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Abstract

Recent advances in technology have brought about major breakthroughs in
data collection, enabling a large amount of data to be gathered over time.
These data are often presented in the form of time series, where the observa-
tions have been recorded in an orderly fashion and are correlated in time. In
recent years, a great interest has arisen in extracting meaningful and useful
information from such data. The research area that focuses on this task is
called time series data mining.

The time series data mining community has been devoted to solving differ-
ent tasks, including the detection of outliers/anomalies. Outliers or anomalies
are those observations that do not follow the expected behavior in a time
series. These observations typically represent unwanted data or events of in-
terest, and thus, detecting them is desirable because they may worsen the
quality of the data or reflect interesting phenomena that the analyst intends
to detect.

This thesis presents several contributions in the field of time series data
mining, more specifically, on the detection of outliers or anomalies. Indeed,
the contributions we present in this thesis are 1) a comprehensive review and
taxonomy for the unsupervised outlier/anomaly detection techniques in time
series data; 2) a novel self-supervised anomaly detection technique for whole
univariate time series, aimed at detecting water leaks; and 3) a new technique
for processing multivariate time series with missing values based on selective
imputation, which can be applied in subsequent tasks such as outlier/anomaly
detection.





Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Time series data mining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Core tasks of time series data mining . . . . . . . . . . . . . . . . 5
1.2 Time series outlier/anomaly detection . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Objectives and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Outline of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Part I Contributions to outlier/anomaly detection in time series
data

2 A review on outlier/anomaly detection in time series data . 17
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 A taxonomy of outlier detection techniques in the time series

context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 Point outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Subsequence outliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Outlier time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.6 Publicly available software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.7 Concluding remarks and future work . . . . . . . . . . . . . . . . . . . . . . . 49

3 Water leak detection using self-supervised time series
classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75



X Contents

Part II Contributions to time series with missing values

4 Selective imputation for multivariate time series with
missing values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.2 Problem setting and notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Part III General Conclusions and Future Work

5 General Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . 103
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Main Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Part IV Appendixes

6 Multi-task Gaussian Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115



List of Figures

1.1 Examples of univariate and multivariate time series data. . . . . . . 2
1.2 Partially-observed multivariate time series. . . . . . . . . . . . . . . . . . . 3
1.3 Irregularly-sampled multivariate time series. . . . . . . . . . . . . . . . . . 4
1.4 Illustration of the time series prediction task. . . . . . . . . . . . . . . . . 5
1.5 Illustration of the time series classification task. . . . . . . . . . . . . . . 6
1.6 Differences between distances with fixed and flexible mapping. . 7
1.7 Illustration of the time series clustering task. . . . . . . . . . . . . . . . . . 7
1.8 Illustration of the outlier/anomaly detection task in a time

series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.9 Illustration of the outlier/anomaly detection task in a time

series dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.10 Illustration of the time series segmentation task. . . . . . . . . . . . . . 9
1.11 Illustration of the query by content task. . . . . . . . . . . . . . . . . . . . . 10
1.12 Illustration of the motif discovery task. . . . . . . . . . . . . . . . . . . . . . . 11
1.13 Meaning of the outliers/anomalies in time series data

depending on the aim of the analyst. . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Proposed taxonomy of outlier detection techniques in time
series data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Point outliers in time series data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Subsequence outliers in time series data. . . . . . . . . . . . . . . . . . . . . 21
2.4 Outlier time series (Variable 4 ) in a multivariate time series. . . . 21
2.5 Characteristics related to point outlier detection problems. . . . . 22
2.6 Types of methods for detecting point outliers in univariate

time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 Point outlier detection in univariate time series based on the

comparison of expected and observed values. . . . . . . . . . . . . . . . . . 24
2.8 Density-based outliers within a sliding window of length 11 at

time step t. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.9 Example of a deviant set D = {O1, O2} in a univariate time

series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



XII List of Figures

2.10 Simplification of point outlier detection in multivariate time
series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.11 Types of methods for detecting point outliers in multivariate
time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.12 Example of the data used in model-based techniques. . . . . . . . . . 33
2.13 Characteristics related to subsequence outlier detection

problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.14 Types of methods for detecting subsequence outliers in

univariate time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.15 Discord examples using jmotif package [1]. . . . . . . . . . . . . . . . . . . 38
2.16 Reference of normality used by dissimilarity-based approaches. . 39
2.17 Clustering of the subsequences in a univariate time series.

Cluster centroids are highlighted, and C1 and C2 contain
subsequence outliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.18 Types of subsequence outlier detection methods in multivariate
time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.19 Types of methods for detecting outlier time series in
multivariate time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.20 Outlier time series detection in a multivariate time series
composed of 50 variables using PCA in the extracted features
with the anomalous package in R. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.1 Example of the increase that a leak has caused in the water
flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Illustration of the self-supervised approach for anomaly
detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 Example of the generation of the self-labeled dataset, where
K = 4, p1 = 1, p2 = 0.6, p3 = 1.1, p4 = 0.9. . . . . . . . . . . . . . . . . . 60

3.4 The training and leakage datasets considered in the
experimentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Number of samples in the training and leakage sets in scenario
A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Evaluation framework of the proposed methodology. . . . . . . . . . . 68
3.7 FPR and TPR of the models obtained with all the different

transformation parameters. NO LEAKS indicates that there
are no leaks in the leakage dataset for the given day of the
week, TPR = 1 indicates that all the leaks have been detected,
and TPR < 1 that the method has not identified all the leaks.
The baseline FPR of the MNF method is highlighted with a
black horizontal line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



List of Figures XIII

3.8 Mean FPR and TPR according to different transformation
parameters in each zone. The IDs assigned to the
transformation parameters in this figure are ordered based
on a triple loop of the parameters in ascending order. That
is, the first six points in the graphs indicate the parameter
combinations [1, p2, 0.5, 0.5], where p2 traverses all the
parameter space in ascending order, the next six points refer
to [1, p2, 0.7, 0.5], and so on. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.9 Mean FPR and TPR for each DMA and percentile value. . . . . . . 73
3.10 Example of DMAs where the proposed method obtains a low

TPR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.11 The mean FPR and TPR for different transformation

parameter combinations in each DMA. The values obtained
with the baseline MNF method are highlighted with a
horizontal black line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.1 Illustration of the problem setting. . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.2 Diagram of the proposed methodology. The estimated values

are shown by orange points, while the actual observations by
black crosses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.3 Illustration of the uncertainty of the imputed missing values
within the set of time points P. The imputed values are shown
with orange dots and the uncertainty with blue shading. . . . . . . 84

4.4 Illustration of the predictions of the excluded observations
obtained using the observations in P. Actual observations
are depicted by black crosses, and the predicted values of the
excluded observations are shown by yellow squares. . . . . . . . . . . . 85

4.5 Example of a Pareto set illustrated by crosses. The green
crosses represent the extreme solutions in the Pareto. . . . . . . . . . 86

4.6 Example of a time series in the first group of the synthetic
datasets. The missing observations are represented by orange
dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 Example of a time series in the second group of synthetic
datasets. The missing observations are represented by orange
dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.8 Optimal sets in the first group of synthetic datasets. . . . . . . . . . 90
4.9 Optimal sets in the second group of synthetic datasets. . . . . . . . 90
4.10 An example of the comparison between a set in the Pareto

depicted by a green cross, and 20 random sets of the same size
illustrated by black dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.11 Backward analysis in the Libras dataset with 85% of injected
missing data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.12 AUC results using the subsets of time points obtained with
our method. The horizontal lines represent the AUC values
provided by the baseline methods. . . . . . . . . . . . . . . . . . . . . . . . . . . 99



XIV List of Figures

4.13 Comparison of the ROC curves between the baseline methods
and the subset of time points that obtains the highest AUC
value. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



List of Tables

2.1 Data used in model-based techniques in univariate time series,
for k ≥ 1, and k1, k2 ≥ 0 such that k1 + k2 > 0. . . . . . . . . . . . . . . 24

2.2 Summary of point outlier detection techniques in univariate
time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3 Summary of the univariate techniques used in multivariate
time series for point outlier detection. . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Summary of the multivariate techniques used in multivariate
time series for point outlier detection. . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Summary of the characteristics of subsequence outlier
detection approaches in univariate time series. . . . . . . . . . . . . . . . 44

2.6 Summary of the univariate techniques used in multivariate
time series for subsequence outlier detecion. . . . . . . . . . . . . . . . . . 45

2.7 Summary of the multivariate techniques used in multivariate
time series for subsequence outlier detecion. . . . . . . . . . . . . . . . . . 47

2.8 Summary of the characteristics of outlier time series detection
in multivariate time series. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.9 Summary of the publicly available software in chronological
order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1 Description of the training and leakage datasets for each
threshold value. The mean number of samples per DMA and
day is shown, together with the standard deviation between
parentheses. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Results in each zone of scenario A. The FPR values for each
day and method are shown, along with the mean FPR and
TPR values of all the models of each method. . . . . . . . . . . . . . . . 69

4.1 Summary of the notation used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.2 Description of the datasets used in the multivariate time series

classification task. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93



XVI List of Tables

4.3 Results of the imputation errors. The two first columns report
the average imputation error with the standard deviation
between parentheses of the baselines over 5 different train/test
partitions. The next three columns show some statistics of
the imputation errors of the sets in the Pareto. The last two
columns describe the percentage of the sets that achieve a
lower imputation error than the baselines. . . . . . . . . . . . . . . . . . . . 95

4.4 Accuracies in the classification task. The columns in the table
follow the same rationale as Table 4.3. . . . . . . . . . . . . . . . . . . . . . . 95

4.5 Length reduction using the sets in the Pareto. The columns
describe 1) the dataset used, 2) the lengths of the sets that
provide the maximum accuracy, 3) the average length of the
sets in the Pareto, and 4) the percentage reduction of this
average. The values shown are the mean values over the 5
partitions and the standard deviation between parenthesis. . . . . 96

4.6 Results of the imputation errors in the test dataset. The two
first columns report the imputation error using the baselines.
The next three columns show some statistics of the imputation
errors of the sets in the Pareto. The last two columns describe
the percentage of the sets that achieve a lower imputation
error than the baselines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



1

Introduction

This thesis deals with various problems encountered in the field of time se-
ries data mining with a specific focus on the detection of outliers/anomalies.
Specifically, it presents three contributions in this area. Before introducing
such contributions, and to ease the understanding of the present dissertation,
this chapter provides the necessary background. Firstly, an introduction to
time series data mining is presented in Section 1.1, which gives some basic
definitions used throughout the dissertation and a brief description of the most
popular tasks in this area of study. Then, more details on the outlier/anomaly
detection task are provided in Section 1.2, as it is the main focus of this thesis.
Next, the objectives of the thesis are described in Section 1.3, and finally, the
overview of the dissertation is outlined in Section 1.4.

1.1 Time series data mining

A time series is a set of time-ordered observations that are correlated in time.
In practice, time series are generated in a variety of domains such as economy
(e.g., quarterly unemployment rate [2] or tourism demand data [3]), astron-
omy (e.g., variable-star photometric data [4]), meteorology (e.g., sequential
monthly data on surface temperature, humidity or pressure [5]), or health
(e.g., heart rate signals [6]), to name a few.

Formally, time series have been defined in different ways in the literature,
and below, the definition that is used in this dissertation is presented.

Definition 1 (Time series). A time series Y = {yt}t∈T is defined as an or-
dered set of L-dimensional vectors, yt = (y1t, ..., yLt), each of which is recorded
at a specific time t ∈ T ⊆ Z+ and consists of L ∈ N real-valued observations.

More specifically, when a time series is an ordered set of real-valued obser-
vations (i.e., L = 1), then the time series is denominated univariate. In this
case, y1t (yt for the sake of simplicity) is said to be the point or observation
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collected at time t ∈ T and S = {yp, yp+1, ..., yp+n−1} the subsequence of
length n ≤ |T | starting at position p of the time series Y , where p ∈ T and
p ≤ |T |−n+ 1. It is assumed that each observation yt is a realized value of a
certain random variable Yt. An example of a univariate time series which is a
classical example in the literature is shown in Fig. 1.1a. It is a univariate time
series that collects the monthly number of international airline passengers
from 1949 to 1960 [7].

Conversely, if at each time step a multi-dimensional vector is collected (i.e.,
L > 1), then the time series is called multivariate. As with univariate time
series, yt is said to be the (multivariate) point collected at time t ∈ T and
S = {yp,yp+1, ...,yp+n−1} the (multivariate) subsequence of length n ≤ |T |
starting at time point p ∈ T , where p ≤ |T | − n + 1. Additionally, each
multivariate observation yt is a realized value of the multivariate random
variable (random vector) Yt = (Y1t, ..., YLt). Note that, for each dimension
j ∈ {1, ..., L}, Yj = {yjt}t∈T is a univariate time series. In this case, each
observation yjt may depend not only on its past values but also on the values
of the other time-dependent variables. An example of a multivariate time series
is illustrated in Fig. 1.1b, where the observations are obtained through a smart
watch that collects 3D accelerometer data from a person that is running [8].
In particular, the data in this example is sampled at 10 Hz for a ten second
period, thus generating a time series with 100 multivariate observations.
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Fig. 1.1: Examples of univariate and multivariate time series data.

In either the univariate or the multivariate case, the most basic and com-
mon scenario in the literature assumes that the set T in Definition 1 is a
finite and equally-spaced set of time points. Additionally, it is also typically
assumed that all variables are observed at all times. For instance, the exam-
ples shown in Figure 1.1 represent this common scenario: in both cases, T is
finite (|T | = 144 in Fig. 1.1a, and |T | = 100 in Fig. 1.1b), equally-spaced (the
elapsed time between consecutive observations remains regular), and all the
variables are always observed. Nevertheless, other scenarios have also been
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considered in the literature and in real world problems. We will mention a
few that will appear throughout the thesis.

In some scenarios, the variables of a time series may not be observed at all
time points (i.e., some yjt values might be missing). Missing data is a com-
mon drawback that arises in many real-world scenarios for many reasons. For
instance, in control-based applications (e.g., traffic monitoring or industrial
processes), missing values usually emerge due to failures in the control equip-
ment or data collection mechanism, interruption of communication between
the data collectors and the central management system (e.g., due to power
outage), or failures in the hardware or software system [9].

In this case, when some of the time points in T do not have observations in
all of its variables, the time series is said to be partially-observed. An example
is shown in Fig. 1.2, where the missing values are highlighted with a red
shading.
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Fig. 1.2: Partially-observed multivariate time series.

In some other cases, the observations of a time series may be collected
at unequally-spaced time points. For instance, in the healthcare domain, the
data of a patient can only be collected at the time points when the patient
visits the doctor [10], which usually occurs on an irregular basis.

When the elapsed time between consecutive time points in T is not con-
stant, the time series is said to be irregularly-sampled. For instance, in Fig.
1.3a, the multivariate time series is irregularly-sampled since the set of time
points T = {0, 2, 5, 6, ...} is unequally-spaced. Additionally, this time series is
fully-observed because all the variables at time points T have been observed.
However, the multivariate time series in Fig. 1.3b, which collects observations
at the same time points T , is irregularly-sampled and partially-observed.

Note that these two types of time series (partially-observed and irregularly-
sampled) can have the same representation and can be treated equally, because
the differences lie in the semantics or meaning of the missingness.
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(b) Partially-observed.

Fig. 1.3: Irregularly-sampled multivariate time series.

In addition to these scenarios, data can arrive in a continuous manner.
This means that the set T in Definition 1 can also be infinite. In this case,
the time series is said to be a streaming time series.

In this thesis, and unless otherwise stated, we assume by default that the
time series are fully-observed and that the set T is finite and equally-spaced.
However, we will also refer to more complex configurations.

The definitions given so far are focused on a single time series, either
univariate or multivariate, but often a set of time series is collected. This
leads to the following definition:

Definition 2 (Time series dataset). A time series dataset D = {Y 1, ..., Y N}
is a collection of N univariate or multivariate time series that gather obser-
vations of the same variables.

As an example, in the healthcare domain, it is common to obtain datasets
where each time series gathers vital signs (e.g., heart rate or temperature)
and laboratory values (e.g., glucose or platelets) of a given patient [11]. Some
well-known public repositories that contain time series datasets are the UCI
Machine Learning Repository [12], the UCR/UEA Time Series Archive [13, 8],
and the Physionet repository [11].

Despite the different definitions and particularities, in all cases, the key
characteristic of time series data is that the observations are ordered over
time. In this sense, time series data mining attempts to exploit the temporal
dependencies and extract meaningful knowledge from either a single time
series or a time series dataset. For this purpose, the research community has
focused on solving diverse tasks, some of which are introduced in the following
section.
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1.1.1 Core tasks of time series data mining

This section provides an overview of the most popular tasks addressed by the
time series data mining research community [14]: prediction, classification,
clustering, outlier/anomaly detection, segmentation, query by content, and
motif discovery.

Prediction (forecasting)

Time series prediction or forecasting is one of the most popular tasks in the
field of time series data mining. This task consists of predicting the future
(unobserved) values of a given time series by explicitly modeling the time and
variable dependencies [15]. An example of this task is shown in Fig. 1.4, where
the predictions (the last 25 time points) are shown in orange.

predictions

Fig. 1.4: Illustration of the time series prediction task.

Several time series prediction models have been proposed in the literature.
Among the most basic and traditional methods we can find the AutoRe-
gressive (AR) model, the Moving Average (MA) model, and the combination
between both of them (e.g., ARIMA model) [16]. These techniques are aimed
at univariate time series, but an extension to the multivariate context has
also been proposed, for instance, the vector AR (VAR) model, the vector MA
(VMA) model, and the vector ARIMA (VARIMA) model [17, 18]. In recent
years, deep learning prediction algorithms such as Recurrent Neural Networks
(RNN) [19] have gained popularity to predict future values in time series data.

Classification

Given a training time series dataset composed of time series and class label
pairs, time series classification aims to learn a mapping function between time
series and class labels [20, 21]. This function is denominated classifier. Once
the classifier is learned, it can be used to predict the labels of new unlabeled
time series. This task falls within the category of supervised learning [22],
since the class labels are available and used in the learning process.
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An example of this task is illustrated in Fig. 1.5 (adapted from [23]) in
which the standard UCR Cylinder-Bell-Funnel (CBF) dataset [13] is used. It
should be noted that, in this case, the three classes are mainly characterized
by their shape, but the discriminative characteristic may be more complex
and visually not apparent in other cases.
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Fig. 1.5: Illustration of the time series classification task.

To address the task of time series classification, many different techniques
have been proposed in the literature [20, 24]. Among the most traditional and
basic techniques are those that attempt to directly adapt conventional tech-
niques such as the k-Nearest Neighbour (k-NN) classifier [25] to the time series
context. Since k-NN is a distance-based classifier, the Euclidean distance (ED)
has been commonly used within this classifier [26]. However, the way in which
the points in two time series are compared with ED is fixed (see Fig. 1.6a),
making the ED very sensitive to noise and misalignments in time. Moreover,
the ED cannot handle time series with different lengths. To overcome these
limitations, and enable more flexible comparisons, elastic similarity measures
have been proposed [27], including the Dynamic Time Warping (DTW) [28].
An example of the difference between these two distances is illustrated in
Fig. 1.6. The combination of the k-NN classifier and the DTW distance is
commonly used for the time series classification task [26].

Some other popular classification methods include Time Series Forest
(TSF) [29], Fast Shapelets [30], Bag-of-SFA-Symbols (BOSS) [31], and Ran-
dom Interval Spectral Ensemble (RISE) [32]. A detailed categorization and
analysis of the different techniques that have been proposed in the literature
can be found in [20], for univariate time series, and [21], for multivariate time
series.
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(a) Euclidean distance (ED). (b) Dynamic Time Warping (DTW).

Fig. 1.6: Differences between distances with fixed and flexible mapping.

Clustering

Given a time series dataset, clustering is the task of categorizing the time series
into groups, called clusters, based on the similarity between them [33, 34]. In
other words, the most similar time series are grouped into the same group,
and the groups should be very dissimilar from each other. This task falls
under the category of unsupervised learning [35] since only the input data is
available (there is no output information), and the groups are not predefined.
That is, the underlying structure of the data is extracted from the data itself.
The intuition of clustering is depicted in Fig. 1.7, where the initial set of time
series is grouped into three clusters.

Fig. 1.7: Illustration of the time series clustering task.

Similar to the techniques employed in the time series classification task,
many of the techniques for time series clustering focus on modifying existing
clustering algorithms for non-temporal data so that they can be used with
time series [33]. In this sense, techniques usually rely on traditional distance-
based clustering methods and replace the distance or similarity measure used
for non-temporal data with an appropriate one for time series such as DTW
[36, 37, 38]. Another common option used in the literature is to transform the
time series data into a feature vector of lower dimension so that conventional
clustering algorithms can then be applied [33].
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Outlier/anomaly detection

Given a time series, the outlier/anomaly detection task seeks to find the ob-
servations or subsequences that do not follow the expected behavior [39, 40].
As an example, the time series shown in Fig. 1.8, which monitors insect feed-
ing using an Electrical Penetration Graph (EPG) apparatus [41, 42], contains
an anomalous subsequence shown in orange.

Fig. 1.8: Illustration of the outlier/anomaly detection task in a time series.

Analogously, given a time series dataset, the aim of this task may be to
find the most unusual time series. For example, Fig. 1.9 illustrates this task
in which the time series shown in orange colour would be the anomalous time
series in the given time series dataset.

Fig. 1.9: Illustration of the outlier/anomaly detection task in a time series
dataset.

It should be mentioned that the outlier detection problem has been as-
sumed to be unsupervised by default [43, 39], but some techniques in the
literature have also tackled this task in a supervised way. In particular, the
supervised outlier detection problem is often approached as a binary clas-
sification problem, but with the limitation that the class labels are highly
imbalanced, the anomaly class being in minority. However, addressing this
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task from a supervised perspective is often challenging because of the dif-
ficulty involved in collecting labels (of high-quality) in many scenarios. In
this context, the outlier/anomaly detection task has been addressed as a one-
class classification problem [44, 45], where the classifier is learned based on a
dataset labeled from only one class. In this case, the class used for learning is
the normal class, while the samples that fall outside this class are considered
to be anomalous. Less commonly, semi-supervised techniques have also been
used [39, 46]. These techniques combine a small amount of labeled data with
a large amount of unlabeled data during training.

As stated in the introduction, this dissertation is mainly focused on the
outlier detection task but, in particular, we focus on the context of unsuper-
vised learning. We will provide additional details about this task in Section
1.2.

Segmentation

Given a time series, the goal of segmentation is to reduce the dimensionality
of the given time series and create an accurate approximation of it [47]. An
example of this task is illustrated in Fig. 1.10, where the original time series
represented in black is reduced to only seven points (shown by red crosses).
This task is interesting because often the exact values of the time series are
not relevant, but rather the trends, shapes, and patterns contained within the
time series [48], which are best captured by the reduced representation. Also,
segmentation helps to reduce the required memory storage, especially useful
when the time series are very long.

Fig. 1.10: Illustration of the time series segmentation task.

A widely known segmentation technique is the Piecewise Linear Approx-
imation (PLA) [49], which divides a time series of length T into K << T
segments (not necessarily of the same length) and approximates each segment
with a straight line. Another common option is to represent each segment
by the average value of the set of data points within the corresponding seg-
ment. For example, the Piecewise Aggregate Approximation (PAA) [50] and
the Adaptive Piecewise Constant Approximation (APCA) [51] techniques are
within this group. Finally, some other more sophisticated techniques that con-
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vert the time series into a symbolic form to reduce its dimensionality have also
been proposed (e.g., the Symbolic Aggregate Approximation (SAX) [52]).

Query by content (indexing)

Given a query time series and a reference time series, the aim of this task is
to identify the subsequences in the reference time series that are most similar
to the query [53]. Similarly, this task can also be performed on a time series
dataset, aiming to find the set of individual time series in the dataset that
are most similar to the query. An illustration of the query by content task is
shown in Fig. 1.11.

Query

Reference

Fig. 1.11: Illustration of the query by content task.

This task has been traditionally solved by the ε-range query and the k-NN
query approaches [14]. While the ε-range query returns the set of time series
or subsequences that are within a distance ε of the query time series, the k-NN
query returns the k closest time series to the query. In some contexts, com-
paring the query time series to all the sequences in the dataset (i.e., the brute
force algorithm) can be computationally expensive, and thus, in these cases,
techniques usually propose reducing the dimensionality of the time series and
then indexing the transformed data [51, 53]. Indeed, in general, the techniques
that address the query by content task rely on the following three components
[54]: a representation of the time series, a distance measure between pairs of
time series, and an efficient search mechanism to find the matches.

Motif discovery

The last popular time series data mining task that we will mention is motif
discovery. Given a time series, this task aims to find subsequences that occur
repeatedly in the original time series. For example, in Fig. 1.12, two repeated
patterns (i.e., motifs) are highlighted. In particular, the purpose of motif dis-
covery is usually to find the k-frequent motifs in the time series, that is, to
identify the k most frequently recurring subsequences.
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Fig. 1.12: Illustration of the motif discovery task.

