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Abstract 
 

This paper presents a high performing Discrete Artificial Bee Colony algorithm for the 

blocking flow shop problem with flow time criterion. To develop the proposed 

algorithm, we considered four strategies for the food source phase and two strategies for 

each of the three remaining phases (employed bees, onlookers and scouts). One of the 

strategies tested in the food source phase and one implemented in the employed bees 

phase are new. Both have been proved to be very effective for the problem at hand. The 

initialization scheme named HPF2(λ,µ) in particular, which is used to construct the 

initial food sources, is shown in the computational evaluation to be one of the main 

procedures that allow the DABC_RCT to obtain good solutions for this problem. To 

find the best configuration of the algorithm, we used Design of Experiments (DOE). 

This technique has been used extensively in the literature to calibrate the parameters of 

the algorithms but not to select its configuration. Comparing it with other algorithms 

proposed for this problem in the literature demonstrates the effectiveness and 

superiority of the DABC_RCT.  
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1 Introduction 
 

The blocking flow shop scheduling problem allows many productive systems to be 

modeled when there are no buffers between consecutive machines. Some industrial 

examples can be found in the production of concrete blocks, where storage is not 

allowed in some stages of the manufacturing process (Grabowski & Pempera, 2000); in 

the iron and steel industry (Gong, Tang, & Duin, 2010); in the treatment of industrial 

waste and the manufacture of metallic parts (Martinez, Dauzère-Pérès, Guéret, Mati, & 

Sauer, 2006); or in a robotic cell, where a job may block a machine while waiting for 

the robot to pick it up and move it to the next stage (Sethi, Sriskandarajah, Sorger, 

Blazewicz, & Kubiak, 1992). In general, it is useful for those systems that have a 

production line without a drag system that forces a job to be transferred between two 

consecutive stations at pre-established times. In this type of production configuration, a 

machine can be blocked by the job it has processed if the next machine is not available. 

Hence, accurate scheduling is necessary to minimize machine blocking and idle time, 

which allows increasing the productivity level. 

Although the blocking flow shop scheduling problem has not been as extensively 

studied as the permutation flow shop problem, several types of metaheuristics have been 

proposed to solve the former in order to minimize makespan: a genetic algorithm (GA) 

(Caraffa, Ianes, Bagchi, & Sriskandarajah, 2001); two tabu search (TS) algorithms 

(Grabowski & Pempera, 2007);  a hybrid genetic algorithm (HGA) (Wang et al., 2006); 

a particle swarm optimization algorithm (HPSO) (Liu et al., 2008); a differential 

evolution (DE) algorithm (Qian et al., 2009); a hybrid discrete differential evolution 

algorithm (Wang et al., 2010); a hybrid harmony search (Wang, Pan, & Tasgetiren, 

2011); an iterated greedy algorithm (Ribas, Companys, & Tort-Martorell, 2011); a 

simulated annealing algorithm with a local search (Wang, Song, Gupta, & Wu, 2012); a 

discrete self-organizing migrating algorithm (Davendra & Bialic-Davendra, 2013); a 

variable neighborhood search (Ribas, Companys, & Tort-Martorell, 2013); a Memetic 

algorithm (Pan, Wang, Sang, Li, & Liu, 2013); an artificial immune system (Lin & 

Ying, 2013); and a discrete artificial bee colony (Han, Gong, & Sun, 2014).  

However, little research has been done to solve the blocking flow shop scheduling 

problem in ways that include other interesting criteria for the industry, such as total 

tardiness or total flowtime. For the former, Armentano and Ronconi (2000) proposed a 

Tabu Search procedure, Ronconi and Henriques (2009) a new NEH-based method and a 

GRASP algorithm and Ribas, Companys and Tort-Martorell (2013) proposed an iterated 
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local search method. For the latter, Wang, Pan, and Fatih Tasgetiren (2010) proposed a 

hybrid Harmony Search (HS) algorithm, Deng, Xu, and Gu (2012) a Discrete Artificial 

Bee Colony (DABC) algorithm,  and Moslehi and Khorasanian (2013) a branch and 

bound algorithm that can be used in small instances. The criterion of minimizing total 

flowtime has been found to be an important real-life objective in industries, since it 

results in the even utilization of resources, even turn-over of finished jobs and reduced 

in-process inventory. Thus, it is considered to be more relevant and meaningful in 

today’s dynamic production environment (Liu & Reeves, 2001). Therefore, it is 

interesting to expand on the existing research in order to have efficient scheduling 

procedures available for sequencing jobs in productive environments that can be 

modeled as the blocking flow shop problem with total flowtime criterion.  

One of the recent swarm metaheuristics that has successfully been applied to several 

optimization problems is the Artificial Bee Colony (ABC) algorithm proposed by 

Karaboga (2005). Although the ABC algorithm was described for solving numerical 

problems, discrete versions have been introduced to solve several combinatorial 

problems. A complete review of papers published up to 2012 about the ABC algorithm 

and its applications can be found in (Karaboga, Gorkemli, Ozturk, & Karaboga, 2014). 

In particular, some Discrete Artificial Bee Colony (DABC) algorithms have been 

proposed in the field of scheduling to solve several scheduling problems under different 

constraints and/or objective functions. Nasiri (2015) presents a DABC algorithm for the 

stage shop problem, which is a special case of the general shop scheduling problem. 

Pan, Wang, Li, and Duan (2014) present it for the hybrid flow shop scheduling problem 

to minimize the makespan and Li and Pan (2014) for the hybrid flow shop scheduling 

problem with limited buffers. Wang, Zhou, Xu, Wang, and  Liu (2012) applied a DABC 

algorithm to the flexible job-shop scheduling problem; Zhang, Song, and Wu (2013) to 

the job-shop scheduling problem for minimizing the total weighted tardiness; Li, Pan, 

and Gao (2011) and Wang, Zhou, Xu, Wang, and Liu (2011) proposed a multi-objective 

DABC algorithm for the flexible job-shop scheduling problem; and Lei (2012) proposed 

it for the interval job-shop scheduling problem with non-resumable jobs and flexible 

maintenance. Finally, for the permutation flow shop scheduling problem: Liu and Liu 

(2013) present a DABC procedure for makespan minimization; and Tasgetiren, Pan, 

Suganthan, and Chen (2011a) for flowtime minimization. Deng et al. (2012) and Han et 

al. (2012) considered the blocking constraint and the total flowtime criterion, whereas 
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Tasgetiren, Pan, Suganthan, and Oner (2013) considered the no-idle constraint for total 

tardiness minimization.  

