78 research outputs found

    Short-Term Coalmine Gas Concentration Prediction Based on Wavelet Transform and Extreme Learning Machine

    Get PDF
    It is well known that coalmine gas concentration forecasting is very significant to ensure the safety of mining. Owing to the high-frequency, nonstationary fluctuations and chaotic properties of the gas concentration time series, a gas concentration forecasting model utilizing the original raw data often leads to an inability to provide satisfying forecast results. A hybrid forecasting model that integrates wavelet transform and extreme learning machine (ELM) termed as WELM (wavelet based ELM) for coalmine gas concentration is proposed. Firstly, the proposed model employs Mallat algorithm to decompose and reconstruct the gas concentration time series to isolate the low-frequency and high-frequency information. Then, ELM model is built for the prediction of each component. At last, these predicted values are superimposed to obtain the predicted values of the original sequence. This method makes an effective separation of the feature information of gas concentration time series and takes full advantage of multi-ELM prediction models with different parameters to achieve divide and rule. Comparative studies with existing prediction models indicate that the proposed model is very promising and can be implemented in one-step or multistep ahead prediction

    Short-Term Coalmine Gas Concentration Prediction Based on Wavelet Transform and Extreme Learning Machine

    Get PDF
    It is well known that coalmine gas concentration forecasting is very significant to ensure the safety of mining. Owing to the highfrequency, nonstationary fluctuations and chaotic properties of the gas concentration time series, a gas concentration forecasting model utilizing the original raw data often leads to an inability to provide satisfying forecast results. A hybrid forecasting model that integrates wavelet transform and extreme learning machine (ELM) termed as WELM (wavelet based ELM) for coalmine gas concentration is proposed. Firstly, the proposed model employs Mallat algorithm to decompose and reconstruct the gas concentration time series to isolate the low-frequency and high-frequency information. Then, ELM model is built for the prediction of each component. At last, these predicted values are superimposed to obtain the predicted values of the original sequence. This method makes an effective separation of the feature information of gas concentration time series and takes full advantage of multi-ELM prediction models with different parameters to achieve divide and rule. Comparative studies with existing prediction models indicate that the proposed model is very promising and can be implemented in one-step or multistep ahead prediction

    A novel hybrid deep learning model for price prediction

    Get PDF
    Price prediction has become a major task due to the explosive increase in the number of investors. The price prediction task has various types such as shares, stocks, foreign exchange instruments, and cryptocurrency. The literature includes several models for price prediction that can be classified based on the utilized methods into three main classes, namely, deep learning, machine learning, and statistical. In this context, we proposed several models’ architectures for price prediction. Among them, we proposed a hybrid one that incorporates long short-term memory (LSTM) and Convolution neural network (CNN) architectures, we called it CNN-LSTM. The proposed CNN-LSTM model makes use of the characteristics of the convolution layers for extracting useful features embedded in the time series data and the ability of LSTM architecture to learn long-term dependencies. The proposed architectures are thoroughly evaluated and compared against state-of-the-art methods on three different types of financial product datasets for stocks, foreign exchange instruments, and cryptocurrency. The obtained results show that the proposed CNN-LSTM has the best performance on average for the utilized evaluation metrics. Moreover, the proposed deep learning models were dominant in comparison to the state-of-the-art methods, machine learning models, and statistical models

    Identification des régimes et regroupement des séquences pour la prévision des marchés financiers

