
An Efficient Discrete Artificial Bee Colony Algorithm for the Blocking Flow

Shop Problem with Total Flowtime Minimization

Imma Ribas1,a, Ramon Companysb, Xavier Tort-Martorellc

a, Departament d’Organització d’Empreses, DOE – ETSEIB - Universitat Politècnica de Catalunya.

BarcelonaTech, Avda. Diagonal,647, 7th Floor, 08028 Barcelona, Spain. E-mail:imma.ribas@upc.edu

b, CDE - EPSEB - Universitat Politècnica de Catalunya. BarcelonaTech, Gregorio Marañón 44-50, 3rd

Floor, 08028 Barcelona, Spain. E-mail:ramón.companys@upc.edu

c, Departament de Estadística e investigación Operativa- ETSEIB - Universitat Politècnica de Catalunya.

BarcelonaTech, Avda. Diagonal,647, 6th Floor, 08028 Barcelona, Spain. E-mail: xavier.tort@upc.edu

Abstract

This paper presents a high performing Discrete Artificial Bee Colony algorithm for the

blocking flow shop problem with flow time criterion. To develop the proposed

algorithm, we considered four strategies for the food source phase and two strategies for

each of the three remaining phases (employed bees, onlookers and scouts). One of the

strategies tested in the food source phase and one implemented in the employed bees

phase are new. Both have been proved to be very effective for the problem at hand. The

initialization scheme named HPF2(λ,µ) in particular, which is used to construct the

initial food sources, is shown in the computational evaluation to be one of the main

procedures that allow the DABC_RCT to obtain good solutions for this problem. To

find the best configuration of the algorithm, we used Design of Experiments (DOE).

This technique has been used extensively in the literature to calibrate the parameters of

the algorithms but not to select its configuration. Comparing it with other algorithms

proposed for this problem in the literature demonstrates the effectiveness and

superiority of the DABC_RCT.

Keywords: Scheduling; flow shop; blocking; total flowtime; heuristics

1 Corresponding author.
E-mail address: imma.ribas@upc.edu
Fax: +34 93 401 60 54

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41779725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

The blocking flow shop scheduling problem allows many productive systems to be

modeled when there are no buffers between consecutive machines. Some industrial

examples can be found in the production of concrete blocks, where storage is not

allowed in some stages of the manufacturing process (Grabowski & Pempera, 2000); in

the iron and steel industry (Gong, Tang, & Duin, 2010); in the treatment of industrial

waste and the manufacture of metallic parts (Martinez, Dauzère-Pérès, Guéret, Mati, &

Sauer, 2006); or in a robotic cell, where a job may block a machine while waiting for

the robot to pick it up and move it to the next stage (Sethi, Sriskandarajah, Sorger,

Blazewicz, & Kubiak, 1992). In general, it is useful for those systems that have a

production line without a drag system that forces a job to be transferred between two

consecutive stations at pre-established times. In this type of production configuration, a

machine can be blocked by the job it has processed if the next machine is not available.

Hence, accurate scheduling is necessary to minimize machine blocking and idle time,

which allows increasing the productivity level.

Although the blocking flow shop scheduling problem has not been as extensively

studied as the permutation flow shop problem, several types of metaheuristics have been

proposed to solve the former in order to minimize makespan: a genetic algorithm (GA)

(Caraffa, Ianes, Bagchi, & Sriskandarajah, 2001); two tabu search (TS) algorithms

(Grabowski & Pempera, 2007); a hybrid genetic algorithm (HGA) (Wang et al., 2006);

a particle swarm optimization algorithm (HPSO) (Liu et al., 2008); a differential

evolution (DE) algorithm (Qian et al., 2009); a hybrid discrete differential evolution

algorithm (Wang et al., 2010); a hybrid harmony search (Wang, Pan, & Tasgetiren,

2011); an iterated greedy algorithm (Ribas, Companys, & Tort-Martorell, 2011); a

simulated annealing algorithm with a local search (Wang, Song, Gupta, & Wu, 2012); a

discrete self-organizing migrating algorithm (Davendra & Bialic-Davendra, 2013); a

variable neighborhood search (Ribas, Companys, & Tort-Martorell, 2013); a Memetic

algorithm (Pan, Wang, Sang, Li, & Liu, 2013); an artificial immune system (Lin &

Ying, 2013); and a discrete artificial bee colony (Han, Gong, & Sun, 2014).

However, little research has been done to solve the blocking flow shop scheduling

problem in ways that include other interesting criteria for the industry, such as total

tardiness or total flowtime. For the former, Armentano and Ronconi (2000) proposed a

Tabu Search procedure, Ronconi and Henriques (2009) a new NEH-based method and a

GRASP algorithm and Ribas, Companys and Tort-Martorell (2013) proposed an iterated

2

local search method. For the latter, Wang, Pan, and Fatih Tasgetiren (2010) proposed a

hybrid Harmony Search (HS) algorithm, Deng, Xu, and Gu (2012) a Discrete Artificial

Bee Colony (DABC) algorithm, and Moslehi and Khorasanian (2013) a branch and

bound algorithm that can be used in small instances. The criterion of minimizing total

flowtime has been found to be an important real-life objective in industries, since it

results in the even utilization of resources, even turn-over of finished jobs and reduced

in-process inventory. Thus, it is considered to be more relevant and meaningful in

today’s dynamic production environment (Liu & Reeves, 2001). Therefore, it is

interesting to expand on the existing research in order to have efficient scheduling

procedures available for sequencing jobs in productive environments that can be

modeled as the blocking flow shop problem with total flowtime criterion.

One of the recent swarm metaheuristics that has successfully been applied to several

optimization problems is the Artificial Bee Colony (ABC) algorithm proposed by

Karaboga (2005). Although the ABC algorithm was described for solving numerical

problems, discrete versions have been introduced to solve several combinatorial

problems. A complete review of papers published up to 2012 about the ABC algorithm

and its applications can be found in (Karaboga, Gorkemli, Ozturk, & Karaboga, 2014).

In particular, some Discrete Artificial Bee Colony (DABC) algorithms have been

proposed in the field of scheduling to solve several scheduling problems under different

constraints and/or objective functions. Nasiri (2015) presents a DABC algorithm for the

stage shop problem, which is a special case of the general shop scheduling problem.

Pan, Wang, Li, and Duan (2014) present it for the hybrid flow shop scheduling problem

to minimize the makespan and Li and Pan (2014) for the hybrid flow shop scheduling

problem with limited buffers. Wang, Zhou, Xu, Wang, and Liu (2012) applied a DABC

algorithm to the flexible job-shop scheduling problem; Zhang, Song, and Wu (2013) to

the job-shop scheduling problem for minimizing the total weighted tardiness; Li, Pan,

and Gao (2011) and Wang, Zhou, Xu, Wang, and Liu (2011) proposed a multi-objective

DABC algorithm for the flexible job-shop scheduling problem; and Lei (2012) proposed

it for the interval job-shop scheduling problem with non-resumable jobs and flexible

maintenance. Finally, for the permutation flow shop scheduling problem: Liu and Liu

(2013) present a DABC procedure for makespan minimization; and Tasgetiren, Pan,

Suganthan, and Chen (2011a) for flowtime minimization. Deng et al. (2012) and Han et

al. (2012) considered the blocking constraint and the total flowtime criterion, whereas

3

Tasgetiren, Pan, Suganthan, and Oner (2013) considered the no-idle constraint for total

tardiness minimization.