The blocking flow shop problem, denoted as Fmblock∑Ci, according to the notation 

proposed by Graham et al. (1979), can be defined as follows.  A set of n jobs have to be 

processed by m machines in the same order, implying that a job sequence determined 

for machine 1 is kept throughout the system. Each job i, iϵ{1, 2, ..., n} requires a fixed 

positive processing time pj,i on every machine j, jϵ{1, 2, ..., m}. Jobs and machines are 

available from time zero onwards. Our objective is to find a job processing sequence 

that minimizes the total flowtime. Fm|block|ΣCi can be modeled with the following 

equations, where [k] is the index of the job in the k-th position in the permutation, ej,k 

denotes the time at which job [k] begins to be processed by machine j, and cj,k is the 

departure time of job [k] from machine j. Note that if job [k] can leave machine j when 

it is completed, which depends on the availability of machine j+1, then cj,k is not only 

the departure time but also the completion time of job [k] on machine j:  

ej,k + pj,[k] ≤cj,k     j=1, 2, ..., m    k=1, 2, ..., n (1) 

ej,k ≥ cj,k-1          j=1, 2, ..., m  k=1, 2 ,..., n  (2) 

ej,k ≥ cj-1,k          j=1, 2, ..., m   k=1, 2, ..., n  (3) 

cj,k ≥ cj+1,k-1     j=1, 2, ..., m  k=1, 2, ..., n        (4) 

∑=
=

n

k
kmcTF

1
,    (5) 

 with k0c  0cj0c k1mk00j ∀==∀= + ,,, ,,  being the initial conditions. 

If equations (2) and (3) are summarized as (6) and equation (1) and (4) as (7), the 

schedule obtained is semi-active, which is interesting because an optimal solution can 

be found in the subset of the semi-active set of solutions. 

 ej,k =max{cj,k-1; cj-1,k}                j=1, 2, ..., m    k=1, 2, ..., n (6) 

 { }1,1][,,, ,max −++= kjkjkjkj cpec    j=1, 2, ..., m    k=1, 2, ..., n (7) 

The aim of this paper is to propose an efficient DABC algorithm, named DABC_RCT, 

for the blocking flow shop problem with total flowtime criterion. To develop the 

proposed algorithm, we considered four strategies for the food source phase and two 

strategies for each of the three remaining phases (employed bees, onlookers and scouts). 

One of the strategies tested in the food source phase and one implemented in the 
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employed bees phase are new. Both have been proved to be very effective. The 

initialization scheme named HPF2(λ,µ) in particular was used to construct the initial 

food sources, which the computational evaluation has shown to be one of the main 

procedures that allow the DABC_RCT to obtain good solutions for this problem. To 

find the best configuration of the algorithm, we used Design of Experiments (DOE). 

This technique has been extensively used in the literature to calibrate the parameters of 

the algorithms but not to select its configuration. Comparing it with other algorithms 

proposed in the literature for this problem demonstrates the effectiveness and 

superiority of the DABC_RCT.  

The rest of the paper is organized as follows. Section 2 describes the different strategies 

tested in each phase of the algorithm; section 3 shows the design of experiments done to 

choose the best combination of strategies; section 4 shows the computational evaluation 

of the algorithms; and, finally, section 5 is devoted to conclusions and future work.    
 
 

2 Proposed alternatives for a Discrete Artificial Bee Colony Algorithm 
 
The ABC algorithm is a swarm intelligence technique inspired by the intelligent 

foraging behavior of honey bees. This algorithm has three essential components: food 

sources, which are the set of current solutions; the employed bees that are associated 

with a particular food source to be exploited; and unemployed bees. The unemployed 

bees are made up of two types: onlookers, who wait in the nest and establish a food 

source through the information shared by the employed; and scouts, who search for new 

food sources in the area surrounding the hive. There are several strategies to implement 

in each part of the algorithm, and each combination can lead to a different Discrete 

Artificial Bee Colony algorithm. The point is to know which strategy and which 

combination among them has to be used in order to enhance the performance of the 

algorithm for the problem at hand. The final configuration of the algorithm was set by 

means of a design of experiments, which are explained in section 4. 

In the first phase (generation of food sources), we implemented four strategies in order 

to guarantee a diversification of solutions by testing the convenience of starting the 

algorithm with either good solutions or random solutions. On the remaining steps for 

employees, onlooker and scout bees (i.e., the components that allow the algorithm to 

intensify or to diversify the search of solutions), two alternative strategies were also 

tested. All these methods are explained in the following sections. 
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2.1 Initialization 
 
The algorithm starts with the generation of N initial solutions. These solutions 

characterize the initial food sources that will be explored by the employed bees. Each 

food source is represented as a job permutation, and the total flowtime evaluation of this 

sequence gives the quality of the source. Some authors (Han et al., 2012; Wu, Qian, Ni, 

& Fan, 2012; Karaboga & Ozturk, 2011) propose random generation of the food sources 

(solutions) to guarantee diversification of solutions. Some others propose generating at 

least one of the solutions by a heuristic procedure in order to obtain one food source of a 

certain quality (Tasgetiren, Pan, Suganthan, & Chen, 2011b). However, in Liu and  Liu 

(2013), a GRASP based on an NEH algorithm (Nawaz, Enscore, & Ham, 1983) is used 

to generate all food sources in order to guarantee an initial swarm of quality and 

diversity.  

To investigate whether or not it is better to initialize the algorithm with good solutions, 

we divided this phase into two parts. The first part generates the set of food sources 

according to two schemes. One of them provides better solutions than the other. The 

second part is devoted to analyzing whether or not it is useful to improve these solutions 

with a variable neighborhood search. The application of the VNS allows improving the 

solutions at the expense of losing diversity. The final configuration of the two parts will 

permit knowing the right balance between good solutions and diversity. 

  

2.1.1 The First Part of Food Source Generation 

In the first part, two strategies were tested to evaluate whether it is better to start the 

algorithm with a set of good solutions or by generating one good solution and the others 

randomly in order to guarantee an initial diversified swarm. Both strategies use a 

constructive procedure to create a solution, which we named HPF2(λ,µ); but they differ 

in their generation of the remaining food sources, as will be explained later. HPF2(λ,µ) 

is a constructive procedure that creates a sequence in two steps: selecting the first job 

(step 1); and constructing the remaining sequences in order to minimize both the 

timeout of machines and the total flowtime (step 2).  

The first step selects a job that minimizes a bicriteria index (R(i)), which considers its 

contribution to the completion time (minimum sum of its processing times, Pi) and the 

generated front delay.  