    Get PDF
    Abstract : Regime switching analysis is extensively advocated to capture complex behaviors underlying financial time series for market prediction. Two main disadvantages in current approaches of regime identification are raised in the literature: 1) the lack of a mechanism for identifying regimes dynamically, restricting them to switching among a fixed set of regimes with a static transition probability matrix; 2) failure to utilize cross-sectional regime dependencies among time series, since not all the time series are synchronized to the same regime. As the numerical time series can be symbolized into categorical sequences, a third issue raises: 3) the lack of a meaningful and effective measure of the similarity between chronological dependent categorical values, in order to identify sequence clusters that could serve as regimes for market forecasting. In this thesis, we propose a dynamic regime identification model that can identify regimes dynamically with a time-varying transition probability, to address the first issue. For the second issue, we propose a cluster-based regime identification model to account for the cross-sectional regime dependencies underlying financial time series for market forecasting. For the last issue, we develop a dynamic order Markov model, making use of information underlying frequent consecutive patterns and sparse patterns, to identify the clusters that could serve as regimes identified on categorized financial time series. Experiments on synthetic and real-world datasets show that our two regime models show good performance on both regime identification and forecasting, while our dynamic order Markov clustering model also demonstrates good performance on identifying clusters from categorical sequences.L'analyse de changement de régime est largement préconisée pour capturer les comportements complexes sous-jacents aux séries chronologiques financières pour la prédiction du marché. Deux principaux problèmes des approches actuelles d'identifica-tion de régime sont soulevés dans la littérature. Il s’agit de: 1) l'absence d'un mécanisme d'identification dynamique des régimes. Ceci limite la commutation entre un ensemble fixe de régimes avec une matrice de probabilité de transition statique; 2) l’incapacité à utiliser les dépendances transversales des régimes entre les séries chronologiques, car toutes les séries chronologiques ne sont pas synchronisées sur le même régime. Étant donné que les séries temporelles numériques peuvent être symbolisées en séquences catégorielles, un troisième problème se pose: 3) l'absence d'une mesure significative et efficace de la similarité entre les séries chronologiques dépendant des valeurs catégorielles pour identifier les clusters de séquences qui pourraient servir de régimes de prévision du marché. Dans cette thèse, nous proposons un modèle d'identification de régime dynamique qui identifie dynamiquement des régimes avec une probabilité de transition variable dans le temps afin de répondre au premier problème. Ensuite, pour adresser le deuxième problème, nous proposons un modèle d'identification de régime basé sur les clusters. Notre modèle considère les dépendances transversales des régimes sous-jacents aux séries chronologiques financières avant d’effectuer la prévision du marché. Pour terminer, nous abordons le troisième problème en développant un modèle de Markov d'ordre dynamique, en utilisant les informations sous-jacentes aux motifs consécutifs fréquents et aux motifs clairsemés, pour identifier les clusters qui peuvent servir de régimes identifiés sur des séries chronologiques financières catégorisées. Nous avons mené des expériences sur des ensembles de données synthétiques et du monde réel. Nous démontrons que nos deux modèles de régime présentent de bonnes performances à la fois en termes d'identification et de prévision de régime, et notre modèle de clustering de Markov d'ordre dynamique produit également de bonnes performances dans l'identification de clusters à partir de séquences catégorielles

    Enhancing statistical wind speed forecasting models : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Engineering at Massey University, Manawatū Campus, New Zealand

    Get PDF
    In recent years, wind speed forecasting models have seen significant development and growth. In particular, hybrid models have been emerging since the last decade. Hybrid models combine two or more techniques from several categories, with each model utilizing its distinct strengths. Mainly, data-driven models that include statistical and Artificial Intelligence/Machine Learning (AI/ML) models are deployed in hybrid models for shorter forecasting time horizons (< 6hrs). Literature studies show that machine learning models have gained enormous potential owing to their accuracy and robustness. On the other hand, only a handful of studies are available on the performance enhancement of statistical models, despite the fact that hybrid models are incomplete without statistical models. To address the knowledge gap, this thesis identified the shortcomings of traditional statistical models while enhancing prediction accuracy. Three statistical models are considered for analyses: Grey Model [GM(1,1)], Markov Chain, and Holt’s Double Exponential Smoothing models. Initially, the problems that limit the forecasting models' applicability are highlighted. Such issues include negative wind speed predictions, failure of predetermined accuracy levels, non-optimal estimates, and additional computational cost with limited performance. To address these concerns, improved forecasting models are proposed considering wind speed data of Palmerston North, New Zealand. Several methodologies have been developed to improve the model performance and fulfill the necessary and sufficient conditions. These approaches include adjusting dynamic moving window, self-adaptive state categorization algorithm, a similar approach to the leave-one-out method, and mixed initialization method. Keeping in view the application of the hybrid methods, novel MODWT-ARIMA-Markov and AGO-HDES models are further proposed as secondary objectives. Also, a comprehensive analysis is presented by comparing sixteen models from three categories, each for four case studies, three rolling windows, and three forecasting horizons. Overall, the improved models showed higher accuracy than their counter traditional models. Finally, the future directions are highlighted that need subsequent research to improve forecasting performance further

    Contributions to time series data mining towards the detection of outliers/anomalies

    Get PDF
    148 p.Los recientes avances tecnológicos han supuesto un gran progreso en la recogida de datos, permitiendo recopilar una gran cantidad de datos a lo largo del tiempo. Estos datos se presentan comúnmente en forma de series temporales, donde las observaciones se han registrado de forma cronológica y están correlacionadas en el tiempo. A menudo, estas dependencias temporales contienen información significativa y útil, por lo que, en los últimos años, ha surgido un gran interés por extraer dicha información. En particular, el área de investigación que se centra en esta tarea se denomina minería de datos de series temporales.La comunidad de investigadores de esta área se ha dedicado a resolver diferentes tareas como por ejemplo la clasificación, la predicción, el clustering o agrupamiento y la detección de valores atípicos/anomalías. Los valores atípicos o anomalías son aquellas observaciones que no siguen el comportamiento esperado en una serie temporal. Estos valores atípicos o anómalos suelen representar mediciones no deseadas o eventos de interés, y, por lo tanto, detectarlos suele ser relevante ya que pueden empeorar la calidad de los datos o reflejar fenómenos interesantes para el analista.Esta tesis presenta varias contribuciones en el campo de la minería de datos de series temporales, más específicamente sobre la detección de valores atípicos o anomalías. Estas contribuciones se pueden dividir en dos partes o bloques. Por una parte, la tesis presenta contribuciones en el campo de la detección de valores atípicos o anomalías en series temporales. Para ello, se ofrece una revisión de las técnicas en la literatura, y se presenta una nueva técnica de detección de anomalías en series temporales univariantes para la detección de fugas de agua, basada en el aprendizaje autosupervisado. Por otra parte, la tesis también introduce contribuciones relacionadas con el tratamiento de las series temporales con valores perdidos y demuestra su aplicabilidad en el campo de la detección de anomalías