The blocking flow shop problem, denoted as Fmblock∑Ci, according to the notation

proposed by Graham et al. (1979), can be defined as follows. A set of n jobs have to be

processed by m machines in the same order, implying that a job sequence determined

for machine 1 is kept throughout the system. Each job i, iϵ{1, 2, ..., n} requires a fixed

positive processing time pj,i on every machine j, jϵ{1, 2, ..., m}. Jobs and machines are

available from time zero onwards. Our objective is to find a job processing sequence

that minimizes the total flowtime. Fm|block|ΣCi can be modeled with the following

equations, where [k] is the index of the job in the k-th position in the permutation, ej,k

denotes the time at which job [k] begins to be processed by machine j, and cj,k is the

departure time of job [k] from machine j. Note that if job [k] can leave machine j when

it is completed, which depends on the availability of machine j+1, then cj,k is not only

the departure time but also the completion time of job [k] on machine j:

ej,k + pj,[k] ≤cj,k j=1, 2, ..., m k=1, 2, ..., n (1)

ej,k ≥ cj,k-1 j=1, 2, ..., m k=1, 2 ,..., n (2)

ej,k ≥ cj-1,k j=1, 2, ..., m k=1, 2, ..., n (3)

cj,k ≥ cj+1,k-1 j=1, 2, ..., m k=1, 2, ..., n (4)

∑=
=

n

k
kmcTF

1
, (5)

 with k0c 0cj0c k1mk00j ∀==∀= + ,,, ,, being the initial conditions.

If equations (2) and (3) are summarized as (6) and equation (1) and (4) as (7), the

schedule obtained is semi-active, which is interesting because an optimal solution can

be found in the subset of the semi-active set of solutions.

 ej,k =max{cj,k-1; cj-1,k} j=1, 2, ..., m k=1, 2, ..., n (6)

 { }1,1][,,, ,max −++= kjkjkjkj cpec j=1, 2, ..., m k=1, 2, ..., n (7)

The aim of this paper is to propose an efficient DABC algorithm, named DABC_RCT,

for the blocking flow shop problem with total flowtime criterion. To develop the

proposed algorithm, we considered four strategies for the food source phase and two

strategies for each of the three remaining phases (employed bees, onlookers and scouts).

One of the strategies tested in the food source phase and one implemented in the

4

employed bees phase are new. Both have been proved to be very effective. The

initialization scheme named HPF2(λ,µ) in particular was used to construct the initial

food sources, which the computational evaluation has shown to be one of the main

procedures that allow the DABC_RCT to obtain good solutions for this problem. To

find the best configuration of the algorithm, we used Design of Experiments (DOE).

This technique has been extensively used in the literature to calibrate the parameters of

the algorithms but not to select its configuration. Comparing it with other algorithms

proposed in the literature for this problem demonstrates the effectiveness and

superiority of the DABC_RCT.

The rest of the paper is organized as follows. Section 2 describes the different strategies

tested in each phase of the algorithm; section 3 shows the design of experiments done to

choose the best combination of strategies; section 4 shows the computational evaluation

of the algorithms; and, finally, section 5 is devoted to conclusions and future work.

2 Proposed alternatives for a Discrete Artificial Bee Colony Algorithm

The ABC algorithm is a swarm intelligence technique inspired by the intelligent

foraging behavior of honey bees. This algorithm has three essential components: food

sources, which are the set of current solutions; the employed bees that are associated

with a particular food source to be exploited; and unemployed bees. The unemployed

bees are made up of two types: onlookers, who wait in the nest and establish a food

source through the information shared by the employed; and scouts, who search for new

food sources in the area surrounding the hive. There are several strategies to implement

in each part of the algorithm, and each combination can lead to a different Discrete

Artificial Bee Colony algorithm. The point is to know which strategy and which

combination among them has to be used in order to enhance the performance of the

algorithm for the problem at hand. The final configuration of the algorithm was set by

means of a design of experiments, which are explained in section 4.

In the first phase (generation of food sources), we implemented four strategies in order

to guarantee a diversification of solutions by testing the convenience of starting the

algorithm with either good solutions or random solutions. On the remaining steps for

employees, onlooker and scout bees (i.e., the components that allow the algorithm to

intensify or to diversify the search of solutions), two alternative strategies were also

tested. All these methods are explained in the following sections.

5

2.1 Initialization

The algorithm starts with the generation of N initial solutions. These solutions

characterize the initial food sources that will be explored by the employed bees. Each

food source is represented as a job permutation, and the total flowtime evaluation of this

sequence gives the quality of the source. Some authors (Han et al., 2012; Wu, Qian, Ni,

& Fan, 2012; Karaboga & Ozturk, 2011) propose random generation of the food sources

(solutions) to guarantee diversification of solutions. Some others propose generating at

least one of the solutions by a heuristic procedure in order to obtain one food source of a

certain quality (Tasgetiren, Pan, Suganthan, & Chen, 2011b). However, in Liu and Liu

(2013), a GRASP based on an NEH algorithm (Nawaz, Enscore, & Ham, 1983) is used

to generate all food sources in order to guarantee an initial swarm of quality and

diversity.

To investigate whether or not it is better to initialize the algorithm with good solutions,

we divided this phase into two parts. The first part generates the set of food sources

according to two schemes. One of them provides better solutions than the other. The

second part is devoted to analyzing whether or not it is useful to improve these solutions

with a variable neighborhood search. The application of the VNS allows improving the

solutions at the expense of losing diversity. The final configuration of the two parts will

permit knowing the right balance between good solutions and diversity.

2.1.1 The First Part of Food Source Generation

In the first part, two strategies were tested to evaluate whether it is better to start the

algorithm with a set of good solutions or by generating one good solution and the others

randomly in order to guarantee an initial diversified swarm. Both strategies use a

constructive procedure to create a solution, which we named HPF2(λ,µ); but they differ

in their generation of the remaining food sources, as will be explained later. HPF2(λ,µ)

is a constructive procedure that creates a sequence in two steps: selecting the first job

(step 1); and constructing the remaining sequences in order to minimize both the

timeout of machines and the total flowtime (step 2).

The first step selects a job that minimizes a bicriteria index (R(i)), which considers its

contribution to the completion time (minimum sum of its processing times, Pi) and the

generated front delay.

The measurement of the front delay (in grey, Figure 1) can be calculated according to

equation (8).

6

(Please, insert near here figure 1)

Figure 1. Grey area indicates the front delay of job J1

∑
=

⋅−
m

j
i,jp)jm(

1

 (8)

Since this term had a different magnitude than the sum of the processing time of a job

when evaluating index R(i) (see equation (9)), this first term was scaled by multiplying

it by 2/(m-1). Observe that – with the correction introduced in the first term – if the

processing time in all stages is 1, both terms are equal to m, which demonstrates that

both have the same magnitude.

∑
∑

=

= ⋅−+

−

⋅−⋅
⋅=

m

j
i,j

m

j
i,j

p)()m(
p)jm(

)i(R
1

1 11
2

λλ (9)

Notice that if λ=0, the job selected is the one with the minimum sum of processing time;

whereas if λ=1, the selected job is the one that generates the minimum front delay.

The second step builds the remaining sequence to minimize the timeout of machines

and the total flowtime, which is carried out with index ind1. The timeout is measured

with the first term of equation (10), which is similar to the index used in the Profile

Fitting procedure (McCormick, Pinedo, Shenker, & Wolf, 1989). However the total

flow time is measured with the second term that evaluates the contribution of the

considered job i to the total flowtime of the partial sequence.

)()1()))()(((),(1

1
,,1, -1][ki

m

j
ijkjkj CCpcickiind −⋅−+−−∗⋅= ∑

=
+ µσσµ (10)

Hence, HPF2(λ,µ) can be described as follows:

• Step 1: selection of the first job of the sequence. Select the job with minimum R(i)

and put it in the first position of sequence σ. Set k=1. In case of ties, select the job

with minimum p1,i.

• Step 2: construction of the remaining sequence. While k<n, calculate index ind1 as

in equation (10) for each unscheduled job i. Select the job with minimum ind1. In

case of ties, select the job which leads to the partial sequence with minimum total

flowtime.