The measurement of the front delay (in grey, Figure 1) can be calculated according to 

equation (8). 
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(Please, insert near here figure 1) 

 

Figure 1. Grey area indicates the front delay of job J1 
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Since this term had a different magnitude than the sum of the processing time of a job 

when evaluating index R(i) (see equation (9)), this first term was scaled by multiplying 

it by 2/(m-1). Observe that – with the correction introduced in the first term – if the 

processing time in all stages is 1, both terms are equal to m, which demonstrates that 

both have the same magnitude.    
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Notice that if λ=0, the job selected is the one with the minimum sum of processing time; 

whereas if λ=1, the selected job is the one that generates the minimum front delay. 

The second step builds the remaining sequence to minimize the timeout of machines 

and the total flowtime, which is carried out with index ind1. The timeout is measured 

with the first term of equation (10), which is similar to the index used in the Profile 

Fitting procedure (McCormick, Pinedo, Shenker, & Wolf, 1989). However the total 

flow time is measured with the second term that evaluates the contribution of the 

considered job i to the total flowtime of the partial sequence.  

         
)()1()))()(((),(1

1
,,1, -1][ki

m

j
ijkjkj CCpcickiind −⋅−+−−∗⋅= ∑

=
+ µσσµ   (10) 

Hence, HPF2(λ,µ) can be described as follows:  

• Step 1: selection of the first job of the sequence. Select the job with minimum R(i) 

and put it in the first position of sequence σ. Set k=1. In case of ties, select the job 

with minimum p1,i. 

• Step 2: construction of the remaining sequence. While k<n, calculate index ind1 as 

in equation (10) for each unscheduled job i. Select the job with minimum ind1. In 

case of ties, select the job which leads to the partial sequence with minimum total 

flowtime. 

Parameters λ and µ were selected by measuring the performance of the algorithm, which 

itself was done by combining several λ and µ values. For this test, we used 140 
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randomly generated instances that were grouped into 28 sets of size n x m, where n= 

{20, 50, 80, 110, 140, 170, 200} and m = {5, 10, 15, 20}. The evaluated values were 

λ={0.55, 0.6, 0.65, 0.7, 0.75} and µ={0.65, 0.70, 0.75,0.80, 0.85}. The performance was 

measured by the Relative Percentage Deviation (RPD) from the best solution (minimum 

total flowtime), which was obtained during the experiment using all combination of 

values. Therefore, RPD is calculated as in (11): 

100⋅
−

=
k

kk

TFref
TFrefTFRPD       (11) 

where TFk is the total flowtime obtained in instance k and Trefk is the minimum 

flowtime obtained in this instance by any combination of values. 

The Average Relative Percentage Deviation (ARPD) of all RPDs obtained per each 

instance and combination of λ and µ values is shown in table 1. As can be seen, the best 

solutions were obtained when λ =0.65 and µ=0.75.  

 

λ  /  µ 0.65 0.70 0.75 0.80 0.85 
0.55 0.860 0.773 0.656 0.713 0.775 
0.60 0.814 0.738 0.628 0.694 0.724 
0.65 0.759 0.713 0.565 0.627 0.643 
0.70 0.767 0.724 0.569 0.608 0.662 
0.75 0.775 0.732 0.575 0.611 0.666 

Table 1. ARPD of total flowtime values obtained by HPF2 per each λ and µ combination 

 

Therefore, a food source was generated according to these parameter values. The 

creation of the remaining food sources depends on the strategy used. For the first 

strategy (STR1), we fixed parameter λ=0.65, and µ was selected randomly from a given 

range interval [µmin, µmax]; whereas the remaining solutions in the second strategy 

(STR2) were generated randomly. Selecting µ in a given interval that depends on n is 

explained by the compromise between the diversity of the solutions and their quality. 

For small values of n, a narrow interval could lead to very similar solutions. On the 

other hand, a narrower interval is required for higher values of n, because a huge 

interval could result in worse solutions in terms of total flowtime. Therefore, we set the 

interval depending on n according to the values in Table 2.  

 

n µmin µmax 
0 < n < 75 0 1 

75 ≤ n <150 .5 1 
150 ≤  n .6 .9 
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Table 2. Values of µmin and µmax for each range of n 

 

The flowtime calculation in an n-job, m-machine flow shop for a given sequence is of 

complexity O(nm). Therefore, since k flowtimes in k jobs and m machines must be 

calculated in step 2, we can conclude that the complexity of this procedure is O(n2m).  

 

2.1.2 Second Part of food source generation 

In our aim to investigate the convenience of initiating the algorithm with good food 

sources (solutions), a variable local search (named LS and based on swap and insert 

neighborhood structures) was implemented in this part. The procedures for exploring 

them were named LS1 and LS2, respectively.  

In LS1, neighbors are generated for each job in the sequence by swapping one job with 

all jobs that follow it in the sequence. If the best neighbor (σ’) is better than the current 

solution (σ), it becomes the new current solution σ, and the process continues until all 

jobs have been considered. To avoid constantly exploring neighborhoods in the same 

order, jobs are selected randomly. 

 In LS2, neighbors are generated for each job in the sequence by removing the job from 

its position and inserting it into all other possible positions. If the best neighbor (σ’) is 

better than the current solution (σ), it becomes the new current solution σ, and the 

process continues until all jobs have been considered. As in LS1, jobs are selected 

randomly. 

The implemented variable local search (Figure 2) uses both structures at each iteration, 

one after the other. The first neighborhood to be explored is selected randomly with a 

probability of  50%. After exploring the solutions that neighbor the current solution σ, 

the local optimum σ’ is compared with σ. If the solution has improved, σ’ replaces σ and 

the search continues throughout the other neighborhoods. This process goes on until the 

current solution is no longer improved. Next, the local optimum σ’ is compared with the 

best solution σ* in terms of quality. If TF(σ’) is less than TF(σ*), then σ’ replaces σ*.   

 

(please, insert figure 2 near here) 

Figure 2. Pseudocode of the LS
  

Finally, the scheme for generating the initial food sources is shown in Figure 3.  
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(please, insert figure 3 near here) 

Figure 3. Implemented strategies for generating initial food sources 

 

2.2 Employed bees 

In this phase, the employed bees are sent to the food source to evaluate their 

surroundings. In our implementation, two employed bees’ were sent: the best one and 

another selected randomly. To enhance the exploration and be able to access a good 

food source, we tested two methods.  

The first method (DC) applies the deconstruction and construction procedures proposed 

in Ruiz and  Stützle (2007).  The deconstruction procedure randomly extracts d jobs 

from the current sequence, and the construction procedure re-inserts them one at a time 

using the insertion procedure of NEH heuristic, starting with the first job that was 

removed until reaching the last one. According to the results obtained in a previous test, 

we set d=8. Next, the LS tries to improve the obtained solution and compares it with the 

original. The new one is kept only if it is better than the original.  

