7,300 research outputs found

    On the Integration of Adaptive and Interactive Robotic Smart Spaces

    Get PDF
    © 2015 Mauro Dragone et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)Enabling robots to seamlessly operate as part of smart spaces is an important and extended challenge for robotics R&D and a key enabler for a range of advanced robotic applications, such as AmbientAssisted Living (AAL) and home automation. The integration of these technologies is currently being pursued from two largely distinct view-points: On the one hand, people-centred initiatives focus on improving the user’s acceptance by tackling human-robot interaction (HRI) issues, often adopting a social robotic approach, and by giving to the designer and - in a limited degree – to the final user(s), control on personalization and product customisation features. On the other hand, technologically-driven initiatives are building impersonal but intelligent systems that are able to pro-actively and autonomously adapt their operations to fit changing requirements and evolving users’ needs,but which largely ignore and do not leverage human-robot interaction and may thus lead to poor user experience and user acceptance. In order to inform the development of a new generation of smart robotic spaces, this paper analyses and compares different research strands with a view to proposing possible integrated solutions with both advanced HRI and online adaptation capabilities.Peer reviewe

    Embodied Evolution in Collective Robotics: A Review

    Full text link
    This paper provides an overview of evolutionary robotics techniques applied to on-line distributed evolution for robot collectives -- namely, embodied evolution. It provides a definition of embodied evolution as well as a thorough description of the underlying concepts and mechanisms. The paper also presents a comprehensive summary of research published in the field since its inception (1999-2017), providing various perspectives to identify the major trends. In particular, we identify a shift from considering embodied evolution as a parallel search method within small robot collectives (fewer than 10 robots) to embodied evolution as an on-line distributed learning method for designing collective behaviours in swarm-like collectives. The paper concludes with a discussion of applications and open questions, providing a milestone for past and an inspiration for future research.Comment: 23 pages, 1 figure, 1 tabl

    How does peoples’ perception of control depend on the criticality of a task performed by a robot Paladyn

    Get PDF
    © 2019 Adeline Chanseau et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 Public License.Robot companions are starting to become more common and people are becoming more familiar with devices such as Google Home, Alexa or Pepper,one must wonder what is the optimum way for people to control their devices? This paper provides presents an investigation into how much direct control people want to have of their robot companion and how dependent this is on the criticality of the tasks the robot performs. A live experiment was conducted in the University of Hertfordshire Robot House, with a robot companion performing four different type of tasks. The four tasks were: booking a doctor’s appointment, helping the user to build a Lego character, doing a dance with the user, and carrying biscuits for the user. The selection of these tasks was based on our previous research to define tasks which were relatively high and low in criticality. The main goal of the study was to find what level of direct control over their robot participants and if this was dependent on the criticality of the task performed by the robot. Fifty people took part in the study, and each experienced every task in a random order. Overall,it was found that participants’ perception of control was higher when the robot was performing a task in a semi-autonomous mode. However, for the task "carrying biscuits", although participants perceived to be more in control with the robot performing the task in a semi autonomous mode, they actually preferred to have the robot performing the task automatically (where they felt less in control). The results also show that, for the task "booking a doctor’s appointment", considered to be the most critical of all four tasks, participants did not prefer that the robot chose the date of the appointment as they felt infantilised.Peer reviewe

    Assistive robotics: research challenges and ethics education initiatives

    Get PDF
    Assistive robotics is a fast growing field aimed at helping healthcarers in hospitals, rehabilitation centers and nursery homes, as well as empowering people with reduced mobility at home, so that they can autonomously fulfill their daily living activities. The need to function in dynamic human-centered environments poses new research challenges: robotic assistants need to have friendly interfaces, be highly adaptable and customizable, very compliant and intrinsically safe to people, as well as able to handle deformable materials. Besides technical challenges, assistive robotics raises also ethical defies, which have led to the emergence of a new discipline: Roboethics. Several institutions are developing regulations and standards, and many ethics education initiatives include contents on human-robot interaction and human dignity in assistive situations. In this paper, the state of the art in assistive robotics is briefly reviewed, and educational materials from a university course on Ethics in Social Robotics and AI focusing on the assistive context are presented.Peer ReviewedPostprint (author's final draft

    Adaptable multimodal interaction framework for robot-assisted cognitive training

    Get PDF
    The size of the population with cognitive impairment is increasing worldwide, and socially assistive robotics offers a solution to the growing demand for professional carers. Adaptation to users generates more natural, human-like behavior that may be crucial for a wider robot acceptance. The focus of this work is on robot-assisted cognitive training of the patients that suffer from mild cognitive impairment (MCI) or Alzheimer. We propose a framework that adjusts the level of robot assistance and the way the robot actions are executed, according to the user input. The actions can be performed using any of the following modalities: speech, gesture, and display, or their combination. The choice of modalities depends on the availability of the required resources. The memory state of the user was implemented as a Hidden Markov Model, and it was used to determine the level of robot assistance. A pilot user study was performed to evaluate the effects of the proposed framework on the quality of interaction with the robot.Peer ReviewedPostprint (author's final draft

