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Abstract 

In recent years financial markets have become complex environments that continuously 

change and they change quickly. The strong link between the continuous change in the 

markets and the danger of losing money when trading in them, has made financial studies 

a domain that concentrates increasing scientific and business attention. In this context, 

the development of computational techniques that can monitor recent financial events 

can process them according to their similarity with historical data recordings, and can 

support financial decision making, is a challenging problem. 

In this work, the principal idea for tackling this problem is the integration of 'current' 

market information as derived from the market's recent past and historical information. 

A robust technique which is based on flexible pattern matching, segmented data represen

tations, time warping, and time series embedding dimension measures is proposed. Com

plementary time series derived features, concerning trend structures, temporal consider

ations and statistical measures are systematically combined in this technique. All these 

components have been integrated into a software package, which I called P R O G N O S I S , 

that can selectively monitor its application and allows systematic evaluation in terms of 

financial forecasting and trading performance. 

In addition, two other topics axe discussed in this thesis. Firstly, in chapter 3, a neu

ral network, that is known as the Growing Neural Gas network, is employed for financial 

forecasting and trading. To my knowledge, this network has never been applied before to 

financial problems. Based on this a neural network forecasting and trading benchmark 



was constructed for comparison purposes. 

Secondly, a novel method of approaching the well established co-integraton theory 

is proposed in the last chapter of the thesis. This method enhances the co-integration 

theory by integrating into it local time relations between two time series. These local time 

dependencies are identified using djTiamic time warping. The hypothesis that is tested 

is that local time shifts, delays, shrinks or stretches, if identified, may help to reveal 

co-integrating movement between the two time series. I called this type of co-integration 

time-warped co-integration. To this end, the time-warped co-integration framework is 

presented as an error correction model and it is tested on arbitrage trading opportunities 

within P R O G N O S I S . 
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Chapter 1 

Introduction 

Although financial markets are seemingly based on simple rules of demand and supply, 

the procedure of making forecasting based investment decisions for trading is a compli

cated task. A set of major scientific domains, such as sociology, psychology, theoretical 

economics, financial engineering eind computer science, contibute to solving this problem 

from different angles. This pluralism of approaches together with the potential profit 

that can be gained from a successful investment decision, make the development of a 

forecasting based decision support system an interesting and challenging problem. But 

what makes it so difficult to build robust, in terms of profit, automated forecasting de

cision support systems (AFDSS) for investment and trading? Let me emphasise some 

major points. 

Firstly, in complex financial environments, it is very difficult to forecast and therefore 

to take trading positions, by trying to anticipate a decision making process, which will 

begin and be taken by another group of people at unknown time. Even if all information, 

related to an investment decision was publicly a\^ilable, there is no way for somebody 

to know how another group of people will interpret that information. In that respect 

valuable information, or technically speaking, necessary input for an A F D S S is missing. 

Secondly, an AFDSS must operate within markets, which, up to a certain point, are be

lieved to be efficient ( M A L K I E L , (1996) , [111]) and continuously change. For these reasons 

to perform forecasts necessary for investing in the market is hard work. It is interest-



ing at this point to quote Burton Malkiel's [111] words: ''Investing is a gamble whose 

success depends on the ability to predict the future". E. P E T E R S [134] [135], in an effort 

to explain the underlying change in the dynamics of the market, quoted George Carlin's 

words: " The present does not exist because as soon as we are aware of the present, it is 

already the past, and the future is the presents 

Thirdly, huge amounts of collected data make efficient data processing and computational 

time reduction a task that needs to be addressed. Qualitative data selection techniques 

and local data processing ideas that are based on long memory statistics, allow us to 

process considerable data collections in "finite" time. 

An Investor's Decision Making Scheme 

Experience 

^^Inmition I Perception^ 

r undarnenlai 
Analysis 

\ 

( Decision 

f 
Trading 

Actions 

Technical 
Analysis 

Computational > v 
v. Intelligence J 

Figure 1.1: An investor integrates many strategies in order to make capital investment decisions 

and take trade actions. 

In my opinion, professional investors employ six main strategies for managing their 
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capital, illustrated in figure 1.1: 

• Fundamental Analysis: A fundamentalist investor sharply distinguishes a stock's 

current price from its real value by mainly interpreting the corresponding firm's an

nual report. S/He analyses price/earnings ratios, dividends, sales levels, operating 

costs and other account indicators, to produce valuable insights which might deter

mine the stock's future value which is not reflected in its current price. However, 

the sole use of fundamental analysis could prove dangerous for investing due to 

inaccurate data (consider accounting manipulations of annual reports), faulty in

terpretations, careless timing and unexpected market behaviour (Markets do not 

always converge to the fundamental analysis based estimates). 

• Econometrics: Econometrics is the name given to the study of quantitative tools 

for analysing economic data. The field of econometrics is based on probability and 

statistical theory. Its ultimate goal is to identify and measure relationships between 

economic variables, to test the theoreticfJ ideas behind these relationships, and to 

use them for quantitative predictions. To a greater or lesser extent, econometrics 

seeks to provide answers to questions that fundamental analysis leaves unanswered. 

However, it can not be used independently for investing and trading. Its increasing 

mathematical complexity does not offer solutions that can be easily interpreted and 

therefore is diflUcult apply. 

• Technical Analysis: A technical analyst (chartist) invests capital while assuming 

that all information about earnings, dividends and stock future performance of a 

company is automatically captured in the chart that depicts past prices and trading 

volumes. Additionally, he/she believes that prices tend to move in trends whose 

direction of change can be foreseen and can lead to successful trading positions 

([159], [142], (143), [121]). The main arguments against the sole use of Technical 

Analysis (TA) can be summarised in the following: 

TA indicators tend to follow the time series trend rather than predict it. That 

makes them \^lnerable to sharp changes. Due to its simplicity. TA is gradually 



used by more and more people. This depreciates its validity. Finally, due to the 

efficiency of the market, a price chart's reading can be quickly anticipated and this 

reduces the chartist investor's opportunity to act profitably. 

• Computational Intelligence: The strength of computational intelligence and 

machine learning is that it can be applied to domains where little is known about 

underlying relationships. In finance, applied computational intelligence gives to an 

investor a genuine replacement for the non-adaptive "a priori!' statistical forecasting 

models of econometrics and the structural models of technical analysis. However, 

financial modelling using learning techniques seems to be one of the hardest tasks 

of learning systems technology' and usually must be accompanied with valuable "a 

priori' knowledge derived from experts, in order to overcome the t\v'0 main problems 

in machine learning applications: convergence to local minima and architecture 

( R E F E N E S (1993), [145], pp. 778). 

• Experience: Investors also use their experience to judge market behaviour and 

manage their capital. Past profit and loss situations that they have experienced 

may be considered as helpful indications for participating in the market by going 

long (buy) or short (sell), or staying out of it. However, experience on its G\vn cannot 

be considered as a successful investment strategy^ because it cannot necessarily be 

applied to new market conditions- Furthermore, experience based trading heavily 

depends on human memory. 

• Intuition/Perception: Investors and many of the ordinary market players base 

their positions on intuition and perception. They simply "feel" that a company's 

share will rise. They usually base these intuitive opinions on a political decision, on 

publicly available news and rumors, or on the way that a company and its shares 

are seen through their eyes. Over-trading, premature liquidation of good positions, 

"jumping the gun" on market entry to get a better price, holding in a losing position 

are all negative manifestations of intuition and subjectivism in actual trading. 



The emphasis of this work will be on the computational intelligence component of a 

forecasting based investment decision support procedure, although the other factors will 

also be touched upon. 

More precisely, we will employ pattern recognition and matching technology, inspired by 

the investor's experience and perceptions, in an effort to identify market situations which 

have occurred in the past and which are similar or related to the present. Our aim is 

to keep our research as close as possible to the realistic way that a professional investor 

acts in the market. One of the advantages of this approach, which will be discussed later 

in this thesis, is that it eliminates manifestations of intuition and subjectivism and helps 

the investor to avoid many trading errors. Furthermore, an AFDSS removes the need 

for constant investment decision making and, thus, substantially reduces trading related 

stress and anxiety. 