Parameters λ and µ were selected by measuring the performance of the algorithm, which

itself was done by combining several λ and µ values. For this test, we used 140
7

randomly generated instances that were grouped into 28 sets of size n x m, where n=

{20, 50, 80, 110, 140, 170, 200} and m = {5, 10, 15, 20}. The evaluated values were

λ={0.55, 0.6, 0.65, 0.7, 0.75} and µ={0.65, 0.70, 0.75,0.80, 0.85}. The performance was

measured by the Relative Percentage Deviation (RPD) from the best solution (minimum

total flowtime), which was obtained during the experiment using all combination of

values. Therefore, RPD is calculated as in (11):

100⋅
−

=
k

kk

TFref
TFrefTFRPD (11)

where TFk is the total flowtime obtained in instance k and Trefk is the minimum

flowtime obtained in this instance by any combination of values.

The Average Relative Percentage Deviation (ARPD) of all RPDs obtained per each

instance and combination of λ and µ values is shown in table 1. As can be seen, the best

solutions were obtained when λ =0.65 and µ=0.75.

λ / µ 0.65 0.70 0.75 0.80 0.85
0.55 0.860 0.773 0.656 0.713 0.775
0.60 0.814 0.738 0.628 0.694 0.724
0.65 0.759 0.713 0.565 0.627 0.643
0.70 0.767 0.724 0.569 0.608 0.662
0.75 0.775 0.732 0.575 0.611 0.666

Table 1. ARPD of total flowtime values obtained by HPF2 per each λ and µ combination

Therefore, a food source was generated according to these parameter values. The

creation of the remaining food sources depends on the strategy used. For the first

strategy (STR1), we fixed parameter λ=0.65, and µ was selected randomly from a given

range interval [µmin, µmax]; whereas the remaining solutions in the second strategy

(STR2) were generated randomly. Selecting µ in a given interval that depends on n is

explained by the compromise between the diversity of the solutions and their quality.

For small values of n, a narrow interval could lead to very similar solutions. On the

other hand, a narrower interval is required for higher values of n, because a huge

interval could result in worse solutions in terms of total flowtime. Therefore, we set the

interval depending on n according to the values in Table 2.

n µmin µmax
0 < n < 75 0 1

75 ≤ n <150 .5 1
150 ≤ n .6 .9

8

Table 2. Values of µmin and µmax for each range of n

The flowtime calculation in an n-job, m-machine flow shop for a given sequence is of

complexity O(nm). Therefore, since k flowtimes in k jobs and m machines must be

calculated in step 2, we can conclude that the complexity of this procedure is O(n2m).

2.1.2 Second Part of food source generation

In our aim to investigate the convenience of initiating the algorithm with good food

sources (solutions), a variable local search (named LS and based on swap and insert

neighborhood structures) was implemented in this part. The procedures for exploring

them were named LS1 and LS2, respectively.

In LS1, neighbors are generated for each job in the sequence by swapping one job with

all jobs that follow it in the sequence. If the best neighbor (σ’) is better than the current

solution (σ), it becomes the new current solution σ, and the process continues until all

jobs have been considered. To avoid constantly exploring neighborhoods in the same

order, jobs are selected randomly.

 In LS2, neighbors are generated for each job in the sequence by removing the job from

its position and inserting it into all other possible positions. If the best neighbor (σ’) is

better than the current solution (σ), it becomes the new current solution σ, and the

process continues until all jobs have been considered. As in LS1, jobs are selected

randomly.

The implemented variable local search (Figure 2) uses both structures at each iteration,

one after the other. The first neighborhood to be explored is selected randomly with a

probability of 50%. After exploring the solutions that neighbor the current solution σ,

the local optimum σ’ is compared with σ. If the solution has improved, σ’ replaces σ and

the search continues throughout the other neighborhoods. This process goes on until the

current solution is no longer improved. Next, the local optimum σ’ is compared with the

best solution σ* in terms of quality. If TF(σ’) is less than TF(σ*), then σ’ replaces σ*.

(please, insert figure 2 near here)

Figure 2. Pseudocode of the LS

Finally, the scheme for generating the initial food sources is shown in Figure 3.

9

(please, insert figure 3 near here)

Figure 3. Implemented strategies for generating initial food sources

2.2 Employed bees

In this phase, the employed bees are sent to the food source to evaluate their

surroundings. In our implementation, two employed bees’ were sent: the best one and

another selected randomly. To enhance the exploration and be able to access a good

food source, we tested two methods.

The first method (DC) applies the deconstruction and construction procedures proposed

in Ruiz and Stützle (2007). The deconstruction procedure randomly extracts d jobs

from the current sequence, and the construction procedure re-inserts them one at a time

using the insertion procedure of NEH heuristic, starting with the first job that was

removed until reaching the last one. According to the results obtained in a previous test,

we set d=8. Next, the LS tries to improve the obtained solution and compares it with the

original. The new one is kept only if it is better than the original.

In the second method a new scheme named Three Neighborhood Operators (TNO) is

presented. This scheme consists of applying three operators to the two selected

solutions. These operators were proposed by Della Groce, Narayan, and Tadei (1996)

for the two-machine total completion time flow shop problem to generate neighboring

solutions. The operators are defined as follows:

• PI (Pairwise Interchange): Given a sequence, σ, and two positions, k1 and k2, swap

the jobs that are in these positions, i.e.: σ = (5,3,1,2,4), k1 = 1 and k2 = 4; the

resulting sequence is σ0 = (2,3,1,5,4).

• EFSR (Extraction and Forward Shifted Reinsertion): Given a sequence (σ) and two

positions (k1, k2), with k2 later in the sequence than k1, extract the job at position k2

and reinsert it in position k1, i.e.: σ = (5,3,1,2,4), k1=1 and k2 = 4; the resulting

sequence is σ0 = (2,5,3,1,4).

• EBSR (Extraction and Backward Shifted Reinsertion): Given a sequence (σ) and

two positions (k1, k2), with position k1 before k2 in the sequence, extract the job at

position k1 and re-insert it in position k2, i.e.: σ = (5,3,1,2,4), k1 = 1 and k2 = 4; the

resulting sequence is σ0 = (3,1,2,5,4).

The TNO starts by randomly selecting k1 and k2 (k1< k2). Next, the three operators are

applied to the selected sequence (σ), and the best solution among the three new

sequences is chosen (σ’). This process is done t times. In our implementation, t was set
10

to 2 in accordance with the results obtained in a previous test. Next, the LS procedure

tries to improve the obtained solution and then compares it with the original (σ). The

new one (σ’’) is kept only if it is better than the original. The TNO scheme is described

in Figure 4.

(please, insert figure 4 near here)

Figure 4. Pseudocode of the employed bee phase

2.3 Onlooker bees

The onlookers look out for a food source to exploit. They wait in the nest and establish

a food source through the information shared by employed bees. In this phase, we tested

two strategies: path relinking and the single-point crossover operation.

Path relinking is a search technique originally proposed by Glover and Laguna (1998)

to explore the path between two sets of good solutions. In our implementation, two

solutions are selected: the best one and another selected randomly from the food source

set. The best solution is the destination, and the other solution is the path origin. The

path is built by interchanging movements in order to convert the original solution into

the destination solution. Therefore, the final solution is the reference and the other one

is continuously changed with each movement. The process starts by comparing both

solutions and detecting the jobs that occupy different positions in both solutions. Next,

the first job (according to its number) is in a different position from the original solution

and is interchanged with the one that occupies that position. The new solution is

evaluated and replaces the original one only if it is better. The process continues until

the original solution is equal to the destination solution. Notice that if there are k jobs in

different positions, a maximum of k-1 movements are necessary because the last one

leads the permutation to the reference one. Hence, path relinking is carried out only if

more than two jobs can be swapped. For example, if σ=(5,4,1,2,3) and σ*=(2,3,1,5,4),

jobs 2, 3, 4 and 5 are in different positions. The first movement in σ is a swap between 2

and 5, which leads to σ1=(2,4,1,5,3). If the total flowtime of σ1 is lower than σ, σ1

replaces σ. Now, σ1 and σ are compared and, as σ1 has only two jobs in positions that

are different than σ, the process is stopped because the swap movement converts σ1 into

σ*.

