling, 35(3),
1107–1123.

Benavides, A., & Ritt, M. (2018). Fast heuristics for minimizing the makespan in non-
permutation flow shops. Computers and Operations Research, 100, 230–243.

Cota, L., Coelho, V., Guimarẽs, F., & Souza, M. (2021). Bi-criteria formulation for green
scheduling with unrelated parallel machines with sequence-dependent setup times.
International Transactions in Operational Research, 28(2), 996–1017.

Dong, X., Chen, P., Huang, H., & Nowak, M. (2013). A multi-restart iterated local search
algorithm for the permutation flow shop problem minimizing total flow time.
Computers & Operations Research, 40(2), 627–632.

Fang, K., Uhan, N. A., Zhao, F., & Sutherland, J. W. (2013). Flow shop scheduling with
peak power consumption constraints. Annals of Operations Research, 206(1),
115–145.

Fathollahi-Fard, A., Hajiaghaei-Keshteli, M., & Tavakkoli-Moghaddam, R. (2018). A bi-
objective green home health care routing problem. Journal of Cleaner Production,
200, 423–443.

Fernandez-Viagas, V., & Framinan, J. (2015a). A bounded-search iterated greedy
algorithm for the distributed permutation flowshop scheduling problem.
International Journal of Production Research, 53(4), 1111–1123.

Fernandez-Viagas, V., & Framinan, J. (2015b). Efficient non-population-based algorithms
for the permutation flowshop scheduling problem with makespan minimisation
subject to a maximum tardiness. Computers & Operations Research, 64, 86–96.

Fernandez-Viagas, V., & Framinan, J. M. (2015c). Controllable processing times in
project and production management: analysing the trade-off between processing
times and the amount of resources. Mathematical Problems in Engineering.

Fernandez-Viagas, V., Molina-Pariente, J., & Framinan, J. (2020). Generalised
accelerations for insertion-based heuristics in permutation flowshop scheduling.
European Journal of Operational Research, 282(3), 858–872.

Fernandez-Viagas, V., Ruiz, R., & Framinan, J. (2017). A new vision of approximate
methods for the permutation flowshop to minimise makespan: State-of-the-art and
computational evaluation. European Journal of Operational Research, 257(3),
707–721.

Fernandez-Viagas, V., Valente, J., & Framinan, J. (2018). Iterated-greedy-based
algorithms with beam search initialization for the permutation flowshop to minimise
total tardiness. Expert Systems with Applications, 94, 58–69.

Foumani, M., & Smith-Miles, K. (2019). The impact of various carbon reduction policies
on green flowshop scheduling. Applied Energy, 249, 300–315.

Table 10
NNDS and IR of each metaheuristic (with t = 60) grouped by n and m in big-size instances.

n × m NNDS IR

HDD IG IGALL VBIH CP_ILS Total HDD IG IGALL VBIH CP_ILS

300 × 5 0.00 2.17 2.09 1.11 1050.85 1056.23 0.00 0.00 0.00 0.00 0.99
300 × 10 0.00 1.63 1.59 0.82 1600.23 1604.27 0.00 0.00 0.00 0.00 1.00
300 × 15 0.00 1.17 1.45 0.55 2403.59 2406.76 0.00 0.00 0.00 0.00 1.00
300 × 20 0.00 1.13 1.36 0.54 3277.27 3280.29 0.00 0.00 0.00 0.00 1.00
400 × 5 0.00 1.97 1.96 0.95 1351.64 1356.51 0.00 0.01 0.01 0.00 0.98
400 × 10 0.00 1.61 1.77 0.73 2325.38 2329.49 0.00 0.00 0.00 0.00 0.99
400 × 15 0.00 1.47 1.52 0.59 2981.11 2984.69 0.00 0.00 0.00 0.00 1.00
400 × 20 0.00 1.13 1.35 0.53 3784.39 3787.39 0.00 0.00 0.00 0.00 1.00
500 × 5 0.00 2.28 2.36 1.20 1720.81 1726.65 0.00 0.00 0.00 0.00 1.00
500 × 10 0.00 1.49 1.84 0.84 2718.79 2722.96 0.00 0.00 0.00 0.00 1.00
500 × 15 0.00 1.54 1.34 0.61 3818.02 3821.51 0.00 0.00 0.00 0.00 1.00
500 × 20 0.00 1.45 1.29 0.48 4492.87 4496.09 0.00 0.00 0.00 0.00 1.00
Average 0.00 1.59 1.66 0.75 2627.08 2631.07 0.00 0.00 0.00 0.00 1.00