To test our thoughts, we have chosen to evaluate our algorithms on realistic forecasting 

and trading tasks. Data for that purpose has been collected from the D A T A S T R E A M Re

search Services database [44] and all algorithms have been developed in object oriented 

CH--f- code on a Pentium Pro-200 machine running under RedHat 6.1 Linux. The data 

set that has been used for the simulations in this thesis consists of some European market 

indices as have been calculated by the D A T A S T R E A M team. 

The thesis is organized as follows: 

We begin by discussing the problem of developing automated intelligent decision support 

systems based on pattern recognition (chapter 2). The literature in the field is reviewed 

and fundamental problems for forecasting and trading are identified. We then apply an 

artificial neural network, the Growing Neural Gas ( G N G ) , to the problem of fore

casting financial market indices. The forecasts are also evaluated within a simple trading 

strategy (chapter 3). In this context, we construct a forecasting and trading benchmark, 

compatible with other applications of artificial intelligence in financial engineering. The 

G N G network has never been applied to time series forecasting problems before. In 

this context, our contribution in chapter 3, is the assessment of the G N G networks as 

financial predictors and auto-traders. The following chapters describe a pattern match-



ing algorithm for forecasting and trading which operates firstly (chapter 4) on raw data 

representations based on similarity search mechanisms that use compound feature sets. 

Secondly, (chapter 5) pattern matching for forecasting and trading is applied on piece-

wise linear segment time series representations using Multiple Feature Sets ( M F S ) 

and Dynamic T i m e Warping ( D T W ) . The use of piecewise linear segment repre

sentations for extraction of time dependencies in financial time series: the introduction 

of the Embedding Segment Dimension ( B S D ) calculation that indicates non-linear 

deterministic behaviour in segmented financial time series; the introduction of multiple 

feature sets for imi\'ariate time series pattern matching using Dynamic Time Warping; 

and the use of historical pattern activity of the market for trend prediction and trading, 

are considered our major contributions that are given in chapters 4 and 5. Next, we 

study the forecasting and investment decision making problem on the multivariate case 

of financial data, by again employing pattern matching ideas on segmented data (chapter 

6). In the same chapter, we address the notion of co-integration between economic time 

series and we present the concept of time-warped co-integration which is based on local 

time relations between the time series. Statistical arbitrage is also discussed there (sec

tion 6.2). Our major contribution in this section is included in our effort to explain that 

local time relations, like local delays or shifts, exist in economic time series. We identify 

such relationships using the Dynamic Time Warping (DTW) algorithm and we show how 

co-integration between economic time series can be revealed out of the time warped series 

representation. We call this type of co-integration time-warped co-integration. To 

identify profitable trading opportunities within the time-warped co-integration economic 

time series movement, we apply an arbitrage derived trading strategy, called statistical 

arbitrage. Improvement in terms of average profit is showTi for time-warped co-integration 

compared to classic co-integration. 

All the approaches mentioned above have been integrated within a self developed software 

package, which I called P R O G N O S I S ^ Information about the P R O G N O S I S software 

^Prognosis (npcrft/ujai^): Greek word which means knowledge, understanding of the future before it 

arrives - pro (Trpo): before, beforehand, gnosis ('yuCjaK:): knowledge, understanding, (74). 



package together with snapshots are given in appendix D. 





Chapter 2 

Pattern Recognition in Finance 

"It is said that the present is pregnant 

with the future" 

Voltaire, 

'The Portable Voltaire' 

2 • 1 Introduction 

Why should one study financial modelling and forecasting with computerized intelligent 

pattern recognition methods? The most important reason is the need for technology 

which will provide investors with automated modelling and forecasting systems, upon 

which to objectively base their capital investment decisions. Very often investment deci

sions, based solely on subjective forecasts, are false and lead to substantial loss of money. 

Econometrics, '''the application of mathematical statistics to economic data, to lend empir

ical support to the models constructed by mathematical economics and to obtain numerical 

estimated' ( S A M U E L S O N et al., (1954), [153]), has tried to put empirical flesh and blood 

on theoretical structures ( JOHNSTON, (1984) , [85]). It has had, however, difficulties in 

coming to terms with economic and financial time series analysis because there is no rich 

recording of theoretical or empirical research extending over the decades and centuries on 

which to base a modelling approach ( D I C K E N S O N , (1974) , [50]). Another reason for the 

employment of computational techniques in finance arises from the fact that the most 



reliable domain to apply and test any theoretical ideas is the real financial world, since 

the difficulties of complex financial and economic environments arise there naturally. The 

ability to run realistic simulations has been possible only very recently with researchers 

implementing their ideas using powerful computing machines. 

The nature of any finsmcial applications to be studied, requires careful consideration of a 

range of economic factors, such as interest and inflation rates, political and central bank 

economic decisions, social investment and trading, general and public investing trend 

growth, and so forth. The selective attribute of adaptive pattern recognition forecasting 

systems introduces, therefore, the idea of automatically isolating significant determi

nants of the financial process. Furthermore, the adaptive nature of these systems also 

overcomes the strong version of the Efficient Market Hypothesis (EMH), which actually 

suggests that no "a prion" model for predicting market movements exists (KiNGDON, 

(1997), [97]). This success of artificial intelligence against the strong version of EMH, has 

been a motivation for further research in analysing financial markets. A relatively new 

conference series, the C O M P U T A T I O N A L F I N A N C E ([36, 35]) , dealing with such applica

tions, is now held annually. 

The most popular learning machines used for financial modelling and forecasting are the 

family of firtificial neural networks (ANN) and genetic algorithms (GA). A particular 

neural network, the Growing Neural Gas (GNG) [60], [63], considered as a pattern recog

nition device, is tested and evaluated on market index forecasting in chapter 3. We use 

the resulting framework obtained from the GNG to create a forecasting and trading per

formance benchmark. 

The system we propose in this thesis is an automated pattern recognition system, which 

is based on similarity measures and flexible matching. This system is designed to per

form forecasting and to generate trading position signals. We call this Pattern Matching 

Forecasting System P R O G N O S I S ^ P R O G N O S I S ' forecasts are derived from the "cur

rent" situation of a financial assets series and its similarity with historical situations. 

Behavioural psycholgists have found that, when faced with incomplete input informa-

* Greek word which cictually means ""before knowledge ^ i.e. prediction. 
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tion, people often base their decisions on the similarity with past experience ( P E T E R S , 

(1999), [134]). P R O G N O S I S ' aim is to computationally automate that behaviour and 

still remain close to the market's eflBciency. Consider for example that EMH's future 

indicator is the last time series value, while that of P R O G N O S I S is the time series most 

recent situation. In chapters 4, 5 and 6 we demonstrate the development and evaluation 

of P R O G N O S I S . 

2.2 Requirements 

Developing and emplo3dng computerized systems to forecast financial time series and to 

extract investment decisions, is not only a challenging task but also a diflScult one. The 

fact that in order to evaluate a financial system, money is needed ,̂ together with the 

considerable complexity of the financial application domain, results in the need for such 

an automated system to obey the following requirements: 

1. Efficient Market Hypothesis ( E M H ) Constraints: Although, the idea has 

become fashionable in academic literature that financial markets may after all dis

play some signs of predictability (Lo et al., (1990) , [105], B R O C K et al, (1992) , 

[22], M E U L B R O E K , (1992) , [115], R I D L E Y , (1993) , [148], P E T E R S , (1994), [135]), 

any computational intelligence system must be tested against the E M H . In terms 

of trading, the system must be tested against a simple ''buy-and-hold' strategj'. 

Remarkable studies on the E M H and its validity - pros and cons - can be found in 

M A L K I E L , (1996), [111] and L o and M A C K I N L A Y , (1999), [106 . 

2. Data Optimisation: When studying the computational intelligence technology, 

one becomes familiar with terms like data smoothing, detrending, filtering etc. 

( B I S H O P , (1996) , [17]). In finance, however, too much preprocessing is not desirable. 

^That corresponds to real trading. The purpose of any trading sj'stem is to operate in the present 

financial context and to be profitable. Insufficiently tuned trading systems which do not meet certain 

modelling requirements, are not profitable and therefore when applied they lead to extensive losses. 