The single-crossover operator is typically used in genetic algorithms because it allows

creating a new solution from two others. In our implementation, one of them was the
11

best solution (σ*), and the other one (σ) was selected randomly from the set of food

sources. The process starts with randomly generating a cut point on σ. Next, the first

part of σ is copied to offspring 1, and the remaining positions are filled with the jobs not

included in the first part, in the relative order that they have in σ*. The second offspring

is created by copying the second part of σ and filling the remaining positions according

to the relative order that they have in σ*. The two offspring are evaluated and the best

one replaces σ only if it is better. An example is shown in figure 5.

(please, insert figure 5 near here)

Figure 5. Example of the crossover operator

2.4 Scout bees

The scouts seek new food sources. In our implementation, a new solution is created

according to the strategy followed in the two steps of the food source phase, i.e., with

HPF2 (0.65; µ) or randomness in step 1 and with or without applying the variable local

search in step 2. As in the other phases, two strategies were tested. The first strategy

consists of replacing the worst solution in the food source set with the new solution;

whereas the worst solution is replaced by the new one in the second strategy only if the

latter is better.

3 Design of experiment for the DABC configuration

To identify the best configuration of the DABC algorithm, we used Design of

Experiments (DOE) techniques (Box, Hunter, & Hunter, 2009). Given the nature of the

factors (the 4 steps of the algorithm) and the strategies for studying each of them, we

decided to use a two-level factorial design. This type of design is a very useful

experimentation methodology; it allows estimating the size and assessing the

significance of factor changes (in our case changes in the algorithm steps) in the

response that interests us (in our case the RPD). A very interesting characteristic of

factorial designs is that – on top of studying the effect of each factor by itself (known as

the main effects) – they allow us to study their interactions. In other words, we can

evaluate if the effect of one of the factors in the response depends on the level of the

other factor. As will be seen later, this is what happens between factors P1 and P2

(Figure 6). Naturally, this fact makes this type of design especially suited to determining

12

the “best” algorithm. Table 3 shows the factors and levels considered. Notice that the

algorithm’s first phase, how to get food sources, has been subdivided into two factors

that we named initialization 1 and initialization 2.

Factors
(Algorithm steps)

 Levels
 1 2

P1: initialization 1 STR1 STR2

P2: initialization 2 With LS Without LS

P3: Employee bees DC TNO
P4: Onlooker bees Path relinking Crossover
P5: Scout bees Always replace the

worst solution
Replace the worst solution
only if the new one is best

Table 3. Factors and levels considered in the factorial design

A two-level full factorial design with 5 factors (a 25 design) requires 32 runs. Such a

design allows estimating 31 effects: 5 main effects, 10 two-factor interactions, 10 three–

factor interactions, 5 four-factor interactions and one five-factor interaction. Since the

effect of three and higher order interactions can be considered negligible (Box et al.,

2009), it was decided to conduct a half fraction of the full design, a 25-1 fractional

factorial design (Table 4 presents the design matrix). This is a resolution V design that

allows us to estimate all the main effects and two-factor interactions without any

confounding among them. They are confounded with higher order interactions that, as

commented above, can be considered negligible. Furthermore, if the analysis of results

suggests that one of them may be important, it is always possible to conduct 16

additional runs that will form the full factorial together with the 16 initially conducted

runs.

Run Source
food 1

Source
food2 Employee bees Onlooker bees Scout bees

1 STR1 With LS TNO Path relinking Replace if best
2 STR2 With LS TNO Path relinking Replace always
3 STR1 Without LS TNO Path relinking Replace always
4 STR2 Without LS TNO Path relinking Replace if best
5 STR1 With LS DC Path relinking Replace always
6 STR2 With LS DC Path relinking Replace if best
7 STR1 Without LS DC Path relinking Replace if best
8 STR2 Without LS DC Path relinking Replace always
9 STR1 With LS TNO Crossover Replace always

10 STR2 With LS TNO Crossover Replace if best
11 STR1 Without LS TNO Crossover Replace if best

13

12 STR2 Without LS TNO Crossover Replace always
13 STR1 With LS DC Crossover Replace if best
14 STR2 With LS DC Crossover Replace always
15 STR1 Without LS DC Crossover Replace always
16 STR2 Without LS DC Crossover Replace if best

Table 4. Design matrix of the half fraction of the full design.

The resulting 16 algorithms from the combinations of the alternative procedures in each

step were tested on a test-bed that was created ad hoc to separate the calibration

benchmark from the final testing benchmark. Each algorithm was tested on a 2 GHz

Intel Core 2 Duo E8400 CPU with 2 GB of RAM, with 140 randomly generated

instances grouped into 28 sets of size n x m, where n= {20, 50, 80, 110, 140, 170, 200}

and m = {5, 10, 15, 20} with 5 instances per group. So, we can say that the final design

is a 7*4*25-1 design that requires 448 runs. On top of that, each experimental condition

was replicated five times; thus the final number of runs conducted was 448*5=2240.

The resulting algorithms performance was measured by the Relative Percentage

Deviation (RPD), as in equation (11). In this case TFk was the average total flowtime of

the 5 runs at instance k, and TFrefk was the minimum total flowtime obtained at instance

k by any of the 16 algorithms in any of the 5 runs.

One important issue to take into account when analyzing the results is that, even though

RPD is supposed to level out the differences due to the distinct level of difficulty

presented by instances, it does not (Ribas et al., 2013). The usual way to remove this

variability so that it does not make it difficult to identify significant factors (algorithm

steps, in our case) is to consider the 140 instances as a blocking variable. Then, it is

possible to compare the 16 algorithm variations (resulting from the 25-1 design) without

interferences from differences in the instances. The procedure is equivalent to analyzing

the residuals of a linear regression between RPD as the independent variable and the

instances as the dependent variable. We call this new variable RPD_Blck.

Source Degrees
of freedom

Sum of
Squares

Adjusted
Mean Square

F-Statistic p-value Significance

n 6 153.14 25.52 500.57 0.00 **
m 3 1.79 0.59 11.71 0.00 **
P1 1 35.32 35.32 692.83 0.00 **
P2 1 17.05 17.05 334.43 0.00 **
P3 1 0.17 0.17 3.41 0.06 *
P4 1 0.002 0.003 0.05 0.81
P5 1 0.003 0.003 0.06 0.81

n*m 18 12.95 0.71 14.11 0.00 **

14

n*P1 6 9.85 1.64 32.22 0.00 **
n*P2 6 4.79 0.79 15.68 0.00 **
n*P3 6 0.32 0.05 1.06 0.38
n*P4 6 0.03 0.01 0.11 0.99
n*P5 6 0.01 0.002 0.04 1.00
m*P1 3 0.40 0.13 2.65 0.04
m*P2 3 0.28 0.09 1.84 0.13
m*P3 3 0.04 0.01 0.27 0.84
m*P4 3 0.02 0.01 0.16 0.92
m*P5 3 0.01 0.004 0.09 0.96
P1*P2 1 11.45 11.45 224.64 0.00 **
P1*P3 1 0.01 0.01 0.14 0.70
P1*P4 1 0.04 0.03 0.73 0.39
P1*P5 1 0.001 0.001 0.03 0.85
P2*P3 1 0.01 0.01 0.19 0.66
P2*P4 1 0.001 0.001 0.02 0.89
P2*P5 1 0.005 0.01 0.11 0.73
P3*P4 1 0.0001 0.0001 0.00 0.97
P3*P5 1 0.0002 0.0002 0.00 0.95
P4*P5 1 0 0 0.00 0.97
Error 2152 109.73 0.051
Total 2239 357.49

Table 5. ANOVA of RPD_Blck

By using RPD_Blck as the response of interest and considering the main effects and

two-factor interactions, the analysis of the experiment yields the ANOVA presented in

table 5, where significant effects at the 0.05 level are marked with two asterisks and

those at the 0.1 level with one.