In the second method a new scheme named Three Neighborhood Operators (TNO) is 

presented. This scheme consists of applying three operators to the two selected 

solutions. These operators were proposed by Della Groce, Narayan, and  Tadei (1996) 

for the two-machine total completion time flow shop problem to generate neighboring 

solutions. The operators are defined as follows: 

• PI (Pairwise Interchange): Given a sequence, σ, and two positions, k1 and k2, swap 

the jobs that are in these positions, i.e.: σ = (5,3,1,2,4), k1 = 1 and k2 = 4; the 

resulting sequence is σ0 = (2,3,1,5,4).  

• EFSR (Extraction and Forward Shifted Reinsertion): Given a sequence (σ) and two 

positions (k1, k2), with k2 later in the sequence than k1, extract the job at position k2 

and reinsert it in position k1, i.e.: σ = (5,3,1,2,4), k1=1 and k2 = 4; the resulting 

sequence is σ0  = (2,5,3,1,4). 

• EBSR (Extraction and Backward Shifted Reinsertion): Given a sequence (σ) and 

two positions (k1, k2), with position k1 before k2 in the sequence, extract the job at 

position k1 and re-insert it in position k2, i.e.:  σ = (5,3,1,2,4),  k1 = 1 and k2 = 4; the 

resulting sequence is σ0  = (3,1,2,5,4). 

The TNO starts by randomly selecting k1 and k2 (k1< k2). Next, the three operators are 

applied to the selected sequence (σ), and the best solution among the three new 

sequences is chosen (σ’). This process is done t times. In our implementation, t was set 
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to 2 in accordance with the results obtained in a previous test. Next, the LS procedure 

tries to improve the obtained solution and then compares it with the original (σ). The 

new one (σ’’) is kept only if it is better than the original. The TNO scheme is described 

in Figure 4. 

    

(please, insert figure 4 near here) 
 

Figure 4. Pseudocode of the employed bee phase 

 

2.3 Onlooker bees 

The onlookers look out for a food source to exploit. They wait in the nest and establish 

a food source through the information shared by employed bees. In this phase, we tested 

two strategies: path relinking and the single-point crossover operation. 

Path relinking is a search technique originally proposed by Glover and  Laguna (1998) 

to explore the path between two sets of good solutions. In our implementation, two 

solutions are selected: the best one and another selected randomly from the food source 

set. The best solution is the destination, and the other solution is the path origin. The 

path is built by interchanging movements in order to convert the original solution into 

the destination solution. Therefore, the final solution is the reference and the other one 

is continuously changed with each movement. The process starts by comparing both 

solutions and detecting the jobs that occupy different positions in both solutions. Next, 

the first job (according to its number) is in a different position from the original solution 

and is interchanged with the one that occupies that position. The new solution is 

evaluated and replaces the original one only if it is better. The process continues until 

the original solution is equal to the destination solution. Notice that if there are k jobs in 

different positions, a maximum of k-1 movements are necessary because the last one 

leads the permutation to the reference one. Hence, path relinking is carried out only if 

more than two jobs can be swapped. For example, if σ=(5,4,1,2,3) and σ*=(2,3,1,5,4), 

jobs 2, 3, 4 and 5 are in different positions. The first movement in σ is a swap between 2 

and 5, which leads to σ1=(2,4,1,5,3). If the total flowtime of σ1 is lower than σ, σ1 

replaces σ. Now, σ1 and σ are compared and, as σ1 has only two jobs in positions that 

are different than σ, the process is stopped because the swap movement converts σ1 into 

σ*. 

The single-crossover operator is typically used in genetic algorithms because it allows 

creating a new solution from two others. In our implementation, one of them was the 
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best solution (σ*), and the other one (σ) was selected randomly from the set of food 

sources. The process starts with randomly generating a cut point on σ. Next, the first 

part of σ is copied to offspring 1, and the remaining positions are filled with the jobs not 

included in the first part, in the relative order that they have in σ*. The second offspring 

is created by copying the second part of σ and filling the remaining positions according 

to the relative order that they have in σ*. The two offspring are evaluated and the best 

one replaces σ only if it is better. An example is shown in figure 5. 
 

(please,  insert figure 5 near here) 

 

Figure 5. Example of the crossover operator 

 

2.4 Scout bees 

The scouts seek new food sources. In our implementation, a new solution is created 

according to the strategy followed in the two steps of the food source phase, i.e., with 

HPF2 (0.65; µ) or randomness in step 1 and with or without applying the variable local 

search in step 2. As in the other phases, two strategies were tested. The first strategy 

consists of replacing the worst solution in the food source set with the new solution; 

whereas the worst solution is replaced by the new one in the second strategy only if the 

latter is better. 

 

3 Design of experiment for the DABC configuration 
 

To identify the best configuration of the DABC algorithm, we used Design of 

Experiments (DOE) techniques (Box, Hunter, & Hunter, 2009). Given the nature of the 

factors (the 4 steps of the algorithm) and the strategies for studying each of them, we 

decided to use a two-level factorial design. This type of design is a very useful 

experimentation methodology; it allows estimating the size and assessing the 

significance of factor changes (in our case changes in the algorithm steps) in the 

response that interests us (in our case the RPD). A very interesting characteristic of 

factorial designs is that – on top of studying the effect of each factor by itself (known as 

the main effects) – they allow us to study their interactions. In other words, we can 

evaluate if the effect of one of the factors in the response depends on the level of the 

other factor. As will be seen later, this is what happens between factors P1 and P2 

(Figure 6). Naturally, this fact makes this type of design especially suited to determining 
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the “best” algorithm. Table 3 shows the factors and levels considered. Notice that the 

algorithm’s first phase, how to get food sources, has been subdivided into two factors 

that we named initialization 1 and initialization 2. 

 

Factors 
(Algorithm steps) 

                     Levels 
  1                                        2 

P1: initialization 1 STR1 STR2 

P2: initialization 2 With LS Without LS 

P3: Employee bees DC  TNO 
P4: Onlooker bees Path relinking Crossover 
P5: Scout bees Always replace the 

worst solution 
Replace the worst solution 
only if the new one is best 

Table 3. Factors and levels considered in the factorial design 

A two-level full factorial design with 5 factors (a 25 design) requires 32 runs. Such a 

design allows estimating 31 effects: 5 main effects, 10 two-factor interactions, 10 three–

factor interactions, 5 four-factor interactions and one five-factor interaction. Since the 

effect of three and higher order interactions can be considered negligible (Box et al., 

2009), it was decided to conduct a half fraction of the full design, a 25-1 fractional 

factorial design (Table 4 presents the design matrix). This is a resolution V design that 

allows us to estimate all the main effects and two-factor interactions without any 

confounding among them. They are confounded with higher order interactions that, as 

commented above, can be considered negligible. Furthermore, if the analysis of results 

suggests that one of them may be important, it is always possible to conduct 16 

additional runs that will form the full factorial together with the 16 initially conducted 

runs.  