11 



Consider, for example, the two conflicting notions of trend in financial time series: 

Trend can be considered as a valuable factor of price movements which might be 

proven profitable and must be retained but it can also be seen as an obstacle in the 

learning process of a neural network which must be removed. It is crucial, after all, 

for a forecasting and investment decision making system to process data that is as 

close as possible to its natural state. 

3. Adaptivity: Any investor and thus any system which supports an investor's deci

sions will face an ongoing changing financial environment. It is thus a requirement 

of any forecasting and trading system to be able to adapt to new market situations 

(KiNGDON, (1997) , [97]). 

4. Robustness: The robustness of a system in terms of performance is strongly linked 

with its parameter set. A system heavily dependent on its parameters is not stable. 

That happens when small changes in the parameter set of the system correspond 

to unpredictable responses. B R O C K , L A K O N I S H O K and L E B A R O N , (1992), [22], 

have shown that some popular chart analysis techniques, such the Moving Average 

(MA) rule ( P R I N G , (1991) , [142], M U R P H Y , (1999) , [121]) may generate profitable 

trading only under certain parameterisation. 

5. Computational EflSciency: The financial time series analysis must allow a huge 

amount of data to be processed. This is vital for obtaining results of statistical 

significance. It is, therefore, essential for a financial forecasting system to put 

before any other requirement, process efficiency and computational time reduction. 

6. Simplicity: D. Hendry, during his plenarj' session in the International Symposium 

of Forecasting (ISF'99) in Washington DC, while commenting, on the huge expan

sion, in terms of complexity, of the econometric models, emphasised the necessity 

of keeping modelling in finance as simple as possible. Complexity' is also an argu

ment that economists raise against neural network technology. They complain of 

not being able to understand the underlying mechanism when applied for financial 
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modelling. To some extent they are correct (see Z A P R A N I S and R E F E N E S , (1999) , 

185]). It is important to remember that neural network complexity is usually 

growing against generalization - the Bias- Variance dilemma. 

7. Monitoring Constraints: A drawback of neural model technology seems to be 

their inability to monitor what they are doing^. Pure statistics and mathematically 

originated economic modelling also have problems in monitoring and \asualising the 

problem and its solutions. Monitoring and visualisation are essential characteristics 

in investment decision support systems because they inspire the user and engender 

a sense of trust. 

2.3 State of the Art 

Given the requirements discussed in the previous section, it can be said, while looking 

at the recent research literature ([118], [146], [42], [70], [185]), that hardly any published 

work fulfills all of them. In this section, we quote some thoughts which illustrate that 

point. They are meant to provide a cross section of work being undertaken rather than 

to give a comprehensive review. 

Econometrics. G R A N G E R , (1999) , [70], in his book "Empirical Modelling in Eco

nomic^' states that the purpose of the modelling exercise of parts of econometrics is 

to find a model that is well estimated and appears to fit the data well. It does not, how

ever, guarantee that the model will also be useful for a decision maker. Mainly there are 

two reasons why that happens. Firstly, econometric models are often over-parameterized 

and thus they do not perform qualitative - generalized - forecasts that can be used for 

decision making. Secondly, they are restricted to relatively small data sets and their 

extrapolation properties are poor, C L E M E N T S and H E N D R Y , (1998) , [42] pointed out the 

inability of macro-econometric models to follow structural changes. Non-constancies in 

^ZAPRANIS and R E F E N E S [185] have done some remarkable work in order to treat ANNs as statistical 

devices for non-linear, non-parametric regression analysis, rather than as a form of artificial intelligence. 
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the data set, they said, are responsible for some of the major episodes of predictive fail

ure because of uncertainty due to parameter estimation and lack of generalization. They 

suggest, therefore, the idea of modelling structural change using dynamic, switching re

gression models. Some years earlier. N E L S O N and F O S T E R , (1992) , [124], presented a 

representative econometric model, the univariate A R C H model, and some useful sugges

tions for its design process. They pointed out two major limitations or, in other words, 

two widely voiced criticisms against econometric models. Firstly, econometric models are 

ad hoc, i.e. although they can be applied to a particular part of an economic problem, 

they are not economic models, they are statistics ( C A M B E L L et al., (1993) , [27], A N 

D E R S E N , (1992) , [5]). Secondly, in applied work, there is considerable arbitrariness in 

the choice of econometric models because of the plethora of models. Generally, it csn be 

said that the criticism against econometrics derives mainly from lack of robustness and 

simplicity in their modelling ability. 

Technical Analysis ( T A ) . TA based automated trading systems can be used as just 

one additionad indicator in the overall decision-making process by alerting investors and 

traders for trend reversals. However, they heavily suffer from lack of adaptivity to dy

namic market condition changes. Furthermore, T A trading rules also suffer from sub

jectivism in their interpretations. It has been said in the literature that "TM is the art 

of interpreting a number of reliable and scientifically derived indicator^ ( P R I N G , (1998) , 

143]). The question that arises out of this definition is whether a system based on its 

designer's interpretation skills, could actually be robust and be trusted for global invest

ment actions. On the other hand, TA derived automated trading systems are simple 

systems' which can satisfactorily visualise msirket trends and monitor the trading rules 

applied. TA theory, therefore, is well understood as well as the proposed trading po

sitions. Additionally, TA rules are easy to implement and they are cheap in terms of 

computational power and time ( M U R P H Y , (1999) , [121]). 
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Computational Intelligence ( C I ) , One of the first attempts to employ computa

tional intelligence in finance was made when L A P E D E S et al., ( 1987) , [101], explicitly 

used Artificial Neural Networks (ANNs) for modelling deterministic chaos. From those 

early stages, it became clear that C I and thus ANNs will not be the expected panacea 

in financial modelling. W H I T E , (1988) , [180], in his effort to forecast IBM daily stock 

returns, reported that ANNs, despite their universal approximation properties and their 

ability to operate with little pre-knowledge in the application domain, suffer from: prac

tical problems in the architecture design process, difficulties in deciding on the correct 

form of their learning, an inability to explain their underlying mechanism. After more 

than a decade, R E F E N E S et al., (1999) , [147], reported the fact the ANNs had still not 

convinced practitioners and statisticians of their effectiveness. This is broadly explained 

by the lack of systematic tests of statistical significance for the various parameters that 

are estimated for the models. Without any doubt there exist strong links between White's 

(1988) and Refenes et al.'s (1999) main problems. In the meantime, serious research has 

been published on computational intelligent financial applications, including not only 

ANNs. KiMOTO et al., (1990) [95], reported excellent profit margins when they ap

plied ANNs for generating buy or sell stock signals. However, the evaluation period of 

their tests was only two years. Contributing to the ANNs validation procedure, is the 

work of W E I G E N D et al., (1990) , [177] and M O O D Y et al., (1992) , [118, 116]. Their 

effort is targeted at achieving optimal network design, training rules and parameters 

using extra architecture complexity penalising models and more realistic performance 

functions, such as prediction risk. A B U - M O S T A F A , (1993) , [1] in one of his papers in 

the "Neural Networks in the Capital Markets" conference series, introduced a method 

of injecting a-priori expert knowledge during the ANN's training phase. His approach 

is basically based on complementary information derived when ANN models are ap

plied on reciprocal problems, like the prediction of the US-Dollar/DeutscheMark and the 

DeutscheMark/US-DoUar exchange rates. Mostly, this interesting approach indicated the 

importance of using a-priori knowledge to improve the network's generalization proper

ties together with its robust functionality. The issue of integrating expert knowledge still 
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remains open in financial modelling. P O R T U G A L , (1994), [139], investigated through an 

empirical exercise the performance of A R I M A models against Unobservable Components 

Models (UCM) and Artificial Neural Networks (ANN) in forecasting monthly Brazilian 

gross industrial output data. He claimed promising ANN performance particularly in 

large forecasting horizons. K I N G D O N , (1997), [97], systematically sumnnarised studies on 

financial modelling-forecasting-trading and argued in favor of the computational intelli

gent approaches. According to Kingdon, tests on 501 time series, both of simulated and 

real nature, showed that ANNs outperform the classical regression econometric meth

ods (see B O X - J E N K I N S [19]; H I L L et al., (1992), [73]; M A K R I D A K I S et al., (1982), [110]; 

S H A R D A et al., (1990), [160, 161]; T A N G et al., (1990), [169]; S A S T R I et al., (1990), [156]; 

F O S T E R et al., (1991), [58]; W E I G E N D et al., (1992), [178]; S H A Z L Y et al., (1997), [162]). 