The residual analysis does not present any violation of the Analysis of Variance

assumptions and, thus, the results can be readily interpreted.

There are nine significant effects that can be classified into three groups:

• Three effects that are the natural consequence of the differences in the difficulties of

the problem: n, m and the n*m interaction. They were expected and, in fact, are of

no interest

• Four effects of the algorithm steps: P1, P2, the interaction P1*P2 and, to a lesser

degree, P3. P1 and P2 (initialization 1 and 2) represent the effects of food source

generation. Since P1 and P2 interact, their effects have to be analyzed together and a

plot is an excellent way to do it. Figure 6 shows these effects: it is clear that, for P1,

STR1 is always better than STR2 and that P2 has little effect when STR1 is used.

This fact means that it is better to generate the whole population with the

HPF2(0.65,µ) procedure. Furthermore the quality and diversity of these solutions
15

means that the application of LS is not necessary. However, when STR2 is used, P2

is always better when the level with LS is chosen. That is, if most of the solutions

have been generated randomly, the population is poor and needs to be improved

with LS. In spite of that, the effects of P1 and P2 have to be analyzed together, as

mentioned previously. In Figure 7, we show the main effects of P1, P2 and P3

together, so that that it can be seen that the effect of P3 (the strategy used by the

employed bees) is very small in comparison. The best level is TNO.

•
21

0.3

0.2

0.1

0.0

-0.1

-0.2

P2

M
ea

n

STR1
STR2

P1

Interaction Plot for RPD_Blck
Data Means

with_VNS Without_LS

Figure 6. Interaction plot of P1 and P2

STR2STR1

0.10

0.05

0.00

-0.05

-0.10

without_LSwith_LS

TNODC

0.10

0.05

0.00

-0.05

-0.10

P1

M
ea

n

P2

P3

Main Effects Plot for RPD_Blck
Data Means

Figure 7 Main effects plot of P1, P2 and P3

• Two interactions between the number of jobs (n) and the algorithm steps: n*P1 and

n*P2. These interactions reflect the fact that, when the number of jobs is small, all

strategies behave very well. As an example, Figure 8 shows the n*P1 interaction. It
16

is clear that for n=20 and n=50 both levels of P1 provide similar results; while the

difference is evident between STR1 and STR2 when n is bigger. There is also an

interaction between the number of machines (m) and the algorithm’s first step; of

course, this has the same explanation as for the n*P1 interaction commented on

above.

200170140110805020

0.50

0.25

0.00

-0.25

-0.50

-0.75

n

M
ea

n

STR1
STR2

P1

Interaction Plot for RPD_Blck
Data Means

Figure 8. n*P1 interaction

Finally, as a result of this analysis, we concluded that the configuration of the proposed

DABC algorithm was formed as indicated in table 6. Its outline can be seen in Figure 9.

P1: Initialization 1 STR1
P2: Initialization 2 Without LS
P3: Employee bees TNO
P4: Onlooker bees Path relinking
P5: Scout bees Replace the worst solution only if the new one is

best
Table 6. Final configuration of the proposed DABC

17

Figure 9. Outline of the DABC algorithm

3.1 Experimental adjustment of DABC parameters

A golden rule of experimental design is to not try to learn everything at once from a first

experiment (Box et al., 2009). The idea is to use what is called a sequential strategy: run

an experiment, learn from it and use it to design a follow-up experiment. This is what

we have done. After selecting the basic structure of the algorithm, we adjusted

(recalibrated) the main parameters: number of sources (fs) and the number of times that

the neighborhood operators are applied (t).The best levels found for these two

parameters in the first experiment were 6 and 2, respectively. Now, in a new

experiment, we move these values around a bit to see if we can further improve the

RPD index. The selected levels were:

fs: 5,6,7

t: 1,2,3

Calibration was done on the same test-bed used for the configuration of the algorithm,

which, as said before, is different than the one used in the final testing. The alternatives

were compared using the RPD index.

The ANOVA results are shown in table 7, where one can see that the only significant

parameters that are of no interest (aside from n, m and n*m) are t (p-value=0.001) and

the interaction n*t (p-value 0.012). Figure 10 shows the n*t interaction, where it can be

seen that the interaction is weak and it does not affect the conclusion that can be reached

procedure DABC
 Set parameter fs

 Food sources: Generate the initial population with STR1;
 σbest =the best solution in the population;
 σworst=the worst solution in the population;

 While (stopping criterion not met)
 Employed bees: for σbest

 and another σ of the population randomly selected:

 for j=1 to t
 apply the TNO procedure

 endfor
 endfor
 Onlooker bees: Select a solution σ of the population randomly;
 apply the path relinking procedure from σ to σbest;
 Scout bees: Generate a new food source (σnew) with HPF2(0.65,µ)
 if σnew < σworst then
 replace the worst solution for the new one;
 endif
 endwhile;
end

18

from Figure 11: that t can be set to either 1 or 2 because there is no difference between

them. Therefore, this test confirms the previous parameters.

Source Degrees
of freedom

Sum of Squares Mean Square F-Statistic p-value

n 6 239.1052 39.851 914.16 0.000

m 3 1.994 0.664 15.25 0.000

fs 2 0.086 0.043 1.00 0.370

t 2 0.592 0.296 6.8 0.001

n*m 18 13.240 0.735 16.87 0.000

n*fs 12 0.148 0.012 0.28 0.992

n*t 12 1.124 0.093 2.15 0.012

m*fs 6 0.146 0.024 0.56 0.763

m*t 6 0.177 0.029 0.68 0.666

fs*t 4 0.105 0.026 0.61 0.658

Error 3078 161.643 0.043

Total 3779 418.364

Table 7. Analysis of Variance for RPD versus n, m, fs and t

321

0,9

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0,0

t

M
ea

n

20
50
80

110
140
170
200

n

Interaction Plot for RPD
Data Means

Figure 10. Interaction plot of n*t

19

321

0.68

0.67

0.66

0.65

0.64

0.63

0.62

0.61

0.60

t

R
PD

95% CI for the Mean
Interval Plot of RPD

Figure 11. Interval plot of t

4 Computational evaluation

In this section, the performance of the proposed DABC, named DABC_RCT, is

compared against the algorithms proposed in the literature for the problem at hand: the

Harmony Search (HS) algorithm (Wang et al., 2010), denoted as HS_WPT; the Discrete

Artificial Bee Colony (DABC) algorithm (Deng et al., 2012), denoted as DABC_DXG;

and an IG algorithm proposed by Khorasanian and Moslehi (2012), denoted as IG_KM.

Moreover, in order to show its performance, we included the HPF2 procedure (0.65,

0.75) in the comparison, which is used to find the first food source in the proposed

DABC.

All algorithms were coded in the same language (QuickBASIC) and tested on the same

computer, a 3 GHz Intel Core 2 Duo E8400 CPU with 2 GB of RAM. To make a fair

comparison, all algorithms adopted the CPU time limit as a stopping criterion, which

was fixed at k∙n2∙m·10-5 seconds, with k set to 15 and 30 in order to analyze the

performance of these algorithms for two levels of CPU time. In each test, five runs were

carried out by each algorithm for all 150 instances.

The test was done using Taillard’s benchmark (Taillard, 1993) for the blocking flow

shop scheduling problem and using the total flowtime criterion, as is done in Wang et

al. (2010), Khorasanian and Moslehi (2012) and Deng et al. (2012). However, the latter

authors use only the first 90 instances. Taillard’s test-bed is composed of 120 instances

(12 sets of 10 instances each), from 20 jobs and 5 machines to 500 jobs and 20

machines, where nϵ{20, 50, 100, 200, 500} and mϵ{5, 10, 20}, although not all

combinations of n and m are available. In particular, sets 200x5, 500x5 and 500x10 are

missing, but they were added as in Pan and Ruiz, (2012) in order to maintain the

orthogonality of the experiment.