 

 

Run Source 
food 1 

Source 
food2 Employee bees Onlooker bees Scout bees 

1 STR1 With LS TNO Path relinking Replace if best 
2 STR2 With LS TNO Path relinking Replace always 
3 STR1 Without LS TNO Path relinking Replace always 
4 STR2 Without LS TNO Path relinking Replace if best 
5 STR1 With LS DC Path relinking Replace always 
6 STR2 With LS DC Path relinking Replace if best 
7 STR1 Without LS DC Path relinking Replace if best 
8 STR2 Without LS DC Path relinking Replace always 
9 STR1 With LS TNO Crossover Replace always 

10 STR2 With LS TNO Crossover Replace if best 
11 STR1 Without LS TNO Crossover Replace if best 
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12 STR2 Without LS TNO Crossover Replace always 
13 STR1 With LS DC Crossover Replace if best 
14 STR2 With LS DC Crossover Replace always 
15 STR1 Without LS DC Crossover Replace always 
16 STR2 Without LS DC Crossover Replace if best 

Table 4. Design matrix of the half fraction of the full design. 
 

The resulting 16 algorithms from the combinations of the alternative procedures in each 

step were tested on a test-bed that was created ad hoc to separate the calibration 

benchmark from the final testing benchmark. Each algorithm was tested on a 2 GHz 

Intel Core 2 Duo E8400 CPU with 2 GB of RAM, with 140 randomly generated 

instances grouped into 28 sets of size n x m, where n= {20, 50, 80, 110, 140, 170, 200} 

and m = {5, 10, 15, 20} with 5 instances per group. So, we can say that the final design 

is a 7*4*25-1 design that requires 448 runs. On top of that, each experimental condition 

was replicated five times; thus the final number of runs conducted was 448*5=2240. 

The resulting algorithms performance was measured by the Relative Percentage 

Deviation (RPD), as in equation (11). In this case TFk was the average total flowtime of 

the 5 runs at instance k, and TFrefk was the minimum total flowtime obtained at instance 

k by any of the 16 algorithms in any of the 5 runs.   

One important issue to take into account when analyzing the results is that, even though 

RPD is supposed to level out the differences due to the distinct level of difficulty 

presented by instances, it does not (Ribas et al., 2013). The usual way to remove this 

variability so that it does not make it difficult to identify significant factors (algorithm 

steps, in our case) is to consider the 140 instances as a blocking variable. Then, it is 

possible to compare the 16 algorithm variations (resulting from the 25-1 design) without 

interferences from differences in the instances. The procedure is equivalent to analyzing 

the residuals of a linear regression between RPD as the independent variable and the 

instances as the dependent variable. We call this new variable RPD_Blck. 

 

Source Degrees 
of freedom 

Sum of 
Squares 

Adjusted 
Mean Square 

F-Statistic p-value Significance 

n 6 153.14 25.52 500.57 0.00 ** 
m 3 1.79 0.59 11.71 0.00 ** 
P1 1 35.32 35.32 692.83 0.00 ** 
P2 1 17.05 17.05 334.43 0.00 ** 
P3 1 0.17 0.17 3.41 0.06 * 
P4 1 0.002 0.003 0.05 0.81  
P5 1 0.003 0.003 0.06 0.81  

n*m 18 12.95 0.71 14.11 0.00 ** 
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n*P1 6 9.85 1.64 32.22 0.00 ** 
n*P2 6 4.79 0.79 15.68 0.00 ** 
n*P3 6 0.32 0.05 1.06 0.38  
n*P4 6 0.03 0.01 0.11 0.99  
n*P5 6 0.01 0.002 0.04 1.00  
m*P1 3 0.40 0.13 2.65 0.04  
m*P2 3 0.28 0.09 1.84 0.13  
m*P3 3 0.04 0.01 0.27 0.84  
m*P4 3 0.02 0.01 0.16 0.92  
m*P5 3 0.01 0.004 0.09 0.96  
P1*P2 1 11.45 11.45 224.64 0.00 ** 
P1*P3 1 0.01 0.01 0.14 0.70  
P1*P4 1 0.04 0.03 0.73 0.39  
P1*P5 1 0.001 0.001 0.03 0.85  
P2*P3 1 0.01 0.01 0.19 0.66  
P2*P4 1 0.001 0.001 0.02 0.89  
P2*P5 1 0.005 0.01 0.11 0.73  
P3*P4 1 0.0001 0.0001 0.00 0.97  
P3*P5 1 0.0002 0.0002 0.00 0.95  
P4*P5 1 0 0 0.00 0.97  
Error 2152 109.73 0.051    
Total 2239 357.49     

Table 5.  ANOVA of RPD_Blck 
 

By using RPD_Blck as the response of interest and considering the main effects and 

two-factor interactions, the analysis of the experiment yields the ANOVA presented in 

table 5, where significant effects at the 0.05 level are marked with two asterisks and 

those at the 0.1 level with one. 

The residual analysis does not present any violation of the Analysis of Variance 

assumptions and, thus, the results can be readily interpreted.  

There are nine significant effects that can be classified into three groups: 

• Three effects that are the natural consequence of the differences in the difficulties of 

the problem: n, m and the n*m interaction. They were expected and, in fact, are of 

no interest 

• Four effects of the algorithm steps: P1, P2, the interaction P1*P2 and, to a lesser 

degree, P3. P1 and P2 (initialization 1 and 2) represent the effects of food source 

generation. Since P1 and P2 interact, their effects have to be analyzed together and a 

plot is an excellent way to do it. Figure 6 shows these effects: it is clear that, for P1, 

STR1 is always better than STR2 and that P2 has little effect when STR1 is used. 

This fact means that it is better to generate the whole population with the 

HPF2(0.65,µ) procedure. Furthermore the quality and diversity of these solutions 
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means that the application of LS is not necessary. However, when STR2 is used, P2 

is always better when the level with LS is chosen. That is, if most of the solutions 

have been generated randomly, the population is poor and needs to be improved 

with LS. In spite of that, the effects of P1 and P2 have to be analyzed together, as 

mentioned previously. In Figure 7, we show the main effects of P1, P2 and P3 

together, so that that it can be seen that the effect of P3 (the strategy used by the 

employed bees) is very small in comparison. The best level is TNO. 