This task requires to compare different subsequences by measuring the
similarity between them. Most commonly, the Euclidean distance has been
used [55].

Note that there may be several motifs within a time series, the motifs may
be of different lengths, and also, they may overlap, as shown in Fig. 1.12.
In this sense, the brute force algorithm is usually computationally expensive,
and thus, many authors have focused on developing efficient motif discovery
algorithms [55, 56, 57]. For example, among the most popular techniques
is the Matrix Profile, which has been proposed to allow the efficient exact
computation of the top-k motifs in a time series [58, 59].

1.2 Time series outlier/anomaly detection

Outlier or anomaly detection is a field that has been studied for many years
due to its relevance in several application domains such as fraud detection
[60], intrusion detection [61], or fault diagnosis [62]. A widely used definition
for the concept outlier has been provided by [63]:

“An observation which deviates so much from other observations as
to arouse suspicions that it was generated by a different mechanism.”

Therefore, outliers can be thought of as observations that do not follow the
expected behavior.

Based on this intuition, the concept outlier has been denominated in sev-
eral different ways in the literature, and, to this day, there is still no consensus
on the terms used [64]; for example, outlier observations are often referred to
as anomalies, discordant observations, discords, exceptions, aberrations, sur-
prises, peculiarities or contaminants.

When dealing with time series data, the analysis of outliers examines
anomalous behaviors across time [39]. Moreover, depending on the tempo-
ral context, outliers can be of two types. On the one hand, the outliers may
behave unusually compared to all the values in the time series. This type of
outliers are said to be global outliers. On the other hand, the outliers may
behave unexpectedly compared to their neighboring points even though glob-
ally they are not rare observations. In this case, outliers are said to be local
outliers. Note that all global outliers are also local, but not all local outliers
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are global. More details and examples are shown in Chapter 2 (see Fig. 2.2
and Fig. 2.3).

Finally, it is worth mentioning that outliers have an underlying meaning.
As shown in Fig. 1.13, the meaning of the outliers in time series can be cat-
egorized into two main groups, and the semantic distinction between them
is mainly based on the interest of the analyst or the particular scenario con-
sidered. Outlier observations have been widely related to noise, erroneous, or
unwanted data, which by themselves are not interesting to the analyst [65].
In these cases, outliers should be deleted or corrected to improve the data
quality and generate a cleaner dataset that can be used by other data mining
algorithms. For example, sensor transmission errors are eliminated to obtain
more accurate predictions because the principal aim is to make predictions.
Nevertheless, in recent years and, especially in the area of time series data,
many researchers have aimed to detect and analyze unusual but interesting
phenomena. In this case, outliers translate to significant information. Fraud
detection is an example of this because the main objective is to detect and
analyze the outlier itself as it may reflect unauthorized use of a credit card.
Another example is an outlier in the industrial environment, where anoma-
lous observations in a manufacturing machine can mean a failure in some
component of the machine. Moreover, in public health data, outliers may rep-
resent symptoms of a new disease. These observations are often referred to as
anomalies [65]. It should be mentioned that, in this thesis, the terms outlier
and anomaly will be used interchangeably.

Outliers	meaning
Unwanted	data

Event	of	interest Analyze	the	outlier	itselfaim

aim
Data	cleaning

Fig. 1.13: Meaning of the outliers/anomalies in time series data depending on
the aim of the analyst.

1.3 Objectives and challenges

Due to the interest of the research community in the field of time series data
mining, the literature contains a large number of publications and solutions to
different problems. In particular, and as mentioned in the previous sections,
outlier detection is a topic that has gained much attention for the purpose
of improving data quality or detecting interesting phenomena. Many tech-
niques have been proposed to address the outlier detection problem in time
series from an unsupervised perspective, but the existing techniques are not
presented in a structured and comprehensive way in the literature. This lim-
itation leads us to the first objective of the thesis:
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Objective 1. Provide a structured and comprehensive state-of-the-art on un-
supervised outlier detection techniques in the context of time series data.

In other words, in this dissertation, we provide a literature review on
unsupervised outlier/anomaly detection techniques in time series, drawing
a general idea of the current state-of-the-art methods and highlighting the
relevant characteristics of each technique. Moreover, a taxonomy is presented
based on the main aspects that characterize an outlier detection technique,
namely, the input data type (univariate or multivariate time series), the outlier
type (point, subsequence, or whole time series), and the nature of the method
(univariate or multivariate). In addition, we also analyze some other more
specific aspects, such as whether the techniques take into account the temporal
correlation between the observations or not.

This detailed analysis has shown that some techniques ignore the temporal
correlation between consecutive observations, but, in most cases, this should
not be omitted since it is a relevant characteristic of time series. Also, the
review has revealed that the detection of whole time series outliers is a task
that has almost not been treated in the literature. However, this problem
arises naturally in many application domains, such as water leak detection
[66, 67].

Water distribution companies are usually interested in detecting the days
in which a leak has occurred in order to repair it as soon as possible and, in this
way, avoid further costs and damages. For this purpose, very simple methods
based on thresholds are commonly applied to time series that represent water
flow values over a day. However, these methods provide many false leak alarms.
As such, the water companies have a great interest in reducing the number of
false positives while maintaining a high leak detection rate. All this motivates
the second objective of the thesis:

Objective 2. Propose a novel whole time series anomaly detection technique
for water leak detection.

In particular, we solve the problem from an unsupervised perspective, that
is, we do not use any leak/no leak labels in the learning process. To be more
precise, we propose a method based on self-supervised learning, where we
use classification techniques with labels that have been generated artificially
and specifically for the problem at hand. Additionally, the method treats the
data as time series, thus considering the temporal correlation between the
measurements. The proposed technique is able to provide a low false positive
rate, while maintaining a high leak detection rate.

So far, we have assumed that the time series are regularly-sampled and
fully-observed (they have no missing values). Indeed, many traditional ma-
chine learning techniques for time series assume these conditions. However,
for reasons such as failures in data collection mechanisms, time series often
contain missing values and are thus incomplete. Since the presence of missing
values hinders an advanced analysis of the time series (e.g., outlier/anomaly
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detection), the treatment of missing values and their imputation is an im-
portant task to address. In particular, when the missing rate is very high,
imputing all the missing values may not be the most appropriate solution
since this would introduce many errors in the time series. Additionally, this
can significantly affect the quality of the data and the results of downstream
tasks. This issue has motivated our third contribution:

Objective 3. Process multivariate time series with missing values by selective
imputation.

In particular, we propose a method that selectively imputes a multivariate
time series dataset, avoiding to make unnecessary imputations. In other words,
this method identifies a subset of missing points to impute in a multivariate
time series dataset. This selection is based on both reducing the uncertainty
of the imputations and representing the original time series as accurately as
possible, and it will result in shorter and simpler time series. Moreover, the
proposed method can be applied with any downstream task. In this thesis, we
analyze its performance when addressing two popular time series data mining
tasks: multivariate time series classification and whole time series anomaly
detection.

1.4 Outline of the Dissertation

This dissertation is divided into three main parts. Part I collects the method-
ological contributions in the field of outlier/anomaly detection in time series
data. In particular, Chapter 2 provides a literature review on outlier/anomaly
detection techniques in time series data, and Chapter 3 presents a novel whole
time series anomaly detection technique for water leak detection based on self-
supervised learning. Then, Part II focuses on the contributions related to the
treatment of time series with missing values and demonstrates its applicability
in the field of outlier/anomaly detection. Specifically, Chapter 4 includes the
details of the proposed methodology that selectively imputes a multivariate
time series dataset with missing values. Finally, in Part III, the general con-
clusions drawn from this thesis are presented, as well as possible future lines
of research. The main achievements are also mentioned in this last part.
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Contributions to outlier/anomaly detection in
time series data
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A review on outlier/anomaly detection in time
series data

This chapter deals with the first problem described in Section 1.3. As such, a
structured and comprehensive state-of-the-art on unsupervised outlier detec-
tion techniques in the context of time series data is provided.

2.1 Introduction

As mentioned in the previous section, outlier detection has become a field of
interest for many researchers and practitioners and is now one of the main
tasks of time series data mining. In the first study on this topic, which was
conducted by [68], two types of outliers in univariate time series were defined:
type I, which affects a single observation; and type II, which affects both a
particular observation and the subsequent observations. This work was first
extended to four outlier types [69], and then to the case of multivariate time
series [70]. Since then, many definitions of the term outlier and numerous
detection methods have been proposed in the literature.

The purpose of this chapter is to present a structured and comprehensive
state-of-the-art on outlier detection techniques in time series data and at-
tempt to extract the essence of the concept outlier, focusing on the detection
algorithms given by different authors. Despite the broad terminology that is
used to refer to outliers, this review focuses on the identification of outliers
in the unsupervised framework, regardless of the term used in the original
papers.

Although a number of surveys on outlier detection methods have been
presented in the literature [71, 72, 73, 74, 65, 75], very few focus on temporal
data, including time series [76].

In this sense, the main contributions of this review are fourfold:

• We give a comprehensive review that focuses only on time series data.
Thus, we provide an in-depth analysis, examining techniques that have
hardly been explored in the literature so far. To the best of our knowledge,
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none of the existing surveys focus exclusively on unsupervised outlier de-
tection in time series, and so, they do not provide enough details of this
specific problem and the methods published to solve it.

• We propose a novel taxonomy for outlier detection methods in time series
data by extracting the most relevant characteristics of the existing method-
ologies. This taxonomy provides a global understanding of the outliers and
their detection in time series, and helps to choose the type of technique
that best adapts to a given problem. We also provide details about other
features that characterize each technique. As far as we know, the exist-
ing surveys do not propose a complete taxonomy and do not extract the
characteristics of each method.

• We provide the publicly available software related to the analyzed meth-
ods. This is an important point nowadays since it allows us to reproduce
the methods. The existing related surveys do not present this information.

• We identify some future research directions on outlier detection in time
series.

The rest of this chapter is organized as follows. In Section 2.1.1, the
methodology followed in this study is described. In Section 2.2, a taxonomy
for the classification of outlier detection techniques in time series data is pro-
posed. Section 2.3, Section 2.4 and Section 2.5 present different techniques
used for point, subsequence, and time series outlier detection, respectively.
The techniques are classified according to the taxonomy proposed in Section
2.2, and the intuition of the concept outlier on which the methods are based
is provided. In Section 2.6, the publicly available software for some of the con-
sidered outlier detection methods is presented. Finally, Section 2.7 contains
the concluding remarks and outlines some areas for further research.

2.1.1 Methodology

This study has been oriented and organized with the intention to answer the
following research questions:

(RQ1) What are the most important characteristics that define each outlier
detection method? Based on this, how could the existing techniques be
taxonomized?
(RQ2) How do existing techniques detect point, subsequence and time
series outliers in time series data? Which are the main differences between
these methods?
(RQ3) Are there publicly available software packages for outlier detection
in time series? What type of methods do they implement?

The methodology used to provide answers to the proposed research ques-
tions is an ad-hoc methodology that consists of 3 modules: Database Selection,
Survey Search, and Literature Search.
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A. Database Selection

The databases of scientific research used to do the literature search in this re-
view are the following well-known repositories: Google Scholar, IEEE Xplore,
ACM Digital Library, DBLP, Scopus, and ScienceDirect.

B. Survey Search

Since this study is a literature review, we searched for related reviews that
have been previously published. The keywords used are “outlier detection”,
“anomaly detection”, “survey”, “review”, and “time series”.

C. Literature Search

To search for articles that propose outlier detection methods in time series,
we mainly used the following keywords between 2000 and 2019: “time series”,
“outlier detection”, and “anomaly detection”. Other useful keywords have been
“univariate”, “multivariate”, “time series database”, and “subsequence”. We
also analyzed additional papers that were referenced within papers already
identified. Finally, we manually filtered the results by excluding irrelevant
papers which have not been published in high-quality forums and which apply
a previously developed method to a particular case rather than proposing a
new methodology.

2.2 A taxonomy of outlier detection techniques in the
time series context

Outlier detection techniques in time series data vary depending on the input
data type, the outlier type, and the nature of the method. Therefore, a com-
prehensive taxonomy that encompasses these three aspects is proposed in this
section. Fig. 2.1 depicts an overview of the resulting taxonomy, and each axis
is described in detail below.

Outlier	detection	techniques	in	time	series

Input	data Outlier	type

Univariate
time	series

Multivariate
time	series

Nature	of	the	method

Point Subsequence Time	series Multivariate

Univariate Multivariate

Univariate

Fig. 2.1: Proposed taxonomy of outlier detection techniques in time series
data.
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2.2.1 Input data

The first axis represents the type of input data that the detection method
is able to deal with (i.e., a univariate or a multivariate time series). For the
formal definition of these concepts, the reader should refer to the Definition
1 given in Section 1.1.

2.2.2 Outlier type

The second axis describes the outlier type that the method aims to detect
(i.e., a point, a subsequence, or a time series).

• Point outliers. A point outlier is a datum that behaves unusually in a
specific time instant when compared either to the other values in the time
series (global outlier) or to its neighboring points (local outlier). Point
outliers can be univariate or multivariate depending on whether they affect
one or more time-dependent variables, respectively. For example, Fig. 2.2a
contains two univariate point outliers, O1 and O2, whereas the multivariate
time series composed of three variables in Fig. 2.2b has both univariate
(O3) and multivariate (O1 and O2) point outliers.

(a) Univariate time series.
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(b) Multivariate time series.

Fig. 2.2: Point outliers in time series data.

• Subsequence outliers. This term refers to consecutive points in time whose
joint behavior is unusual, although each observation individually is not
necessarily a point outlier. Subsequence outliers can also be global or local
and can affect one (univariate subsequence outlier) or more (multivariate
subsequence outlier) time-dependent variables. Fig. 2.3 provides an ex-
ample of univariate (O1 and O2 in Fig. 2.3a, and O3 in Fig. 2.3b) and
multivariate (O1 and O2 in Fig. 2.3b) subsequence outliers. Note that the
latter do not necessarily affect all the variables (e.g., O2 in Fig. 2.3b).
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Fig. 2.3: Subsequence outliers in time series data.

• Outlier time series. Entire or whole time series can also be outliers, but
they can only be detected when the input data is a multivariate time
series. Fig. 2.4 depicts an example of an outlier time series, Variable 4,
in a multivariate time series composed of four variables. The behavior of
Variable 4 significantly differs from the rest.
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Fig. 2.4: Outlier time series (Variable 4 ) in a multivariate time series.

Observe that this axis is closely related to the input data type. If the
method only allows univariate time series as input, then no multivariate point
or subsequence outliers can be identified. In addition, outlier time series can
only be found in multivariate time series. Finally, it should be noted that
the outliers depend on the context. Thus, if the detection method uses the
entire time series as contextual information, then the detected outliers are
global. Otherwise, if the method only uses a segment of the series (a time
window), then the detected outliers are local because they are outliers within
their neighborhood. Global outliers are also local, but not all local outliers are
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global. In other words, some local outliers may seem normal if all of the time
series is observed but may be anomalous if we focus only on their neighborhood
(e.g., O1 in Fig. 2.2a).

2.2.3 Nature of the method

The third axis analyzes the nature of the detection method employed (i.e.,
if the detection method is univariate or multivariate). A univariate detection
method only considers a single time-dependent variable, whereas a multivari-
ate detection method is able to simultaneously work with more than one
time-dependent variable. Note that the detection method can be univariate,
even if the input data is a multivariate time series, because an individual anal-
ysis can be performed on each time-dependent variable without considering
the dependencies that may exist between the variables. In contrast, a multi-
variate technique cannot be used if the input data is a univariate time series.
Thus, this axis will only be mentioned for multivariate time series data.

2.3 Point outliers

Point outlier detection is the most common outlier detection task in the area
of time series. This section presents the techniques used to detect this type
of outlier, in both univariate (Section 2.3.1) and multivariate (Section 2.3.2)
time series data.

Specifically, as shown in Fig. 2.5, two key characteristics of these meth-
ods will be highlighted throughout their presentation. Concerning the first
characteristic, or the treatment of temporality, some methods consider the in-
herent temporal order of the observations, while others completely ignore this
information. The main difference between the methods that include tempo-
ral information and those that do not is that the latter methods produce the
same results, even if they are applied to a shuffled version of the series. Within
the methods that use temporality, a subgroup of methods use time windows.
Consequently, the same results are obtained when shuffling the observations
within the window, but not when shuffling the whole time series.

Point	outlier
Temporality

Streaming	/	Non-streaming

Fig. 2.5: Characteristics related to point outlier detection problems.

In relation to the second characteristic (see Fig. 2.5), some techniques are
able to detect outliers in streaming time series by determining whether or
not a new incoming datum is an outlier as soon as it arrives, without having
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to wait for more data. Within this group, some methods use a fixed model
throughout the stream evolution, whereas others update the models used for
detection with the new information received—either by retraining the whole
model or by learning in an incremental manner. We consider that a technique
does not apply to a streaming time series (i.e., non-streaming) if it is unable
to make a decision at the arrival of the new datum.

Most of the analyzed point outlier detection techniques can be applied
in a streaming context and they take the temporality of the data into ac-
count, either by considering the full time series as an ordered sequence or
with the use of time windows. Therefore, we will only make reference to this
axis for methods that cannot be applied in a streaming environment or which
completely ignore the temporal information in the data. Finally, even though
many techniques can theoretically deal with streaming time series, very few
are able to adapt incrementally to the evolution of the stream. Consequently,
we will also highlight these techniques.

2.3.1 Univariate time series

The techniques that will be discussed in this section intend to detect point
outliers in a univariate time series and are organized based on the diagram
shown in Fig. 2.6. Since a single time-dependent variable is considered, recall
that these outliers are univariate points and that only univariate detection
techniques can be used for their detection.

Point	outliers

Model-based Density-based

Prediction

Histogramming

Estimation

Fig. 2.6: Types of methods for detecting point outliers in univariate time
series.

The most popular and intuitive definition for the concept of point outlier
is a point that significantly deviates from its expected value. Therefore, given
a univariate time series, a point at time t can be declared an outlier if the
distance to its expected value is higher than a predefined threshold τ :

|yt − ŷt| > τ (2.1)

where yt is the observed data point, and ŷt is its expected value. This prob-
lem is graphically depicted in Fig. 2.7, where the observed values within the
shadowed area are at most at distance τ from their expected values.

The outlier detection methods based on the strategy described in equa-
tion (2.1) are denominated model-based methods in this dissertation and are
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Fig. 2.7: Point outlier detection in univariate time series based on the com-
parison of expected and observed values.

the most common approaches in the literature. Even though each technique
computes the expected value ŷt and the threshold τ differently, they are all
based on fitting a model (either explicitly or implicitly). As shown in Ta-
ble 2.1, if ŷt is obtained using previous and subsequent observations to yt
(past, current, and future data), then the technique is within the estimation
model-based methods. In contrast, if ŷt is obtained relying only on previous
observations to yt (past data), then the technique is within the prediction
model-based methods. In practice, the main difference between using estima-
tion or prediction methods is that techniques within this latter category can
be used in streaming time series because they can determine whether or not
a new datum is an outlier as soon as it arrives. In the case of estimation
methods, this can only be done if, besides some points preceding yt, only the
current point yt is used to compute the estimated value (k2 = 0).

Data used −→ Expected value −→ Point outliers
Estimation models {yt−k1 , ..., yt, ..., yt+k2} −→ ŷt −→ |yt − ŷt| > τ
Prediction models {yt−k, ..., yt−1} −→ ŷt

Table 2.1: Data used in model-based techniques in univariate time series, for
k ≥ 1, and k1, k2 ≥ 0 such that k1 + k2 > 0.

The most simple estimation models are based on constant or piecewise
constant models, where basic statistics such as the median [77] or the Median
Absolute Deviation (MAD) [78] are used to obtain ŷt. These statistics are cal-
culated using the full series or by grouping the data in equal-length segments
and cannot be applied in streaming when future data is needed (k2 > 0). A
more sophisticated approach is to utilize unequal-length segments obtained
with some segmentation technique. [79] use the mean of each segment to de-
termine the expected value of the points within that segment, and an adaptive
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threshold τi = ασi, where α is a fixed value and σi the standard deviation of
segment i.

Other estimation-based techniques intend to identify data points that are
unlikely if a certain fitted model or distribution is assumed to have gener-
ated the data. For instance, some authors model the structure of the data
using smoothing methods such as B-splines or kernels [80, 81, 82] or variants
of the Exponentially Weighted Moving Average (EWMA) method [83], [84]
and [85] use slope constraints, [78] assume that the data without outliers are
approximately normal, and [86] use Gaussian Mixture Models (GMM).

Once a model or distribution is assumed and fitted, [80, 83] and [86] use
equation (2.1) directly to decide whether a point is an outlier or not. More
elaborately, [81] use extreme value theory to compute a confidence limit for
the high values of the kernel smoothing residuals (|yt− ŷt|) and flag point out-
liers as those exceeding that limit. Within the estimation-methods that use
slope constraints, [84] establish a maximum and a minimum possible slope
between consecutive values, whereas [85] model the change in slopes before
and after time t, assuming that the slopes should not change significantly at a
time point. The Extreme Studentized Deviate (ESD) test has also been used
to make the decision [78, 82]: the null hypothesis considered is that there are
no outliers, whereas the alternative is that there are up to k. Regardless of
the temporal correlation, the algorithm computes k test statistics iteratively
to detect k point outliers. At each iteration, it removes the most outlying
observation (i.e., the furthest from the mean value). Finally, [82] also pro-
pose defining the threshold in equation (2.1) using Chebyshev’s inequality or
the quantiles of normal distribution, after dividing the residuals from kernel
regression into homogeneous segments using change point analysis.

Some other univariate outlier detection methods analyze all of the residuals
obtained from different models to identify the outliers. For example, [87] use
the STL decomposition, and [88, 89, 90] use ARIMA models with exogenous
inputs, linear regression or Artificial Neural Networks (ANNs). Although most
of these models can also be used in prediction, in this case, the outliers are
detected in the residual set using past and future data. Specifically, once the
selected model is learned, hypothesis testing is applied over the residuals to
detect the outliers. In [87], the ESD test is applied but using the median and
MAD instead of the mean and standard deviation, for robustness. In [88, 89,
90], assuming that the underlying distribution of the residuals is known, the
minimum and maximum values are examined simultaneously at each iteration
of the algorithm. The hypothesis to be tested is whether an extremum is an
outlier (alternative hypothesis) or not (null hypothesis). The detected outliers
are corrected, and the process is repeated until no more outliers are detected.

In contrast to estimation models, techniques based on prediction models fit
a model to the time series and obtain ŷt using only past data; that is, without
using the current point yt or any posterior observations. Points that are very
different from their predicted values are identified as outliers. Recall that all
of the techniques within this category can deal with streaming time series.
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Within the prediction-based methods, some use a fixed model and thus
are not able to adapt to the changes that occur in the data over time. For
example, the DeepAnT outlier detection approach presented by [91] applies a
fixed Convolutional Neural Networks (CNNs) to predict values in the future.
Other methods use an autoregressive model [92] or an ARIMA model [93],
which obtain confidence intervals for the predictions instead of only point
estimates. Consequently, these methods implicitly define the value of τ .

Other techniques adapt to the evolution of the time series by retraining
the model. As the most basic approach, [77] describe a method that predicts
the value ŷt with the median of its past data. More elaborately, [94] fit an
ARIMA model within a sliding window to compute the prediction interval, so
the parameters are refitted each time that the window moves a step forward.

Extreme value theory has also been employed to detect point outliers in
streaming univariate series, using past data and retraining. Given a fixed risk
q, [61] use this theory to obtain a threshold value zq,t that adapts itself to the
evolution of the data such that P (Yt > zq,t) < q, for any t ≥ 0, assuming that
the extreme values follow a Generalized Pareto Distribution (GPD). Incoming
data is used to both detect anomalies (Yt > zq,t) and refine zq,t. In particular,
the authors propose two algorithms: SPOT, for data following any stationary
distribution; and DSPOT, for data that can be subject to concept drift [95, 96].

Some of these prediction-based methods retrain the underlying model pe-
riodically, or each time a new point arrives. Therefore, they can adapt to the
evolution of the data. However, none of them applies incremental model learn-
ing approaches, where the model is not rebuilt from scratch each time but is
updated incrementally using only the new information received. This avoids
the cost associated with training the models more than once and permits a
more gradual adaptation to changes that can occur in the data, which is of
special interest in streaming contexts [97]. In this sense, and in contrast to
the previous approaches, [98, 99] suggest modeling a univariate time series
stream in an incremental fashion. This method uses Student-t processes to
compute the prediction interval and updates the covariance matrix with the
newly arrived data point. [100] use the Hierarchical Temporal Memory (HTM)
network, which is also a prediction model-based technique that updates in-
crementally as new observations arrive.