Other techniques used for financial modelling, forecasting and trading, and assigned to 

the computational intelligence domain are Genetic Algorithms (GA) (see G O L D B E R G , 

(1989,1991), [66, 67]; D A V I S , (1991), [45]; S x E N D E R e t al., (1994), [167): F E L D M A N et al., 

(1990), [57]; KiNGDON et al., (1995), [96]; D E K K A R et al., (1994), [47j; G O O N A T I L A K E 

et al., (1994), [69]), Reccursive Modelling ( P E S A R A N et al., (1994), 131]; (1995), [132]; 

(1998), [133]), Hidden Markov Models (see P A P A G E O R G I O U , (1997), [129]; W E I G E N D et 

al. (1998), [179]). There is an increasing level of interest in applying these techniques in 

finance for modelling, forecasting and trading but their detailed investigation does not 

fall within the scope of this work. 

Pattern Analysis. Early in the 1990's, R . A G R A W A L [3] started researching on queries 

about similarity model development in sequence databases. Particularly in 1993, [3], he 

proposed a similarity search scheme based on ii*-trees ( B E C K M A N N et al., (1990), [12]). 

According to his work, all the similarity measures are made in the frequency domain 

by employing Discrete Fourier Transform (DFT) ( O P P E N H E I M et al., (1975), [127]) and 

making use of the ParsevaCs theorem ( R O R A B A C H , (1997), [149]) which makes Euclidean 

Distance measures also applicable in the frequency domain. In spite of the satisfactory 

performance, his method is computationally expensive because of the frequency trans-
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formations. Additionally, working in the frequency domain does not allow the user to 

project the results straight back to the time domain so as to easily monitor the model's 

performance through time, as required when processing financial data. F A L O U T S O S et 

al., (1994) J [54], extended the method described above, to fast subsequence matching. 

The application of their approach on stock price movements has been proven compu

tationally eflBcient. G O L D I N et al., (1995) , [68], introduced a group of transformations 

which made the distance metric of similarity more invariant to noise and the matching 

process more robust. However, in financial time series there are non-matching gaps which 

interfere within similar time series patterns. These are due to abnormal financial events, 

translation and noise. A G R A W A L et al., (1995) , [4], and S R I K A N T et al., (1995) , [164], 

dealt with that matching problem and discovered several interesting economic matches. 

B A N A V A S , (1999) , [8], discussed a flexible graph matching approach used for forecasting, 

which also identifies slightly distorted patterns in financial time series. 

As can be seen from the presented literature survey, hardly any method exists that com

bines ail requirements for a successful forecasting-trading system. A combination of those 

requirements is attempted in this research. 
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Chapter 3 

Growing Neural Gas 

"It is far better to foresee 

even without certainty 

than not to foresee at all." 

Henri Poincare, 

in The Foundations of Science, page 129. 

3.1 Introduction 

One of the major problems when employing neural network technology in particular eco

nomic prediction tasks, is the selection of the network architecture. Apart from selecting 

among different neural network technologies, there are also a huge number of diflFerent 

architectures that can be used. There are statistical techniques that can be applied to 

pick an efficient network architecture (see Z A P R A N I S et al., (1999) , [185]). However these 

techniques require first the limitation of the searching space, second optimised searching 

algorithms, and third extensive computational time. Additionally, fixed neural network 

architectures do not guarantee optimum performance throughout the input data set. In 

other words, dynamic change in the underlying structure of the data cannot be captured 

by fixed network structures because of the fact that they are fixed. In this chapter, we 

19 



test the forecasting performance and the trading profitability (positive or negative) of a 

neural network which is characterised as growing. This network is called the Growing 

Neural Gas (GNG) (see F R I T Z K E , (1995), [60]) and it mainly adapts itself not only in 

terms of calculated forecasting error but also in terms of number of nodes. It automat

ically adds and removes nodes from its architecture according to the complexity of the 

problem and the change of the underlying structure of the data. In the following, we 

describe the algorithm that implements the Growang Neural Gas Network and analyse 

its performance both as a predictor and an auto trader. 

3.2 Growing Neural Gas (GNG) 

The neural model we are about to describe was first conceived by M A R T I N E T Z , [113] and 

extended by F R I T Z K E , (1995), [60], who added the growing component of the algorithm. 

The "Neural Gas" algorithm [113] was first applied to the vector quantization, data com

pression problem and it has been shown, that it l)converges quickly to low distortion 

errors, 2)reaches a distortion error E lower than that resulting from K-means clustering, 

maximum entropy clustering (for practically feasible numbers of iteration steps) and from 

Kohonen's feature map, and 3)at the same time obeys a gradient descent on an energy 

surface (like the maximum-entropy clustering in contrast to Kohonen's feature map al

gorithm). 

The incremental component to the above mentioned "competitive Hebbian learning" (CHL) 

/ "Neural Gas"(NG) combination, has brought a number of advantage. Firstly, only a 

small number of constant parameters are used. Secondly, incremental models are in a 

better position for handling non-stationary distributions. Generally, non-stationary dis

tributions are a problem in classical neural network approaches. In approaches like the 

Multi Layer Networks, the Self-Organizing Maps, or the Radial Basis Function (RBF) 

networks, once the adaptation strength has decayed, the network is 'frozen" and thus 

unable to react to subsequent changes in the signal distribution. This w-as avoided in the 

GNG by introducing the removal of ''dead'' neurons in the network. Sometimes many 
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units of the GNG may get stuck in regions of high probability density introduced to the 

network sometime ago, but which do not represent the current distribution. These units 

are referred to as '''dead'. Removing such units increases the network's data tracking 

ability while decreasing the learning error too. However, the "dead" units that represent 

regions of the data with high probability density, may be used as a kind of system's 

memory that could be valuable during the Iccurning process everytime that the data dis

tribution returns to previous probability stages. Because non-stationar>- distributions can 

be found in many technical and in almost all economic processes, this makes GNG a very 

valuable tool for modelling and forecasting financial distributions. 

In the next section the GNG algorithm is described. However, the original sources of the 

algorithm can be found in [62 . 

3.2.1 The "Growing Neural Gas" Algorithm 

In this report we consider networks consisting of 

• a set A of units (or nodes). Each unit c e A has an associated reference vector 

Wc € K". The reference vectors can be regarded as positions in input space of the 

corresponding units. 

• a set N of connections (or edges) among pairs of units. These connections are not 

weighted. Their sole purpose is the definition of topological structure. 

Moreover, there are a number of n-dimensional input signals obeying some unknown 

probability density function P{^). The main idea of the method is to successively add 

new units to an initigdly small netwwk by evaluating local statistical measures gathered 

during pre\'ious adaption steps. The network topology is generated incrementally and 

has a dimensionality which depends on the input data and may vary locally. 

The complete GNG algorithm, exactly as published by B. Fritzke [60] is given by the 

following: 

1. Start with two units a and 0 at random positions Wa and W0 in 9f?". 
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2. Generate an input signal ^ according to P(^). 

Remark: 

The network initially has two units, a and /?, which are connected by a non-weighted 

edge. The units are represented by Gaussian functions whose sigma (standard 

deviation) derives from the mean length of the edges that are connected to it. 

Therefore, each unit represents a specific region in the input space and is activated 

to a certain degree when new input signals ^ aire presented to the netw ôrk. 

3. Find the nearest unit Si and the second-nearest unit S2-

4. Increment the age of all edges emanating from Si. 

5. Add the squared distance between the input signal and the nearest unit in input space 

to a local counter variable: 

Aerror{si) = - ?||^. 

6. Move Si and its direct topological neighbours towards ^ by fractions and €„, 

respectively, of the total distance: 

AWn = en{^-Wn) 

for all direct neighbours n of S i -

7. / / Si and 52 are connected by an edge, set the age of this edge to zero. If such an 

edge does not exist, create it. 

8. Remove edges with an age larger than amax- U this results in points having no 

emanating edges, remove them as well. 