• 
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Figure 6. Interaction plot of P1 and P2 

 

STR2STR1

0.10

0.05

0.00

-0.05

-0.10

without_LSwith_LS

TNODC

0.10

0.05

0.00

-0.05

-0.10

P1

M
ea

n

P2

P3

Main Effects Plot for RPD_Blck
Data Means

 
Figure 7 Main effects plot of P1, P2 and P3 

   
• Two interactions between the number of jobs (n) and the algorithm steps: n*P1 and 

n*P2. These interactions reflect the fact that, when the number of jobs is small, all 

strategies behave very well. As an example, Figure 8 shows the n*P1 interaction. It 
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is clear that for n=20 and n=50 both levels of P1 provide similar results; while the 

difference is evident between STR1 and STR2 when n is bigger. There is also an 

interaction between the number of machines (m) and the algorithm’s first step; of 

course, this has the same explanation as for the n*P1 interaction commented on 

above. 
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Figure 8. n*P1 interaction 
 

Finally, as a result of this analysis, we concluded that the configuration of the proposed 

DABC algorithm was formed as indicated in table 6. Its outline can be seen in Figure 9. 

 
P1: Initialization 1 STR1 
P2: Initialization 2 Without LS 
P3: Employee bees TNO 
P4: Onlooker bees Path relinking 
P5: Scout bees Replace the worst solution only if the new one is 

best 
Table 6. Final configuration of the proposed DABC 
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Figure 9. Outline of the DABC algorithm 
 

    
3.1 Experimental adjustment of DABC  parameters 

 
A golden rule of experimental design is to not try to learn everything at once from a first 

experiment (Box et al., 2009). The idea is to use what is called a sequential strategy: run 

an experiment, learn from it and use it to design a follow-up experiment. This is what 

we have done. After selecting the basic structure of the algorithm, we adjusted 

(recalibrated) the main parameters: number of sources (fs) and the number of times that 

the neighborhood operators are applied (t).The best levels found for these two 

parameters in the first experiment were 6 and 2, respectively. Now, in a new 

experiment, we move these values around a bit to see if we can further improve the 

RPD index. The selected levels were: 

fs: 5,6,7 

t: 1,2,3 
 
Calibration was done on the same test-bed used for the configuration of the algorithm, 

which, as said before, is different than the one used in the final testing. The alternatives 

were compared using the RPD index. 

The ANOVA results are shown in table 7, where one can see that the only significant 

parameters that are of no interest (aside from n, m and n*m) are t (p-value=0.001) and 

the interaction n*t (p-value 0.012).  Figure 10 shows the n*t interaction, where it can be 

seen that the interaction is weak and it does not affect the conclusion that can be reached 

procedure DABC 
     Set parameter fs 

 Food sources: Generate the initial population with STR1; 
         σbest =the best solution in the population; 
   σworst=the worst solution in the population; 

   
  While (stopping criterion not met) 
       Employed bees:  for σbest

 and another σ of the population randomly selected: 

                 for j=1 to t 
                apply the TNO procedure 

             endfor 
                     endfor     
       Onlooker bees:   Select a solution σ of the population randomly; 
          apply the path relinking procedure from σ to σbest; 
       Scout bees:        Generate a new food source (σnew) with HPF2(0.65,µ) 
          if σnew < σworst   then      
    replace the worst solution for the new one; 
         endif 
   endwhile; 
end  
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from Figure 11: that t can be set to either 1 or 2 because there is no difference between 

them. Therefore, this test confirms the previous parameters.  

 

Source Degrees 
of freedom 

Sum of Squares Mean Square F-Statistic p-value 

n 6 239.1052 39.851 914.16 0.000 

m 3 1.994 0.664 15.25 0.000 

fs 2 0.086 0.043 1.00 0.370 

t 2 0.592 0.296 6.8 0.001 

n*m 18 13.240 0.735 16.87 0.000 

n*fs 12 0.148 0.012 0.28 0.992 

n*t 12 1.124 0.093 2.15 0.012 

m*fs 6 0.146 0.024 0.56 0.763 

m*t 6 0.177 0.029 0.68 0.666 

fs*t 4 0.105 0.026 0.61 0.658 

Error 3078 161.643 0.043   

Total 3779 418.364    
 

Table 7. Analysis of Variance for RPD versus n, m, fs and t 
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Figure 10. Interaction plot of n*t  
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Figure 11. Interval plot of t 

 
4 Computational evaluation 

 
In this section, the performance of the proposed DABC, named DABC_RCT, is 

compared against the algorithms proposed in the literature for the problem at hand: the 

Harmony Search (HS) algorithm (Wang et al., 2010), denoted as HS_WPT; the Discrete 

Artificial Bee Colony (DABC) algorithm (Deng et al., 2012), denoted as DABC_DXG; 

and an IG algorithm proposed by Khorasanian and  Moslehi (2012), denoted as IG_KM. 

Moreover, in order to show its performance, we included the HPF2 procedure (0.65, 

0.75) in the comparison, which is used to find the first food source in the proposed 

DABC. 

All algorithms were coded in the same language (QuickBASIC) and tested on the same 

computer, a 3 GHz Intel Core 2 Duo E8400 CPU with 2 GB of RAM. To make a fair 

comparison, all algorithms adopted the CPU time limit as a stopping criterion, which 

was fixed at k∙n2∙m·10-5 seconds, with k set to 15 and 30 in order to analyze the 

performance of these algorithms for two levels of CPU time. In each test, five runs were 

carried out by each algorithm for all 150 instances.  

The test was done using Taillard’s benchmark (Taillard, 1993) for the blocking flow 

shop scheduling problem and using the total flowtime criterion, as is done in Wang et 

al. (2010), Khorasanian and  Moslehi (2012) and Deng et al. (2012). However, the latter 

authors use only the first 90 instances. Taillard’s test-bed is composed of 120 instances 

(12 sets of 10 instances each), from 20 jobs and 5 machines to 500 jobs and 20 

machines, where nϵ{20, 50, 100, 200, 500} and mϵ{5, 10, 20}, although not all 

combinations of n and m are available. In particular, sets 200x5, 500x5 and 500x10 are 

missing, but they were added as in Pan and Ruiz, (2012) in order to maintain the 

orthogonality of the experiment. 
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As in the other tests, the performance of each algorithm was measured by the Relative 

Percentage Deviation (RDP) index, as in (11). In this case, TFk. was the average total 

flowtime obtained at instance k in the 5 runs, and TFrefk was the best known solution 

for this instance. The best known solutions are reported in Table 12 at the end of this 

section. 