The techniques mentioned so far are based on equation (2.1). However,
not all the existing point outlier detection methods rely on that idea, such
as the density-based methods, which belong to the second category depicted
in Fig. 2.6. Techniques within this group consider that points with less than
τ neighbors are outliers; i.e., when less than τ objects lie within distance R
from those points. This could be denoted as

yt is an outlier⇐⇒ |{y ∈ Y |d(y, yt) ≤ R}| < τ (2.2)

where d is most commonly the Euclidean distance, yt is the data point at time
step t to be analyzed, Y is the set of data points (time series), and R ∈ R+.
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The detection of density-based outliers has been widely handled in non-
temporal data, but the concept of neighborhood is more complex in time series
because the data are ordered. To take temporality into account, [101, 102] and
[103] apply this method within a sliding window, which allows us to determine
whether or not a new value of a streaming time series is an outlier upon arrival.
An illustration of density-based outliers is provided in Fig. 2.8 at two different
time steps with R = 0.5, τ = 3, and a sliding window of length 11. When using
sliding windows, a point can be an outlier for a window (e.g., O13 at t = 13)
but not for another (e.g., I13 at t = 17). However, if a data point has at least
τ succeeding neighbors within a window, then it cannot be an outlier for any
future evolution (e.g., S4 at t = 13).
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(b) t = 17

Fig. 2.8: Density-based outliers within a sliding window of length 11 at time
step t.

Histogramming is the last group analyzed in this section. This type of
method is based on detecting the points whose removal from the univariate
time series results in a histogram representation with lower error than the
original, even after the number of buckets has been reduced to account for
the separate storage of these points (see Fig. 2.9). The histogram is built by
computing the average of the values within each bucket, in which the order
of the observations is preserved. Then, given a sequence of points Y and a
number of buckets B, D ⊂ Y is a deviant set if

EY (H∗B) > EY−D(H∗B−|D|) (2.3)

where H∗B is the optimal histogram (histogram with lowest approximation
error) on Y with B buckets, EY (·) is the total error in the approximation
and H∗B−|D| is the optimal histogram on Y −D with B − |D| buckets. [104]
introduced the term deviant to refer to these point outliers. They proposed
a dynamic programming mechanism to produce a histogram consisting of
B−|D| buckets and |D| deviants, minimizing its total error. Some years later
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[105] observed that for any bucket, the optimal set of k = |D| deviants always
consists of the l highest and remaining k − l lowest values within the bucket,
for some l ≤ k. Moreover, they presented not only an optimal algorithm for
non-streaming time series but also a closely approximate algorithm and a
heuristic approach for the streaming case.

(a) Optimal histogram with eleven
buckets.

(b) Optimal histogram with nine buck-
ets and O1 and O2 removed.

Fig. 2.9: Example of a deviant set D = {O1, O2} in a univariate time series.

To conclude, the techniques that detect point outliers in univariate time
series can be grouped mainly in three categories based on the intuition they
have of the concept of outlier, and basically what differentiates one technique
from another are the characteristics gathered in Table 2.2. In particular, we
consider that a method is iterative if it is repeatedly applied on the same set
to find the outliers. Concerning the parametricity of the methods, we consider
that parametric methods assume that the underlying distribution of the phe-
nomenon under analysis belongs to a parametric family, and estimate its pa-
rameters (a fixed number) from the given data. Contrarily, in non-parametric
techniques, the model or the family of distributions is not defined a priori
but instead it is determined from the given data and has a flexible number of
parameters. Also, we refer to semi-parametric methods as those that combine
both parametric and non-parametric approaches.

In general, the authors use the term outlier, and the described techniques
consider temporality and can be applied in a streaming context. Also, the few
iterative methods are related to detecting unwanted data and improving the
quality of the time series. Most of the model-based techniques are parametric
or semi-parametric. Semi-parametric techniques usually assume a distribution
over the residuals when defining a threshold value, even if the residuals are
obtained with a non-parametric approach.

Finally, caution must be taken with the estimation methods that can the-
oretically be applied in a streaming time series; that is, those that do not use
subsequent observations to the last arrived data point yt (k2 = 0 in Table 2.1).
Although, it may in theory be possible to apply these techniques in streaming
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Table 2.2: Summary of point outlier detection techniques in univariate time
series.

Meaning ParametricityPaper Technique Iterative Temporality Streaming I U P SP NP Term

[104] Histogram 7 X X X X D
[105] Histogram 7 X X* X X D

[77] Estimation 7 W 7 X X O
Prediction 7 W X X X O

[101, 102] Density 7 W X* X X O
[80] Estimation 7 X X X X O/C
[92] Prediction 7 X X X X A
[93] Prediction 7 X X X X X O
[83] Estimation 7 X X* X X A
[88] Estimation X X X X X O

[78] Estimation1 7 W 7 X X O
Estimation2 X 7 X X X O

[79] Estimation 7 X X X X O/A
[84] Estimation 7 X X X X Dirty
[85] Estimation 7 X X X X Dirty
[89] Estimation X X X X X O/A

[98, 99] Prediction 7 X X* X X O/A
[103] Density 7 X X X X A
[90] Estimation X X X X X O/A
[86] Estimation 7 X X X X O
[61] Prediction 7 7 X X X O/A
[100] Prediction 7 X X* X X A
[87] Estimation X 7 X 7 X O/A
[94] Prediction 7 X X X X O
[81] Estimation 7 X X X X O
[82] Estimation 7 X X X X O
[91] Prediction 7 X X X X O/A

I: Event of interest; U: Unwanted data // W: Window // P: Parametric; SP: Semi-parametric;
NP: Non-parametric // D: Deviant; O: Outlier; A: Anomaly; C: Corrupted.
1 MAD; 2 Hypothesis testing; ∗ Incremental updating.

contexts, these methods use the last observation received (yt) and some other
past information to calculate its expected value (ŷt) and they then decide
whether or not it is an outlier. Consequently, they must perform some calcu-
lations after the new point has arrived. The cost of this computation depends
on the complexity of each method (which has not been analyzed in this chap-
ter or in every original works) but may not always guarantee a fast enough
response. Thus, in practice, some of these techniques may not be applicable
in streaming contexts and prediction methods are more recommendable for
these situations.
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2.3.2 Multivariate time series

The input time series is sometimes a multivariate time series with possibly
correlated variables rather than a univariate time series. As opposed to the
univariate time series case, the detection method used to identify point out-
liers in multivariate time series can deal not only with a single variable (Sec-
tion 2.3.2.1) but also with more than one variable simultaneously (Section
2.3.2.2). Additionally, a point outlier in a multivariate time series can affect
one (univariate point) or more than one (multivariate point, a vector at time
t) variables (see Fig. 2.2b). As will be seen in the following sections, some
multivariate techniques are able to detect univariate point outliers and (sim-
ilarly) some univariate techniques can be used to detect multivariate point
outliers. The characteristics mentioned in Fig. 2.5 will also be highlighted.

2.3.2.1 Univariate techniques

Given that a multivariate time series is composed of more than one time-
dependent variable, a univariate analysis can be performed for each variable
to detect univariate point outliers, without considering dependencies that may
exist between the variables. Although the literature barely provides examples
of this type of approach, in essence, all of the univariate techniques discussed
in Section 2.3.1 could be applied to each time-dependent variable of the input
multivariate time series. As one of the few examples, [106] propose using
the Long Short-Term Memory (LSTM) prediction model-based method to
predict spacecraft telemetry and find point outliers within each variable in a
multivariate time series, following the idea of equation (2.1). The authors also
present a dynamic thresholding approach in which some smoothed residuals
of the model obtained from past data are used to determine the threshold at
each time step.

Correlation dependencies between the variables are not considered when
applying univariate techniques to each time-dependent variable, leading to
a loss of information. To overcome this problem, and at the same time to
leverage that univariate detection techniques are highly developed, some re-
searchers apply a preprocessing method to the multivariate time series to find
a new set of uncorrelated variables where univariate techniques can be ap-
plied. These methods are based on dimensionality reduction techniques, and
as depicted in Fig. 2.10, the multivariate series is simplified into a representa-
tion of lower dimension before applying univariate detection techniques. Since
the new series are combinations of the initial input variables, the identified
outliers are multivariate; that is, they affect more than one variable.

Some of those dimensionality reduction techniques are based on finding
the new set of uncorrelated variables by calculating linear combinations of the
initial variables. For example, [107] propose an incremental Principal Compo-
nent Analysis (PCA) algorithm to determine the new independent variables.
In this case, the posterior univariate point outlier detection technique that is
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Fig. 2.10: Simplification of point outlier detection in multivariate time series.

applied is based on the autoregressive prediction model (AR). Alternatively,
[108] suggest reducing the dimensionality with projection pursuit, which aims
to find the best projections to identify outliers. The authors mathematically
prove that the optimal directions are those that maximize or minimize the
kurtosis coefficient of the projected time series. Univariate statistical tests
[68, 109] are then applied iteratively to each projected univariate series for
multivariate point outlier detection. Similarly, [110] propose using Indepen-
dent Component Analysis (ICA) to obtain a set of unobservable independent
nonGaussian variables. Outliers are identified in each new series independently
if equation (2.1) is satisfied for ŷit = µi and τi = 4.47σi, where µi is the mean
and σi the standard deviation of the ith new variable.

Other techniques reduce the input multivariate time series into a single
time-dependent variable rather than into a set of uncorrelated variables. [111]
define the transformed univariate series using the cross-correlation function
between adjacent vectors in time; that is, yt−1 and yt. Point outliers are iter-
atively identified in this new series as those that have a low correlation with
their adjacent multivariate points. The threshold value τ is determined at
each iteration by the multilevel Otsu’s method. [112] also transform the mul-
tivariate time series into a univariate series using a transformation specifically
designed for the application domain considered. Point outliers are identified
using equation (2.1) and the 3-sigma rule.

The main characteristics of all of the techniques analyzed in this section
are described in Table 2.3 in chronological order. Most of the methods reduce
the dimensionality of the multivariate time series before applying a univari-
ate detection technique. Particularly, note that the transformation methods
proposed by [108] and [111] are specific for outlier detection and not gen-
eral dimensionality reduction techniques. Also, most of the techniques are
non-iterative and would be non-parametric if it were not for the thresholding
approach which typically assumes normality. Finally, point outliers are events
of interest for almost all the researchers and are mainly referred to as outliers.

As far as the characteristics mentioned in Fig. 2.5 are concerned, in di-
mensionality reduction techniques, the temporality depends on both the trans-
formation and the outlier detection method applied. If at least one of these
considers temporality, then so does the complete method because the same
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Table 2.3: Summary of the univariate techniques used in multivariate time
series for point outlier detection.

Meaning ParametricityPaper Technique Iterative Temporality I U P SP NP Term

[107] Dim. reduction 7 X X X O
[108] Dim. reduction X X X X O
[110] Dim. reduction 7 7 X X O
[112] Dim. reduction 7 X X X O/E
[111] Dim. reduction X X X X O
[106] Prediction 7 X X X A
I: Event of interest; U: Unwanted data // O: Outlier; A: Anomaly; E: Event // P:
Parametric; SP: Semi-parametric; NP: Non-parametric

results are not obtained when the observations of the input multivariate time
series are shuffled. In the case of PCA, projection pursuit, and ICA, these
transformation methods do not consider temporality, so the temporality de-
pends on the univariate detection method. Conversely, [112] and [111] use
methods that include temporality in the transformation phase. In the other
approach where the dimensionality is not reduced, the temporality directly
depends on the applied detection method.

Finally, all of the methods that we have reviewed in this section can the-
oretically detect point outliers in a streaming context using sliding windows
because none needs future data to provide an output. In this context, the
prediction-based approach proposed by [106] would work the best because,
in contrast to techniques based on dimensionality reduction, the newly ar-
rived point to be analyzed is not used on the model construction. However,
no incremental versions have been proposed.

2.3.2.2 Multivariate techniques

In contrast to the univariate techniques discussed previously, this section
analyzes the multivariate methods that deal simultaneously with multiple
time-dependent variables, without applying previous transformations. These
approaches perform the detection directly using all the original input data
variables and can be divided into three groups, as described in Fig. 2.11.

As in univariate time series, model-based techniques can also be used to
detect point outliers in multivariate time series. Methods within this group
are based on fitting a model that captures the dynamics of the series to ob-
tain expected values in the original input time series. Then, for a predefined
threshold τ , outliers are identified if:

||yt − ŷt|| > τ (2.4)

where yt is the actual L-dimensional data point, and ŷt its expected value.
Note that this is a generalization of the definition given for the model-based
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Point	outliers

Model-based Dissimilarity-based

Prediction

Histogramming

Estimation

Fig. 2.11: Types of methods for detecting point outliers in multivariate time
series.

techniques in univariate time series and that the intuition is repeated (refer
to equation (2.1) and Table 2.1). In fact, ŷt can be obtained using estimation
models—which use past, current, and future values—or prediction models—
which only use past values (see Fig. 2.12).
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(a) Estimation models.
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(b) Prediction models.

Fig. 2.12: Example of the data used in model-based techniques.

Within the estimation model-based category, autoencoders are one of the
most commonly used methods. Autoencoders are a type of neural network
that learns only the most significant features of a training set used as the
reference of normality. Since outliers often correspond to non-representative
features, autoencoders fail to reconstruct them, providing large errors in equa-
tion (2.4). [113] use this method, where the input of the autoencoder is a single
multivariate point of the time series. The temporal correlation between the
observations within each variable is not considered in this approximation.
Therefore, to account for temporal dependencies, [114] propose extracting
features within overlapping sliding windows (e.g., statistical features) before
applying the autoencoder. [115] suggest a more complex approach based on
a Variational AutoEncoder (VAE) with a Gated Recurrent Unit (GRU). The
input of the model is a sequence of observations containing yt and l preceding
observations to it. The output is the reconstructed yt (ŷt). Additionally, they
apply extreme value theory [61] in the reference of normality to automatically
select the threshold value.
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Apart from using autoencoders, ŷt can also be derived from the general
trend estimation of multiple co-evolving time series. [116, 117] use a non-
parametric model that considers both the temporal correlation between the
values within each variable and inter-series relatedness in a unified manner
to estimate that trend. In this case, even though the trend of each variable
is estimated using the multivariate time series, univariate point outliers are
identified within each variable using equation (2.1) instead of L-dimensional
data points.

Prediction model-based techniques can also be used to obtain ŷt in equa-
tion (2.4) (see Fig. 2.12b). These techniques also fit a model to a multivariate
time series, but the expected values are the predictions for the future made
on the basis of past values. For example, the Contextual Hidden Markov
Model (CHMM) incrementally captures both the temporal dependencies and
the correlations between the variables in a multivariate time series [118]. The
temporal dependence is modeled by a basic HMM, and the correlation be-
tween the variables is included into the model by adding an extra layer to the
HMM network. The DeepAnt algorithm [91] mentioned in Section 2.3.1 is also
capable of detecting point outliers in multivariate time series using the CNN
prediction model. Once the model is learned, the next timestamp is predicted
using a window of previous observations as input.

All of these estimation and prediction-based methods can theoretically be
employed in a streaming context using sliding windows because no subsequent
points to yt are needed. As with univariate time series, the estimation-based
methods need to consider at least the newly arrived point yt (k2 = 0 in
Table 2.1), so prediction-based techniques are more appropriate for detecting
outliers in a streaming fashion. Moreover, these model-based techniques all
use a fixed model, and they do not adapt to changes over time, except for the
proposal of [118], which is incrementally updated.

The dissimilarity-based methods will be discussed next. These techniques
are based on computing the pairwise dissimilarity between multivariate points
or their representations, without the need for fitting a model. Therefore, for
a predefined threshold τ , yt is a point outlier if:

s(yt, ŷt) > τ (2.5)

where yt is the actual L-dimensional point, ŷt its expected value, and s mea-
sures the dissimilarity between two multivariate points. These methods do
not usually use the raw data directly, but instead use different representa-
tion methods. For example, [119, 120] represent the data using a graph where
nodes are the multivariate points of the series and the edges the similarity
values between them computed with the Radial Basis Function (RBF). The
idea is to apply a random walk model in the graph to detect the nodes that
are dissimilar to the others (i.e., hardly accessible in the graph). By contrast,
[121] propose recording the historical similarity and dissimilarity values be-
tween the variables in a vector. The aim is to analyze the dissimilarity of
consecutive points over time and detect changes using ||.||1.
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The last group depicted in Fig. 2.11 refers to the histogramming approach,
where the term deviant has also been used in the context of multivariate
series (see the definition given in (2.3)). [105] extend the technique for deviant
detection explained in Section 2.3.1 to multivariate time series by treating
the measurements collected at the same timestamp as a vector. The authors
propose an algorithm for both streaming and non-streaming series to find
approximate optimal deviants.

To conclude, the multivariate techniques that detect point outliers in mul-
tivariate time series can be grouped mainly in three categories based on the
intuition of the concept of outlier that they employ. The main characteristics of
these multivariate techniques are depicted in Table 2.4 in chronological order.
Even if most of them find multivariate point outliers, some use the multivari-
ate information to identify point outliers that only affect a single variable (i.e.,
univariate point outliers). All of the analyzed techniques are non-iterative, and
outliers represent events of interest for the researchers. In addition, most of
them obtain different results if they are applied to a shuffled version of the
time series, i.e., most methods consider the temporal information. Although
all of these methods can detect outliers in a streaming context, few are in-
cremental or updated as new data arrives. Finally, most of the model-based
techniques are parametric or semi-parametric, while all the techniques based
on histograms or dissimilarity are non-parametric.

Table 2.4: Summary of the multivariate techniques used in multivariate time
series for point outlier detection.

Parametricity
Paper Technique Point Temporality Incremental

P SP NP
Term

[105] Histogramming Multivariate X X X D
[119, 120] Estimation Multivariate 7 7 X A

[121] Dissimilarity Univariate X X X O
[113] Estimation Multivariate 7 7 X A
[118] Prediction Multivariate X X X N/A’
[114] Estimation Multivariate X 7 X O
[91] Prediction Multivariate X 7 X A/O

[116, 117] Estimation Univariate X 7 X O/N/E
[115] Estimation Multivariate X 7 X A

D: Deviant; O: Outlier; A: Anomaly; A’: Abnormality; E: Event; N: Novelty // P: Parametric;
SP: Semi-parametric; NP: Non-parametric
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2.4 Subsequence outliers

As shown in Fig. 2.1, subsequence outliers are the second type of outliers
that can be detected in time series data. In this case, the aim is to identify
a set of consecutive points that jointly behave unusually. To this end, subse-
quence outlier detection methods need to consider some key aspects, which
are shown in Fig. 2.13, and which make the detection of subsequence outliers
more challenging than point outlier detection.

Subsequence	outlier Representation

Periodicity

Length

Fig. 2.13: Characteristics related to subsequence outlier detection problems.

To begin with, subsequences are composed of a set of points and not of a
single point, so they have a certain length. Typically, methods consider fixed-
length subsequences, although some techniques do allow us to detect subse-
quences of different lengths (variable-length) simultaneously (e.g., [122, 123])1.
Methods based on fixed-length subsequences need the user to predefine the
length, and they commonly obtain the subsequences using a sliding window
over the time series. In contrast, methods that allow finding variable-length
subsequences do not prespecify this length. A final aspect to consider regard-
ing the length of the subsequence is that the number of subsequences that
the method will consider and analyze depends on the chosen length (i.e., the
shorter the length, the higher the number of subsequences).

The second characteristic that subsequence outlier detection methods need
to consider is the representation of the data. Since the comparison between
subsequences is more challenging and costly than the comparison between
points, many techniques rely on a representation of the subsequences rather
than using the original raw values. Discretization is a widely used represen-
tation method and can be obtained using approaches such as equal-frequency
binning (e.g., [124]), equal-width binning (e.g., [125, 126, 60]), or SAX (e.g.,
[122, 123]). These discretization techniques can also be used as a starting
point to obtain other representations, such as bitmaps (e.g., [127, 128]). A de-
tailed overview of the existing research regarding outlier detection in discrete
sequences can be found in [129], which highlights the applicability of those
techniques to time series data. Additionally, apart from discretization, raw
data has also been used directly to obtain representations based on dictionar-
ies (e.g., [130]), exemplars (e.g., [131]), or connectivity values (e.g., [132]).

1 Note that methods that find fixed-length subsequence outliers could also find
subsequences of different lengths by applying the method repeatedly for each
possible length.
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Another issue that has been barely considered in the literature but which
makes the detection of subsequence outliers more challenging is that they can
be periodic. Periodic subsequence outliers are unusual subsequences that re-
peat over time [133, 60]. Unlike point outliers where periodicity is not relevant,
periodic subsequence outliers are interesting in areas such as fraud detection
to discover certain periodic anomalous transactions over time.

Finally, as opposed to point outlier detection, where some methods did
not take into account the temporal dependencies, subsequences consider the
temporality by default. In addition, when analyzing subsequence outliers in
a streaming context, three cases can occur: i) a single data point arrives,
and an answer (i.e., outlier or non-outlier) must be given for a subsequence
containing this new point; ii) a subsequence arrives, and it needs to be marked
as an outlier or non-outlier; and iii) a batch of data arrives and subsequence
outliers need to be found within it. In either case, the literature provides
methods that can give an answer in a streaming fashion using sliding windows.
However, most of them keep the model fixed and do not adapt to changes in
the streaming sequence. We will focus on these incremental techniques because
they are more suitable for processing streaming time series.

2.4.1 Univariate time series

The detection methods used to detect univariate subsequence outliers in uni-
variate time series will be analyzed in this section. We have grouped these
techniques according to the different ideas or definitions on which they are
based (see Fig. 2.14).

Subsequence	outliers

Discord	detection Dissimilarity-based Frequency-basedPrediction	model-based Information	theory

Fig. 2.14: Types of methods for detecting subsequence outliers in univariate
time series.

The first and most straightforward idea consists of detecting the most
unusual subsequence in a time series (denominated time series discord) [134,
135], by comparing each subsequence with the others; that is, SD is a discord
of time series Y if

∀S ∈ A, min
S′

D
∈A,SD∩S′

D
=∅

(d(SD, S′D)) > min
S′∈A,S∩S′=∅

(d(S, S′)) (2.6)

where A is the set of all subsequences of Y extracted by a sliding window, S′D
is a subsequence in A that does not overlap with SD (non-overlapping sub-
sequences), S′ in A does not overlap with S (non-overlapping subsequences),
and d is the Euclidean distance between two subsequences of equal length.
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Typically, discord discovery techniques require the user to specify the length
of the discord. Two examples are given in Fig. 2.15, in which the most unusual
subsequences (O1 and O2) are shown.
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Fig. 2.15: Discord examples using jmotif package [1].

The simplest way of finding discords is using brute-force, which requires
a quadratic pairwise comparison. Even so, the process can be sped-up by
reordering the search using heuristics and pruning off some fruitless calcu-
lations with the HOT-SAX algorithm [134, 136, 135], which is based on the
SAX discrete representation.

Many variants of the HOT-SAX algorithm aim to reduce its time com-
plexity by enhancing both the heuristic reordering and the pruning for dis-
cord detection, which may be based on the Haar wavelet transformation and
augmented trie [137, 138], on bit representation clustering [139], on bounding
boxes [140], on clustering categorical data [141], and on the iSAX representa-
tion [142]. Additionally, in [143], not only is the HOT-SAX algorithm applied
in a streaming context using a sliding window but an incremental algorithm
has also been suggested to simplify this computation. The method proposed
by [141] is also based on this incremental algorithm.

Those discord discovery techniques require the user to prespecify the
length of the discord, which in many cases may not be known. Conse-
quently, [122] present two approaches to detect variable-length discords ap-
plying grammar-induction procedures in the time series discretized with SAX.
Since symbols that are rarely used in grammar rules are non-repetitive and
thus most likely to be unusual, subsequence outliers correspond to rare gram-
mar rules, which naturally vary in length. Given that the lengths of the subse-
quences vary, the Euclidean distance between them is calculated by shrinking
the longest subsequence with the Piecewise Aggregate Approximation (PAA)
[144] to obtain subsequences of the same length.

The abovementioned discord detection techniques are limited to finding
the most unusual subsequence within a time series. However, since they do
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not have a reference of normality or a threshold, they cannot specify whether it
is indeed an outlier or not. Therefore, this decision must be made by the user.
Conversely, the other categories in Fig. 2.14 consider a criterium of normality
and contain specific rules to decide whether or not the identified subsequences
are outliers.

For example, dissimilarity-based methods are based on the direct compari-
son of subsequences or their representations, using a reference of normality. In
this category, the reference of normality, as well as the representations used to
describe the subsequences, vary widely, in contrast to the dissimilarity-based
techniques analyzed in Section 2.3.2.2. Then, for a predefined threshold τ ,
subsequence outliers are those that are dissimilar to normal subsequences;
that is,

s(S, Ŝ) > τ (2.7)

where S is the subsequence being analyzed or its representation, Ŝ is the ex-
pected value of S obtained based on the reference of normality, and s measures
the dissimilarity between two subsequences. Typically, S is of fixed-length,
non-periodic, and extracted via a sliding window. Some dissimilarity-based
approaches are described below ordered based on the considered reference of
normality (see Fig. 2.16), which will be used to obtain the expected value Ŝ.

  reference 
of normality

(a) Same time series.

  reference 
of normality

(b) External time series.

  reference 
of normality

(c) Previous subsequence.