22 



Remark: 

When a new input signal is presented to the network the nearest neighbouring unit 

moves towards the input vector ^ by a fraction ê . The movement of the nearest 

unit also drags down the neighbouring units by a smaller fraction €„* This adaptive 

movement gives to the network the tendency to follow the input vectors and thus 

the data distribution. The age parameter attached to each edge is updated in each 

iteration step in order to control active and non-active unit clusters. Old network 

clusters are removed from the network. 

9. / / the number of input signals generated so far is an integer multiple of a parameter 

A, insert a new unit as follows: 

• Determine the unit, q, with maximum accumulated output error. 

• Insert a new unit r halfway between q and its neighbour f with the largest error 

variable: 

• Insert edges connecting the new unit r with units q and f , and remove the 

original edge between q and f . 

• Decrease the error variables of q and f by multiplying them with a constant a. 

Initialize the error variable of r with the new value of the error variable of q. 

Remark: 

The GNG network constists of two layers. The input and the output layers. For 

a classification problem whose purpose is to classify n-dimensional vectors in k 

classes, the input dimension of the network is n and the output one in A:. Similarly, 

for prediction tasks, (eg. one step ahead prediction), if the pattern generation 

method is the univariate sliding window technique, then the input dimension of the 

network is /, the length of the sliding window and the output dimension is one. 

At each adaptation step, using this architecture, the squared error occuring at the 
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output units is accumulated to a local error variable attached to the nearest to 

the corresponding input vector unit. That helps the identification of the network 

regions that have difficulties with the lesiming task. When the error exceeds some 

predefined threshold a new unit insertion is forced in order to reduce the overall 

error and to simplify the learning task by increasing the network's complexity. New 

unit insertions, if necessary, occur at constant rate A. This allows the adaptation 

of the weighted connections that exist between the input and the output units. In 

particular, the adaptation is realized for each pair of input emd output vectors using 

the delta rule. 

10. Decrease all error variables by multiplying them with a constant d. 

11. / / a stopping criterion (e.g.j net size or some performance measure) is not yet 

fulfilled go to step 2. 

3.2.2 GNG for classification 

In the case of pattern classification, the classification error of the network's learning 

process is the criterion used for unit (node) insertion or deletion. In [61], F R I T Z K E 

demonstrated the application of the supervised GNG learning method on a two-class 

classification problem and tested it against a conventional R B F network approach as 

proposed by M O O D Y et al., (1989) , [117]. In such a classification problem, the local error 

variable measure of the GNG algorithm (step 5 ) leads to a network whose units are cen

ters, usually Gaussians, distributed over the input data. The distribution of the centers 

may diflfer considerably from the distribution of the data. In the optimum network archi

tecture large data clusters, easily separated, are represented by fewer Gaussian centres 

with large sigmas (standard deviations) while less separated data clusters are occupied 

by finer Gaussian centres (see figure 3 .1) . 

This kind of data representation is also attempted by Radial Basis Function (RBF) 

network architectures. However, as reported by F R I T Z K E in [61], there are substamtial 

differences between the two methods. The unit architecture of the R B F networks is 
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I l l (ii) (iii) 

(iv) (V) (vi) 

Figure 3.1: Solving a classification problem using the Growing Neural Gas network, (i): 

1000 iter, (ii): 5000 iter, (iii): 10000 iter, ( iv): 20000 iter, (v): 30000 iter, (vi): 60000 

iter. The maximum number of network units that has been used for this simulation was 

60. (The pictures have been retrieved using the neural network simulator developed by 

B. Fritzke) 

a-priori fixed and is based on clustering methods (k-means, hebbian clustering) that 

take into account only the input part of the training data without concerning about the 

output class labels. In other words, it cannot distinguish areas of the input space which 

are difficult to classify from ones that can easily be classified. Furthermore, due to the 

fact that the centres of the RBF networks have fixed positions over the data space, data 
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points that belong to different classes lying in the region of the same Gaussian activate 

similar unit vectors. That leads to classification errors as reported by the output units 

of the network. 

On the other hand, the GNG algorithm starts with a small number of units (step 1) 

and it adapts its parameter set according to the output set of the input vectors (steps 

7, 8, 9, 10). Furthermore, the centre positions are allowed to move slightly in order to 

avoid highly overlapping Gaussian regions and faulty centre positioning (step 6). Finally 

the accumulated classification error is attributed to the localized unit nearest to the 

input pattern presentation so that after some adaptive iterations the position of the unit 

that has more difficulties can be located. A new unit insertion is then forced to cope 

with this problem (step 5). This can be summarised in the follo\ving: ''The network 

concentrates its resources on the more difficult areas'' ( F R I T Z K E 1996). Unnecessary unit 

insertion is constrained by the "age" parameter attached to each edge that connects 

two units. Unused units are deleted after some adaptation steps when they are proved 

to be inactive. This simplifies the network's architecture and discourages overfitting. 

Overfitting during the training process is also avoided by introducing stopping criteria 

of maximum number of units or minimum training error of the classification process. 

Monitoring of the performance of the network on a separate validation set also helps to 

avoid overfitting. 

With these advantages of the GNG algorithm in mind, its application to prediction, rather 

than classification, was attempted here. The application domain was financial. The main 

difference with what has been described above was that the error measures that drive the 

algorithm for unit insertion or deletion were based on prediction errors. The trained GNG 

network was then used for predicting financial stock indices. The dimensionality of such 

prediction problems is usually high and, therefore, the network's topologj^ cannot be easily 

visualised. The network's capabilities in predicting financial stock indices are presented 

through statistics on prediction accuracy and trading performance which was measured 

through a simple trading strategy that incorporates brokerage costs. These results are also 

compared against those obtained by Multi Layer Perceptron (MLP) network structures. 
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3.3 Empirical Forecasting and Trading Results using 

G N G 

In this section, we describe the results of applying the Growing Neural Gas (GNG) 

network to the problem of forecasting financial time series. The network as interfaced 

to forecasting problems was applied to the following set of European D A T A S T R E A M total 

market indices^: 

1. U K - D S - M K 

2. F R A N C E - D S - M K 

3. G E R M A N Y - D S - M K 

4. S P A I N - D S - M K 

5. I T A L Y - D S - M K 

6. G R E E C E - D S - M K 

The data used in the experiments were daily closing prices for the period January 

1990 to the 26"* April 2000. From the total of 2693 observations the first 60% (1616 

ptns) were used for training, i.e. estimation of the parameters of the G N G network, the 

following 10% (269 ptns - 12''* March 1996 to 21 '̂ April 1997) were used for validating 

the model, and the final 30% (808 ptns - 22'̂ '* April 1997 to 26"* April 2000) have been 

employed for out-of-sample testing of the algorithm. 

The same experimental framework was applied to the Multi Layer Perceptron (MLP) 

neural network technology in order to perform one-day ahead predictions. These predic

tion intervals correspond to daily prediction tasks. The MLP based results were used as 

a benchmark set in order to evaluate the GNG network performance. 

In evaluating the GNG performance, we were interested in answering two questions. 

Firstly, can the GNG network reach the MLP network's performance and if 'yes\ can it 

* PRIM ARK corporation. [44] 
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do it in considerably less time? Secondly, did the prediction results of the growing neu

ral net\\'ork technology we employed correspond to similar results in terms of profitable 

trading? In this study, we call the answer to the first question effectiveness of implemen

tation (e.of Im.) and the one to the second question, effectiveness of utility (e.of Ut.). 

All results are validated against the random u;a//: extrapolation method. In table 3.1 the 

profits obtained through a random walk trading strategy are presented. Note here that 

transaction costs of 1% have been applied. 

U K F R A N C E G E R M A N Y S P A I N I T A L Y G R E E C E Aver. 

S R 

Total Profit 

0.67 0.30 -0.45 -0.39 0.34 0.49 

3.99 1.76 -1.96 -1.62 4.91 2.96 

0 .16 

1 . 6 7 

Random Walk (1-day ahead) 

Table 3.1: Trading results on European equity indices using the Random Walk extrapolation 

method. Profit is measured in basis points. SR is the Sharpe Ratio, the annualized return over 

the testing period divided by the standard deviation of the return series. 