    Real-time generation and adaptation of social companion robot behaviors

    Get PDF
    Social robots will be part of our future homes. They will assist us in everyday tasks, entertain us, and provide helpful advice. However, the technology still faces challenges that must be overcome to equip the machine with social competencies and make it a socially intelligent and accepted housemate. An essential skill of every social robot is verbal and non-verbal communication. In contrast to voice assistants, smartphones, and smart home technology, which are already part of many people's lives today, social robots have an embodiment that raises expectations towards the machine. Their anthropomorphic or zoomorphic appearance suggests they can communicate naturally with speech, gestures, or facial expressions and understand corresponding human behaviors. In addition, robots also need to consider individual users' preferences: everybody is shaped by their culture, social norms, and life experiences, resulting in different expectations towards communication with a robot. However, robots do not have human intuition - they must be equipped with the corresponding algorithmic solutions to these problems. This thesis investigates the use of reinforcement learning to adapt the robot's verbal and non-verbal communication to the user's needs and preferences. Such non-functional adaptation of the robot's behaviors primarily aims to improve the user experience and the robot's perceived social intelligence. The literature has not yet provided a holistic view of the overall challenge: real-time adaptation requires control over the robot's multimodal behavior generation, an understanding of human feedback, and an algorithmic basis for machine learning. Thus, this thesis develops a conceptual framework for designing real-time non-functional social robot behavior adaptation with reinforcement learning. It provides a higher-level view from the system designer's perspective and guidance from the start to the end. It illustrates the process of modeling, simulating, and evaluating such adaptation processes. Specifically, it guides the integration of human feedback and social signals to equip the machine with social awareness. The conceptual framework is put into practice for several use cases, resulting in technical proofs of concept and research prototypes. They are evaluated in the lab and in in-situ studies. These approaches address typical activities in domestic environments, focussing on the robot's expression of personality, persona, politeness, and humor. Within this scope, the robot adapts its spoken utterances, prosody, and animations based on human explicit or implicit feedback.Soziale Roboter werden Teil unseres zukĂŒnftigen Zuhauses sein. Sie werden uns bei alltĂ€glichen Aufgaben unterstĂŒtzen, uns unterhalten und uns mit hilfreichen RatschlĂ€gen versorgen. Noch gibt es allerdings technische Herausforderungen, die zunĂ€chst ĂŒberwunden werden mĂŒssen, um die Maschine mit sozialen Kompetenzen auszustatten und zu einem sozial intelligenten und akzeptierten Mitbewohner zu machen. Eine wesentliche FĂ€higkeit eines jeden sozialen Roboters ist die verbale und nonverbale Kommunikation. Im Gegensatz zu Sprachassistenten, Smartphones und Smart-Home-Technologien, die bereits heute Teil des Lebens vieler Menschen sind, haben soziale Roboter eine Verkörperung, die Erwartungen an die Maschine weckt. Ihr anthropomorphes oder zoomorphes Aussehen legt nahe, dass sie in der Lage sind, auf natĂŒrliche Weise mit Sprache, Gestik oder Mimik zu kommunizieren, aber auch entsprechende menschliche Kommunikation zu verstehen. DarĂŒber hinaus mĂŒssen Roboter auch die individuellen Vorlieben der Benutzer berĂŒcksichtigen. So ist jeder Mensch von seiner Kultur, sozialen Normen und eigenen Lebenserfahrungen geprĂ€gt, was zu unterschiedlichen Erwartungen an die Kommunikation mit einem Roboter fĂŒhrt. Roboter haben jedoch keine menschliche Intuition - sie mĂŒssen mit entsprechenden Algorithmen fĂŒr diese Probleme ausgestattet werden. In dieser Arbeit wird der Einsatz von bestĂ€rkendem Lernen untersucht, um die verbale und nonverbale Kommunikation des Roboters an die BedĂŒrfnisse und Vorlieben des Benutzers anzupassen. Eine solche nicht-funktionale Anpassung des Roboterverhaltens zielt in erster Linie darauf ab, das Benutzererlebnis und die wahrgenommene soziale Intelligenz des Roboters zu verbessern. Die Literatur bietet bisher keine ganzheitliche Sicht auf diese Herausforderung: Echtzeitanpassung erfordert die Kontrolle ĂŒber die multimodale Verhaltenserzeugung des Roboters, ein VerstĂ€ndnis des menschlichen Feedbacks und eine algorithmische Basis fĂŒr maschinelles Lernen. Daher wird in dieser Arbeit ein konzeptioneller Rahmen fĂŒr die Gestaltung von nicht-funktionaler Anpassung der Kommunikation sozialer Roboter mit bestĂ€rkendem Lernen entwickelt. Er bietet eine ĂŒbergeordnete Sichtweise aus der Perspektive des Systemdesigners und eine Anleitung vom Anfang bis zum Ende. Er veranschaulicht den Prozess der Modellierung, Simulation und Evaluierung solcher Anpassungsprozesse. Insbesondere wird auf die Integration von menschlichem Feedback und sozialen Signalen eingegangen, um die Maschine mit sozialem Bewusstsein auszustatten. Der konzeptionelle Rahmen wird fĂŒr mehrere AnwendungsfĂ€lle in die Praxis umgesetzt, was zu technischen Konzeptnachweisen und Forschungsprototypen fĂŒhrt, die in Labor- und In-situ-Studien evaluiert werden. Diese AnsĂ€tze befassen sich mit typischen AktivitĂ€ten in hĂ€uslichen Umgebungen, wobei der Schwerpunkt auf dem Ausdruck der Persönlichkeit, dem Persona, der Höflichkeit und dem Humor des Roboters liegt. In diesem Rahmen passt der Roboter seine Sprache, Prosodie, und Animationen auf Basis expliziten oder impliziten menschlichen Feedbacks an
    • 

    corecore