Fig. 2.16: Reference of normality used by dissimilarity-based approaches.
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A. Same time series

The most straightforward approach is to consider the same time series object
of the analysis as the reference of normality (Fig. 2.16a). Clustering tech-
niques commonly use this reference of normality to create clusters by group-
ing subsequences that are similar to each other and by separating dissimilar
subsequences into different clusters (see Fig. 2.17). Then, Ŝ in equation (2.7)
can be defined by the centroid or center of the cluster to which S belongs.
For example, [125] and [126] cluster discretized subsequences of the same
length and flag subsequences that are far from the nearest centroid (Ŝ) as
outliers. In this case, the distance used is the Euclidean norm of three specific
distances between the discretized subsequences. Alternatively, [145] employ
Fuzzy C-Means (FCM) clustering on the raw data, allowing each subsequence
to belong to more than one cluster. In particular, the authors use the Eu-
clidean distance in (2.7). Note that these two clustering approaches are not
applied to streaming time series in the original papers but could be extended
using stream clustering algorithms [146].

Fig. 2.17: Clustering of the subsequences in a univariate time series. Cluster
centroids are highlighted, and C1 and C2 contain subsequence outliers.

As opposed to the clustering methods that detect fixed-length subsequence
outliers, [123] propose dynamic clustering to identify variable-length outliers
in a streaming context. The method works directly with raw data and assumes
that the observations arrive in fixed-length batches (Bi is the ith batch). Given
U initial batches, grammar-induction is used to find a rule for dividing the in-
coming batches of data into M non-overlapping variable-length subsequences;
that is, Bi = Si1 ∪ Si2 ∪ ... ∪ SiM (all batches are split in the same points).
Clustering is then applied to the set of subsequences S1j , S2j , ..., SUj for each
j separately. A new incoming subsequence is flagged as an outlier using dy-
namic clustering and observing when it is either far from its closest cluster
centroid or belongs to a sparsely populated cluster.

There are other techniques besides clustering that also use the same time
series as the reference of normality. For instance, [132] use the same time series
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to represent each subsequence with a value that indicates how dissimilar it is
with the rest. To this end, a Markov chain random walk model is applied in a
graph where each node is a subsequence and each edge the pairwise similarity
value between the nodes [147]. These pairwise similarity values are computed
based on the Piecewise Aggregate Pattern Representation (PAPR), which is
a matrix representation that captures the statistical information covered in
the subsequence.

B. External time series

The methods that rely on an external time series as a reference of normality
assume that it has been generated by the same underlying process but with
no outliers. For example, [131] use an external time series to find a set of
exemplars that summarizes all of its subsequences within it and which detects
outliers as those that are far from their nearest exemplar (Ŝ). In this case,
subsequences are represented by a feature vector of two components that
captures both the shape and the stochastic variations of the subsequences
in a time series, using smoothing and some statistics (e.g., the mean and
the standard deviation). The authors use a weighted Euclidean distance in
equation (2.7), taking into account the components of both a subsequence
and its nearest exemplar.

In this category, we have also included techniques that use past non-outlier
subsequences as the reference of normality. Even if these subsequences belong
to the same time series, this set is considered as an external set where outliers
are not detected, unlike the previous category. For instance, [130] collect the
most relevant subsequences within a series of past subsequences in a dictio-
nary. Subsequence outliers are those that cannot be accurately approximated
by a linear combination of some subsequences of the dictionary (Ŝ), resulting
in a large error in equation (2.7) using the Euclidean distance [148, 149].

C. Previous subsequence

Some techniques only use the previous adjacent non-overlapping window to
the subsequence being analyzed as the reference of normality, which means
that they have a much more local perspective than the others. [127] and [128]
use this reference of normality to obtain Ŝ. Specifically, the authors repre-
sent each subsequence by a bitmap, a matrix in which each cell represents
the frequency of a local region within a subsequence. A subsequence whose
local regions differ from the regions of its previous adjacent subsequence (Ŝ) is
flagged as an outlier, using the squared Euclidean distance between each pair
of elements of the bitmaps. In this case, bitmaps are incrementally updated
at each time step.

Returning to the general classification in Fig. 2.14, the third group of
methods belongs to the prediction model-based category, which assumes that
normality is reflected by a time series composed of past subsequences. These
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methods intend to build a prediction model that captures the dynamics of the
series using past data and thus make predictions of the future. Subsequences
that are far from those predictions are flagged as outliers because, although
they may resemble subsequences that have appeared previously, they do not
follow the dynamics captured by the model:

p+n−1∑
i=p

|yi − ŷi| > τ (2.8)

where S = yp, ..., yp+n−1 is the subsequence being analyzed, Ŝ is its predicted
value, and τ is the selected threshold. Predictions can be made in two dif-
ferent manners: point-wise or subsequence-wise. Models that use point-wise
prediction make predictions for as many points as the length of the subse-
quence iteratively. With this in mind, any method within Section 2.3.1 could
be used for this purpose. However, since each predicted value is used to predict
the subsequent point, the errors accumulate as predictions are made farther
into the future. In contrast, the subsequence-wise prediction calculates predic-
tions for whole subsequences at once (not iteratively). Within this category,
[91] use Convolutional Neural Networks (CNN) to predict whole subsequences
and detect outliers using a model built with past subsequences.

The next subsequence outlier detection methods are the frequency-based, as
shown in Fig. 2.14, which also use one of the reference of normality mentioned
in Fig. 2.16. A subsequence S is an outlier if it does not appear as frequently
as expected:

|f(S)− f̂(S)| > τ (2.9)

where f(S) is the frequency of occurrence of S, f̂(S) its expected frequency,
and τ a predefined threshold. Due to the difficulty of finding two exact real-
valued subsequences in a time series when counting the frequencies, these
methods all work with a discretized time series.

A paradigmatic example can be found in [124]. Given an external univari-
ate time series as reference, a subsequence extracted via a sliding window in
a new univariate time series is an outlier relative to that reference if the fre-
quency of its occurrence in the new series is very different to that expected.
[60] also propose an algorithm based on the frequency of the subsequences
but the aim is to detect periodic subsequence outliers together with their pe-
riodicity [150]. In this case, the reference of normality is the same time series.
The intuition behind this method is that a periodic subsequence outlier re-
peats less frequently in comparison to the more frequent subsequences of same
length.

As shown in Fig. 2.14, the last group of subsequence outlier detection
methods correspond to information theory based techniques, which are closely
related to the frequency-based methods. In particular, [133, 151] focus on
detecting periodic subsequence outliers in discretized univariate time series
using this theory. They assume that a subsequence that occurs frequently
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is less surprising and thus carries less information than a rare subsequence.
Therefore, the aim is to find infrequent but still repetitive subsequences with
rare symbols, using the same time series as the reference of normality; that
is, [133, 151] mark S as an outlier if

I(S)× f(S) > τ (2.10)

where I(S) ≥ 0 is the information carried by S and f(S) ≥ 1 is the number
of occurrences of S. I(S) is computed taking into account the number of
times the symbols within S are repeated through the series, so a discretized
subsequence S that has symbols that do not commonly appear in the time
series has a large I(S). Conversely, if f(S) is large (S occurs frequently), then
the information I(S) will be lower, closer to 0.

To conclude, the techniques that detect subsequence outliers in univariate
time series can be divided into five categories according to the different ideas
on which they are based. These techniques usually consider a reference of
normality, which can be of three types, when detecting the outliers.

A summary of all of these methods is presented in Table 2.5. Most of them
detect non-periodic outliers of fixed-length, assuming the length is known in
advance, and use a discretized version of the time series to compare real-valued
subsequences effectively or to speed up the search process of outliers, this one
specifically in the discord discovery category. In contrast to the many methods
that discover point outliers, the analyzed methods for subsequences are not
iterative, and there are very few fully parametric methods. In addition, for all
of the authors, the outlier represents an event of interest, and they often use
the term discords to refer to the subsequence outliers.

2.4.2 Multivariate time series

This section presents some of the detection techniques that have been used in
the literature to detect subsequence outliers in multivariate time series data.
The nature of these methods can be either univariate (Section 2.4.2.1) or
multivariate (Section 2.4.2.2), and they can detect subsequence outliers that
affect either one variable (univariate outliers) or multiple variables, which are
all aligned (multivariate outliers).

2.4.2.1 Univariate detection techniques

Each variable of the multivariate time series can contain subsequence outliers
that are independent of other variables. The identification of those subse-
quences may be carried out by applying the univariate techniques discussed
in Section 2.4.1 to each time-dependent variable. In particular, [152, 131] ap-
ply the exemplar-based method to each variable of the multivariate input time
series, using an external time series as the reference of normality and with-
out considering the correlation that may exist between variables. Recall that
omitting this correlation can lead to a loss of information.
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Table 2.5: Summary of the characteristics of subsequence outlier detection
approaches in univariate time series.

Length Parametricity
Paper Technique Periodic

outliers F V
Discretization

P SP NP
Term

[133, 151] Inf. theory X X X X S
[124] Frequency 7 X X X S
[127] Similarity 7 X X X A

[128, 134, 136, 135] Discord 7 X X X D
[137] Discord 7 X X X D/A
[138] Discord 7 X X X D
[143] Discord 7 X X X D
[142] Discord 7 X X X D

[125, 126] Dissimilarity 7 X X X O/A
[139] Discord 7 X X X D
[145] Dissimilarity 7 X 7 X A
[140] Discord 7 X 7 X D/A
[60] Frequency X X X X O/S
[122] Discord 7 X X X D/A

[130, 149] Dissimilarity 7 X 7 X O/A
[131] Dissimilarity 7 X 7 X A
[132] Dissimilarity 7 X 7 X A
[141] Discord 7 X X X D/O/A
[91] Model 7 X 7 X D/O/A
[123] Dissimilarity 7 X X X A

F: Fixed; V: Variable // S: Surprise; D: Discord; O: Outlier; A: Anomaly // P: Paramteric;
SP: Semi-parametric; NP: Non-parametric.

Intending to simplify the multivariate task but without completely ignor-
ing the correlation between the variables, some methods reduce the dimen-
sionality of the input series before applying a univariate detection technique.
For example, [123] extend their method for univariate subsequences by ap-
plying clustering to a simplified series to detect variable-length subsequence
outliers. The simplified series is obtained by computing the distance to some
representative subsequences, which have been obtained by applying their uni-
variate technique to each of the variables independently (see Section 2.4.1).
Each new multivariate batch of data is then represented by a vector of dis-
tances, (d1, d2, ..., dl), where dj represents the Euclidean distance between the
jth variable-length subsequence of the new batch and its corresponding rep-
resentative subsequence. As with their univariate technique, the reference of
normality that is considered by this method is the same time series.

The technique proposed by [153] is also based on reducing the dimension-
ality of the time series and allows us to detect variable-length discords, while
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using the same time series as the reference of normality. This is based on
the fact that the most unusual subsequences tend to have local regions with
significantly different densities (points that are similar) in comparison to the
other subsequences in the series. Each point in the new built univariate time
series describes the density of a local region of the input multivariate time
series obtained by a sliding window. This series is also used to obtain the
variable-length subsequences. Discords are identified using the Euclidean and
Bhattacharyya distances simultaneously.

To conclude, Table 2.6 provides a summary of all these univariate tech-
niques together with their characteristics. Most of the discussed techniques
reduce the dimensionality of the multivariate time series before employing
a univariate detection technique to detect subsequence outliers. If the uni-
variate technique is applied to each variable, then the detected subsequence
outliers will affect a single variable. Otherwise, if the technique is employed
in a reduced time series, then the outliers commonly affect multiple variables
because the new series contains multivariate information. It should be noted
that although [123] identify multivariate batch outliers, the variable-length
subsequence outliers that are then identified within those batches affect a
single variable. None of them detects periodic subsequence outliers nor are
any of them fully parametric. Subsequence outliers are mainly referred to as
anomalies.

Table 2.6: Summary of the univariate techniques used in multivariate time
series for subsequence outlier detecion.

Length Parametricity
Paper Technique

Fixed Variable
Subsequence Discretization

P SP NP
Term

[152] Dissimilarity X Univariate 7 X A
[123] Dim.red. X Univariate X X A
[153] Dim.red. X Multivariate 7 X A/D
A: Anomaly; D: Discord // P: Parametric; SP: Semi-parametric; NP: Non-parametric

2.4.2.2 Multivariate detection techniques

The techniques for multivariate subsequence outlier detection that will be
reviewed in this section deal with multiple time-dependent variables simulta-
neously and typically detect temporally aligned outliers that affect multiple
variables. As shown in Fig. 2.18, these techniques are divided into two main
groups. However, the philosophy behind some of them is repeated because
they are an extension of simpler techniques introduced in previous sections.

The first type of method to be discussed is the model-based method. As
mentioned in previous sections, the aim is to detect the subsequences that are
far from their expected value, which can be obtained using an estimation or a
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Subsequence	outliers

Model-based Dissimilarity-based

Estimation Prediction

Fig. 2.18: Types of subsequence outlier detection methods in multivariate time
series.

prediction model. A subsequence S = yp, ...,yp+n−1 of length n is an outlier
for a predefined threshold τ if

p+n−1∑
i=p

||yi − ŷi|| > τ. (2.11)

Within the techniques based on estimation models, the approach proposed
by [152] intends to find pairs of related variables using a set of nonlinear
functions. These functions are learned using an external multivariate time
series as the reference of normality (see Fig. 2.16). Then, a subsequence within
a variable of a new time series is estimated using the learned functions and
data from another variable of the new series (past and future observations with
respect to yt). In contrast, the CNN method described by [91] is a prediction
model-based technique, which is a direct extension of the method explained in
Section 2.4.1 to detect time-aligned outliers that affect multiple variables.

The second group corresponds to the dissimilarity-based techniques, a gen-
eralization of equation (2.7) that finds unusual subsequences in a multivari-
ate time series based on the pairwise dissimilarity calculation between subse-
quences or their representations. Unlike in the univariate subsequence outlier
detection, this type of technique has barely been used in multivariate series.
In the only example, [119, 120] extend their method for point outliers (Sec-
tion 2.3.2.2) to obtain how dissimilar is a node representing a fixed-length
subsequence with the others. This dissimilarity value is obtained by apply-
ing a random walk model in the graph, and the computation of the pairwise
similarity between those nodes is also based on the RBF.

To summarize this section, the multivariate techniques that detect subse-
quence outliers in multivariate time series can be grouped into two different
categories according to the intuition behind the methods. A summary of these
techniques is given in Table 2.7. In all of the cases, the subsequence outliers
represent an event of interest and are denominated as anomalies. In addi-
tion, the techniques find non-periodic outliers of fixed-length without using a
discretization technique. Finally, the model-based techniques are parametric,
while the only dissimilarity-based method is non-parametric.
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Table 2.7: Summary of the multivariate techniques used in multivariate time
series for subsequence outlier detecion.

Paper Technique Subsequence Parametricity Term
[119, 120] Dissimilarity Multivariate Non-parametric Anomaly

[152] Estimation Univariate Parametric Anomaly
[91] Prediction Multivariate Parametric Anomaly / Outlier

2.5 Outlier time series

The analyzed task has so far been to identify point and subsequence outliers
within a time series, either univariate or multivariate. However, there are
some cases where it may also be interesting to find entire unusual variables in
a multivariate time series. This could lead, for example, to the identification
of malicious users or mail servers behaving unusually. Recall that outlier time
series can only be detected in multivariate time series and using a multivariate
detection technique.

Some of the key aspects presented for the subsequence outliers (see Fig.
2.13) can also appear when attempting to detect outlier time series. First,
each time-dependent variable in a multivariate time series can have a differ-
ent length. Second, representation methods such as discretization can also be
used to facilitate the comparisons between variables. In addition, all of the
outlier time series detection methods can theoretically be applied in a stream-
ing context using sliding windows. However, in contrast to subsequences, the
property of temporality is not necessarily considered by these methods.

This section will examine the techniques that detect outlier time series,
following the diagram given in Fig. 2.19.

Outlier	time	series

Dimensionality	reduction Dissimilarity-based

Fig. 2.19: Types of methods for detecting outlier time series in multivariate
time series.

The first type of technique to be discussed is based on dimensionality
reduction. As mentioned in the previous sections, the aim of these techniques
is to reduce the dimensionality of the input multivariate time series into a set
of uncorrelated variables. As shown in Fig. 2.20, [154] propose reducing the
dimensionality by extracting some representative statistical features from each
time series (e.g., mean, and first order of autocorrelation) and then applying
PCA. Outlier time series are detected by their deviation from the highest
density region in the PCA space, which is defined by the first two principal
components. [155] use clustering in that PCA space to detect outlier time
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series by measuring the deviation between the cluster centroids and the points
that represent the time series.

Fig. 2.20: Outlier time series detection in a multivariate time series composed
of 50 variables using PCA in the extracted features with the anomalous pack-
age in R.

Instead of applying a detection technique in a lower space, original raw
data can also be used directly. Indeed, the dissimilarity-based techniques in
Fig. 2.19 directly analyze the pairwise dissimilarity between the time series.
The most common approach within this category is clustering. The intuition
is similar to that depicted in Fig. 2.17, but whole time series are considered
instead of subsequences. In this case, the reference of normality is the same
multivariate time series.

Within the dissimilarity-based techniques that use clustering, [156] pro-
pose applying Phased k-means in unsynchronized periodic multivariate time
series to obtain a set of representative time series centroids. This technique is a
modification of k-means so that the phase of each time-dependent variable to
its closest centroid is adjusted prior to dissimilarity calculation at every iter-
ation. The outliers are identified using equation (2.7) and cross-correlation as
the similarity measure between time series. [157] also use clustering but, in this
case, based on the Dynamic Time Warping (DTW) measure, which allows the
series to be warped and shifted in time and have different lengths. The method
optimizes an objective function by both minimizing the within-cluster dis-
tances using the DTW measure and maximizing the negative entropy of some
weights that are assigned to each time series. Time series that increase the
within-cluster distances to their closest cluster have smaller weights. Specifi-
cally, time series with small weights are considered to be outliers. A different
approach that also relies on clustering time series has been proposed by [158].
This method uses agglomerative hierarchical clustering with single linkage
and identifies time series outliers based on four criteria where basically the
size of the cluster is considered. Clustering is conducted using a time series
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similarity measure that has the same underlying idea as the Jaccard similarity
coefficient.

Other dissimilarity-based techniques are based on shapelets, which are
representative time series subsequences [159]. [160] use them to describe the
shape of normal variables and detect outlier time-dependent variables in a
multivariate time series. The shapelets are learned using an external time
series as the reference of normality. The idea is to measure the dissimilarity
that each learned shapelet has with a variable using the Euclidean distance.
Subsequences of outlier variables are dissimilar to the learned shapelets.

To conclude, outlier time series can be grouped into two categories based
on the intuition behind the detection method. A summary of these techniques
is provided in Table 2.8. The works reviewed in this section are non-parametric
and non-iterative techniques that intend to find events of interest by directly
using raw data and considering temporality. Unlike the subsequences, the
length of the series is always specified. The approach proposed by [157] is the
only one that can deal with time series with variables of different lengths.

Table 2.8: Summary of the characteristics of outlier time series detection in
multivariate time series.

Paper Technique Variable-length Term
[156] Dissimilarity-based 7 Anomaly / Outlier
[154] Dimensionality reduction 7 Anomaly / Outlier / Unusual
[157] Dissimilarity-based X Outlier
[160] Dissimilarity-based 7 Anomaly
[158] Dissimilarity-based 7 Outlier

2.6 Publicly available software

In this section, the publicly available software for outlier detection in time
series data according to the techniques mentioned in previous sections is pro-
vided. A summary of this software can be found in Table 2.9, in which the
technical descriptions (Related research column) and the link to access the
code (Code column) are presented. The table is organized based on the out-
lier type the technique detects.

2.7 Concluding remarks and future work

In this chapter, an organized overview of outlier detection techniques in time
series data has been proposed. Moreover, a taxonomy that categorizes these
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Table 2.9: Summary of the publicly available software in chronological order.

Name Language Related research Code
Point outliers
tsoutliers R [109] https://cran.r-project.org/web/packages/

tsoutliers
spirit Matlab [107] http://www.cs.cmu.edu/afs/cs/project/

spirit-1/www
STORM Java [101, 102] https://github.com/Waikato/moa/tree/

master/moa/src/main/java/moa/clusterers/
outliers/Angiulli

SCREEN Java [84] https://github.com/zaqthss/sigmod15-screen
EGADS Java [155] https://github.com/yahoo/egads
SCR Java [85] https://github.com/zaqthss/sigmod16-scr
libspot C++ [61] https://github.com/asiffer/libspot
AnomalyDetection R [87] https://github.com/twitter/

AnomalyDetection
Nupic Python [100] https://github.com/numenta/nupic
telemanon Python [106] https://github.com/khundman/telemanom
OmniAnomaly Python [115] https://github.com/smallcowbaby/

OmniAnomaly
OTSAD R [83, 103, 161] https://cran.r-project.org/package=otsad
envoutliers R [81, 82] https://cran.r-project.org/web/packages/

envoutliers/index.html
Subsequence outliers
tsbitmaps Python [127, 128] https://github.com/binhmop/tsbitmaps
jmotif R [134, 136] https://github.com/jMotif/jmotif-R

[122, 162]
jmotif Java [134, 136] https://github.com/jMotif/SAX

[122]
saxpy Python [134, 136] https://pypi.org/project/saxpy

https://github.com/seninp/saxpy
EBAD C [131] http://www.merl.com/research/license
GrammarViz Java [122, 162] https://github.com/GrammarViz2/

grammarviz2 src
Outlier time series
anomalous R [154] http://github.com/robjhyndman/

anomalous-acm

methods depending on the input data type, the outlier type, and the nature
of the detection method has been included. This section first discusses some
general remarks about the analyzed techniques, and it then introduces the
conclusions regarding the axes of the taxonomy.

As seen in previous sections, a broad terminology has been used to refer to
the same concept: the outlier in unlabeled time series data. These terms are
usually related to the objective of the detection such that outlier is mostly
used when detecting unwanted data, whereas anomaly has been used when
detecting events of interest. In most of the analyzed works, the concept outlier
represents an event of interest; that is, the authors mainly focus on extracting
the outlier information considered as useful data rather than on cleaning the
useless or unwanted data to improve the data quality for further analysis.
Thus, it might be interesting to extend this type of methods by developing
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techniques that improve the data quality, mainly of multivariate time series
data.

Despite the variety in terminology and purpose, all of the methods that
we have reviewed are based on the same idea: detecting those parts in a time
series (point, subsequence, or whole time series) that significantly differ from
their expected value. Each author uses different means to obtain this expected
value and compute how far it is from the actual observation to decide whether
or not it is an outlier. Although some techniques obtain the expected value
based on an external or reference set, caution must be taken because it can
itself contain outliers and distort the detection. In fact, they are in the limit
of the unsupervised framework because even if the time series has no labels,
it is usually assumed that all the external or reference data are non-outliers.

Once the expected value is obtained, a threshold is often needed to de-
cide whether or not we have found an outlier. Given that the results directly
vary depending on that selection and few techniques give an automatic way
to determine the threshold [61, 111, 106, 115], an interesting future line of
research would be to deepen on the dynamic and adaptive selection of thresh-
olds in both univariate and multivariate time series. Indeed, to the best of our
knowledge, there are no methods that include this type of threshold in the
subsequence and entire time series outlier analysis.

As a final general remark and before proceeding with the conclusions re-
garding the axes of the taxonomy, the time elapsed from one observation to
the subsequent is also an important aspect to consider. The vast majority of
methods assume that the time series are regularly-sampled. However, real life
often does not provide this type of data, and converting it into such type is not
always the best option. Therefore, outlier detection in an irregularly-sampled
time series is an interesting future direction line.

Having provided some general conclusions, we will now focus on each of
the axes. Starting from the first axis, the most remarkable conclusion is that
even if most of the analysis has been performed on univariate input time series
data, in recent years special emphasis has been placed on multivariate time
series.

For the second axis, point outlier detection is the most researched problem
due to its simplicity in comparison to the rest. Within this category, it is
remarkable that some techniques do not consider the temporal information at
all. This can lead to not detecting outliers that violate the temporal correlation
of the series. Thus, possible future work may include temporal information to
techniques that do not consider it (e.g., [119, 120, 61]). Additionally, even if
theoretically many techniques can determine if a new data point is an outlier
upon arrival, no study has been conducted to analyze whether these methods
can really give an immediate response in real time or not. Consequently, an
in-depth investigation could be done to analyze the computational cost of
outlier detection techniques and to determine whether these methods can
be practically used in real-time scenarios. There is also a chance for further
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incremental algorithm developments to ensure quick responses that adapt to
the evolution of the stream.