Table 3.2 summarises the average out-of-sample performance of the two network mod

els. In this table the directional ability and the trading ability of the models is measured 

in percentage values and basis points respectively. Every profit (or loss) measure is ac

companied by the corresponding Sharpe Ratio risk measure (The mean excess return to 

the standard deviation of the excess return, [106]). That is the ratio of the annualized 

profit and the standard deviation of the profit curve. The last row of table 3.2, labeled 

time efficiency, shows the ratio of the execution times that the models need to reach 

similar performance according to their utility function measures (square mean error). In 

other words, we measure the relative time needed for the two models to reach similar 

regions of training error. 
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U K F R A N C E G E R M A N Y S P A I N I T A L Y G R E E C E Aver 

Training 

Error 0.030 0.027 0.027 0.022 0.042 0.021 0.028 

Directional 

Ability (%) 51.8 52.2 51.7 50.2 55.1 53.6 52.43 G 

Sharpe 

Ratio 0.86 0.79 -0.46 -0.39 0.83 0.68 0.38 net 

Acc. Mean class 

Profit 8.49 6.79 -1.63 -2.01 9.89 7.95 4.91 

Training 

Error 0.029 0.027 0.027 0.022 0.042 0.021 0.028 M 

Directional L 

Ability (%) 52.7 50.9 51.1 51.6 52.4 51.6 51.72 P 

Sharpe 

Ratio 1.62 0.66 -0.45 -0.37 0.65 0.58 0.45 net 

Acc. Mean class 

Profit 9.13 6.12 -1.98 -1.57 7.16 6.34 4.2 

Time 

Efficiency 1.16 1.61 1.52 1.97 0.80 2.22 1.55 

(e.of Im.) 

Table 3.2: Summarised average performance when applying GNG and MLP nem-al net

works for 1-day ahead direction prediction. Trading results (Mean accumulated total profit, 

and Sharpe ratio) are also displayed. The Time Efficiency ratio is calculated as: TE = 

(MLPExec.Time)/{GNGExec.Time) 

The results presented in table 3.2 are the unweighted averages of individual models of 

the same network class. 20 GNG networks were tested in prediction and trading tasks. 

The first of these models was capable of increasing its complexity up to to 10 units. The 
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next one up to 15 units and, consequently, the 20^ network was allowed to have up to 

105 units. The average performance of all the 20 models was then calculated. The same 

research framework was applied to the MLP network models. 

On the European data set used, the directional ability of the networks is on average over 

the 50% threshold of the random walk model. Furthermore, both the neural network 

models used are shown to be more profitable than the random walk model. Transaction 

costs have also been included in the calculations for measuring the profit (or loss) of the 

neural network traders. However, it is interesting to note that neither GNG or MLP 

networks managed to convert random walk losses to profits (see profit values for the D A X 

30 and the I B E X market indices in tables 3.1, 3.2). 

The next step of the investigation undertaken here, was to evaluate GNG networks 

against MLPs. No significant differences were revealed according their directional ability 

or their profitable trading capability. As shown in table 3.2 the models perform similarly. 

However, the GNG based trading system seems to outperform the M L P system when 

applied on the Greek and the Italian market indices. The Greek stock market faced more 

rapid growth after 1996 compared to other European countries. In effect, that may be 

accounted for by the ability of the GNG networks to adapt to new situations by changing 

their architecture. On the other hand, MLP models seem to perform better in more 

mature markets like the UK stock market. 

WTiat really differentiates the two network types when applied to financial forecasting 

problems is time efficiency. As seen in tables 3.2, 3.3 and 3.4, GNG networks "learn" 

faster than MLPs. In this experiment, we measured the cpu-time needed by the two dif

ferent network architectures in order to reach similar training error regions. On average 

GNG networks converged more than 50% faster than the MLPs. 

The next question that concerns the evaluation of the GNG network model is that of 

the effectiveness of utility. This basically refers to the relation between forecasting and 

trading results. The aim is to check whether good forecasting results correspond to prof

itable trading and vice versa. In order to investigate this, we measured the correlation 

coefficients between the directional ability percentages and the mean accumulated profit 
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U K F R A N C E G E R M A N Y S P A I N I T A L Y G R E E C E Aver 

Training 

Error 0.026 0.021 0.020 0.018 0.030 0.024 0.023 G 

Directional N 

Ability (%) 54.8 53.7 54.0 53.7 56.2 55.4 54.6 G 

Sharpe 

Ratio 1.32 1.61 0.10 -0.56 1.13 1.07 0.78 net 

Acc. Mean class 
Profit 14.78 11.03 0.42 -1.74 16.37 13.41 9.05 

Training 

Error 0.026 0.021 0.019 0.018 0.029 0.024 0.023 M 

Directional L 

Ability (%) 1 55.7 51.4 54.8 54.4 55.1 53.9 54.2 P 

Sharpe 

Ratio 2.78 1.93 0.36 -0.39 1.15 0.97 1.13 net 

Acc. Mean class 

Profit 17.31 10.42 1.01 -0.73 13.62 8.33 8.33 

Time 

Efficiency 0.90 1.20 1.27 1.31 0.95 1.73 1.23 

(e.of Im.) 

Table 3.3: Summarised performance of the best GNG and MLP neural networks for 1-day 

ahead direction prediction. Trading results (Mean accumulated total profit, and Sharpe ratio) 

are also displayed. On average the best GNG network converges to the specific training error 

faster than its MLP rival. 

series. These coefficients for the average results as well as for the best and worst models 

are presented in table 3.5. .\lthough the prediction and trading series are not highly 

correlated for any of the models, GNG prediction accuracy seems to be in line with the 
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U K F R A N C E G E R M A N Y S P A I N I T A L Y G R E E C E Aver 

Training 

Error 0.035 0.030 0.030 0.024 0.036 0.034 0.032 G 

Directional N 
Abil i ty (%) 49.1 48.8 46.2 46.5 51.1 50.3 48.6 G 

Sharpe 

Ratio 0.51 0.18 -0.50 -0.26 0.44 0.31 0.11 net 

Acc. Mean ; class 
Profit 6.77 3.41 -2.07 -2.49 3.78 2.95 2.06 

Training 

Error 0.035 0.030 0.029 0.024 0.036 0.034 0.032 M 
Directional i L 
AbiHty (%) 48.7 47.3 48.1 45.3 51.9 51.0 48.7 P 
Sharpe 

Ratio O.Sl 0.42 -0.79 -0.28 0.51 0.30 0.16 net 

Acc. Mean i class 
Profit 5.49 4.31 -2.14 -2.11 1.97 3.33 1.81 

Time 

Efficiency 1.48 1.87 2.08 1.79 2.36 1.93 1.92 

(e.of Im.) 

Table 3.4: Summarised performance when applying the worst GNG and MLP neural networks 

for 1-day ahead direction prediction. Trading results (Mean accumulated total profit, and 

Sharpe ratio) are also displayed. 

increase in trading performance. Such an indication is not visible for the MLP network 

model. This behaviour might be explained by the effect that only small price changes 

are correctly predicted. 

32 



Average Model Best Model Worst Model 

GNG net 

MLP net 

0.76 0.74 0.78 

0.57 0.12 0.41 

Table 3.5: Correlation coefficients between the direction prediction ability percentages cind the 

mean accumulated profit series. The prediction and the profit measures have been obtained by 

applying GNG and MLP neural networks for financial forecasting and trading tasks. 

To conclude this empirical evaluation of GNG models, i t is necessary to say that 

although GNG networks have shown positive performance when applied to financial pre

diction and trading tasks, they have not be proven "impressive" on their average perfor

mance. Of the 20 GNG models tested, there exists a ''besf GNG model, which exhibits 

better performance both in terms of prediction and profitable trading than the others 

(see table 3.3). On the other hand, however, the figures are almost reversed when the 

''worsf GNG model is employed (see table 3.4). This effect reveals high variation of the 

performance in the neural network model set. Usage of individual models for financial 

forecasting eind trading is, therefore, risky and restricts individual model employment. 