20

As in the other tests, the performance of each algorithm was measured by the Relative

Percentage Deviation (RDP) index, as in (11). In this case, TFk. was the average total

flowtime obtained at instance k in the 5 runs, and TFrefk was the best known solution

for this instance. The best known solutions are reported in Table 12 at the end of this

section.

The results are shown in Table 8-9, where we have averaged the RPD values (ARPD) of

the 10 instances of each nxm group, for k=15 and k=30 in the stopping criterion,

respectively. We can see that the ranking between algorithms is the same in both cases,

and their convergence is similar. Notice that the effect of duplicating the CPU time is

noteworthy in the performance of the small instances, but it diminishes when n

increases. This fact indicates that it is necessary to increase the factor n in the CPU time

limit even more, i.e., applying n3m instead of n2m.

 nxm HPF2
(0.65,0.75) DABC_DXG HS_WPT IGA_KM DABC_RCT

20x5 4.038 0.077 0.518 0.181 0.109
20x10 3.156 0.066 0.302 0.148 0.072
20x20 3.989 0.036 0.114 0.083 0.042
50x5 3.923 2.153 5.480 2.484 1.439

50x10 3.665 2.022 4.642 1.846 1.292
50x20 5.036 1.368 3.301 1.214 0.886
100x5 3.967 3.635 7.931 4.434 1.867
100x10 4.094 3.897 6.563 3.353 1.949
100x20 5.554 3.008 5.138 2.263 1.856
200x10 2.243 3.308 6.394 3.814 1.267
200x20 2.779 2.752 4.650 2.545 1.129

21

500x20 1.692 3.704 5.424 3.711 0.550
200x5 2.394 3.389 8.886 5.194 1.211
500x5 1.128 4.383 10.304 6.627 0.537
500x10 1.512 5.039 8.208 5.566 0.649

All 3.278 2.589 5.190 2.898 0.990
Table 8. ARPD for each nxm set and algorithm when k=15

nxm HPF2
(0.65,0.75) DABC _DXG HS_WPT IGA_KM DABC_RCT

20x5 4.038 0.029 0.228 0.122 0.049
20x10 3.156 0.031 0.148 0.072 0.062
20x20 3.989 0.005 0.058 0.066 0.022
50x5 3.923 1.735 5.021 2.317 1.242

50x10 3.665 1.552 4.311 1.596 1.147
50x20 5.036 0.967 2.999 0.947 0.715
100x5 3.967 3.107 7.860 4.007 1.674
100x10 4.094 3.462 6.570 3.095 1.722
100x20 5.554 2.559 5.026 2.008 1.660
200x10 2.243 3.353 6.400 3.638 1.142
200x20 2.779 2.720 4.673 2.326 0.979
500x20 1.692 3.164 5.411 3.564 0.513
200x5 2.394 3.453 8.784 4.968 1.119
500x5 1.128 2.953 10.340 6.452 0.515
500x10 1.512 3.803 8.215 5.348 0.623

All 3.278 2.193 5.070 2.702 0.879
Table 9. APRD for each nxm set and algorithm when k=30

Regarding the performance of the algorithms, we can see that the DABC_RCT performs

substantially better than the other algorithms at these two CPU time levels. However,

DABC_DXG shows better performance than DABC_RCT when n= 20, but the

proposed algorithm is considerably better for the set of instances where n>20. It is

worth noting that the HPF2(0.65,µ) procedure (which is proposed for generating the

initial food sources) performs considerably better than HS_WPT in the set of instances

with n>20, and better than IGA_KM and DABC_DXG in the set of instances with more

than 100 jobs. This fact is one explanation for why the proposed DABC_RCT has a

better performance than the DABC_DXG. DABC_DXG generates the initial population

(food sources) similarly to our STR2 strategy; i.e., one solution is generated by a

heuristic, in this case a modified NEH algorithm, and the other solutions are generated

randomly. Next, the solutions are improved by an insertion-based local search to

improve the quality of the population. But our experiment discarded these strategies.

One explanation is because the improvement of solutions through local search

consumes much time, which diminishes the algorithm’s capacity to perform more

22

iterations in order to find new food sources to explore. Instead, HPF2(λ,µ) gives good

solutions in little time, which allows the algorithm to find better solutions. This fact

allows us to say that it is recommendable to start the DABC algorithms with an efficient

heuristic. To confirm this observation, we have modified the DABC_DXG by changing

its procedure so that it will generate the initial food sources through the HPF2(λ,µ)

procedure. The results for k=30 are shown in table 10, where the column DABC_DXG2

shows the results obtained by the modified DABC_DXG algorithm. It is worth noting

the improvement of DABC_DXG2 when compared with DABC_DXG, which confirms

our hypothesis. Now, the differences between DABC_RCT and DABC_DXG2 have

diminished, but the DABC_RCT remains better.

nxm DABC_RCT DABC_DXG DABC_DXG2
20×5 0.049 0.029 0.029
20×10 0.062 0.031 0.028
20×20 0.022 0.005 0.024
50×5 1.242 1.735 1.350
50×10 1.147 1.552 1.230
50×20 0.715 0.967 0.836
100×5 1.674 3.107 2.011
100×10 1.722 3.462 2.11
100×20 1.660 2.559 2.035
200×10 1.142 3.353 1.198
200×20 0.979 2.720 1.123
500×20 0.513 3.164 0.567
200×5 1.119 3.453 1.157
500×5 0.515 2.953 0.528
500×10 0.623 3.803 0.732

All 0.879 2.193 0.997
Table 10. APRD for each nxm set and algorithm when k=30

Another difference was also significant during the design of experiments to configure

the proposed DABC, and that is the strategy used to find a neighboring solution for the

food source. In this part of the algorithm, DABC_RCT uses three neighbor operators

that use swap and insert movements, and DABC_DXG uses strategies to generate

neighbors that only use insert movements. Therefore, from the obtained results, we

recommend combining swap and inserting movements to generate neighboring

solutions that allow diversifying the search.

To check whether the observed differences from Table 9 are indeed statistically

significant, we carried out an analysis of variance (ANOVA) where the heuristics type

(algorithm) is considered a factor. Thanks to the addition of test beds to the Taillard

collection, the ANOVA is balanced and has the advantage of a higher detection power.
23

The ANOVA hypotheses were tested by a residual analysis, which showed small

departures from normality; fortunately, the ANOVA method is robust to violations of

this assumption. Therefore, the very clear results that were obtained in the ANOVA

validate the conclusions and make a deeper analysis unnecessary. The ANOVA table

(Table 11) shows that factors: algorithm, n and m and their interaction are highly

significant.

Source Degrees
of freedom

Sum of Squares Mean Square F-Statistic p-value

n 4 920.110 230.027 422.59 0.000

m 2 96.805 48.403 88.92 0.000

algorithm 4 1416.775 354.194 650.70 0.000

n*m 8 37.377 4.672 8.58 0.000

n*algorithm 16 1161.787 72.612 133.4 0.000

m*algorithm 8 212.352 26.544 48.76 0.000

Error 707 384.842 0.544

Total 749 4230.048

Table 11. ANOVA test for the comparison of algorithms

IGA_KMHS_WPTHPF2(0.65,0.75)ADBC_DXGADBC_RCT

6

5

4

3

2

1

algorithm

rp
d

Interval Plot of rpd
95% CI for the Mean

Figure 12. Interval plot of RPD by algorithm when k=30

Figure 12 reports the means and 95% confidence intervals. Note that there are no

overlaps between intervals, which means that the differences observed from Table 9 are

significant at the 95% confidence level. Additionally, in Figures 13-14 we can observe

the interaction between m and n with the algorithms. Notice in Figure 13 that

DABC_DXG and DABC_RCT are the algorithms which are less influenced by m.