Subsequence outliers and outlier time series have been handled less fre-
quently. Most of the subsequence outlier detection methods find non-periodic
and fixed-length outliers. Indeed, there are no techniques that identify peri-
odic subsequence outliers in multivariate time series. This can be a promising
area for further investigation, especially in fields such as cybersecurity to de-
tect periodic network attacks, or in credit-fraud detection to detect periodic
thefts. Also, within techniques that detect subsequence outliers, care must
be taken with the way in which clustering is performed because it has been
shown that clustering all of the subsequences extracted from a time series by
a sliding window produces meaningless results [163].

Not much work has been carried out on the detection of outlier time series.
Other research directions in this line include using different distance measures
and creating more effective methods for dealing with time-dependent variables
of different lengths.

Within the dissimilarity-based techniques that detect either subsequence
or whole time series outliers, the dissimilarity measure that is used influences
the results obtained. The Euclidean distance accounts for the majority of all
published work mentioned in this review due to its computation efficiency.
However, other measures, such as DTW, could lead to an improvement in
the detection of outliers because they include temporal information. An in-
teresting research direction would be to observe how different dissimilarity
measures influence the outlier detection algorithms in time series data to see
if any of them improve the results of the Euclidean distance. In particular,
meta-learning approaches such as that proposed by [38] could be used as they
provide an automatic selection of the most suitable distance measure.

In addition to these types of outliers, there could be other types of un-
explored outliers. For example, it may be interesting to detect outliers that
propagate over time within different variables of a multivariate time series;
that is, an outlier may begin in a unique variable and then propagate through
other variables in later time steps. As far as we know, this problem has not
been addressed yet in the literature, or at least it has not been done under
the name of outlier/anomaly detection.

Finally, with regard to the nature of the detection method, it should be
noted that some univariate techniques (e.g., the density-based) can easily be
generalized to the multivariate case by considering the distance between vec-
tors instead of points. However, complex correlations between the variables in
a multivariate time series are not taken into account. This may lead us to not
identify observations that look normal in each variable individually but which
violate the correlation structure between variables. In addition, when apply-
ing a univariate technique separately to each variable in a multivariate time
series, the correlation dependencies are ignored. This can be computationally
expensive when the number of variables is large. Hence, an extension of the
univariate detection techniques applied to multivariate time series should be
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studied (e.g., [99, 106]) so that the correlations between variables representing
complex system behaviors are included.





3

Water leak detection using self-supervised time
series classification

As mentioned in Chapter 2, the detection of whole time series outliers/anomalies
is a task that has almost not been treated in the literature. In this chapter,
we address this problem for the purpose of identifying water leaks.

3.1 Introduction

Water leaks are of special interest for water distribution companies, not only
because of the economic loss they entail but also because of the environmental
consequences they generate. A water leak in a water distribution network
consists of an accidental escape of water through a component of the network
(e.g., a hole or a crack). Consequently, in order to continue to supply all
customers with enough water, the flow of the water in the network needs to
be increased until the leak is fixed.

An example of a water leak on a water distribution network in Yorkshire1

is depicted in Fig. 3.1, where the shaded area indicates the day the leak was
repaired. Indeed, a remarkable increase in the flow can be appreciated in the
data between the 20th and 23rd of November. In particular, leaks are usually
more noticeable during the night (from 1 a.m. to 5 a.m., highlighted in orange
in Fig. 3.1), when customer demand is low [164].

Until recently, leakage management procedures within the water industry
tended to be predominantly resource-intensive manual processes [165]. These
methods are also known as hardware-based methods [66, 166] and are based
on using specialized hardware equipment, such as leak noise correlators, leak
noise loggers, and gas injection. Even though these methods are very accurate,
they are very expensive and not practical on a day-to-day basis.

Technological advances in recent years have brought major breakthroughs
in data collection, enabling a large amount of data to be gathered. This has led
to the development of new automatic and effective data-driven leak detection

1 https://datamillnorth.org/dataset/yorkshire-water-leakage-dma-15-minute-data

https://datamillnorth.org/dataset/yorkshire-water-leakage-dma-15-minute-data
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Fig. 3.1: Example of the increase that a leak has caused in the water flow.

techniques, which have been denominated software-based methods [66, 166,
167] and have become increasingly popular in recent years. These techniques
are typically applied to hydrological data such as water flow or pressure data,
although some methods use multiple variables simultaneously [168, 169, 170,
171, 172], or even include other types of data (e.g., data collected by acoustic
emission sensors [67]).

Leak detection is not a trivial task, however, and software-based techniques
also have their limitations. To begin with, these techniques rely on data, and
so they will only be able to detect the leaks that are reflected in the data.
Thus, they will usually not detect structural leaks or leaks that have existed
from periods prior to the data collection. Typically, other alternatives, such
as periodic inspections on the part of the company or those resulting from
external customer calls, are needed to detect these leaks.

Additionally, when using hydrological data, leaks can often be mistaken
for sporadic large consumption (e.g., filling pools in summer or occasional
high consumption in industry) because both involve an unusual increase in
the flow in the network. However, the high consumption of consumers tends
to be sporadic, whereas leakage continues over time and causes a permanent
increase in the flow until it is fixed.

In the literature, some of the software-based methods proposed for leak
identification are based on supervised classification [169, 171, 67, 173], where
the idea is to learn a classifier that discriminates between leakage and non-
leakage periods of time.

The main drawback of these techniques is that leaks must be identified and
labeled to form the training set. However, obtaining a sufficiently large number
of leakage samples is complicated in real circumstances because leaks are
typically not very common. Moreover, leak identification is normally carried
out using reports from the water company. These reports do not always include
all the existing leaks and are frequently diffuse and uncertain regarding the
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recorded leaks. All this largely complicates the learning of reliable supervised
classification models for leak detection.

As an alternative to the supervised classification techniques, some authors
use unsupervised software-based methods, which do not need labels at training
time. These methods usually assume that the training set is only composed
of normal (no leakage) data.

The most widespread unsupervised method relies on the analysis of the
measured Minimum Night Flow (MNF), which is the lowest flow supplied to an
area during the night (e.g., 00:00–05:00 [165, 169] or 02:00–04:00 [164, 173]).
A leak alarm is generated when the MNF exceeds a threshold typically set
by water utilities. Although this method uses only nightly data when the
customer demand is usually low, it analyzes single points, and so leaks can
still be confused with occasional high night consumption or sensor failures.
In this context, despite the simplicity and intuitiveness of this method, it
provides many false leak alarms, which involves additional effort in the search
for leaks that do not exist. Additionally, false alarms burden workers in water
companies and there is a risk that workers will start ignoring alerts. Therefore,
since leaks rarely occur in water distribution networks, it is desirable that the
detection methods maintain a small number of false alarms even at the expense
of reducing the number of detected leaks to within an acceptable range [167].

More sophisticated unsupervised methods to detect leaks rely on fitting a
prediction model to normal data to predict values over time and identify the
observations that significantly deviate from their predicted values. Even if the
data have an evident temporal nature, most methods do not take this aspect
into account or partially consider it using time windows [165, 168, 172, 174,
175, 176, 177, 178].

The prediction-based techniques proposed in the literature typically make
one-step-ahead (point) predictions [170, 172, 175, 176, 177, 178, 179, 180]
rather than predicting full time windows (e.g., one-day-ahead prediction)
[165, 168, 174], and use threshold values to make comparisons and iden-
tify large deviations from normality. In particular, some of these methods
build a model for each time step, thus generating a large number of models
[170, 175, 179, 180]. Also, since point analysis produces false alarms more
easily due to sudden high water usage or sensor faults, some prediction-based
techniques analyze consecutive residuals [175, 176, 177, 180] to avoid confusing
leakage with occasional high consumption, or apply a denoising approach be-
fore building the model to remove the noise caused by sensor faults [176, 177].

Less commonly, other unsupervised techniques which are not based on
prediction models have also been proposed. Some of them identify leakage
days by projecting the flow data into a space of lower dimension to detect
the projections that lie outside control limits [181]. Others attempt to learn
the normal behavior of flow subsequences using one-class classification [178].
Similarity-based techniques have also been used to identify flow points [182]
or subsequences [183, 184, 185] with low similarity with respect to a reference
of normality. These types of techniques do not usually consider the temporal
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correlation of the observations beyond the inclusion of temporal features (e.g.,
the hour of the day) or the use of features extracted within time windows [178,
181, 183, 184]. Moreover, as with prediction-based techniques, some of these
methods also build a model for every time step [182, 185], thus generating a
large number of models.

In this chapter, we propose a novel water leak detection technique based
on the self-supervised classification of time series, which, to the best of our
knowledge, has not been used in this context before. Self-supervised learn-
ing refers to learning methods that exploit the structure of unlabeled data to
provide appropriate supervision signals and thus define a new problem that
can be solved from a supervised perspective. Although this general learning
approach has been previously used in the literature, mainly in the field of
computer vision, the methodology proposed in this chapter is the first to ad-
dress the general problem of anomaly detection and, in particular, the problem
of leak detection, based on the philosophy of self-supervision and using time
series data.

The aim is to detect nights with water leakage by learning a model of
the normal behavior using only flow data. This approach does not require
a statistical or hydraulic model to be fitted to the data, nor does it require
leakage labels in the training phase. Moreover, the proposed method considers
the contextual information by analyzing full time series rather than point
observations, and consequently, it does not require a model for every time
step as other methods in the literature do. Additionally, the temporal nature
of the data is taken into account by using specific classifiers for time series,
instead of using time windows or temporal features, as most of the methods
in the literature do. Consequently, the proposed method succeeds in detecting
a high number of leaks while providing a low number of false alarms.

The rest of the chapter is organized as follows. In Section 2, the proposed
methodology is described. Section 3 provides the experimental results. Finally,
in Section 4, the conclusions and future research lines are outlined.

3.2 Methodology

The proposed method, Self-Supervised Leak Detector (SSLD), aims to detect
water leaks by learning the normal behavior of the water flow in a water
distribution network. Self-supervised learning involves training a model that
does not require external class labels and instead uses labels that have been
assigned to artificially generated data. This is especially useful in problems
where there are very few or no available labels, as is the case of water leak
detection.

In this chapter, we use the self-supervised approach within the anomaly
detection framework [64] (see Fig. 3.2). The idea is to define a self-labeled
training dataset to learn a classifier that will be used to detect the anomalies.
The self-labeled dataset is built by applying a set of different transformations
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to the initial training instances, which are supposed to represent the normal-
ity, and by assigning a label, usually denominated pseudo-label, to the data
instance obtained from each transformation. This self-labeled dataset is then
used to learn a classifier that discriminates between the different transforma-
tions applied. Finally, the learned classifier will be used to determine whether
new samples are anomalous based on a decision rule.

Training
database

Apply
transformations

Label
assignment

Self-labeled
training set

Learning
algorithm

ClassifierApply transformations

Label assignment

Anomaly detection module

Predicted
labels

New 
 sample 

Transformed
samples

Fig. 3.2: Illustration of the self-supervised approach for anomaly detection.

The rationale behind this approach is that learning to distinguish between
the different transformations applied to the data also helps to learn features
that are likely to be unique to normal samples: since these features do not
appear in the same way in anomalous samples, the classifier will fail to dis-
criminate between the applied transformations. Indeed, the type of data at
hand and the characteristics of the anomalies to be detected will be determi-
nant when defining the transformations in this self-supervised framework. For
example, in the context of images, self-supervision has recently been used to
identify abnormal images [186, 187, 188] by applying transformations, such as
geometrical transformations, to normal images.

3.2.1 Generation of the self-labeled dataset

In the first step of our self-supervised framework, a self-labeled training set
is generated. To do this, for each univariate time series of nightly flow data
Y = {yt}Tt=1 of length T in the initial training set, K time series are artificially
generated, each one with an associated pseudo-label. These artificial time
series are obtained by applying K different linear transformations (gi where
i ∈ {1, ...,K}), which are defined by:

gi : RT → RT

Y 7→ (p1 + ...+ pi)Y



60 3 Water leak detection using self-supervised time series classification

where p1 = 1, p2, ..., pK ∈ R+, and gi(Y ) = Yi = {(p1 + ... + pi)yt}Tt=1. Note
that the first pseudo-label corresponds to the original non-transformed time
series. An example of this procedure is shown in Fig. 3.3, where it can be
seen that the different linear transformations increase the night water flow at
different levels.
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Fig. 3.3: Example of the generation of the self-labeled dataset, where K = 4,
p1 = 1, p2 = 0.6, p3 = 1.1, p4 = 0.9.

The premise behind applying these linear transformations is that water
leaks are characterized by a flow increase. Consequently, a night with a leak
will resemble a normal night with an increase in flow. As such, since it is
assumed that the classifier will be learned using only normal flow data, leak
nights are expected to be assigned with pseudo-labels from 2 to K, depend-
ing on the severity of the leak, instead of being labeled with pseudo-label 1,
which indicates that no transformation has been applied. Along the same line,
classification errors will also be committed with the transformed time series
obtained from a night with a leak because it is expected that the classifier will
incorrectly assign higher pseudo-labels, which represent higher levels of flow.

Once the transformations have been defined, the training set that will be
used to learn the self-supervised classifier has to be generated, as shown in
Fig. 3.2. Let D = {Y 1, ..., Y N} be the initial training dataset consisting of N
normal time series (with no leakage). Then, T = {(Y1

1, c1
1 = 1), ..., (Y1

K , c1
K =

K), ..., (YT
1 , cT1 = 1), ..., (YT

K , cTK = K)} is the generated set of T × K time
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series with their associated class labels, where Yi
j is the jth transformed time

series of Y i and j is its associated label indicating the applied transformation
(see Fig. 3.3). T is the training set that will be used to learn the classifier.

It should be noted that, in practice, it is difficult to ensure that the ini-
tial training set is only composed of normal flow data. In principle, we can
discard identified leaks from this set if the information is available, but there
may remain leaks that have gone unnoticed. However, leakage occurs very
infrequently, so the training set will be predominated by non-leakage days.

3.2.2 Construction of the classifier

The aim of this step is to train a classifier F that learns to discriminate
between the K linear transformations applied in the previous step. In other
words, the purpose is to learn the mapping between each input time series
and its corresponding label. In order to consider the temporal nature of the
data at hand, and contrary to other leak detection methods in the literature,
in this chapter we adopt a time series classification approach. This allows
the contextual information to be considered rather than single observations,
which is particularly helpful when detecting leaks because they remain over
time.

Within the existing time series classifiers, we have chosen the Random
Interval Spectral Ensemble (RISE) [32] due to the accuracy shown in other
problems in the literature and also due to its robustness to noise, which makes
it especially useful for the problem of leak detection in water distribution
networks given that flow data are particularly noisy. RISE is an ensemble time
series classification algorithm that consists of building a set of trees, each of
which focuses on a randomly chosen time interval (subsequence) of the data.
In particular, this method extracts spectral features over each random interval
to learn the time series forest. It should be noted that our methodology is not
limited to the RISE classifier, and thus, other classifiers could also be used.

3.2.3 Deployment of the model for anomaly (leak) detection

As shown in Fig. 3.2, to apply the learned classifier to a new time series Y new,
first, theK transformations have to be applied: {Y new1 = g1(Y new), ..., Y newK =
gK(Y new)}. Then, the classifier is used to predict the label of each generated
time series ({Y new1

F−→ ĉnew1 , ..., Y newK
F−→ ĉnewK }).

Leaks are characterized by higher levels of flow, and so, it is expected
that their pseudo-labels will not be correctly predicted by the self-supervised
classifier. However, the severity and typology of the leak could have an in-
fluence on the output of the classifier. For example, small leaks could result
in fewer misclassified pseudo-labels or different misclassification patterns in
comparison to very severe leaks. Similarly, nights with no leaks could also
present a few misclassified labels due to errors in the classifier or variations
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in the normal patterns. In this context, a decision rule that will determine
whether a night has suffered a leak must be defined based on the outputs of
the self-supervised classifier in all its transformations.

In our method, the new time series Y new is flagged as an anomaly if the
classifier assigns pseudo-label K to at least two of the transformed time series
of Y new. That is,

|{i | ĉnewi = K, i ∈ {1, ...,K}}| ≥ 2. (3.1)

Note that the Kth transformation provides the highest increase in the flow
data. Since leaks represent an increase in the flow, we expect the predictions
of the labels to be displaced upwards, so the classifier should assign the largest
pseudo-label to at least two of the generated time series.

3.3 Experimentation

The evaluation of the proposed method has been performed in both a private
(scenario A) and a public (scenario B) dataset of different water distribution
networks. The data used in the experiments are presented in Section 3.3.1, the
implementation details and parameter selection of the proposed methodology
in Section 3.3.2, the evaluation framework and metrics in Section 3.3.3, the
methods used to compare the results of our method in Section 3.3.4, and
finally the experimental results are outlined in Section 3.3.5.

3.3.1 Data

The available datasets in both scenarios consist of water flow measurements
recorded over time at a certain granularity and divided into different zones
of a particular locality. From all these data, the time series that will be used
as input for the model consists of the flow measurements collected during the
night period from 1 a.m. to 5 a.m., when water consumption is usually the
lowest.

In addition to the flow measurements, both scenarios also contain infor-
mation about the leaks, indicating the date on which a work report associated
with the repair of each leak has been generated. Some of the recorded leaks
refer to structural leaks or those that are not reflected in the data. Thus,
from all the leaks, we only focus on those that correspond to the detectable
leaks or, in other words, the leaks that generate a noticeable increase in the
flow data. In particular, we will only consider those leaks that make the MNF
higher than usual. In this context, and following the recommendations of the
experts, the data used to calculate the MNF are collected between 2 a.m. and
5 a.m.

To sum up, each zone within each scenario has both an associated time
series database of nightly flow data and the work reports of the leaks. Since
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the flow behavior for each type of day is different, we divide the time series
database into seven smaller databases, one for each day of the week. Further-
more, as shown in Fig. 3.4, each of these databases is divided into two new
sets: the training dataset, which will be used to train the models, and the
leakage dataset, which will be used to validate the models. To build the leak-
age dataset, the nights with a leakage record are separated from those with
a non-leakage record. Since not all the leakage records represent detectable
leaks, a predefined threshold value is used to select the nights on which the
MNF exceeds it. These nights form the leakage dataset.

Regarding the training dataset, it should be composed only of normal
days because our approach aims to learn the normal behavior of the water
flow. However, even after separating the nights with a leakage record from
the training dataset, there still might be unusual days that may misguide the
classifier and should be discarded. Some of these unusual days are related to
the leakage records: since a leakage report refers to the date when the leak is
fixed, and not when it appeared, we also remove the three days prior to the
leakage report, in accordance with expert guidance. Holidays might also show
a different behavior, and thus, they have also been excluded from the training
sets. The nights after removing both those unusual days and the nights with
a leakage record form the final training dataset.

Threshold
Leakage reports

Time series dataset Leakage dataset

Training dataset

Remove other
unusual daysNo leakage 

reports

Fig. 3.4: The training and leakage datasets considered in the experimentation.

3.3.1.1 Scenario A

The dataset in this scenario consists of water flow measurements collected
every 5 minutes over three years (2017–2019) in a private water distribution
network located in Azkoitia, a town in the Basque Country. This network,
which is managed by Gipuzkoako Urak S.A.1, has five zones that measure the
flow in different areas of the town, with at least one detectable leakage record
in the study period. Each zone has very distinct flow patterns, and so we
apply the proposed method to each zone individually.

1 https://www.gipuzkoakour.eus/

https://www.gipuzkoakour.eus/
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As additional useful information, this dataset contains information about
the threshold value established by the water utility company, which is used
to raise alarms in the MNF approach and is based on the annual flow values
and other objectives set by the company (e.g., reducing the cost of the water
loss every year). Recall that this threshold is also used to select the detectable
leaks and thus define the leakage dataset.

Fig. 3.5a shows the number of days that are considered to be normal and
thus belong to each training set. Similarly, Fig. 3.5b presents the number of
reported leakage days used to test the models. Note the challenge of addressing
this as a supervised problem due to the small number of detectable leakage
records per training set.
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(b) Number of detectable leaks in each leakage dataset according to the provided
threshold value.

Fig. 3.5: Number of samples in the training and leakage sets in scenario A.

3.3.1.2 Scenario B

Yorkshire Water is a water supply and treatment utility company in England
that has released its data related to different domains, such as pollution, con-
sumption, and leakage. In this chapter, we use the leakage dataset1, which
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contains the records of the water flow of more than 2000 Distribution Man-
agement Areas (DMAs) organized in 20 regions, with a 15-minute granularity
for one year (April 2016–April 2017).

In contrast to scenario A, the water utility company does not explicitly
provide any threshold for the analysis of the MNF. Thus, we define this thresh-
old as a percentile value (80, 85, 90, and 95) of the MNF data of the training
sets.

Due to the high number of DMAs, a single region (called E1 in the original
database) has been chosen for the purpose of this chapter. Even if this region
is composed of 117 DMAs, we have specifically selected the DMAs where:

a) there are no “invalid” flow records1.
b) data are available for the whole year.
c) all flow records are non-negative.
d) there is at least one day with a detectable leakage record.

Note that the chosen threshold value will directly influence the number of
detectable leaks and thus the size of the leakage dataset. In particular, the
lower the threshold value, the greater the number of detectable leaks and the
more DMAs that will be analyzed.

Taking this into account, Table 3.1 shows the final number of DMAs to
be analyzed for the different threshold values. This table also describes the
training and leakage datasets for each percentile and type of day, presenting
the mean number of time series per DMA, together with the standard devia-
tion. As an example, 24 DMAs have been analyzed with the 80th percentile,
and on average, these DMAs have 43.83 series in the training set used for
Mondays and 0.67 series in the leakage set used for the same type of day. As
the standard deviation is small, the actual number of elements in each DMA
is close to these average values.

For all types of day, the number of nights in the training sets is quite
uniform. Regarding the number of leaks, the DMAs contain very few leaks
per type of day, and, in total, between 2 and 3 detectable leaks on average.
Note that the percentiles 90 and 95 provide the same training datasets but
different leakage datasets.

1 The dataset contains an extra column called ‘Flow Validity Code’ that indicates
if the record is valid (‘V’), invalid (‘I’) or missing (‘M’).



66
3

W
ater

leak
detection

using
self-supervised

tim
e

series
classification

Table 3.1: Description of the training and leakage datasets for each threshold value. The mean number of samples per DMA
and day is shown, together with the standard deviation between parentheses.

AnalyzedPercentile DMAs Set Mon Tue Wed Thu Fri Sat Sun

80 24 Training 43.83 (2.43) 47.83 (2.37) 49.17 (1.79) 49.46 (1.98) 50.38 (2.14) 49.17 (1.99) 48.25 (1.89)
Leakage 0.67 (0.92) 0.42 (0.72) 0.54 (0.72) 0.50 (0.78) 0.29 (0.55) 0.33 (0.48) 0.25 (0.53)

85 23 Training 43.78 (2.47) 47.70 (2.32) 49.09 (1.78) 49.35 (1.94) 50.30 (2.16) 49.13 (2.03) 48.17 (1.90)
Leakage 0.61 (0.94) 0.35 (0.57) 0.57 (0.73) 0.52 (0.79) 0.30 (0.56) 0.35 (0.49) 0.22 (0.52)

90 22 Training 43.64 (2.42) 47.55 (2.26) 49.05 (1.81) 49.27 (1.96) 50.23 (2.18) 49.09 (2.07) 48.09 (1.90)
Leakage 0.59 (0.91) 0.36 (0.58) 0.45 (0.51) 0.41 (0.73) 0.32 (0.57) 0.27 (0.46) 0.18 (0.39)

95 22 Training 43.64 (2.42) 47.55 (2.26) 49.05 (1.81) 49.27 (1.96) 50.23 (2.18) 49.09 (2.07) 48.09 (1.90)
Leakage 0.55 (0.86) 0.27 (0.46) 0.41 (0.50) 0.41 (0.73) 0.23 (0.43) 0.27 (0.46) 0.18 (0.39)
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3.3.2 Implementation details

The number of transformations that will be applied to build the self-labeled
training sets has been set to K = 4 (four possible pseudo-labels), and the
transformation parameters initially to p1 = 1, and p2 = p3 = p4 = 0.7. Note
that very small transformation parameters would hinder the differentiation
between these pseudo-labels, thus complicating the learning of the classifier,
while very large parameters would make this difference too obvious, making
it difficult to detect less severe leaks.

The parameters specified for the RISE classifier have been the number
of trees, w, and the minimum interval length, l. While the number of trees
w ∈ {10, 11, ..., 20} has been chosen using a grid-search with 5-fold Cross-
Validation (5-fold CV), the minimum interval length has been set to be
l = min(16, N/2), where n is the length of the time series, taking [189] as
a reference.

Finally, as mentioned on more than one occasion, our method is a data-
based one that can only detect leaks that generate a noticeable increase in
the flow data (detectable leaks). As such, only the nights on which the MNF
is higher than usual (i.e., MNF> τ , where τ is a predefined threshold) will
be introduced into our self-supervised classifier. In the deployment step, the
nights which do not have an appreciable increase in the flow (MNF≤ τ) will
be directly labeled as “non-leak nights”, without undergoing further analysis.
In summary, our methodology can be seen as a 2-stage approach, where in the
first stage, a night is predicted as a detectable leak or not using a threshold
on the MNF, and in the second stage, only the detectable leaks are classified
using SSLD to eliminate some of the false positives.