More reliable conclusions in using network models (in this case GNG networks) can be 

made by considering the average performance of a network models set. That can prevent 

significant losses. In practice, though, the human factor stil l remains crucial in selecting 

the individual models that constitute the model set. Apart from tuning the network pa

rameters, such as the learning rate or the error thresholds, traders must also contribute 

towards the selection of the appropriate set of models. Such decisions have to be made 

either a-priori or empirically and, therefore, they still remain an open question. 
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3.4 Conclusion 

In this chapter, we have described the Growing Neural Gas (GNG) network ( F R I T Z K E , 

1995, [60]). Following the network's successful deployment in solving topological classifi

cation problems, we have interfaced the GNG network to solve forecasting problems. In 

particular, the GNG network has been applied to financial forecasting and trading for 

the first time. 

The basic GNG property of adapting its architecture by adding or removing nodes out of 

its structure and tracking the complexity of the problem, has been tested in multidimen

sional financial prediction tasks. Furthermore, in an attempt to evaluate the network^s 

forecasting ability, a simple trading strategy based on the network's forecasts has been 

deployed. This has been used to measure the actual trading profitability (positive or 

negative) of the network. In addition, the properties of the algorithm have been tested 

on real data sets against the random walk extrapolation method and against the Mul t i 

Layer Perceptron (ML?) networks. Two additional areas relating to the effectiveness of 

the network have also been explored. Firstly, the effectiveness of implementation has 

been discussed. This concerns the network's time efficiency in terms of learning. For 

the experimental set that has been used in this work, GNG networks learn faster than 

their M L ? rivals. The second area to be tested here was the effectiveness of utility. This 

has been explored by identifying any relationships between the forecasting and trading 

performance of the GNG networks when tested on real financial data sets. In this case, 

GNG forecasts were found to be more highly correlated with the trading profits (positive 

or negative) than were the M L ? ones. 

Although the GNG networks have shown positive performance and outperformed the 

random walk method, their performance cannot be considered as "impressive". As op

posed to MLP networks, they have shown similar predictability and profitability on the 

European stock market indices. Considerable improvement though, has been measured 

in terms of learning speed. 

To conclude this chapter, i t must be said that despite testing a set of different parame-
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tensed GNG networks, no general rules have been found for choosing the best network. 

The variability in the performance of different networks still remains a problem. There

fore, i t is difficult not only to select the best network for a particular task but also to 

construct a set of networks that, on average, perform well on this task. However, average 

network models performance seems to be more reliable than individual network model 

employment. In finance, this distinction may prevent traders from making extensive loses. 
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Chapter 4 

Pattern Matching in Financial 

Applications 

Prediction is very difficult, 

especially if it is about the future! 

Nils Bohr, 

Nobel Laureate in Physics. 

4.1 Introduction 

In this chapter a simple pattern matching scheme is deployed for both actual price and 

direction movement prediction of financial time series. The case examined here involves 

uni\'ariate financial time series and direction movement prediction only. The development 

of the pattern matching forecasting and trading system is based on the scheme that is 

depicted in figure 4.1. As seen there, there are five stages that describe the overall proce

dure. Apart from the two I /O stages, there are three main processing stages. The first is 

titled ''query pattern selection" and involves the selection of the time series pattern (query 

pattern) that describes the present situation of the market series. The second processing 

stage is '^matchinff' and refers to the matching of the query pattern onto the market's 
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time series past activity. The main effort of the ''matching stage is to seek historical 

patterns similar to the query pattern. The identification of similar patterns introduces 

the third processing stage, ^forecasting'. The matched historical composites of the query 

pattern are requisitioned for forecasting. Seen as stimuli that activated some certain time 

series historical behaviour, they are used to identify this behaviour. We believe that this 

historical behaviour has forecasting properties. Processing the market's time series ac

t ivi ty that follows the historical matched pattern, might recover forecasting information 

about the current situation of the market. This idea derives from the hypothesis that 

repeatable patterns exist in the. market series, due to common trading actions that have 

been taken in the past. In other words, i f traders make common interpretations of the 

current situation of the market and those are reflected in their trading actions, then con

sequently that is recorded by the market as repeatable time series subsequent patterns. 

Seen from this perspective, empirical matching is essentially prediction. 

Consider, for example, a chief economist in a broker company, whose job is to judge the 

direction of a stock of a specific company. From where are her/his investment decisions, 

based on the future movement of a specific stock, derived? An answer to this question 

can be found in E. P E T E R S ' book, [134], ''Patterns in the Dark\ In his book, Peters 

mentions that, among other analyses, the economist compares what s/he knows of the 

current situation of the market with past situations, in order to make a prediction. S/He 

does so, because the future movement of the stock is basically derived f rom other people's 

decisions. Therefore, in his effort to anticipate a decision-making process that wil l be 

undertaken by another group of people, s/he searches for similarities between current 

and past financial events. That kind of processing derives from beha\'ioural psychology 

which states that when faced with incomplete information, we often base our decisions 

on similarity with past experience ([134]). 

The purpose of this chapter is to computationally automate that process. Whilst this is a 

different approach, i t is in line with increased efficiency of the market. By always taking 

the current situation of the market as input for the pattern matching for forecasting and 

trading system (PROGNOSIS), we always adapt to new market conditions. Let me, 

38 



Query Pattern Selection 

ISPVT 

proGNOSIS 
pattern matching scheme 

OUTPUT 

Matching 

Trading 

Market Time Series 

Forecasting 

Figure 4.1: The PROGNOSIS Pattern Matching scheme for Forecasting and Trading. Apart 

from the I/O stages (Input - market series and Output - trading) there are three main processing 

stages: 1. Query Pattern Selection. 2. Matching. 3. Forecasting. 

however, proceed with the technical details of this application of PROGNOSIS. 

4.2 Select the Query Pattern 

For the model to operate, the query pattern that represents the current situation of the 

market series, has to be selected. According to the pattern matching system scheme 

(figure 4.1) this pattern is the one that will be matched onto the market's series past. 

Here, the subsequent series shape that derives from the last / points of the market series, 

describes the query pattern. In technical analysis there are certain subsequent series 

structures that derive from the market's charts. "Head and Shoulders'", ''Triangles" and 

''Pennants'' are names for technical analysis series formations. A representative collection 
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of such chart patterns that are classified in the technical analysis literature are given in 

figure 4.2. 

H E A D / 
L E F T SHOULDER / \ R I C H T SHOULDER 

/ V E C K L I N E ^ \ 

HEAD AND SHOULDERS 
a reversal pattern in uptrend (bearish) 

1 ASCENDING TRIANGLE 
in uptrend (boUisb) 

DESCENDING TRIANGLE 
in downtrend (bearisfa) 

RECTANGLE 
in uptrend (bullish) 

FALLING WEDGE 
/ h s . in uptrend (buUish) 

RISING WEDGE 
in downtrend (bearish) 

FLAG 
in uptrend (bullish) 

Figure 4.2: Some examples of known chart patterns. Lef t Up: Head & Shoulders. Center 

Up: Ascending Triangle. Right Up: Descending Triangle. Le f t Down: Rectangles. Center 

Down: Wedges. Right Down: Flags & Pennants. Bullish is a pattern when its last value is 

greater than its first one. In the opposite situation the pattern is characterised as bearish. 

The identification of these pattern formations in the market's charts^ i f possible, leads 

technical analysts to certain interpretations for the market's series future development. 

However, in this work, i t is preferred to allow the market series itself to design its own pat

terns. This is attempted for three reasons. Firstly, the technical stnalysis chart patterns 

are limited and are open to different interpretations. Secondly, there may be market 

series formations that are missing from the technical analysis pattern collection. And 

thirdly, by letting the market series form its own patterns, new shapes can be retrieved. 

Additionally, by selecting the query pattern to describe the current situation of the mar-
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ket, P R O G N O S I S continuously follows the current market conditions and adapts to new 

ones. 

What remains critical is the length, Z, of the query pattern. Three methods are proposed 

here to cope with this problem. A statistical method, which derives from the embedding 

theor>' of T A K E N S , [168] and S A U E R et al., [157] , searches for the underlying time series 

embedding dimension which is used as a measurement of the query pattern's length. Sec

ondly, a method based on technical analysis price oscillator indicators (see [ 1 2 1 , 142, 2 ] ) 

broadly classifies the financial asset time series in bought and sold areas and highlights 

the most recent crossing point on the time series, where a buy/sell area switch occurred^ 

Thirdly, a piecewise linear segment representation is used for assessing \'ariable lengths 

of time series sections which are represented by points which on average have the same 

trend. 