Table 11
IA and IS of each metaheuristic (with t = 60) grouped by n and m in big-size instances.

n × m IA IS

HDD IG IGALL VBIH CP_ILS HDD IG IGALL VBIH CP_ILS

300 × 5 0.43 0.33 0.33 0.34 0.00 0.11 0.07 0.07 0.07 0.00
300 × 10 0.80 0.48 0.48 0.50 0.00 0.12 0.10 0.10 0.10 0.00
300 × 15 0.64 0.44 0.44 0.45 0.00 0.10 0.08 0.08 0.08 0.00
300 × 20 0.69 0.46 0.46 0.47 0.00 0.09 0.08 0.08 0.08 0.00
400 × 5 0.66 0.37 0.36 0.37 0.01 0.13 0.07 0.07 0.07 0.01
400 × 10 0.60 0.41 0.41 0.41 0.00 0.12 0.08 0.08 0.07 0.00
400 × 15 0.73 0.44 0.44 0.45 0.00 0.10 0.08 0.08 0.08 0.00
400 × 20 0.87 0.52 0.51 0.53 0.00 0.11 0.10 0.10 0.10 0.00
500 × 5 0.51 0.34 0.35 0.34 0.00 0.12 0.08 0.08 0.08 0.00
500 × 10 0.63 0.42 0.42 0.43 0.00 0.12 0.09 0.09 0.09 0.00
500 × 15 0.72 0.48 0.48 0.49 0.00 0.11 0.08 0.08 0.08 0.00
500 × 20 0.93 0.54 0.54 0.55 0.00 0.11 0.12 0.12 0.11 0.00

Average 0.68 0.44 0.44 0.44 0.00 0.11 0.09 0.09 0.08 0.00

V. Fernandez-Viagas et al.

http://refhub.elsevier.com/S0360-8352(22)00343-6/h0005
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0005
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0005
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0010
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0010
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0010
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0015
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0015
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0020
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0020
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0020
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0025
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0025
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0025
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0030
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0030
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0030
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0035
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0035
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0035
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0040
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0040
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0040
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0045
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0045
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0045
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0055
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0055
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0055
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0060
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0060
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0060
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0060
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0065
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0065
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0065
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0070
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0070

Computers & Industrial Engineering 169 (2022) 108276

15

Framinan, J., Gupta, J., & Leisten, R. (2004). A review and classification of heuristics for
permutation flow-shop scheduling with makespan objective. Journal of the
Operational Research Society, 55(12), 1243–1255.

Gao, F., Liu, M., Wang, J.-J., & Lu, Y.-Y. (2018). No-wait two-machine permutation flow
shop scheduling problem with learning effect, common due date and controllable job
processing times. International Journal of Production Research, 56(6), 2361–2369.

Gomes, A. C. L., Ravetti, M. G., & Carrano, E. G. (2020). Multi-objective matheuristic for
minimization of total tardiness and energy costs in a steel industry heat treatment
line. Computers & Industrial Engineering, 106929.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979). Optimization
and Approximation in Deterministic Sequencing and Scheduling: A Survey. Annals of
Discrete Mathematics, 5, 287–326.

Gupta, J. N., Krüger, K., Lauff, V., Werner, F., & Sotskov, Y. N. (2002). Heuristics for
hybrid flow shops with controllable processing times and assignable due dates.
Computers & Operations Research, 29(10), 1417–1439.