3.3.3 Evaluation framework and metrics

The evaluation of the proposed method is performed in terms of both the
False Positive Rate (FPR), which estimates the false leak alarms generated in
the training dataset, and the True Positive Rate (TPR), which measures the
capacity to detect leaks in the leakage dataset (both datasets defined in Fig.
3.4).

As shown in Fig. 3.6, the number of false alarms or the FPR is estimated
using a nested 5-fold CV in the full training set, in which the inner loop is
used to tune the w parameter of the RISE classifier, and the outer loop is
used to estimate the FPR. More specifically, the training set is split into 5
folds, and for each iteration i ∈ {1, ..., 5}, 4 of the folds are used to perform a
grid search over the w parameter of the RISE classifier, using another 5-fold
CV. The metric used in the inner loop is the classification accuracy, which
computes the rate of correctly classified transformations. Once w has been
selected, a model is trained using those 4 folds, and the resulting model is
validated on the remaining fold to compute the FPR.
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Similarly, to estimate the number of detected leaks or the TPR, first, the
w parameter is tuned using a 5-fold CV in the training set, also based on the
classification accuracy. Note that this accuracy is not calculated in terms of
leak/no leaks, but in terms of the pseudo-labels created in the self-supervised
context. Then, the final model is learned using all the training data and the
selected best w parameter. This model is applied to the leakage set to compute
the TPR.

FPR

Parameter tuning
using 5-fold CV

TPRFinal model Leak/no leak
predictions

5-fold CV

In each fold, parameter
tuning using 5-fold CVSelf-labeled

training
dataset

Self-labeled
leak

dataset

Predictions of the 
 applied 

 transformations
Leak detector

Fig. 3.6: Evaluation framework of the proposed methodology.

3.3.4 Comparison with other methods

The results of our method have been compared with two other unsupervised
techniques. One of these techniques, which we will consider the baseline, is
the traditional MNF method [164, 165, 169, 173]. Even though this method
identifies all the detectable leaks by default, it usually provides a high number
of false alarms. In particular, our method aims to reduce this quantity of
alarms while maintaining a high number of detected leaks. Note that the FPR
of the SSLD will never be greater than that provided by the MNF method
because, as explained in Section 3.3.2, we will automatically label as non-
leakage all the nights that have no noticeable increase in the flow (MNF≤ τ).

We also compare our method with the ε-SVR prediction-based method
[175] as prediction-based methods have been widely used to identify leaks in
the literature. Unlike other prediction methods that do not provide the code
and do not clearly state the implementation details, this method contains
all the necessary specifications to reproduce it. The procedure followed and
the parameter values established are outlined in [175]. We have applied this
method to the nightly time series, as in our method, with an embedding
dimension of one hour.

3.3.5 Experimental results

In the following sections, the results of the experiments performed in both
scenario A (Section 3.3.5.1) and scenario B (Section 3.3.5.1) are presented. In
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particular, we first provide a comparative analysis concerning the results of
other methods and then a sensitivity analysis of the transformation parame-
ters of the self-supervised framework.

3.3.5.1 Scenario A

The results for each zone and for the initially fixed transformation parameters
(p1 = 1, p2 = p3 = p4 = 0.7) are summarized in Table 3.2. From the three
methods that we have compared, MNF is the only method that can perceive
all the detectable leaks. However, our proposed SSLD method provides sig-
nificantly fewer false positives while still being able to identify almost all the
leaks: taking into account all the zones, 91.67% of the leaks are detected. The
reduction in the FPR is better appreciated in the mean FPR column in Table
3.2, which represents the average value of the FPR of all the day types for
each zone. Also note that although the ε-SVR method obtains an even lower
FPR than our SSLD method in most of the zones, it detects very few leaks.
Moreover, in the only zone that it can detect all the leaks (Zone 5), it has a
remarkably high FPR.

In conclusion, in finding a trade-off between the detected leaks and the
number of false positives, our method is the most successful.

Table 3.2: Results in each zone of scenario A. The FPR values for each day
and method are shown, along with the mean FPR and TPR values of all the
models of each method.

FPRZone Method Mon Tue Wed Thu Fri Sat Sun Mean FPR Mean TPR

Zone 1
SSLD 0.1699 0.1283 0.1588 0.1422 0.1678 0.1808 0.2277 0.1679 1.0000
MNF 0.3040 0.2915 0.3164 0.3644 0.2672 0.3088 0.3460 0.3141 1.0000
ε-SVR 0.0763 0.0950 0.1108 0.0788 0.0684 0.0527 0.0800 0.0803 0.2000

Zone 2
SSLD 0.1717 0.2000 0.2135 0.2167 0.1722 0.2222 0.2065 0.2004 1.0000
MNF 0.2841 0.2435 0.2878 0.3250 0.3074 0.4840 0.8889 0.4030 1.0000
ε-SVR 0.0087 0.0087 0.0167 0.0083 0.0167 0.0000 0.0000 0.0084 0.0000

Zone 3
SSLD 0.2199 0.1560 0.1556 0.1614 0.2055 0.2444 0.2269 0.1957 0.5000
MNF 0.3186 0.3220 0.3319 0.3079 0.3104 0.3926 0.3863 0.3385 1.0000
ε-SVR 0.0083 0.0080 0.0160 0.0000 0.0077 0.0074 0.0000 0.0068 0.0000

Zone 4
SSLD 0.1301 0.0910 0.1399 0.1465 0.1220 0.1123 0.1132 0.1221 1.0000
MNF 0.1551 0.1573 0.1867 0.2221 0.1758 0.1487 0.1516 0.1711 1.0000
ε-SVR 0.0897 0.1153 0.1022 0.0938 0.1148 0.0815 0.1275 0.1036 0.6667

Zone 5
SSLD 0.0910 0.1410 0.1774 0.1966 0.1755 0.1595 0.1132 0.1506 1.0000
MNF 0.1314 0.1823 0.2003 0.2651 0.2285 0.1749 0.1203 0.1861 1.0000
ε-SVR 0.9596 0.9833 0.9920 0.9626 0.9692 0.9923 1.0000 0.9799 1.0000

Analysis of the transformation parameters

Once we have analyzed the ability of our method to detect leaks while main-
taining low levels of false positives, in this section, we study the robust-
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ness of our method to changes in the transformation parameters. In par-
ticular, while keeping the RISE parameters previously obtained, the aim is
to analyze how the FPR and TPR change with respect to the parameters
p2, p3, p4 (recall that p1 = 1). The transformation parameter space consid-
ered is p2, p3, p4 ∈ {0.5, 0.7, 0.9, 1.1, 1.3, 1.5}. All possible combinations are
considered, which total 216 combinations.

The FPR and TPR values obtained with different parameter combinations
for each zone and model (type of day) are shown in Fig. 3.7. Due to the low
number of leaks that the ε-SVR method detects, the results of this section are
only compared with the MNF method.

As expected, our proposed method reduces the FPR of the MNF method,
regardless of the value of the chosen transformation parameters (see Fig. 3.7).
This reduction is particularly noticeable in zones and types of day where the
MNF method provides many false alarms (e.g., weekend models of Zone 2),
as it has more room for improvement.

Regarding the number of detected leaks, and only considering the types of
days that have at least one leak, 52.96% of the parameter combinations are
able to detect all of them in Zone 1, 79.63% in Zone 2, 0.46% in Zone 3, 85.42%
in Zone 4, and 100% in Zone 5. The reason for obtaining worse results in Zones
1 and 3 is that both zones have small leaks that complicate their detection. If
we analyze these zones in more detail, most parameter combinations in Zone
1 detect all the leaks on Mondays and Tuesdays (i.e., 81.02% on Mondays and
86.57% on Tuesdays), but the percentage is lower on the other types of days
(30.09% on Wednesdays, 44.91% on Thursdays, and 22.22% on Sundays). In
Zone 3, there are only two detectable leaks on Wednesdays, and although
the method can hardly detect both of them, 24.07% of the combinations can
detect at least one of the leaks.

In Fig. 3.8, the average performance of each parameter combination over
all the models (day types) is studied. In particular, this figure shows the mean
FPR obtained for different parameter combinations and highlights with a blue
cross those that can detect all the leaks. Also, within the combinations that
can detect all the leaks, the one that gives the lowest FPR is marked (e.g.,
p1 = 1, p2 = 0.5, p3 = 1.3 and p4 = 0.7 in Zone 1). As expected, all the
transformation parameters reduce the mean FPR value in comparison to the
MNF method, and even though some are not able to detect all the leaks,
considering all zones together, 61.57% of combinations detect all of them.

To conclude, taking into account these results, our proposed method is
robust to the transformation parameters, especially in terms of FPR.

Finally, the downward trend in some of the zones (Zone 1, Zone 2, and
Zone 3) in Fig. 3.8 suggests that some parameters have more influence on
the FPR value than others. In particular, the last parameter has a greater
influence than the rest of parameters (i.e., the higher the p4 is, the lower the
mean FPR becomes). For example, the FPRs of the first 36 points, which
correspond to p4 = 0.5, are higher than the FPRs of the last 36 points, which
correspond to p4 = 1.5. Note that larger p4 values make the difference between
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Fig. 3.7: FPR and TPR of the models obtained with all the different trans-
formation parameters. NO LEAKS indicates that there are no leaks in the
leakage dataset for the given day of the week, TPR = 1 indicates that all the
leaks have been detected, and TPR < 1 that the method has not identified all
the leaks. The baseline FPR of the MNF method is highlighted with a black
horizontal line.

the magnitude of pseudo-label 3 and pseudo-label 4 higher (the labels used
when identifying leaks), and thus, the classifier discriminates better between
them, providing fewer false alarms.

3.3.5.2 Scenario B

The DMAs to be analyzed have been chosen according to the criteria estab-
lished in Section 3.3.1.2, and the proposed SSLD method is applied to each
of them individually. The results obtained for different threshold values are
shown in Fig. 3.9, where the mean FPR values for each DMA are shown in
the left column and the mean TPR values in the right column.
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Fig. 3.8: Mean FPR and TPR according to different transformation parame-
ters in each zone. The IDs assigned to the transformation parameters in this
figure are ordered based on a triple loop of the parameters in ascending order.
That is, the first six points in the graphs indicate the parameter combinations
[1, p2, 0.5, 0.5], where p2 traverses all the parameter space in ascending order,
the next six points refer to [1, p2, 0.7, 0.5], and so on.

For any threshold obtained with the 80th, 85th, 90th or 95th percentiles,
both the SSLD and the ε-SVR methods reduce the mean FPR of the MNF
method. Note that the higher the percentile is, the lower the FPR of the MNF
becomes, and therefore the lower the room for improvement is. As in scenario
A, the ε-SVR method detects very few leaks, while our method able to detect
most of them. In particular, the higher the percentile value is, the higher the
mean TPR our method obtains. Consequently, the best threshold would be
the one that provides the best detection rate which, in this case, is obtained
using the 95th percentile, because our method reduces the FPR of the MNF
regardless of the chosen threshold. With this value and considering all the
DMAs together, our SSLD method detects 82.35% of the leaks.

It should be noted that the training sets in the DMAs where our method
reaches the lowest TPR have very variable flow values. Two examples are
shown in Fig. 3.10. The red vertical lines indicate the reported leakage records,
which, depending on the selected threshold, will be considered detectable or
not. In these datasets, there is no clear pattern of normality. In fact, the
training set contains several days that are assumed to be normal but have
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Fig. 3.9: Mean FPR and TPR for each DMA and percentile value.

similar flow values to the leak days. This complicates the learning of the
normality, and thus additional information would be needed to differentiate
the leakage days from the normal days.

Analysis of the transformation parameters

As with scenario A, this section analyzes the influence of the parameters
p2, p3, p4 ∈ {0.5, 0.7, 0.9, 1.1, 1.3, 1.5} (recall that p1 = 1) over the FPR and
the TPR, for the threshold value obtained with the 95th percentile. This
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Fig. 3.10: Example of DMAs where the proposed method obtains a low TPR.

threshold has been chosen for simplicity as it provides the best performance
regarding the detected number of leaks. Note that a total of 216 possible com-
binations are considered. Also, the results in this section are only compared
to the MNF method because it provides better performance than the ε-SVR
method.

Fig. 3.11 shows the mean FPR and TPR obtained for each DMA with all
the different transformation parameters. Taking into account all the DMAs
together, the mean FPR value is significantly lower for our method than that
obtained by the MNF method for all the parameter combinations, as expected.
The reduction in the FPR is better appreciated in the figure on the left in
Fig. 3.11. Regarding the number of detected leaks and taking into account all
the DMAs together, most combinations of parameters (80.25%) are able to
detect all the leaks.
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Fig. 3.11: The mean FPR and TPR for different transformation parameter
combinations in each DMA. The values obtained with the baseline MNF
method are highlighted with a horizontal black line.

In conclusion, our proposed method succeeds in significantly reducing the
FPR in comparison to the baseline MNF method and also in detecting most
of the detectable leaks.
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3.4 Conclusions and Future Work

In this chapter, we have proposed a water leak detection method based on
the self-supervised classification of nightly flow time series. The classifier we
have chosen (RISE) is specific for time series, which allows considering the
temporality of the data, and it is also robust to noise. In particular, our
approach builds one model per day of the week, thus it has far fewer models
than other methods that require a model for each time step. In addition,
the proposed method is entirely data-driven and therefore does not require
in-depth knowledge about the dynamics of the series.

The results obtained from the experiments show that, in comparison to
other methods in the literature, the proposed SSLD method obtains the best
trade-off between detecting the majority of the detectable leaks and providing
a low FPR. Specifically, the results have been compared with the MNF, the
ε-SVR, which, contrary to our method, either detect very few leaks or provide
many false alarms.

Several combinations of transformation parameters have also been consid-
ered to define the self-labeled dataset that is used as input for the classifier.
In all the considered scenarios, our method significantly reduces the FPR of
the traditional MNF method, so the SSLD is robust to the choice of trans-
formation parameters in terms of FPR. In particular, the higher the FPR of
the MNF, the higher the reduction provided by our method. Although the
transformation parameters are more sensitive regarding the TPR in some of
the zones, they are in general able to detect most of the detectable leaks.

The main avenue that the results open for future research is related to the
type of transformation applied to the data. The self-labeled dataset has been
formed using linear transformations, but other types of transformations could
also provide appropriate or even better results. An interesting future line of
research would be to develop a theory about these transformations, taking
into account both the type of available data in the training set and the type
of anomalies to be detected. An additional interesting research line would be
to test this approach on other types of problems different to leak detection
with other types of data and anomalies.

Another promising future work would be to consider the correlation be-
tween different zones in the network and to address the self-supervised classifi-
cation approach from a multivariate perspective with hierarchically structured
time series. Although leaks are usually reflected in each zone, and it is gener-
ally sufficient to analyze each zone individually, additional information from
the network could help to improve the results.

Finally, the proposed method deals with regularly sampled time series of
the same length, so future research could also focus on improving this method
in situations in which the time series are irregularly sampled or of variable
lengths. This will allow series with missing values to be handled, which could
appear in this type of problem where sensor failures may occur.





Part II

Contributions to time series with missing
values





4

Selective imputation for multivariate time
series with missing values

The methodological contributions presented in the previous part assume that
the time series do not contain missing values and that they are regularly-
sampled. However, as mentioned in Section 1.3, time series often contain
missing values and are thus incomplete. In this chapter, we propose a new
method that deals with this problem in multivariate time series datasets.

4.1 Introduction

The presence of missing values is known to hinder the analysis of time series
data and complicate the downstream application of machine learning algo-
rithms for tasks such as classification or anomaly detection [190]. Therefore,
it is an important task to address the issue of missing values.

Techniques in the literature usually tackle this problem using imputation
methods. In general, we can categorize the imputation methods for time series
into: 1) agnostic methods, which are defined as pre-processing methods and are
independent of the downstream machine learning task, 2) intrinsic methods,
which are defined within the downstream machine learning algorithm that
will be applied.

Among the agnostic imputation methods, basic imputation techniques
such as forward filling [191, 192], zero imputation [191], or mean imputation
[192] have been widely used. More advanced techniques such as Generative
Adversarial Networks (GAN) [193, 194] have also been proposed in this cat-
egory. The main advantage of these techniques is that they can be used in
combination with any machine learning task (e.g., forecasting, classification,
or clustering) as they do not depend on the task itself.

In contrast, the intrinsic methods for multivariate time series are usually
defined for classification tasks and use the information of the labels of the time
series to impute the missing values [190, 195, 196]. As an example, Gaussian
Processes have been used together with deep learning methods to obtain the
imputed values [197, 198, 199]. Note that the imputations provided by these
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techniques are specific for the model and machine learning task (e.g., classifier)
used.

In both the agnostic and intrinsic cases, the set of time points to impute
needs to be determined beforehand. A naive solution is to impute all the miss-
ing values in all of the time points, assuming that the time series is regularly-
sampled [195, 196, 200, 201, 202]. This solution is frequently adopted in the
literature because many machine learning models require regularly-sampled
time series without missing values (i.e., fully-observed time series) [14]. In-
deed, it is common to consider that the time series has an hourly sampling
[191, 192, 197, 203]. However, these methods tend to make too many impu-
tations; as an extreme example, they carry out imputations even in the time
points where there is no measurement in any of the variables. Imputing so
many missing values can produce high errors and affect the results of down-
stream tasks, especially when the missing rate is high [43].

As such, more advanced techniques rely on imputing only the missing val-
ues in the time points where at least one of the variables has been observed
[190, 204]. The resulting time series may have an irregular elapsed time be-
tween consecutive observations. Thus, for downstream tasks such as classifica-
tion, techniques in this group require choosing algorithms that are capable of
dealing with irregularly-sampled time series. Although these techniques need
to impute fewer values than in the previous case, it is questionable whether
imputing all those data points is necessary to adequately represent the time
series.

In this chapter, we propose an agnostic method to selectively impute the
missing values in a collection of multivariate time series, for the first time in
the literature. In particular, the method selects the best subset of time points
to impute based on the idea that selecting many time points can lead to a
poor quality of the imputations, while selecting few time points can lead to
a poor representation of the time series. We propose to address the selective
imputation problem as a multi-objective optimization problem, and for this,
we specifically exploit the beneficial properties of the Multi-task Gaussian
Process (MGP). In this way, the proposed method allows to shorten and
simplify the time series, besides reducing both the error introduced by the
imputations and the cost in different aspects (e.g., computational cost or the
cost associated with the data collection).

The rest of the chapter is organized as follows. Section 4.2 defines the con-
text of the problem to be addressed and introduces the notation used through-
out the chapter. Section 4.3 presents the details of the proposed methodology.
Section 4.4 provides the conducted experiments and the corresponding results.
Finally, the conclusions drawn and suggestions for future work are discussed
in Section 4.5.
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4.2 Problem setting and notation

Let D = {Y 1, ..., Y N} be a time series dataset composed of N multivariate
time series. Each time series Y i is formed by L variables and contains missing
values1. Additionally, let Ω = {t1, t2, ..., tT } be the set of time points with at
least one observation in D. An illustration of the problem setting is shown in
Fig. 4.1, where the actual observations of each time series are represented by
black crosses. In this example, it can be seen that D has observations in a
total of eight time points (i.e., |Ω| = T = 8).

Y1

Y2

YN

t1 t8t2 t3 t4 t5 t6 t7

Fig. 4.1: Illustration of the problem setting.

In this context, the main focus of this chapter is to address the problem
of imputing missing values of the multivariate time series in D. In particular,
the objective of this chapter is twofold: 1) selecting the optimal subset of time
points, which we denote as P∗, where P∗ ⊆ Ω, and 2) filling the missing
information on those time points.

Once the selective imputation has been performed, the downstream task
will be applied. Note that if the task is supervised (e.g., classification of time
series), then we will additionally have a class label ci associated with each
time series Y i.

For the sake of clarity, the notation used throughout this chapter is sum-
marized in Table 4.1.

1 Without loss of generality, in this chapter, we assume that the dataset has multiple
time series (N > 1) and variables (L > 1), but the method is also applicable to
a single time series (N = 1) and/or univariate time series (L = 1).
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Table 4.1: Summary of the notation used.

D , Time series dataset
N , Number of multivariate time series in D

Y i , ith multivariate time series in D

L , Number of variables of the time series in D

Ω , Candidate set of time points
T , Length of Ω
P , Subset of time points of Ω
Pc , Complementary set of P in Ω (i.e., Pc = Ω \ P)
P∗ , Optimal set of time points

Point
selectionImputation

Y1

Y2

YN

t1 tT

Fig. 4.2: Diagram of the proposed methodology. The estimated values are
shown by orange points, while the actual observations by black crosses.

4.3 Methodology

The overall diagram of the proposed methodology is shown in Fig. 4.2. The
first step consists of imputing all the missing values in the candidate set Ω
(see Section 4.3.1). Then, the criterion to evaluate the different subsets of time
points to impute is designed (see Section 4.3.2), and following this criterion,
the optimal time points are identified (Section 4.3.3). Once the optimal sub-
set of time points of a time series dataset has been selected, the time series
are represented by those time points (see the last step in Fig. 4.2), and the
downstream task would be performed using this reduced representation. The
details of the methodology are explained below.

4.3.1 Imputation of the missing values

Since the time series in D contain missing values, the first step is to obtain
imputations for all the time steps in Ω.

Gaussian Processes (GP) [205] have been widely used to model time series
data due to their ability to naturally accommodate unequally-spaced (i.e.,
irregular) and uncertain observations. In a similar way, Multi-task Gaussian
Processes (MGP) [206, 207] extend this capability to the multivariate time se-
ries context, allowing to consider the correlations between the variables. Both
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GP and MGP are probabilistic in nature, and thus, they provide probabilis-
tic predictions. So, these methods enable not only to impute missing values
but also to provide the uncertainty of the imputations. Additionally, they are
agnostic imputation techniques and are not tied to downstream tasks.

As such, to obtain the imputations of the multivariate time series in D, we
leverage the multivariate and probabilistic nature of the MGP. These are key
properties for later identifying the best subset of time points. See Appendix
in Chapter 6 for more details on MGP.

In particular, an independent MGP will be fit to each of the multivariate
time series in D. Given a multivariate time series Y i, the corresponding model
parameters will be learned using all its observed values. This can be seen as the
first step of the pre-processing of the time series. Once the hyperparameters
of the MGP model have been learned for each time series, we can obtain an
estimated value together with its uncertainty for any missing time point in
that time series.

4.3.2 Criteria for the time point selection

The next step consists of establishing a criterion to evaluate the quality of
each subset of time points P ⊆ Ω. For this purpose, it should be taken into
account that selecting a subset of time points P implies, on the one hand,
having to impute the missing values in P, and on the other hand, losing the
actual observations that are not in this subset (i.e., observations in Pc).

Therefore, the first criterion that we consider when evaluating a subset of
time points P is the quality of the imputations of the missing values within
P. To this end, we quantify the uncertainty of the imputations such that low
uncertainty represents high imputation quality (see Section 4.3.2.1). On the
other hand, we propose a second criterion to assess the quality of the actual
observations within P that is based on measuring the information that is lost
by excluding some of the time points. In particular, the more information that
is lost, the worse the set of time points P is. To measure this, we introduce
a new concept denominated predictive capability of a set of time points (see
Section 4.3.2.2).

The details of the two criteria are described in the following sections.

4.3.2.1 Quantification of the uncertainty

As the imputations have been made with a probabilistic model, the uncer-
tainty for a subset of time points P can be quantified using the variances of
the imputations. In particular, we quantify the uncertainty in P of a time
series Y i by computing the mean variance of the imputed values,

V iP = 1
M i
P

Mi
P∑

j=1
σ2
j (4.1)
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where M i
P is the number of missing values in time series Y i and set P, and

σ2
j is the variance of the jth imputed value. Since we are using probabilistic

models, σ2
j is provided by the prediction of the MGP.

To illustrate the intuition behind this criterion, an example is shown in
Fig. 4.3. The aim is to quantify the uncertainty of the imputed values that are
represented with orange dots. Specifically, the selection of points P consists
of four time points and contains M i

P = 4 missing values. Moreover, the un-
certainty of their imputations is illustrated in blue by the confidence intervals
of the predictions derived from the MGP. Based on this, in this example, the
imputation of the missing value in the second variable has the poorest quality
since it is the most uncertain.

Fig. 4.3: Illustration of the uncertainty of the imputed missing values within
the set of time points P. The imputed values are shown with orange dots and
the uncertainty with blue shading.

Finally, in a collection of N time series, the best point set P∗ in terms of
this first criterion is the set of points that has the smallest uncertainty:

P∗ = arg min
P⊆Ω

f1(P) = arg min
P⊆Ω

1
N

N∑
i=1

V iP (4.2)

where f1(P) = 1
N

∑N
i=1 V

i
P measures the overall mean uncertainty of the time

series dataset for point selection P.