24

However, the behavior of HS_WPT and IGA_KM is significantly different in respect to

the m values. Both perform better when m increases, the opposite of the behavior of

HPF2(0.65,0.75).

m
HPF2(0.67,0.75)ADBC_RCTIGA_KMHS_WPTADBC_DXG

2010520105201052010520105

8

7

6

5

4

3

2

1

0

D
at

a
95% CI for the Mean

Interval Plot of algorithms

Figure 13. Interval plot of RPD by algorithm and m when k=30

In Figure 14 we can observe that HS_WPT and IGA_KM perform worse when the

number of jobs increases. However, in DABC_RCT and HPF2(0.65,0.75), we can see a

progressive reduction in the performance for n=50 and 100, but after n=100 we can

observe an increase in the efficiency with n. One way to increase the efficiency of

DABC_RCT even more, for example, would be to try to increase the efficiency of the

HPF2(0.65, 0.75) for n≤100 by applying the insertion phase of NEH to the obtained

solution with HPF2(0.65, 0.75) in those instances when n≤100.

n

HP
F2

(0
.6

5,
0.

75
)

AD
BC

_R
CT

IG
A_

KM

HS
_W

PT

AD
BC

_D
XG

50
0

20
0

10
0502050

0
20

0
10

0502050
0

20
0

10
0502050

0
20

0
10

0502050
0

20
0

10
05020

9

8
7

6

5
4

3
2

1

0

D
at

a

95% CI for the Mean
Interval Plot of algorithms

Figure 14. Interval plot of RPD by algorithm and n when k=30

25

Finally, we reported the new best solutions found during this research (Table 12) for

most of the Taillard instances used in the BFSP, which could serve as a basis for

comparison in future research.

Set Best Set Best Set Best
20×5 20×10 20×20

1 14953 11 22358 21 34683
2 16343 12 23881 22 32855
3 14297 13 20873 23 34825
4 16483 14 19916 24 33006
5 14212 15 20196 25 35328
6 14624 16 20126 26 33720
7 14936 17 19471 27 33992
8 15193 18 21330 28 33388
9 15544 19 21585 29 34798

10 14392 20 22582 30 33174
50×5 50×10 50×20

31 72672 41 99674 51 136865
32 78140 42 95608 52 129958
33 72913 43 91791 53 127617
34 77399 44 98454 54 131889
35 78353 45 98164 55 130967
36 75402 46 97246 56 131760
37 73842 47 99953 57 134217
38 73442 48 98027 58 132990
39 70871 49 96708 59 132599
40 78729 50 98019 60 135710

100x5 100x10 100×20
61 288332 71 354083 81 425224
62 280491 72 333379 82 435289
63 276228 73 343957 83 430634
64 259596 74 359259 84 432314
65 273086 75 338537 85 426405
66 267381 76 327254 86 430308
67 274744 77 335366 87 436642
68 269689 78 343174 88 440930
69 284816 79 344563 89 432876
70 282005 80 347845 90 437286

200×10 200×20 500x20
91 1281633 101 1499623 111 8719682
92 1283164 102 1541253 112 8849228
93 1277933 103 1546279 113 8789777
94 1271502 104 1540822 114 8828454
95 1275901 105 1514600 115 8796337
96 1251213 106 1528885 116 8837577
97 1304158 107 1532090 117 8729909
98 1298900 108 1543229 118 8800506
99 1277801 109 1524293 119 8782791

100 1273794 110 1535329 120 8849551
200×5 500x5 500x10

121 1071652 131 6389122 141 7552404
122 1026640 132 6415066 142 7665025
123 1059120 133 6460745 143 7626599
124 1044074 134 6334201 144 7626405

26

125 1064274 135 6373873 145 7479900
126 1021482 136 6282522 146 7537299
127 1082018 137 6244926 147 7510712
128 1043921 138 6352627 148 7562013
129 1057482 139 6328390 149 7550242
130 1037496 140 6309180 150 7549596

Table 12. Best solutions for the blocking flow shop with flowtime criterion

5 Conclusions

In this paper, we have presented an efficient Discrete Artificial Bee Colony algorithm,

named DABC_RCT, for sequencing jobs in a blocking flow shop with the objective of

minimizing the total flowtime of jobs. To configure the proposed algorithm, we

considered four strategies for the food source phase and two strategies for each of the

other phases (employed bees, onlookers and scouts). The final composition of the

algorithm was decided by means of a Design of Experiments (DOE) that allowed us to

estimate not only the effect of each part of the algorithm but also their interaction,

which makes this type of design especially suited to determining the best algorithm. The

experiment allowed us to prove that the employed initialization scheme has great

influence on the performance of the algorithm. In our algorithm, we implemented a new

method named HPF2(λ,µ), which allowed us to generate initial food sources that were

diversified and of good quality. Another significant part of the algorithm was the

employed bees phase, which is where the algorithm diversifies the search. In this phase,

the selected strategy was a new scheme that combined insert and swap movements. The

comparison of DABC_RCT with other algorithms proposed in the literature for this

problem demonstrates its effectiveness and superiority.

In our experiment, the onlookers and scout phases have not been significant in the

performance of the algorithm. This means that the strategies used do not contribute to

increasing its efficiency. Therefore, it should be necessary to implement other schemes

in order to find good procedures that would allow complementing the other parts.

One future research direction is to adapt the DABC_RCT to other objectives, such as

tardiness, where the research is scarce, or to multi-objective functions. One of the main

points in adjusting the algorithm is to have efficient heuristics available for creating a

good food source. Therefore, research in this direction may also be necessary. Another

interesting line of research would be to consider other restrictions, such as setup times,

since this constraint is found in most manufacturing environments. Finally, it would be

27

very interesting to adapt the algorithm to solve the scheduling problem in a distributed

flow shop, because this configuration allows us to represent situations that arise in the

supply chain.

References

Armentano, V. A., & Ronconi, D. P. (2000). Minimização do Tempo Total de Atraso no
Problema de Flowshop com Buffer Zero através de Busca Tabu. Gestao & Produçao,
7(3), 352.

Box, G., Hunter, J. S., & Hunter, W. (2009). Statistics Experimenters. Book, 1–655.

Caraffa, V., Ianes, S., Bagchi, T., & Sriskandarajah, C. (2001). Minimizing makespan in
a blocking flowshop using genetic algorithms. International Journal of Production
Economics, 70(2), 101–115.

Della Groce, F., Narayan, V., & Tadei, R. (1996). The two-machine total completion
time flow shop problem. European Journal of Operational Research, 90, 227–237.

Deng, G., Xu, Z., & Gu, X. (2012). A Discrete Artificial Bee Colony Algorithm for
Minimizing the Total Flow Time in the Blocking Flow Shop Scheduling. Chinese
Journal of Chemical Engineering, 20(6), 1067–1073.

Glover, F. W., & Laguna, M. (1998). Tabu Search, Volumen 1.

Gong, H., Tang, L., & Duin, C. W. (2010). A two-stage flow shop scheduling problem
on a batching machine and a discrete machine with blocking and shared setup times.
Disruption Management, 37(5), 960–969.

Grabowski, J., & Pempera, J. (2000). Sequencing of jobs in some production system.
European Journal of Operational Research, 125(3), 535–550.

Graham, R. L., Lawler, E. L., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1979).
Optimization and approximation in deterministic sequencing and scheduling: A survey.
Annals of Discrete Mathematics, 5, 287–326.

Han, Y.-Y., Gong, D., & Sun, X. (2014). A discrete artificial bee colony algorithm
incorporating differential evolution for the flow-shop scheduling problem with
blocking. Engineering Optimization, 1–20.

Han, Y.-Y., Liang, J. J., Pan, Q.-K., Li, J.-Q., Sang, H.-Y., & Cao, N. N. (2012).
Effective hybrid discrete artificial bee colony algorithms for the total flowtime
minimization in the blocking flowshop problem. The International Journal of Advanced
Manufacturing Technology, 67(1-4), 397–414.