Jiang, S., Liu, M., Hao, J., & Qian, W. (2015). A bi-layer optimization approach for a
hybrid flow shop scheduling problem involving controllable processing times in the
steelmaking industry. Computers & Industrial Engineering, 87, 518–531.

Kacem, A., & Dammak, A. (2019). Bi-objective scheduling on two dedicated processors.
European Journal of Industrial Engineering, 13(5), 681–700.

Lu, Y.-Y., Li, G., Wu, Y.-B., & Ji, P. (2014). Optimal due-date assignment problem with
learning effect and resource-dependent processing times. Optimization Letters, 8(1),
113–127.

Mansouri, S. A., Aktas, E., & Besikci, U. (2016). Green scheduling of a two-machine
flowshop: Trade-off between makespan and energy consumption. European Journal of
Operational Research, 248(3), 772–788.

M’Hallah, R. (2014). An iterated local search variable neighborhood descent hybrid
heuristic for the total earliness tardiness permutation flow shop. International Journal
of Production Research, 52(13), 3802–3819.

Minella, G., Ruiz, R., & Ciavotta, M. (2008). A review and evaluation of multiobjective
algorithms for the flowshop scheduling problem. INFORMS Journal on Computing, 20
(3), 451–471.

Mokhtari, H., Abadi, I., & Cheraghalikhani, A. (2011). A multi-objective flow shop
scheduling with resource-dependent processing times: Trade-off between makespan
and cost of resources. International Journal of Production Research, 49(19),
5851–5875.

Nawaz, M., Enscore, J. E. E., & Ham, I. (1983). A Heuristic Algorithm for the m-Machine,
n-Job Flow-shop Sequencing Problem. OMEGA, The International Journal of
Management Science, 11(1), 91–95.

Nowicki, E., & Zdrzalka, S. (1990). A survey of results for sequencing problems with
controllable processing times. Discrete Applied Mathematics, 26(2–3), 271–287.

Öztop, H., Tasgetiren, M. F., Eliiyi, D. T., Pan, Q.-K., & Kandiller, L. (2020). An energy-
efficient permutation flowshop scheduling problem. Expert Systems with Applications,
150, 113279.

Pan, Q.-K., Tasgetiren, M., & Liang, Y.-C. (2008). A discrete differential evolution
algorithm for the permutation flowshop scheduling problem. Computers and
Industrial Engineering, 55(4), 795–816.

Pan, Q.-K., Wang, L., & Qian, B. (2009). A novel differential evolution algorithm for bi-
criteria no-wait flow shop scheduling problems. Computers and Operations Research,
36(8), 2498–2511.

Pinedo, M. (2012). Scheduling: Theory, Algorithms and Systems. Springer.

Ramezanian, R., Vali-Siar, M. M., & Jalalian, M. (2019). Green permutation flowshop
scheduling problem with sequence-dependent setup times: a case study. International
Journal of Production Research, 57(10), 3311–3333.

Reza Hejazi, S., & Saghafian, S. (2005). Flowshop-scheduling problems with makespan
criterion: A review. International Journal of Production Research, 43(14), 2895–2929.

Ribas, I., Companys, R., & Tort-Martorell, X. (2010). Comparing three-step heuristics for
the permutation flow shop problem. Computers & Operations Research, 37(12),
2062–2070.

Ribas, I., Companys, R., & Tort-Martorell, X. (2013). A competitive variable
neighbourhood search algorithm for the blocking flow shop problem. European
Journal of Industrial Engineering, 7(6), 729–754.

Rinnooy Kan, A. H. G. (1976). Machine Scheduling Problems: Classification, Complexity and
Computations. Martinus Nijhoff, The Hague.

Ruiz, R., & Maroto, C. (2005). A comprehensive review and evaluation of permutation
flowshop heuristics. European Journal of Operational Research, 165(2), 479–494.

Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Research,
177(3), 2033–2049.