The results are shown in Table 8-9, where we have averaged the RPD values (ARPD) of 

the 10 instances of each nxm group, for k=15 and k=30 in the stopping criterion, 

respectively.  We can see that the ranking between algorithms is the same in both cases, 

and their convergence is similar. Notice that the effect of duplicating the CPU time is 

noteworthy in the performance of the small instances, but it diminishes when n 

increases. This fact indicates that it is necessary to increase the factor n in the CPU time 

limit even more, i.e., applying n3m instead of n2m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 nxm HPF2 
(0.65,0.75) DABC_DXG HS_WPT IGA_KM DABC_RCT 

20x5 4.038 0.077 0.518 0.181 0.109 
20x10 3.156 0.066 0.302 0.148 0.072 
20x20 3.989 0.036 0.114 0.083 0.042 
50x5 3.923 2.153 5.480 2.484 1.439 

50x10 3.665 2.022 4.642 1.846 1.292 
50x20 5.036 1.368 3.301 1.214 0.886 
100x5 3.967 3.635 7.931 4.434 1.867 
100x10 4.094 3.897 6.563 3.353 1.949 
100x20 5.554 3.008 5.138 2.263 1.856 
200x10 2.243 3.308 6.394 3.814 1.267 
200x20 2.779 2.752 4.650 2.545 1.129 
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500x20 1.692 3.704 5.424 3.711 0.550 
200x5 2.394 3.389 8.886 5.194 1.211 
500x5 1.128 4.383 10.304 6.627 0.537 
500x10 1.512 5.039 8.208 5.566 0.649 

All 3.278 2.589 5.190 2.898 0.990 
Table 8. ARPD for each nxm set and algorithm when k=15 

 

nxm HPF2 
(0.65,0.75) DABC _DXG HS_WPT IGA_KM DABC_RCT 

20x5 4.038 0.029 0.228 0.122 0.049 
20x10 3.156 0.031 0.148 0.072 0.062 
20x20 3.989 0.005 0.058 0.066 0.022 
50x5 3.923 1.735 5.021 2.317 1.242 

50x10 3.665 1.552 4.311 1.596 1.147 
50x20 5.036 0.967 2.999 0.947 0.715 
100x5 3.967 3.107 7.860 4.007 1.674 
100x10 4.094 3.462 6.570 3.095 1.722 
100x20 5.554 2.559 5.026 2.008 1.660 
200x10 2.243 3.353 6.400 3.638 1.142 
200x20 2.779 2.720 4.673 2.326 0.979 
500x20 1.692 3.164 5.411 3.564 0.513 
200x5 2.394 3.453 8.784 4.968 1.119 
500x5 1.128 2.953 10.340 6.452 0.515 
500x10 1.512 3.803 8.215 5.348 0.623 

All 3.278 2.193 5.070 2.702 0.879 
Table 9. APRD for each nxm set and algorithm when k=30 

 
Regarding the performance of the algorithms, we can see that the DABC_RCT performs 

substantially better than the other algorithms at these two CPU time levels. However, 

DABC_DXG shows better performance than DABC_RCT when n= 20, but the 

proposed algorithm is considerably better for the set of instances where n>20. It is 

worth noting that the HPF2(0.65,µ) procedure (which is proposed for generating the 

initial food sources) performs considerably better than HS_WPT in the set of instances 

with n>20, and better than IGA_KM and DABC_DXG in the set of instances with more 

than 100 jobs. This fact is one explanation for why the proposed DABC_RCT has a 

better performance than the DABC_DXG. DABC_DXG generates the initial population 

(food sources) similarly to our STR2 strategy; i.e., one solution is generated by a 

heuristic, in this case a modified NEH algorithm, and the other solutions are generated 

randomly. Next, the solutions are improved by an insertion-based local search to 

improve the quality of the population. But our experiment discarded these strategies. 

One explanation is because the improvement of solutions through local search 

consumes much time, which diminishes the algorithm’s capacity to perform more 
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iterations in order to find new food sources to explore. Instead, HPF2(λ,µ) gives good 

solutions in little time, which allows the algorithm to find better solutions. This fact 

allows us to say that it is recommendable to start the DABC algorithms with an efficient 

heuristic. To confirm this observation, we have modified the DABC_DXG by changing 

its procedure so that it will generate the initial food sources through the HPF2(λ,µ) 

procedure. The results for k=30 are shown in table 10, where the column DABC_DXG2 

shows the results obtained by the modified DABC_DXG algorithm. It is worth noting 

the improvement of DABC_DXG2 when compared with DABC_DXG, which confirms 

our hypothesis. Now, the differences between DABC_RCT and DABC_DXG2 have 

diminished, but the DABC_RCT remains better.  

 

nxm DABC_RCT DABC_DXG DABC_DXG2 
20×5 0.049 0.029 0.029 
20×10 0.062 0.031 0.028 
20×20 0.022 0.005 0.024 
50×5 1.242 1.735 1.350 
50×10 1.147 1.552 1.230 
50×20 0.715 0.967 0.836 
100×5 1.674 3.107 2.011 
100×10 1.722 3.462 2.11 
100×20 1.660 2.559 2.035 
200×10 1.142 3.353 1.198 
200×20 0.979 2.720 1.123 
500×20 0.513 3.164 0.567 
200×5 1.119 3.453 1.157 
500×5 0.515 2.953 0.528 
500×10 0.623 3.803 0.732 

All 0.879 2.193 0.997 
Table 10. APRD for each nxm set and algorithm when k=30 

 

Another difference was also significant during the design of experiments to configure 

the proposed DABC, and that is the strategy used to find a neighboring solution for the 

food source. In this part of the algorithm, DABC_RCT uses three neighbor operators 

that use swap and insert movements, and DABC_DXG uses strategies to generate 

neighbors that only use insert movements. Therefore, from the obtained results, we 

recommend combining swap and inserting movements to generate neighboring 

solutions that allow diversifying the search. 

To check whether the observed differences from Table 9 are indeed statistically 

significant, we carried out an analysis of variance (ANOVA) where the heuristics type 

(algorithm) is considered a factor. Thanks to the addition of test beds to the Taillard 

collection, the ANOVA is balanced and has the advantage of a higher detection power. 
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The ANOVA hypotheses were tested by a residual analysis, which showed small 

departures from normality; fortunately, the ANOVA method is robust to violations of 

this assumption. Therefore, the very clear results that were obtained in the ANOVA 

validate the conclusions and make a deeper analysis unnecessary. The ANOVA table 

(Table 11) shows that factors: algorithm, n and m and their interaction are highly 

significant.  

