Identification des régimes et regroupement des séquences pour la prévision des marchés financiers

Abstract

Abstract : Regime switching analysis is extensively advocated to capture complex behaviors underlying financial time series for market prediction. Two main disadvantages in current approaches of regime identification are raised in the literature: 1) the lack of a mechanism for identifying regimes dynamically, restricting them to switching among a fixed set of regimes with a static transition probability matrix; 2) failure to utilize cross-sectional regime dependencies among time series, since not all the time series are synchronized to the same regime. As the numerical time series can be symbolized into categorical sequences, a third issue raises: 3) the lack of a meaningful and effective measure of the similarity between chronological dependent categorical values, in order to identify sequence clusters that could serve as regimes for market forecasting. In this thesis, we propose a dynamic regime identification model that can identify regimes dynamically with a time-varying transition probability, to address the first issue. For the second issue, we propose a cluster-based regime identification model to account for the cross-sectional regime dependencies underlying financial time series for market forecasting. For the last issue, we develop a dynamic order Markov model, making use of information underlying frequent consecutive patterns and sparse patterns, to identify the clusters that could serve as regimes identified on categorized financial time series. Experiments on synthetic and real-world datasets show that our two regime models show good performance on both regime identification and forecasting, while our dynamic order Markov clustering model also demonstrates good performance on identifying clusters from categorical sequences.L'analyse de changement de régime est largement préconisée pour capturer les comportements complexes sous-jacents aux séries chronologiques financières pour la prédiction du marché. Deux principaux problèmes des approches actuelles d'identifica-tion de régime sont soulevés dans la littérature. Il s’agit de: 1) l'absence d'un mécanisme d'identification dynamique des régimes. Ceci limite la commutation entre un ensemble fixe de régimes avec une matrice de probabilité de transition statique; 2) l’incapacité à utiliser les dépendances transversales des régimes entre les séries chronologiques, car toutes les séries chronologiques ne sont pas synchronisées sur le même régime. Étant donné que les séries temporelles numériques peuvent être symbolisées en séquences catégorielles, un troisième problème se pose: 3) l'absence d'une mesure significative et efficace de la similarité entre les séries chronologiques dépendant des valeurs catégorielles pour identifier les clusters de séquences qui pourraient servir de régimes de prévision du marché. Dans cette thèse, nous proposons un modèle d'identification de régime dynamique qui identifie dynamiquement des régimes avec une probabilité de transition variable dans le temps afin de répondre au premier problème. Ensuite, pour adresser le deuxième problème, nous proposons un modèle d'identification de régime basé sur les clusters. Notre modèle considère les dépendances transversales des régimes sous-jacents aux séries chronologiques financières avant d’effectuer la prévision du marché. Pour terminer, nous abordons le troisième problème en développant un modèle de Markov d'ordre dynamique, en utilisant les informations sous-jacentes aux motifs consécutifs fréquents et aux motifs clairsemés, pour identifier les clusters qui peuvent servir de régimes identifiés sur des séries chronologiques financières catégorisées. Nous avons mené des expériences sur des ensembles de données synthétiques et du monde réel. Nous démontrons que nos deux modèles de régime présentent de bonnes performances à la fois en termes d'identification et de prévision de régime, et notre modèle de clustering de Markov d'ordre dynamique produit également de bonnes performances dans l'identification de clusters à partir de séquences catégorielles

    Similar works