Shabtay, D., & Steiner, G. (2007). A survey of scheduling with controllable processing
times. Discrete Applied Mathematics, 155(13), 1643–1666.

Shioura, A., Shakhlevich, N., & Strusevich, V. (2018). Preemptive models of scheduling
with controllable processing times and of scheduling with imprecise computation: A
review of solution approaches. European Journal of Operational Research, 266(3),
795–818.

Subramanian, A., Battarra, M., & Potts, C. (2014). An iterated local search heuristic for
the single machine total weighted tardiness scheduling problem with sequence-
dependent setup times. International Journal of Production Research, 52(9),
2729–2742.

Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing
problem. European Journal of Operational Research, 47(1), 65–74.

T’Kindt, V., & Billaut, J.-C. (2006). Multicriteria Scheduling: Theory, Models and Algorithms
(2nd ed.). New York: Springer.

Wang, R., Liu, W., Xiao, L., Liu, J., & Kao, W. (2011). Path towards achieving of china’s
2020 carbon emission reduction target-a discussion of low-carbon energy policies at
province level. Energy Policy, 39(5), 2740–2747.

Zhang, B., Pan, Q.-K., Gao, L., Li, X.-Y., Meng, L.-L., & Peng, K.-K. (2019).
A multiobjective evolutionary algorithm based on decomposition for hybrid
flowshop green scheduling problem. Computers & Industrial Engineering, 136,
325–344.

Zhang, H., Zhao, F., & Sutherland, J. W. (2017). Scheduling of a single flow shop for
minimal energy cost under real-time electricity pricing. Journal of Manufacturing
Science and Engineering, 139(1).

Zhang, Q., & Li, H. (2007). Moea/d: A multiobjective evolutionary algorithm based on
decomposition. IEEE Transactions on Evolutionary Computation, 11(6), 712–731.

Zhu, Z.-S., Liao, H., Cao, H.-S., Wang, L., Wei, Y.-M., & Yan, J. (2014). The differences of
carbon intensity reduction rate across 89 countries in recent three decades. Applied
Energy, 113, 808–815.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., & Da Fonseca, V. (2003). Performance
assessment of multiobjective optimizers: An analysis and review. IEEE Transactions
on Evolutionary Computation, 7(2), 117–132.

V. Fernandez-Viagas et al.

http://refhub.elsevier.com/S0360-8352(22)00343-6/h0075
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0075
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0075
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0080
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0080
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0080
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0085
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0085
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0085
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0090
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0090
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0090
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0095
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0095
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0095
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0100
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0100
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0100
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0105
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0105
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0110
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0110
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0110
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0115
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0115
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0115
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0120
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0120
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0120
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0125
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0125
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0125
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0130
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0130
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0130
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0130
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0135
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0135
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0135
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0140
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0140
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0145
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0145
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0145
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0150
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0150
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0150
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0155
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0155
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0155
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0160
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0165
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0165
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0165
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0170
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0170
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0175
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0175
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0175
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0180
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0180
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0180
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0190
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0190
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0195
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0195
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0195
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0200
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0200
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0205
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0205
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0205
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0205
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0210
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0210
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0210
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0210
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0215
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0215
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0225
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0225
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0225
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0230
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0230
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0230
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0230
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0235
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0235
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0235
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0240
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0240
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0245
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0245
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0245
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0250
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0250
http://refhub.elsevier.com/S0360-8352(22)00343-6/h0250

	A critical-path based iterated local search for the green permutation flowshop problem
	1 Introduction
	2 Problem description and background
	3 Theoretical results
	4 Critical-Path based Iterated Local Search, CP_ILS
	4.1 Initial solution
	4.2 Perturbation phase
	4.3 Local search: LS_S
	4.4 Local search: LS_M
	4.5 Critical-path based local search: LS_NCP
	4.6 Critical-path based local search: LS_CP
	4.7 Simulated annealing procedure

	5 Computational evaluation
	5.1 Benchmark
	5.2 Indicators
	5.3 Implemented algorithms
	5.4 Computational results

	6 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References