 

Source Degrees 
of freedom 

Sum of Squares Mean Square F-Statistic p-value 

n 4 920.110 230.027 422.59 0.000 

m 2 96.805 48.403 88.92 0.000 

algorithm 4 1416.775 354.194 650.70 0.000 

n*m             8 37.377 4.672 8.58 0.000 

n*algorithm    16 1161.787 72.612 133.4 0.000 

m*algorithm 8 212.352 26.544 48.76 0.000 

Error 707 384.842 0.544   

Total 749 4230.048    

Table 11. ANOVA test for the comparison of algorithms 
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Figure 12.  Interval plot of RPD by algorithm when k=30 

Figure 12 reports the means and 95% confidence intervals. Note that there are no 

overlaps between intervals, which means that the differences observed from Table 9 are 

significant at the 95% confidence level. Additionally, in Figures 13-14 we can observe 

the interaction between m and n with the algorithms. Notice in Figure 13 that 

DABC_DXG and DABC_RCT are the algorithms which are less influenced by m. 
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However, the behavior of HS_WPT and IGA_KM is significantly different in respect to 

the m values. Both perform better when m increases, the opposite of the behavior of 

HPF2(0.65,0.75). 
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Figure 13. Interval plot of RPD by algorithm and m when k=30 

 
In Figure 14 we can observe that HS_WPT and IGA_KM perform worse when the 

number of jobs increases. However, in DABC_RCT and HPF2(0.65,0.75), we can see a 

progressive reduction in the performance for n=50 and 100, but after n=100 we can 

observe an increase in the efficiency with n. One way to increase the efficiency of 

DABC_RCT even more, for example, would be to try to increase the efficiency of the 

HPF2(0.65, 0.75) for n≤100 by applying the insertion phase of NEH to the obtained 

solution with HPF2(0.65, 0.75) in those instances when n≤100. 
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Figure 14. Interval plot of RPD by algorithm and n when k=30 
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Finally, we reported the new best solutions found during this research (Table 12) for 

most of the Taillard instances used in the BFSP, which could serve as a basis for 

comparison in future research. 

 

Set Best  Set Best  Set Best 
20×5   20×10   20×20  

1 14953  11 22358  21 34683 
2 16343  12 23881  22 32855 
3 14297  13 20873  23 34825 
4 16483  14 19916  24 33006 
5 14212  15 20196  25 35328 
6 14624  16 20126  26 33720 
7 14936  17 19471  27 33992 
8 15193  18 21330  28 33388 
9 15544  19 21585  29 34798 

10 14392  20 22582  30 33174 
50×5   50×10   50×20  

31 72672  41 99674  51 136865 
32 78140  42 95608  52 129958 
33 72913  43 91791  53 127617 
34 77399  44 98454  54 131889 
35 78353  45 98164  55 130967 
36 75402  46 97246  56 131760 
37 73842  47 99953  57 134217 
38 73442  48 98027  58 132990 
39 70871  49 96708  59 132599 
40 78729  50 98019  60 135710 

100x5   100x10   100×20  
61 288332  71 354083  81 425224 
62 280491  72 333379  82 435289 
63 276228  73 343957  83 430634 
64 259596  74 359259  84 432314 
65 273086  75 338537  85 426405 
66 267381  76 327254  86 430308 
67 274744  77 335366  87 436642 
68 269689  78 343174  88 440930 
69 284816  79 344563  89 432876 
70 282005  80 347845  90 437286 

200×10   200×20   500x20  
91 1281633  101 1499623  111 8719682 
92 1283164  102 1541253  112 8849228 
93 1277933  103 1546279  113 8789777 
94 1271502  104 1540822  114 8828454 
95 1275901  105 1514600  115 8796337 
96 1251213  106 1528885  116 8837577 
97 1304158  107 1532090  117 8729909 
98 1298900  108 1543229  118 8800506 
99 1277801  109 1524293  119 8782791 

100 1273794  110 1535329  120 8849551 
200×5   500x5   500x10  

121  1071652  131 6389122  141 7552404 
122 1026640  132 6415066  142 7665025 
123 1059120  133 6460745  143 7626599 
124 1044074  134 6334201  144 7626405 
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125 1064274  135 6373873  145 7479900 
126 1021482  136 6282522  146 7537299 
127 1082018  137 6244926  147 7510712 
128 1043921  138 6352627  148 7562013 
129 1057482  139 6328390  149 7550242 
130 1037496  140 6309180  150 7549596 

Table 12. Best solutions for the blocking flow shop with flowtime criterion 
 

5 Conclusions   
 

In this paper, we have presented an efficient Discrete Artificial Bee Colony algorithm, 

named DABC_RCT, for sequencing jobs in a blocking flow shop with the objective of 

minimizing the total flowtime of jobs. To configure the proposed algorithm, we 

considered four strategies for the food source phase and two strategies for each of the 

other phases (employed bees, onlookers and scouts). The final composition of the 

algorithm was decided by means of a Design of Experiments (DOE) that allowed us to 

estimate not only the effect of each part of the algorithm but also their interaction, 

which makes this type of design especially suited to determining the best algorithm. The 

experiment allowed us to prove that the employed initialization scheme has great 

influence on the performance of the algorithm. In our algorithm, we implemented a new 

method named HPF2(λ,µ), which allowed us to generate initial food sources that were 

diversified and of good quality. Another significant part of the algorithm was the 

employed bees phase, which is where the algorithm diversifies the search. In this phase, 

the selected strategy was a new scheme that combined insert and swap movements. The 

comparison of DABC_RCT with other algorithms proposed in the literature for this 

problem demonstrates its effectiveness and superiority.  

 
In our experiment, the onlookers and scout phases have not been significant in the 

performance of the algorithm. This means that the strategies used do not contribute to 

increasing its efficiency. Therefore, it should be necessary to implement other schemes 

in order to find good procedures that would allow complementing the other parts. 

 

One future research direction is to adapt the DABC_RCT to other objectives, such as 

tardiness, where the research is scarce, or to multi-objective functions. One of the main 

points in adjusting the algorithm is to have efficient heuristics available for creating a 

good food source. Therefore, research in this direction may also be necessary. Another 

interesting line of research would be to consider other restrictions, such as setup times, 

since this constraint is found in most manufacturing environments. Finally, it would be 
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very interesting to adapt the algorithm to solve the scheduling problem in a distributed 

flow shop, because this configuration allows us to represent situations that arise in the 

supply chain. 
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 Figure 1. Grey area indicates the front delay of job J1 

 

Figure 2. Pseudocode of the LS
  

Figure 3. Implemented strategies for generating initial food sources 

  

Figure 4. Pseudocode of the employed bee phase 

 

Figure 5. Example of the crossover operator 
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