    PROGNOSIS - Historical Pattern Matching for Economic Forecasting and Trading

    Get PDF
    In recent years financial markets have become complex environments that continuously change and they change quickly. The strong link between the continuous change in the markets and the danger of losing money when trading in them, has made financial studies a domain that concentrates increasing scientific and business attention. In this context, the development of computational techniques that can monitor recent financial events can process them according to their similarity with historical data recordings, and can support financial decision making, is a challenging problem. In this work, the principal idea for tackling this problem is the integration of 'current' market information as derived from the market's recent past and historical information. A robust technique which is based on flexible pattern matching, segmented data representations, time warping, and time series embedding dimension measures is proposed. Complementary time series derived features, concerning trend structures, temporal considerations and statistical measures are systematically combined in this technique. All these components have been integrated into a software package, which I called PROGNOSIS, that can selectively monitor its application and allows systematic evaluation in terms of financial forecasting and trading performance. In addition, two other topics are discussed in this thesis. Firstly, in chapter 3, a neural network, that is known as the Growing Neural Gas network, is employed for financial forecasting and trading. To my knowledge, this network has never been applied before to financial problems. Based on this a neural network forecasting and trading benchmark was constructed for comparison purposes. Secondly, a novel method of approaching the well established co-integraton theory is proposed in the last chapter of the thesis. This method enhances the co-integration theory by integrating into it local time relations between two time series. These local time dependencies are identified using dynamic time warping. The hypothesis that is tested is that local time shifts, delays, shrinks or stretches, if identified, may help to reveal co-integrating movement between the two time series. I called this type of co-integration time-warped co-integration. To this end, the time-warped co-integration framework is presented as an error correction model and it is tested on arbitrage trading opportunities within PROGNOSIS

    The 8th International Conference on Time Series and Forecasting

    Get PDF
    The aim of ITISE 2022 is to create a friendly environment that could lead to the establishment or strengthening of scientific collaborations and exchanges among attendees. Therefore, ITISE 2022 is soliciting high-quality original research papers (including significant works-in-progress) on any aspect time series analysis and forecasting, in order to motivating the generation and use of new knowledge, computational techniques and methods on forecasting in a wide range of fields

    End-to-end anomaly detection in stream data

    Get PDF
    Nowadays, huge volumes of data are generated with increasing velocity through various systems, applications, and activities. This increases the demand for stream and time series analysis to react to changing conditions in real-time for enhanced efficiency and quality of service delivery as well as upgraded safety and security in private and public sectors. Despite its very rich history, time series anomaly detection is still one of the vital topics in machine learning research and is receiving increasing attention. Identifying hidden patterns and selecting an appropriate model that fits the observed data well and also carries over to unobserved data is not a trivial task. Due to the increasing diversity of data sources and associated stochastic processes, this pivotal data analysis topic is loaded with various challenges like complex latent patterns, concept drift, and overfitting that may mislead the model and cause a high false alarm rate. Handling these challenges leads the advanced anomaly detection methods to develop sophisticated decision logic, which turns them into mysterious and inexplicable black-boxes. Contrary to this trend, end-users expect transparency and verifiability to trust a model and the outcomes it produces. Also, pointing the users to the most anomalous/malicious areas of time series and causal features could save them time, energy, and money. For the mentioned reasons, this thesis is addressing the crucial challenges in an end-to-end pipeline of stream-based anomaly detection through the three essential phases of behavior prediction, inference, and interpretation. The first step is focused on devising a time series model that leads to high average accuracy as well as small error deviation. On this basis, we propose higher-quality anomaly detection and scoring techniques that utilize the related contexts to reclassify the observations and post-pruning the unjustified events. Last but not least, we make the predictive process transparent and verifiable by providing meaningful reasoning behind its generated results based on the understandable concepts by a human. The provided insight can pinpoint the anomalous regions of time series and explain why the current status of a system has been flagged as anomalous. Stream-based anomaly detection research is a principal area of innovation to support our economy, security, and even the safety and health of societies worldwide. We believe our proposed analysis techniques can contribute to building a situational awareness platform and open new perspectives in a variety of domains like cybersecurity, and health
    corecore