4.3.2.2 Quantification of the predictive capability

To measure the predictive capability of a set of time points P, a new MGP
model is learned using only the actual observations in P. Then, we measure
how well these points predict the observations that have not been included in
P (see Fig. 4.4). The intuition is that if the points in P are able to predict the
excluded observations accurately, then this exclusion is not causing a relevant
loss of information.
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Fig. 4.4: Illustration of the predictions of the excluded observations obtained
using the observations in P. Actual observations are depicted by black crosses,
and the predicted values of the excluded observations are shown by yellow
squares.

To evaluate the predictive capability (PC), we propose to use the Root
Mean Squared Error (RMSE) in the following way:

PCiP =
{√

1
Q

∑Q
j=1(ŷij,Pc − yij,Pc)2, if Q ≥ 1

0, otherwise
(4.3)

where Q is the total number of actual observations in Pc (note that Q ≥ 0),
yij,Pc is the jth actual observation outside P and time series Y i, and ŷij,Pc is the
respective predicted value that has been obtained using the observed values
within set P. As an example, in Fig. 4.4, there are Q = 3 actual observations
within |Pc| = 2 time points that have not been selected.

Finally, the best set of points P∗ in a time series dataset consisting of N
time series should obtain the maximum predictive capability globally, or, in
other words, the minimum prediction error:

P∗ = arg min
P⊆Ω

f2(P) = arg min
P⊆Ω

1
N

N∑
i=1

PCiP (4.4)

where f2(P) = 1
N

∑N
i=1 PC

i
P measures the overall mean predictive capability

in the time series dataset for point selection P.

4.3.3 Best sets of time points

The inclusion of many time points in P may involve having more missing
values and a higher uncertainty of the imputations, but it also implies having
a higher predictive capability since more actual observations are considered.
On the contrary, the fewer points included in P, the fewer missing values
there will be, having a smaller uncertainty, but also worsening the predictive
capability because many observations are excluded. In general, uncertainty
and predictive capability are conflicting objectives.
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Thus, we formulate the problem of finding the best set of time points as
a multi-objective optimization problem [208, 209] in terms of 1) uncertainty
and 2) predictive capability:

min
P⊆Ω

(f1(P), f2(P)) (4.5)

The objective of this optimization is to find a Pareto set similar to the one
that can be seen in Fig. 4.5. As illustrated in this figure, all the solutions in
the Pareto set contain non-dominated solutions (i.e., subsets of time points),
that is solutions that cannot be improved in any of the objectives without
worsening the other objective. Note that this set dominates all solutions within
the shaded region.

In particular, the two extreme solutions of the Pareto set in our problem
are highlighted by green crosses in Fig. 4.5. One of the extreme solutions
corresponds to selecting all time points in Ω and is located at the bottom
right in the figure (i.e., large f1, and f2 = 0). In this case, the prediction error
is the minimum that can be obtained because no observations are excluded,
while the uncertainty is very high since all missing values need to be imputed.
Conversely, the other extreme solution, which is located on the top left of the
figure (i.e., f1 = 0, and large f2), involves selecting a small set of time points
in which no imputation has to be performed, and therefore, the uncertainty is
0 (i.e., the minimum that can be obtained). At the same time, this extreme set
may contain very few time points and thus has the worst predictive capability
because much information is lost and it is not able to reconstruct the excluded
observations as well as other subsets in the Pareto.

(0,0)

Fig. 4.5: Example of a Pareto set illustrated by crosses. The green crosses
represent the extreme solutions in the Pareto.

Due to the large number of possible solutions (all possible subsets of Ω),
we propose to use a meta-heuristic algorithm (e.g., NSGA-II [210]) to solve
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this multi-objective optimization problem. It should be noted that this type of
algorithm does not necessarily reach the optimum but usually provide suitable
solutions [211]. Taking this into account, from this point on, we will refer to
the sets in the Pareto as the optimal sets of time points but bear in mind
that since we are using a heuristic, these solutions are an approximation of
the Pareto.

4.4 Experiments

The experimentation is divided into three parts. The first part consists of
analyzing the optimal sets of points P∗ obtained by our method in synthetic
datasets (see Section 4.4.1). In the second and third parts, we apply our selec-
tive imputation method and analyze its performance when we apply a down-
stream algorithm for classification (see Section 4.4.2) or anomaly detection
(see Section 4.4.3).

In the three experiments, we assume that the missing behaviour in the
dataset D is not random and that the time series share a common missing
pattern. The reason for doing this is twofold. On the one hand, it will allow for
a better interpretation and validation of the time point selection. On the other
hand, in many time series datasets, missing data shares a common missing
data pattern. For instance, in health data, patients admitted to the ICU that
are progressing favorably and are not severely ill tend to receive less attention
over time [212].

Parameter setting

The selected parameters for the MGP and the multi-objective optimization
algorithm are common to both parts of the experimentation.

Concerning the MGP model, we use the gpytorch [213] library in Python
and chose 100 iterations and a learning rate of 0.1. For the multi-objective opti-
mization, we use the widely known NSGA-II algorithm [210], a multi-objective
evolutionary algorithm that uses non-dominated sorting. This method has
been selected based on its popularity due to its fast non-dominated sorting
procedure and elitist approach. However, since it is only an element of the
framework, it should be noted that the evolutionary algorithm could be mod-
ified by the user. In particular, we use the pymoo [214] library in Python to
implement this algorithm. The specified parameters are the population size,
which has been set to 20, and the number of generations, which has been
set to 50. This selection has been made to limit the computational cost. Ad-
ditionally, we have initialized the algorithm such that the initial population
contains the individual P = Ω. The rest of the initial population is generated
randomly.
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4.4.1 Part I: Evaluation of the Pareto set in synthetic datasets

In this section, four different synthetic datasets are used to evaluate the per-
formance of our approach in a controlled scenario. In all cases, the method is
applied to a time series dataset of 100 bivariate time series.

4.4.1.1 Generation of the synthetic datasets

The four synthetic datasets can be divided into two groups. The first group
consists of two datasets generated using sinusoidal functions such that[

y1,t
y2,t

]
=
[
sin (4πt)/T
sin (3πt)/T

]
+
[
ξ1,t
ξ2,t

]
where T is the length of the time series, t ∈ {0, ..., T}, and [ξ1,t, ξ2,t]T is the
noise vector. For these experiments, we choose T = 50, and corr(ξ1,t, ξ2,t) =
0.7 to make y1,t and y2,t correlated. Moreover, for each ξi,t, given an interval
xi = [xi1, xi2] with xi1, xi2 ∼ N(0, 1) where the noise values will be, E(ξi,t) = x̄i

and Var(ξi,t) = (σxi/3)2 where σxi is the standard deviation of xi.
Then, missing values are injected such that most of the missing values are

within a certain time interval A: the probability that each observation yj,t,
where t ∈ A, is missing is 0.9 and 0.2 inside and outside A, respectively. In
specific, the intervals chosen for conducting this experiment are A1 = [30, 40)
and A2 = [10, 18)∪ [42, 48), each interval leading to a synthetic dataset in this
group.

An example of a synthetic time series in this group is shown in Fig. 4.6,
for both of the intervals being analyzed. Based on the underlying idea of our
proposal, we expect the method to avoid selecting points in A (A1 in the first
dataset, and A2 in the second dataset), since this interval will have many
missing values and, thus, high uncertainty.
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(b) A2 = [10, 18) ∪ [42, 48)

Fig. 4.6: Example of a time series in the first group of the synthetic datasets.
The missing observations are represented by orange dots.
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The second group consists of two datasets generated based on a first-order
Vector AutoRegressive (VAR) model such that[

y1,t
y2,t

]
=
[
α1
α2

]
+
[
ρ1 0
0 ρ2

] [
y1,t−1
y2,t−1

]
+
[
ξ1,t
ξ2,t

]
where t ∈ {0, ..., T}. In particular, we choose α0 = α1 = 0, ρ1 = ρ2 = 0.8,
and T = 50. Additionally, following [215], we choose the noise term such that
corr(ξ1,t, ξ2,t) = ρ(1 − ρ1ρ2)[(1 − ρ2

1)(1 − ρ2
2)]−1/2, where corr(y1,t, y2,t) = ρ

and ρ = ρ1 = ρ2. As in the previous group, given an interval xi = [xi1, xi2] with
xi1, x

i
2 ∼ N(0, 1) where the noise values will be, E(ξi,t) = x̄i and Var(ξi,t) =

(σxi/3)2 where σxi is the standard deviation of xi. In this case, a particular
time interval B is then replaced by a new, different process. This process
consists of an increasing function such that for t ∈ B,

yi,t = yi,t−1 + εi,t (4.6)

where εi,t ∼ N(0, 0.2). Then, the missing values are injected uniformly
throughout the time series with a probability of 0.4 of being missing.

As with the sinusoidal dataset, the intervals chosen for conducting the
experiments are B1 = [30, 40) and B2 = [10, 18)∪ [42, 48) (see Fig. 4.7). Note
that each of these intervals also leads to a synthetic dataset in this group. In
this case, our hypothesis is that the method will tend to select the time points
in B, since this interval cannot be inferred by the points outside the interval.
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(b) B2 = [10, 18) ∪ [42, 48)

Fig. 4.7: Example of a time series in the second group of synthetic datasets.
The missing observations are represented by orange dots.

4.4.1.2 Results

The evaluation of the optimal subsets of points obtained by our method is
performed in two parts: the first part analyzes the Pareto set in a qualita-
tive manner, and the second part evaluates this Pareto by comparing it with
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randomly generated subsets of time points. In short, this section analyzes the
results regarding the optimization part.

The selected subsets of time points for the two synthetic datasets in the
first group are shown in Fig. 4.8. In particular, the black squares represent
the time points that have been selected in each of the sets, and conversely,
the white squares represent the time points that have not been selected. Also,
the red lines highlight the intervals A1 and A2. As it can be seen in the figure,
the most uncertain intervals (i.e., those with many missing values) are not
selected: A1 and A2 contain most of the white squares.
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(b) A2 = [10, 18) ∪ [42, 48)

Fig. 4.8: Optimal sets in the first group of synthetic datasets.

For the second group of synthetic datasets, the optimal subsets of time
points are shown in Fig. 4.9. Unlike the first dataset, the method tries to
include the intervals B1 and B2 as they provide new information that the
rest of the points do not contain. In this case, the Pareto set contains fewer
optimal sets than in the first synthetic dataset.
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(b) B2 = [10, 18) ∪ [42, 48)

Fig. 4.9: Optimal sets in the second group of synthetic datasets.

As a second experiment, to demonstrate that the point sets in the Pareto
are good in terms of uncertainty and predictive capability, each optimal set
is compared to 20 randomly generated sets of the same size. For instance, if
an optimal set contains 15 time points, this set is compared to 20 randomly
generated sets, each consisting of 15 time points. This analysis will help check-
ing if the solutions are good enough since the optimization method used is
heuristic. That is, we will examine if the optimization part has been performed
adequately.
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Specifically, for each set in the Pareto, this comparison analyzes, on the one
hand, how many random sets dominate the set being analyzed (the number
of random sets located in region 1 in Fig. 4.10), and, on the other hand, the
set in question how many random sets dominates (the number of random sets
located in region 2 in Fig. 4.10). It is desirable to have few points in region
1 and most of them in region 2. In particular, we perform this comparison in
the cases in which the optimal set is not of length T , because otherwise all
the random sets would be the same and the analysis would be meaningless.

Region 1

Region 2

f1

f2

Fig. 4.10: An example of the comparison between a set in the Pareto depicted
by a green cross, and 20 random sets of the same size illustrated by black
dots.

For both groups of synthetic datasets, almost no random set dominates
the corresponding optimal set (region 1 in Fig. 4.10). Particularly, in the
first group, no optimal set is dominated by any random set, whereas, in the
second group, there is only one random set that dominates the optimal set
(on average, each set in the Pareto are dominated by 0.00% of random sets in
scenario B1, and 0.45% in scenario B2). Conversely, when analyzing region 2,
we find that the optimal sets dominate most of the random sets. In particular,
the optimal sets dominate on average: in the first group, 95.26% and 96.58%
of random sets in A1 and A2, respectively; in the second group, 55.50% and
71.36% of random sets in B1 and B2, respectively.

4.4.2 Part II: Application in classification tasks

In this section, the usefulness of the proposed method in the multivariate
time series classification downstream task is shown. We would like to empha-
size that this section does not aim to demonstrate that our method is the best
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solution for the classification task but to illustrate how an appropriate selec-
tion of time points allows to not only reduce the uncertainty and imputation
error, but also to improve the results of the classification task.

As a preliminary proof of this hypothesis, we show in Fig. 4.11 the evo-
lution of the mean accuracy of five popular classifiers when we perform a
backward analysis in the Libras dataset [8] by removing the globally most
uncertain time point of the time series dataset at each iteration. To obtain
these accuracy values, we first pre-process each time series and impute all its
missing values using MGP. The purple line in Fig. 4.11 indicates the accuracy
obtained in the downstream supervised classification task when we impute all
the missing data points, which corresponds to the 0th iteration. We show in the
figure how by removing the most uncertain time points from the time series
(up to almost half of the missing data points), we can obtain an improvement
in the results of the classifier.
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Fig. 4.11: Backward analysis in the Libras dataset with 85% of injected missing
data.

Now that we have seen that the selection of time points to impute can be
beneficial for downstream tasks such as multivariate time series classification,
we will try to find the optimal set of time points in different datasets and
analyze the results of this task when using the simplified dataset.

4.4.2.1 Datasets

The experiments are performed in different datasets and classification tasks
from the UEA repository [8]. Additionally, the dataset from the Physionet
Challenge [11] that aims to predict in-hospital mortality is also used. For
the Physionet dataset, we follow previous works and use a subset of variables
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[216]. In addition, for efficiency and simplification, we use a subset of samples,
maintaining the mortality rate (14.29%).

The characteristics of the chosen datasets are summarized in Table 4.2,
which shows the wide variety of the sets. In particular, for each case, 70% of
the multivariate time series are used to identify the best sets of time points
and learn the classifier, and 30% for evaluation. Additionally, it should be
noted that all the datasets described in the table have originally a regular
sampling. We denote these equally-spaced time points as X = {1, 2, ..., T},
where T is the length of the time series.

Table 4.2: Description of the datasets used in the multivariate time series
classification task.

Dataset Length Dimensions # of instances Classes
Japanese Vowels 29 12 640 9
Racket Sports 30 6 303 4
Libras 45 2 360 15
Physionet 48 6 700 6
Finger Movements 50 28 416 2
Basic Motions 100 6 80 4
Epilepsy 206 3 275 4

While the Physionet dataset already contains missing values (it has an
hourly sampling with missing values), the datasets from the UEA repository
do not contain missing values. Thus, we inject the missing values in those
datasets in such a way that the time series will contain more missing values
at the end of the time series. In particular, if we denote mr1 as the missing rate
of the first half of the time series (i.e., [1, ..., T/2]), then mr1 ∼ U(0.7, 0.8). In
the same way, if we denote mr2 as the missing rate of the second half of the
time series (i.e., [T/2 + 1, ..., T ]), then mr2 ∼ U(0.9, 1).

The Japanese Vowels dataset from the UEA repository has time series of
different lengths. In this case, a padding with missing values is made until the
maximum length, which is 29, is reached. Then, the remaining missing values
are injected to satisfy the missing rates described above.

The datasets used in this experimentation will be available in the GitHub
repository1 for further reproducibility.

4.4.2.2 Classifiers

Five traditional classifiers are used in the experimentation: Time Series For-
est (TSF) [217], Mr-SEQL [218], 1-Nearest Neighbor using independent and
dependant Dynamic Time Warping (DTW) distances [219], and RISE [32].

1 https://github.com/ablazquezg/Selective-imputation

https://github.com/ablazquezg/Selective-imputation
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The score used throughout the experimentation is the mean accuracy of the
five classifiers. For the classifiers that are designed to deal only with univari-
ate time series (TSF, Mr-SEQL, and RISE), dimension concatenation is used
[220]. The library used is sktime [220] in Python, and the hyperparameters
of the classifiers are set to the default values.

4.4.2.3 Baseline methods

Since techniques in the literature usually impute all the missing values, the
baseline methods will be naive methods that will impute all the values of all
the (equally-spaced) time points (i.e., X). In particular, the baseline methods
will impute the missing values with the widely used Forward Filling (FF,
baseline 1) and also with the Multi-task Gaussian Process (MGP, baseline 2).
These techniques have been chosen for their adaptability in the context of
time series data. Once all the missing values have been imputed, all the time
points will be used to learn the classifier.

4.4.2.4 Results

In this section, we analyze both the quality of the imputations by computing
the imputation error and also the accuracy of the classifiers using the sets of
time points selected by our method.

To begin with, the imputation error is calculated in the test set using
RMSE and normalized data between 0 and 1. In particular, the imputation
error has only been computed in those datasets that originally have no missing
values. As shown in Table 4.3, the imputation error is always smaller using the
probabilistic MGP method than the FF method. Moreover, there are always
sets in the Pareto that manage to reduce this error by using less time points.
In particular, this reduction becomes very significant for some datasets, such
as the Libras dataset.

The results regarding the classification accuracy are shown in Table 4.4.
On the one hand, we analyze the results obtained using the baseline methods
(i.e., when all the missing points are imputed), and we find that, in general,
the MGP imputation provides better accuracy than the FF imputation. On
the other hand, if we compare the accuracy results of the sets in the Pareto
with those obtained with the baseline methods, we conclude that the pro-
posed methodology is always able to find sets of time points that improve the
accuracy (see columns ≥ FF (%) and ≥MGP (%) in Table 4.4).
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Table 4.3: Results of the imputation errors. The two first columns report the average imputation error with the standard
deviation between parentheses of the baselines over 5 different train/test partitions. The next three columns show some
statistics of the imputation errors of the sets in the Pareto. The last two columns describe the percentage of the sets that
achieve a lower imputation error than the baselines.

Baseline methods Point selectionDataset FF MGP min mean max ≤ FF (%) ≤MGP (%)
Racket Sports 0.2869 (0.0065) 0.2362 (0.0014) 0.2362 (0.0014) 0.2608 (0.0016) 0.2836 (0.0023) 96.00 (04.18) 5.00 (00.00)
Libras 0.2974 (0.0038) 0.2094 (0.0050) 0.1054 (0.0059) 0.1654 (0.0038) 0.2094 (0.0050) 100.00 (00.00) 99.00 (02.24)
Finger Movements 0.2845 (0.0013) 0.2664 (0.0019) 0.2318 (0.0042) 0.2576 (0.0036) 0.2688 (0.0033) 100.00 (00.00) 84.11 (10.00)
Basic Motions 0.2772 (0.0075) 0.1967 (0.0025) 0.1963 (0.0029) 0.1978 (0.0028) 0.2003 (0.0031) 100.00 (00.00) 26.00 (16.36)
Epilepsy 0.3067 (0.0017) 0.2246 (0.0011) 0.2204 (0.0018) 0.2230 (0.0013) 0.2246 (0.0011) 100.00 (00.00) 99.00 (02.24)

Table 4.4: Accuracies in the classification task. The columns in the table follow the same rationale as Table 4.3.

Baseline methods Point selectionDataset FF MGP min mean max ≥ FF (%) ≥MGP (%)
Japanese Vowels 0.7613 (0.0128) 0.7502 (0.0133) 0.7098 (0.0154) 0.7343 (0.0121) 0.7542 (0.0120) 14.89 (21.02) 16.78 (18.91)
Racket Sports 0.4954 (0.0198) 0.4440 (0.0221) 0.4193 (0.0307) 0.4514 (0.0232) 0.4792 (0.0235) 3.00 (04.47) 69.00 (18.51)
Libras 0.5111 (0.0276) 0.6963 (0.0216) 0.6822 (0.0249) 0.7022 (0.0143) 0.7315 (0.0132) 100.00 (00.00) 65.00 (25.74)
Physionet 0.8215 (0.0088) 0.8276 (0.0042) 0.8168 (0.0088) 0.8240 (0.0060) 0.8309 (0.0051) 42.22 (46.80) 62.22 (51.88)
Finger Movements 0.5251 (0.0154) 0.5245 (0.0146) 0.4925 (0.0136) 0.5196 (0.0139) 0.5450 (0.0096) 50.11 (34.00) 50.33 (29.68)
Basic Motions 0.7483 (0.0272) 0.7933 (0.0266) 0.7700 (0.0240) 0.7955 (0.0243) 0.8233 (0.0239) 83.00 (38.01) 72.00 (08.37)
Epilepsy 0.8106 (0.0037) 0.8607 (0.0098) 0.8429 (0.0055) 0.8583 (0.0082) 0.8713 (0.0145) 100.00 (00.00) 50.00 (28.94)
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Furthermore, the sets of points that fail to improve it still manage to obtain
results similar to the baselines. Indeed, with a significantly less number of time
points. For more details on the reduction of the time series, see Table 4.5. In
general, in this table we can see that the sets in the Pareto reduce the time
series by an average of 27.12% of the length per dataset.

It should also be noted that in those cases in which the accuracy results of
our method are not as good as in the baseline methods, the imputation error
is reduced. For example, the accuracy results obtained with the FF baseline
method in the Racket Sports dataset are better than using our method. How-
ever, 96% of the sets in the Pareto obtain a lower imputation error than the
FF baseline. In this particular case, the FF imputation may favour the specific
supervised classification task.

Table 4.5: Length reduction using the sets in the Pareto. The columns describe
1) the dataset used, 2) the lengths of the sets that provide the maximum
accuracy, 3) the average length of the sets in the Pareto, and 4) the percentage
reduction of this average. The values shown are the mean values over the 5
partitions and the standard deviation between parenthesis.

Dataset Length max accuracy Mean length Mean reduction (%)
Japanese Vowels 19.60 ( 4.98) 16.11 (1.30) 44.46
Racket Sports 17.20 ( 5.26) 21.62 (1.17) 27.93
Libras 26.20 ( 4.27) 32.70 (1.50) 27.33
Physionet 33.40 ( 5.94) 37.06 (2.26) 22.79
Finger Movements 36.80 (13.25) 32.72 (0.90) 34.56
Basic Motions 71.80 (16.39) 81.79 (3.38) 18.21
Epilepsy 178.60 (21.76) 176.02 (4.85) 14.55

4.4.3 Part III: Application in the anomaly detection task

In this section, the usefulness of the proposed methodology in the anomaly
detection task is presented. As with the classification task, the aim of this
section is not to demonstrate that our method is the best solution for anomaly
detection but to illustrate that a proper selection of time points allows to
improve the results of the anomaly detection task.

4.4.3.1 Dataset

The experiments are performed in a multivariate time series dataset from the
MIT-BIH Arrythmia Database1 [221]. In particular, we evaluate our proposed
method on some pre-processed bivariate ECG time series from this dataset2

1 https://physionet.org/content/mitdb/1.0.0/
2 https://github.com/hi-bingo/BeatGAN
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[222]. The time series in this repository have length 320. However, to decrease
the computational burden, we reduce the time series to have length 80 by com-
puting the mean value of non-overlapping windows of length 4. Additionally,
since the datasets do not contain missing values, we follow the same procedure
employed in the classification task to inject them. As such, mr1 ∼ U(0.7, 0.8)
and mr2 ∼ U(0.9, 1), where mr1 and mr2 are the missing rates of the first
and second half of the time series, respectively.

For training, we randomly select 495 bivariate time series from the set that
contains normal samples (N samples file), and 5 bivariate time series from
an anomalous set (Q samples file). In this way, the training set contains a
1% of anomalies. This set is used to both select the best subset of time points
and train the anomaly detector (see Section 4.4.3.2).

Then, to evaluate our method in the anomaly detection task, a test dataset
composed of 2000 normal and 64 abnormal time series will be used. The nor-
mal time series are randomly chosen from the normal dataset (N samples).
It should be noted that this set does not contain those samples included in
the training phase, even though they have been extracted from the same file.
Conversely, the anomalous time series are randomly chosen from a separate
abnormal dataset (abnormal samples) located in the demo folder of the
repository.

Both the training and the test datasets used in this experimentation will
be available in the GitHub repository1 for further reproducibility.

4.4.3.2 Anomaly detector

Due to the limited number of available techniques in the literature for de-
tecting whole multivariate time series outliers, the anomaly detector used in
this section is based on the intuition behind the discord discovery approach
[134]. As such, given a reference time series dataset that will represent the
normal behavior of the time series (the training dataset, in this case), a new
multivariate time series will be identified as an anomaly if the distance to its
nearest neighbor in the reference dataset is large enough:{

d(Y new, Y newNN ) > τ =⇒ Y new anomaly
d(Y new, Y newNN ) ≤ τ =⇒ Y new normal (4.7)

where Y new is the new multivariate time series being tested, Y newNN is the near-
est neighbor of Y new in the reference/training dataset, d is the distance used
to measure the similarity between the two time series, and τ is a predefined
threshold value. In particular, to deal with multivariate time series, we use
the dependant DTW distance.