28

Karaboga, D. (2005). An idea based on honey bee swarm for numerical optimization.
Technical Report-TR06, Erciyes University, Engineering Faculty, Computer
Engineering Department, 10.

Karaboga, D., Gorkemli, B., Ozturk, C., & Karaboga, N. (2014). A comprehensive
survey: artificial bee colony (ABC) algorithm and applications. Artificial Intelligence
Review, 42(1), 21–57.

Karaboga, D., & Ozturk, C. (2011). A novel clustering approach: Artificial Bee Colony
(ABC) algorithm. Applied Soft Computing, 11(1), 652–657.

Khorasanian, D., & Moslehi, G. (2012). An Iterated Greedy Algorithm for solving the
blocking flow shop scheduling problem with total flow time criteria. International
Journal of Industrial Engineering & Production Research, 23(4), 301–308.

Lei, D. (2012). Multi-objective artificial bee colony for interval job shop scheduling
with flexible maintenance. The International Journal of Advanced Manufacturing
Technology, 66(9-12), 1835–1843.

Li, J., & Pan, Q. (2014). Solving the large-scale hybrid flow shop scheduling problem
with limited buffers by a hybrid artificial bee colony algorithm. Information Sciences.

Li, J.-Q., Pan, Q.-K., & Gao, K.-Z. (2011). Pareto-based discrete artificial bee colony
algorithm for multi-objective flexible job shop scheduling problems. The International
Journal of Advanced Manufacturing Technology, 55(9-12), 1159–1169.

Lin, S.-W., & Ying, K.-C. (2013). Minimizing makespan in a blocking flowshop using a
revised artificial immune system algorithm. Omega, 41(2), 383–389.

Liu, J., & Reeves, C. R. (2001). Constructive and composite heuristic solutions to the
P//∑Ci scheduling problem. Data Envelopment Analysis, 132(2), 439–452.

Liu, Y.-F., & Liu, S.-Y. (2013). A hybrid discrete artificial bee colony algorithm for
permutation flowshop scheduling problem. Applied Soft Computing, 13(3), 1459–1463.

Martinez, S., Dauzère-Pérès, S., Guéret, C., Mati, Y., & Sauer, N. (2006). Complexity
of flowshop scheduling problems with a new blocking constraint. European Journal of
Operational Research, 169(3), 855–864.

McCormick, S. T., Pinedo, M. L., Shenker, S., & Wolf, B. (1989). Sequencing in an
Assembly Line with Blocking to Minimize Cycle Time. Operations Research, 37, 925–
936.

Moslehi, G., & Khorasanian, D. (2013). Optimizing blocking flow shop scheduling
problem with total completion time criterion. Computers & Operations Research, 40(7),
1874–1883.

Nasiri, M. M. (2015). A modified ABC algorithm for the stage shop scheduling
problem. Applied Soft Computing, 28, 81–89.

29

Nawaz, M., Enscore Jr, E. E., & Ham, I. (1983). A heuristic algorithm for the m-
machine, n-job flow-shop sequencing problem. Omega, 11(1), 91–95.

Pan, Q., Wang, L., Sang, H., Li, J., & Liu, M. (2013). A High Performing Memetic
Algorithm for the Flowshop Scheduling Problem With Blocking. IEEE Transactions on
Automation Science and Engineering, 10(3), 741–756.

Pan, Q.-K., Wang, L., Li, J.-Q., & Duan, J.-H. (2014). A novel discrete artificial bee
colony algorithm for the hybrid flowshop scheduling problem with makespan
minimisation. Omega, 45, 42–56.

Ribas, I., Companys, R., & Tort-Martorell, X. (2011). An iterated greedy algorithm for
the flowshop scheduling problem with blocking. Omega, 39(3), 293–301.

Ribas, I., Companys, R., & Tort-Martorell, X. (2013). A competitive variable
neighbourhood search algorithm for the blocking flowshop problem. European J. of
Industrial Engineering, 7(6), 729–754.

Ribas, I., Companys, R., & Tort-Martorell, X. (2013). An efficient iterated local search
algorithm for the total tardiness blocking flow shop problem. International Journal of
Production Research, 51(17), 5238–5252.

Ronconi, D. P., & Henriques, L. R. S. (2009). Some heuristic algorithms for total
tardiness minimization in a flowshop with blocking. Omega, 37(2), 272–281.

Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Research,
177(3), 2033–2049.

Sethi, S. P., Sriskandarajah, C., Sorger, G., Blazewicz, J., & Kubiak, W. (1992).
Sequencing of parts and robot moves in a robotic cell. International Journal of Flexible
Manufacturing Systems, 4, 331–358.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64(2), 278–285.

Tasgetiren, M. F., Pan, Q. K., Suganthan, P. N., & Chen, A. H. L. (2011a). A discrete
artificial bee colony algorithm for the total flowtime minimization in permutation flow
shops. Information Sciences, 181, 3459–3475.

Tasgetiren, M. F., Pan, Q.-K., Suganthan, P. N., & Chen, A. H.-L. (2011b). A discrete
artificial bee colony algorithm for the total flowtime minimization in permutation flow
shops. Information Sciences, 181(16), 3459–3475.

Tasgetiren, M. F., Pan, Q.-K., Suganthan, P. N., & Oner, A. (2013). A discrete artificial
bee colony algorithm for the no-idle permutation flowshop scheduling problem with the
total tardiness criterion. Applied Mathematical Modelling, 37(10-11), 6758–6779.

Wang, C., Song, S., Gupta, J. N. D., & Wu, C. (2012). A three-phase algorithm for
flowshop scheduling with blocking to minimize makespan. Computers and Operations
Research, 39, 2880–2887.

30

Wang, L., Pan, Q.-K., & Fatih Tasgetiren, M. (2010). Minimizing the total flow time in
a flow shop with blocking by using hybrid harmony search algorithms. Expert Systems
with Applications, 37(12), 7929–7936.

Wang, L., Pan, Q.-K., & Tasgetiren, M. F. (2011). A hybrid harmony search algorithm
for the blocking permutation flow shop scheduling problem. Computers & Industrial
Engineering.

Wang, L., Zhou, G., Xu, Y., Wang, S., & Liu, M. (2011). An effective artificial bee
colony algorithm for the flexible job-shop scheduling problem. The International
Journal of Advanced Manufacturing Technology, 60(1-4), 303–315.

Wang, L., Zhou, G., Xu, Y., Wang, S., & Liu, M. (2012). An effective artificial bee
colony algorithm for the flexible job-shop scheduling problem. The International
Journal of Advanced Manufacturing Technology, 60(1-4), 303–315.

Wu, B., Qian, C., Ni, W., & Fan, S. (2012). Hybrid harmony search and artificial bee
colony algorithm for global optimization problems. Computers & Mathematics with
Applications.

Zhang, R., Song, S., & Wu, C. (2013). A hybrid artificial bee colony algorithm for the
job shop scheduling problem. International Journal of Production Economics, 141(1),
167–178.

 Figure 1. Grey area indicates the front delay of job J1

Figure 2. Pseudocode of the LS

Figure 3. Implemented strategies for generating initial food sources

Figure 4. Pseudocode of the employed bee phase

Figure 5. Example of the crossover operator

31

	Since this term had a different magnitude than the sum of the processing time of a job when evaluating index R(i) (see equation (9)), this first term was scaled by multiplying it by 2/(m-1). Observe that – with the correction introduced in the first t...
	(9)
	The scouts seek new food sources. In our implementation, a new solution is created according to the strategy followed in the two steps of the food source phase, i.e., with HPF2 (0.65; µ) or randomness in step 1 and with or without applying the variabl...
	To identify the best configuration of the DABC algorithm, we used Design of Experiments (DOE) techniques (Box, Hunter, & Hunter, 2009). Given the nature of the factors (the 4 steps of the algorithm) and the strategies for studying each of them, we dec...
	Table 3. Factors and levels considered in the factorial design