1 https://github.com/ablazquezg/Selective-imputation

https://github.com/ablazquezg/Selective-imputation
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4.4.3.3 Baseline methods

As with the classification task, the baseline methods impute all the missing
values with both the FF and MGP methods first. Then, these baseline meth-
ods consist of applying the same above-mentioned anomaly detector, but they
will consider all the (equally-spaced) time points rather than a subset of time
points, as proposed by our methodology.

4.4.3.4 Results

Similar to the classification task, the results in the test dataset are analyzed
with respect to three aspects: the imputation error, the anomaly detection,
and length of the subsets of time points obtained.

To begin with, the results regarding the imputation error are shown in
Table 4.6. As can be seen, the imputation error is always better when using
MGP than FF. However, when using the MGP method to impute the missing
values, the imputation error obtained by our method increases slightly com-
pared to the MGP baseline (i.e., using all the time points). This can occur
when the imputation of the missing values is simple (the actual observations
are around the mean of the MGP model), but very uncertain. However, the
difference is not large, and also, the imputation error obtained is still lower
than using the traditional FF.

Table 4.6: Results of the imputation errors in the test dataset. The two
first columns report the imputation error using the baselines. The next three
columns show some statistics of the imputation errors of the sets in the Pareto.
The last two columns describe the percentage of the sets that achieve a lower
imputation error than the baselines.

Baseline methods Point selectionDataset FF MGP min mean max ≤ FF (%) ≤MGP (%)
Test 0.1931 0.1273 0.1273 0.1409 0.1626 100.00 5.00

In addition, both the ability to identify the anomalies and the number of
false alarms are measured. For this purpose, the True Positive Rate (TPR)
and the False Positive Rate (FPR) are used: the TPR is obtained calculating
the ratio of the correctly identified anomalies, whereas the FPR computes
the ratio of anomalies that are incorrectly detected in the test set. Since the
anomalies are identified based on the threshold τ in Eq. 4.7, different threshold
values are used to obtain the Area Under the Curve (AUC). In particular, the
threshold values used are τ ∈ {0, 0.2, 0.4, ..., 4}.

The results of the anomaly detector in terms of AUC are presented in Fig.
4.12. As shown in this figure, all except one subset of time points in the Pareto
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Fig. 4.12: AUC results using the subsets of time points obtained with our
method. The horizontal lines represent the AUC values provided by the base-
line methods.

achieve better results than the baselines. The difference between the subset
that obtains a slightly lower AUC and the the MGP baseline is negligible.

An example of the relationship between the TPR and FPR values for
different thresholds is shown in Fig. 4.13. This figure depicts the ROC curves
of 1) the subset of time points in the Pareto that achieves the best AUC, and
2) the baseline methods. As can be seen, the imputation with MGP provides
better AUC than FF, and in addition, this specific selection of time points
slightly improves the AUC obtained with the MGP baseline.
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Fig. 4.13: Comparison of the ROC curves between the baseline methods and
the subset of time points that obtains the highest AUC value.

Finally, it should be noted that the length of the subsets of time points is
reduced 20.62% on average. In particular, the mean length of the subsets is
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63.5, and the length of subset that provides the maximum AUC value is 59
(26.25% less than the original length, which is 80).

4.5 Conclusions

In conclusion, this chapter introduces a time point selection method to selec-
tively impute the missing values in a multivariate time series dataset. This
selection is based on the uncertainty of the imputed values and the predictive
capability of the selected observations. In this way, the overall uncertainty of
the dataset is reduced, and it allows to use simplified time series in downstream
tasks such as multivariate time series classification and anomaly detection.

It must be noted that, with the aim of obtaining the optimal selection of
time points, our method naturally tends to return time series with unequally-
spaced time points. However, additional restrictions could be added to force
the method to output time series with equally-spaced time points, if desired.

The imputation method used to fill in the missing values has been MGP,
but other probabilistic models that provide the uncertainty of the imputed
values could also be used. Since we use a probabilistic imputation method,
an interesting future line of research could be to provide more sophisticated
measures of uncertainty (e.g., using information theory). Moreover, in some
contexts (e.g., when learning normality), it may be interesting to learn a single
global imputation model on the whole dataset.

Reducing the set of time points does not only simplify the time series but
can also help to improve the results of downstream tasks such as whole time
series classification and anomaly detection. In fact, there are always sets in
the Pareto that improve the results (accuracy in the classification task and
the AUC in the anomaly detection task). Moreover, those that do not improve
it remain with a similar performance, but using a shorter representation of
the time series. However, the use of more sophisticated classifiers or anomaly
detectors could help to improve the results. In this line, future research could
focus solely on improving the results of the particular task.

As mentioned throughout the chapter, a significant advantage of the pro-
posed method is that, in addition to the multivariate time series classification
and anomaly detection tasks, this method can also be used in combination
with other downstream machine learning tasks such as forecasting, or cluster-
ing. Thus, an interesting line for future work would be to test the applicability
of the method in additional downstream tasks since the literature has mainly
focused on the classification task.
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General Conclusions and Future Work

To conclude the thesis, this last chapter introduces the main conclusions of
the dissertation in Section 5.1, as well as some further research directions mo-
tivated by those contributions in Section 5.2. Finally, the main achievements
of the thesis are summarized at the end of the chapter, in Section 5.3.

5.1 Conclusions

This thesis has presented several contributions to the field of time series data
mining, mainly focused on the detection of outliers or anomalies. In particular,
these contributions have been organized into two main parts. The first part
has analyzed the detection of outliers or anomalies in time series, under the
most typical and standard scenario: time series that are equally-spaced and
fully-observed (with no missing values). Conversely, the second part has at-
tempted to address this limitation and thus deal with the situations in which
the mentioned conditions are not fulfilled. To this end, the main focus of the
second part has been the pre-processing of time series with missing values.

Within the first block, the first contribution has been devoted to the anal-
ysis of the existing unsupervised outlier/anomaly detection techniques in time
series. In particular, an organized overview of the state-of-the-art techniques
has been proposed in Chapter 2. For this, a taxonomy based on the following
three main axes has been provided: the input data type, the outlier type, and
the nature of the detection method. This review of techniques has served not
only to get a global idea of the concept of outlier but also to identify the
existing gaps in the field of unsupervised outlier/anomaly detection in time
series.

This review has shown that the techniques in the literature mostly focus
on detecting anomalies in univariate time series, although there has been a
special emphasis on multivariate time series in recent years. Moreover, point
outlier detection has been the most researched problem, whereas subsequence
outliers and outlier time series have been handled less frequently. Many of the
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techniques for these latter types of outliers are dissimilarity-based techniques,
although often the distance used is not specific for time series. In addition, the
techniques in the literature are targeted at time series that have no missing
values and are sampled on a regular basis. Lastly, this first contribution has
also shown that many techniques do not consider the temporal correlation
when detecting the outliers. It is important to keep in mind that this char-
acteristic is usually relevant in the study of time series and should not, in
general, be ignored.

With the aim of filling in some of the gaps found in the literature of
anomaly detection in time series, in Chapter 3, we have proposed a novel
whole time series anomaly detection technique, applied to the water leak de-
tection problem. In particular, the major challenges addressed have been the
lack of (high-quality) ground-truth labels, and the temporal correlation. To
address the lack of ground-truth labels, we have used self-supervised learning,
a novel learning method that has not been applied to the context of anomaly
detection in time series. To account for the temporal correlation between the
observations, we have used a specific classifier for time series. This new con-
tribution enables the detection of water leaks, providing fewer false positives
than other traditional techniques.

Another challenge encountered in the literature has been that most of the
anomaly detection methods assume that the time series are fully-observed,
without missing values. Indeed, our first two contributions (i.e., the first part
of the thesis) are based on this assumption. However, for different reasons such
as failures in the data collection mechanism, time series often contain missing
values. In the second part, we have considered this scenario, specifically with
multivariate time series.

In this sense, in Chapter 4, we have proposed a selective imputation
method that identifies a subset of time points with missing values to impute in
a multivariate time series dataset. This selection, which will result in shorter
and simpler time series, is based on both reducing the uncertainty of the im-
putations and representing the original time series as accurately as possible. In
particular, the method uses multi-objective optimization techniques to select
the optimal set of points, and, in this selection process, the beneficial proper-
ties of the Multi-task Gaussian Process (MGP) are leveraged. Furthermore,
the usefulness of the method in downstream tasks, such as whole multivariate
time series classification and anomaly detection, has been demonstrated.

In short, this thesis has addressed multiple challenges encountered in the
field of time series data mining, with a focus on outlier/anomaly detection
and missing data.

5.2 Future Works

The results and conclusions presented in this thesis have encouraged several
promising research directions that deserve to be explored in the future. In
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particular, we have identified two types of problems aligned with the two
parts of this dissertation.

Regarding the lines of future research emerging from the first part, we
highlight the following:

• Analysis of unexplored types of outliers. As mentioned in Chapter 2,
the types of outliers can be classified into 1) point outliers, 2) subsequence
outliers, and 3) whole time series outliers. However, there could also exist
more complex outliers such as outliers that propagate over time and over
the different variables of a multivariate time series. For example, in indus-
trial scenarios, a failure of a machine may affect other related machines
but at different time steps (i.e., failure propagation). Although the outliers
in each variable would still be points and/or subsequences, when analyzing
the whole multivariate time series, the outlier would no longer correspond
to the definition of multivariate outlier point or subsequence analyzed in
this thesis due to the time lag. This problem has been hardly analyzed in
the literature [223] and there is still room for research, such as considering
the cases in which multiple outliers/anomalies occur and propagate over
time simultaneously.

• Extension to streaming time series. The set of time points T of a time
series can also be infinite, as introduced in Chapter 2. In fact, in scenarios
such as industrial process monitoring, it is very common to collect this
type of (streaming) time series. In this context, a real-time identification
of outliers/anomalies (as soon as they occur) is of great interest because a
delay in their detection can lead to negative consequences (e.g., in economy
or safety).
In recent years, an effort has been made to develop techniques that are
suitable for streaming time series [123, 224]. However, these techniques
commonly focus on detecting point outliers in univariate time series, and,
to the best of our knowledge, no work has been done on the detection of
subsequence outliers in high-dimensional streaming multivariate time se-
ries data. As such, this might be a promising venue for research, especially
focusing on the design of efficient online algorithms that are able to update
as new observations arrive (without the need to repeatedly retrain models
from scratch).
Moreover, as mentioned in Chapter 4, most techniques assume that the
time series are complete and regularly-sampled. In this sense, another in-
teresting line of future work could be to develop online techniques for the
detection of outliers/anomalies in time series with missing values or those
with variables that have different sampling rates.

• Generalization of the self-supervised dataset. The solution pre-
sented in Chapter 3 is problem-specific and only deals with univariate
time series. In this sense, it could be interesting to extend the generation
of the self-supervised dataset to support multivariate time series, such that
more variables related to water leaks can be considered.
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Additionally, since the proposed method is problem-specific, it is not di-
rectly suitable for other data domains. As such, an interesting future line
of research would also be to investigate the different transformations that
can be applied to generate a self-supervised dataset in other fields. This
will depend on the type of both the available data in the training set and
the anomalies to be detected.
In this way, the proposed approach would be suitable for different settings
(different types of problems, data and anomalies).

Regarding the limitations related to the second part of this dissertation,
we propose the following research directions:

• Treatment of the missing values. The treatment of missing values can
be done in two ways, as discussed in Chapter 4: by pre-processing the time
series, or by performing the imputation and a specific data mining task
simultaneously. Given that our approach is unsupervised and not exclusive
to a specific data mining task, we have opted for the first option, where we
use the MGP method to impute the missing values of each multivariate
time series before applying the data mining task. This leads to two main
possible lines of future work.
On the one hand, it would be interesting to explore other more recent
probabilistic imputation techniques that provide the uncertainty of the
imputation for each time series independently (e.g., GP-VAE [225]) and
compare the results with those obtained with MGP.
On the other hand, it might also be promising to analyze a (single) global
imputation model for the entire dataset of multivariate time series rather
than imputing each of the time series independently. This may be of partic-
ular interest in contexts where the time series in the dataset are generated
by the same underlying process (e.g., when learning normality).

• Application in other downstream tasks. In Chapter 4, the applica-
bility of the proposed selective imputation method in two time series data
mining tasks has been shown: multivariate time series classification and
whole outlier/anomaly time series detection. In this sense, an interesting
line for future work would be to analyze the usefulness of the method in
additional downstream tasks such as clustering or forecasting.

• Improvements in the time point selection algorithm. Exploring
and developing more sophisticated measures for time point selection could
lead to an improvement in the results. As mentioned in Chapter 4, the
uncertainty of a subset of time points in a time series is computed by
the mean value of the variances (which are obtained by MGP) of the
missing points. However, in this way, the uncertainty is not computed in
a jointly manner for the points in the subset. Thus, future research could
focus on elaborating more sophisticated measures that evaluate the overall
uncertainty jointly (e.g., based on information theory).
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Finally, a noteworthy line of research related to both parts, and, in general,
in the field of the detection of outliers/anomalies in time series data would be
the following:

• Creation of benchmark datasets. The evaluation of the outlier/anomaly
detection methods (in general, any machine learning method) is a relevant
step to conclude whether the proposed methods can be useful in practice
or not. However, this evaluation is often complicated in scenarios where
obtaining (high-quality) labels is challenging (e.g., in unsupervised scenar-
ios).
To overcome this challenge, researchers and practitioners have made an
effort to create benchmark datasets aimed at the evaluation of time se-
ries anomaly detection methods. However, most of the commonly used
datasets have flaws that make them unsuitable for evaluating the meth-
ods [42]. Recently, the UCR Time Series Anomaly Archive has been pro-
posed1, which tries to overcome the current benchmark’s flaws [42]. Nev-
ertheless, this archive is focused on univariate time series and subsequence
outliers/anomalies. Thus, an interesting and useful line of research would
be to generate a more general new dataset that allows for multivariate
time series and other types of outliers.

5.3 Main Achievements

The research work conducted during this thesis has resulted in the following
publications and stays:

5.3.1 Journal Papers

• Blázquez-Garćıa, A., Conde, A., Mori, U., Lozano, J. A. (2021). A re-
view on Outlier/Anomaly Detection in Time Series Data. ACM Computing
Surveys (CSUR), 54(3), 1-33.

• Blázquez-Garćıa, A., Conde, A., Mori, U., Lozano, J. A. (2021). Water
leak detection using self-supervised time series classification. Information
Sciences, 574, 528-541.

• Blázquez-Garćıa, A., Wickstrom, K., Yu, S., Mikalsen, K.O., Boubekki,
A., Conde, A., Mori, U., Jenssen, R., Lozano, J. A. (2022). Selective im-
putation for multivariate time series datasets with missing values. IEEE
Transactions on Knowledge and Data Engineering (TKDE). Submitted.

1 https://www.cs.ucr.edu/∼eamonn/time series data 2018/UCR
TimeSeriesAnomalyDatasets2021.zip

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/UCR_TimeSeriesAnomalyDatasets2021.zip
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/UCR_TimeSeriesAnomalyDatasets2021.zip
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5.3.2 Poster sessions

• Blázquez-Garćıa, A., Conde, A., Mori, U., Lozano, J.A. (2019). A re-
view on outlier detection in time series data. 2nd UPV/EHU Doctoral
Conference, Bizkaia Aretoa, Bilbao.

• Blázquez-Garćıa, A., Conde, A., Mori, U., Lozano, J.A. (2019). A
STUDY on outlier/anomaly detection in time series data. 3rd IK4-Ikerlan
PhD. Student Meeting, Orona Ideo, Hernani.

• Blázquez-Garćıa, A., Conde, A., Mori, U., Lozano, J.A. (2020). Hierar-
chically structured time series outlier detection. 4th Ikerlan PhD. Student
Meeting, Online.

• Blázquez-Garćıa, A., Conde, A., Mori, U., Lozano, J.A. (2021). On
outlier/anomaly detection in time series data. 5th Ikerlan PhD. Student
Meeting, Online.

5.3.3 Short Visits

• 06 September-09 December 2021: UiT Machine Learning Group, Tromsø
(Norway). Supervisor: Prof. Robert Jenssen.
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Multi-task Gaussian Process

Multi-task learning is a machine learning framework that aims to improve
performance through the learning of multiple tasks at the same time, and
sharing the information of each task [226]. Thus, Multi-task Gaussian Process
(MGP) is an extension to Gaussian Processes (GPs) for handling multiple
outputs at each time [206].

The objective of MGP is to model a set of processes {fl(x)}Ll=1, each
one associated with a task, rather than a single process f(x). When dealing
with multivariate time series, the tasks refer to the dimensions of the time
series (i.e., having L tasks means that the time series is L-dimensional). For
convenience, we ignore the ith superscript of the time series Y i and use Y to
refer to a time series in dataset D = {Y 1, ..., Y N}. Additionally, we use T̃ to
define the length of time series Y .

Given a set X = {x1, ...,xT̃ } of T̃ indexes, the set of responses for L tasks
is defined as the flattened vector y = [y11, ..., yT̃1, y12, ..., yT̃2, ..., y1L, ..., yT̃L]T ,
where yil is the response for the lth task on the ith input xi. The observations
are assumed to be noisy, and thus, each yil is defined as

yil = fl(xi) + εil (6.1)

where εil ∼ N (0, σ2
l ). This can also be denoted as a L× T̃ matrix:

Y =

y11 · · · yT̃1
... . . . ...
y1L · · · yT̃L

 (6.2)

Each lth row represents the lth dimension of time series Y , and the ith column
specifies the L-dimensional vector at time index xi.

When the time series being analyzed has missing values, only a subset of
the values in Y are observed. Therefore, given a set of observations yo ⊆ y,
we can use a Multi-task Gaussian Process (MGP) to predict some of the
unobserved values at some input locations for certain tasks (or variables). For
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this, L different processes (latent functions) are modeled, {fl}Ll=1, assuming
that each l dimension of the series is drawn from one of these fl processes.

The most straightforward way to model the L processes is to assume
that they are independent and thus use a GP for each. That is, each pro-
cess is defined by a mean function, µl(x), and a covariance function, kl(x,x’).
For convenience, we assume the mean function to be is zero. Then, fl(x) ∼
GP (0, kl(x,x′)), and

yl =

 y1l
...
yT̃ll

 ∼ N (0,Kl + σ2
l I), where l ∈ {1, ..., L}

where Kl is the covariance matrix associated with process fl.
Additionally,y1

...
yL

 ∼ N(
0

...
0

 ,
K1 · · · 0

... . . . ...
0 · · · KL

+

σ
2
1I · · · 0
... . . . ...
0 · · · σ2

LI

) (6.3)

= N (0,Kf,f +ΣL)

where Kf,f is the matrix containing the covariance matrices Kl in the diag-
onal, and ΣL is the L × L diagonal matrix in which the (l, l)th element is
σ2
l .

This approach assumes that the processes are independent, and thus, the
blocks outside the main diagonal of Kf,f are zero. Contrarily, multi-task learn-
ing aims to exploit the dependencies between processes and define those terms
outside the diagonal. In particular, the multi-task learning approach defines a
covariance function that gives a positive semi-definite (PSD) covariance ma-
trix Kf,f , also considering the dependencies between the processes.

Different models for defining the covariance function can be found in the
literature. A widely used model is the Intrinsic Coregionalization Model (ICM)
[227], which assumes that the fl(x) processes are defined by a linear combi-
nation of functions that have been sampled independently for the same GP,
sharing the same covariance function k(x,x′). That is,

fl(x) =
R∑
i=1

aidu
i(x) (6.4)

where {fl(x)}Ll=1 is the set of functions to be modeled, aid ∈ R are the co-
efficients of the linear combination, and each ui(x) is sampled from u(x) ∼
GP (0, k(x,x′)). Then, the covariance function is defined as

cov(f(x),f(x′)) = AAT k(x,x′) = Bk(x,x′)
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where f(x) = [f1(x), ..., fL(x)]T , A = [a1 a2 ... aR], B ∈ RL×L, and k
is a covariance function over inputs. The main idea is to place independent
GP priors over the processes, with a shared correlation function k over time.

Following this ICM model, [206] define the covariance function of the MGP
as:

cov(fl1(x), fl2(x′)) = Kf
l1,l2

k(x,x′)

where yil ∼ N(fl(xi), σ2
l ), Kf ∈ RL×L is a PSD matrix that specifies the

inter-task similarities, and Kf
l1,l2

is the (l1, l2)th element of matrix Kf . That
is, y1

...
yL

 ∼ N(
0

...
0

 ,
K

f
11K · · · K

f
1LK

... . . . ...
Kf
L1K · · · K

f
LLK

+

σ
2
1I · · · 0
... . . . ...
0 · · · σ2

LI

)

= N (0,Kf ⊗K +ΣL)

(6.5)

where Kf,f = Kf ⊗K.
Given the training index setX and the output observations y, the posterior

distribution of f(x∗) = {f1(x∗), ..., fL(x∗)} at test point x∗ is given by

f(x∗)|X,y,x∗ ∼ N (f̄(x∗), Σ∗) (6.6)

where the mean and variance predictions are respectively given by

f̄(x∗) =(Kf ⊗K(x∗, X))TΣ−1y

Σ∗ = Var(x∗) =(Kf ⊗K(x∗,x∗))−
(Kf ⊗K(x∗, X))Σ−1(Kf ⊗K(X,x∗))

(6.7)

where ⊗ denotes the Kronecker product, Σ = Kf ⊗K(X,X) + ΣL ⊗ I is a
LT̃ ×LT̃ , Kf is the matrix that specifies the inter-task similarities, K(X,X)
is the matrix of covariances between all pairs of training points, ΣL is the
L×L diagonal matrix in which the (l, l)th element is σ2

l , and K(x∗, X) is the
vector of covariances between the test point x∗ and the training points.

Since only a subset of values yo ⊆ y has been observed, the covariance
matrix Σ only needs to be computed at the observed values. That is, if the
observed values yo correspond to the values in the indexes Io of the vector y,
then, from the matrix (Kf⊗K(x∗, X))TΣ−1 only the columns in those indices
Io are needed. This means that the covariance matrix Σ and its inverse only
needs to be computed at the observed values. Additionally, from the matrix
(Kf⊗K(x∗, X))T , only the columns associated with the dimensions and time
indexes with observations need to be computed (i.e., the columns in the Io
indexes).
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Learning Hyperparameters

The parameters to be learned are θ = (Kf , {σ2
l }Ll=1,η), where η are the

parameters of the k(x,x′) kernel function. The aim is to learn the parameters
θ that maximize the marginal likelihood p(yo|X,θ). This can be done using
1) gradient-based methods, where the Cholesky decomposition can be used
to guarantee the positive-semidefiniteness of Kf (i.e., Kf = LLT , where L is
lower triangular), or 2) the EM algorithm.

Taking into account the fact that y|X ∼ N(0, Σ), the log marginal likeli-
hood to be maximized is defined by:

L = log p(yo|X,θ)

= −1
2 log detΣo −

1
2y

T
o Σ
−1
o yo −

no
2 log 2π

(6.8)

where Σo is the covariance matrix at the observed values, and no is the length
of vector yo.
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of surface meteorology in Ny-Ålesund, Svalbard,” Earth System Science Data,
vol. 5, no. 1, pp. 155–163, 2013.

6. A. Kampouraki, G. Manis, and C. Nikou, “Heartbeat Time Series Classifi-
cation With Support Vector Machines,” IEEE Transactions on Information
Technology in Biomedicine, vol. 13, no. 4, pp. 512 —- 518, 2009.

7. G. E. P. Box and G. M. Jenkins, Time series analysis: forecasting and control.
Holden-Day, 1976.

8. A. Bagnall, H. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom, P. Southam,
and E. Keogh, “The UEA multivariate time series classification archive, 2018,”
in arXiv, pp. 1 – 36, 2018.
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distribution systems,” in Water Distribution Systems Analysis, pp. 1074–1082,
2010.

177. M. Romano, Z. Kapelan, and D. A. Savić, “Automated detection of pipe bursts
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A Unified Interface for Machine Learning with Time Series,” in arXiv, pp. 1–9,
2019.

221. G. B. Moody and R. G. Mark, “The impact of the MIT-BIH arrhythmia
database,” IEEE Engineering in Medicine and Biology Magazine, vol. 20, no. 3,
pp. 45–50, 2001.

222. B. Zhou, S. Liu, B. Hooi, X. Cheng, and J. Ye, “BeatGAN: Anomalous Rhythm
Detection using Adversarially Generated Time Series,” in International Joint
Conference on Artificial Intelligence (IJCAI), pp. 4433–4439, 2019.

223. C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng, J. Ni, B. Zong,
H. Chen, and N. V. Chawla, “A Deep Neural Network for Unsupervised
Anomaly Detection and Diagnosis in Multivariate Time Series Data,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1409–
1416, 2019.

224. P. Boniol, J. Paparrizos, T. Palpanas, and M. J. Franklin, “SAND: Stream-
ing subsequence anomaly detection,” Proceedings of the VLDB Endowment,
vol. 14, no. 10, pp. 1717–1729, 2021.
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