4.2.1 Choosing the Optimal Embedding Dimension 

To determine the Embedding Dimension (ED) of a time series is a task that has engaged 

many researchers, T A K E N , ( 1 9 8 1 ) , [168] , S A U E R et al. ( 1991) , [ 1 5 7 ] , and O T T et al. 

( 1 9 9 4 ) , [128] have developed the mathematical theory' for studying a t ime series system's 

underlying dynamics. GRASSBERGER and P R O C A C C I A , ( 1 9 8 3 ) , [71] , and W O L F et al., 

( 1 9 8 5 ) , [183] , developed algorithms for calculating the correlation dimension and the 

Lyapunov exponents, respectively, in order to characterise the dynamical behaviour of a 

time series. In a financial context, L A R S E N et al., ( 1 9 9 2 ) , [102] , computed the correlation 

dimension for a set of daily dollar rates and reported non-linear deterministic behaviour 

and B L A S C O et al., ( 1996) , [18] , identified memory patterns in the Spanish stock market, 

by employing an embedding dimension searching algorithm. 

Our aim here is to find the optimal embedding dimension of the underlying times series 

model and use i t as an indication of the length of the quer>' pattern. A practical method 

to determine the minimum ED, which does not contain any subjective parameters, does 

^ Price Oscillators are explained in Appendix A 
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not strongly depend on the available data points, can distinguish between deterministic 

and stochastic signals and is computational efficient, has been proposed by C A O in [29] , 

[30] and [31] . This method is a close variant of the false neighbour method, described 

by K E N N E L et al.. ( 1 9 9 2 ) , [91] . In particular, this algorithm iteratively searches for 

reconstructed pairs of time-delay vectors of dimension d, which remain close according 

to a distance metric, even when the dimensional space increases by one. Such pairs of 

vectors are called true neighbours. In the opposite case, where the vectors do not remain 

close in the increased dimensional space, they are called false neighbours and perfect 

embedding exists. The vector dimension d for which false neighbours exist, indicates the 

embedding dimension which is d -h 1 . 

The whole procedure is systematically implemented with the following algorithm: 

1. Consider a time series rci,X2, • • •, 2:̂ ^ time-delay vector as shown in equation 4 . 1 : 

Vi{r, d) = [Xi, Xi+r. ^iHd-\)ri z = 1,2, * • • , - (d - 1 ) T ( 4 . 1 ) 

r and d are the time-delay and the system's embedding dimension respectively, r 

is set to one (r = 1 ) , according to the method of mutual information by F R A S E R 

and SwiNNEY, ( 1 9 8 6 ) , [59] . 

2. Calculate the ratio D{i,d)j which is defined as: 

""^'''^^ \\VM)-K„M)\\ ' ^ = ^ ' 2 - - = ^ ^ ' - i = (^-2) 

where || • || is some measurement of Euclidean distance and nni is the index that 

points to the closest match of the i " * time-delay vector. 

3. Investigate the variations of the average value of D{i, d) over the time series as 

calculated by equation 4.3 

E{d) = jj^Y:D{i.,d) ( 4 . 3 ) 
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The value of d, for which the fraction: 

do not change substantially, identifies the optimal embedding dimension of the time 

series. That is dH-1 . 

In spite of the advantages mentioned, Cao's method is sensitive to noise levels, particu

larly when applied to financial data. 

In this work, we employ additioucd features that incorporate shape and temporal 

information in the distance metric calculations. The new distance metric is not that 

sensitive to noise and therefore i t can identify more reliable neighbours of the time-delay 

vectors for the embedding dimension calculation. The shape information is quantified by 

the slope of the local trend line to which the corresponding vector point belongs. That 

distinguishes points which have similar values but are part of different trends. Further

more, the time information is incorporated in the distance metric as a time label which 

is determined from the position of the vector point in the time series. This distinguishes 

current vectors from older ones. 

The distance metric is given by the following equation: 

\\Vk{m)-Vt{m) = ( 4 . 0 ) 

where x, s and t are the actual value of the vector point, the slope of the local trend 

and the time label of the point respectively, a, 7 are weighting factors that summate 

to one. The calculation of these additional features does not put much additional strain 

in terms of computational time and is computationally tractable. The computational 

complexity increases linearly. 

The embedding dimension of the time series, as calculated with the method described 

above, is used for the query pattern's length selection. I t defines the optimal pattern 

length that has to be matched onto the time series past. 
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Other methods employed for choosing the optimal embedding dimension are: Singular 

Value Decomposition (SVD) , ( B R O O M H E A D et al.,,(1986), [23], PRESS et a l , (1992), 

[141]), invariant on the attractor computation (GRASSBERGER et al., (1983), [71]) and 

the method of false neighbours ( K E N N E L et al., (1992), [91]). 

4.2.2 Technical Analysis - Price Oscillators 

Most chartists and speculators agree that Dow Theory ( N E L S O N , (1903). [123]), provides 

a solid foundation for any study of technical analysis. I t is, though, very important 

to note that Charles Dow never viewed his theory as a method for forecasting stock 

msirket directions. Its real value, he felt, was as a barometer for reading general market 

conditions. This is also how we intend to use technical analysis (TA) indicators for 

identifying how long ago in the recent past the current market conditions were prevalent. 

Among a set of representative TA indicators, such as the Moving Average Convergence-

Divergence (MACD), the Relative Strength Index (RSI), Stochastics Oscillator (StOsc), 

Moving Average (MA), Price Oscillator (PrOsc) etc. (see A C H E L I S , (2000), [2]), we 

chose to work with price oscillators (PrOsc) in both trending gmd non-trending markets. 

PrOscs are derived from the class of momentum indicators and are known for their ability 

to classify the market in over-bought and over-sold areas. Price Oscillators are usually 

defined by a three parameters notation, PrOsc A-B/C. A and B are the short- and long-

term moving averages whose difference produces a series known in technical analysis, as 

the oscillator. The crossing points of the oscillator series and its C-days moving average 

are, in the technical £malysis literature, the series points where trading actions should 

be taken. Whenever the moving average curve crosses the oscillator from below a buy 

trading signal is generated. In the opposite case the price oscillator prompts for selling. 

I t is not always the case that the price oscillator trading indications are correct, especially 

in highly volatile markets. However, they have some power, particularly when their three 

parameter set is optimised for maximum profit over a testing period. There are studies 

[53] shownng that a price oscillator based trading strategy can consistantly return profits 
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over a significant period of time and for a specific set of parameters A, B, C. For different 

periods profitable price oscillator trading may be generated for different parameter set. 

The market series, therefore, is assiuned to be separated into bought and sold regions, 

when the price oscillator based trading is followed. Figure 4.3 depicts these regions on 

the Greek market index for the period 01 .01 .1998 to 26 .04 .2000 as appeared using the 

PrOsc 5 - 3 0 / 5 0 (time series points betw^een tw ô successive arrows). 

Here, we use the price oscillator properties to select a suitable query pattern's length. 

This is performed after the most profitable price oscillator is retrieved for a particular 

market time series. For this purpose a large number of price oscillators is tested. The 

moving averages parameter set that returns the maximum profit over the whole testing 

period^ is used for the query pattern's length selection. The number of points betw^een 

the last price oscillator trading signal and the current point of the series identifies the 

length of the query pattern that will be matched onto the time series. 

More details about the development and the advantages of technical analysis price oscil

lators can be found in Appendix A. 

4.2.3 Segment Sampling 

.Another way of extracting the current pattern is to isolate i t from a previous pattern 

which has a different trend. I t is essential for that purpose to represent the data not 

sampled in equal time intervals, hke days, weeks or months, but in variable time intervals 

characterised by common trend. A nice way of achieving that is to linearly segment the 

data. There are several ways of segmenting time series data ( [56 , 39 , 9 0 , 165, 166, 4 0 ] ) . 

Here, we have selected an algorithm proposed by K E O G H , ( 1 9 9 7 ) , [92] , based on hierar

chical segment time series representations (A detailed study about this representation is 

given in the next chapter). Having segmented the data, we end up with representations 

like those shown in figure 4.4. In segmented financial time series the length of the last 

segment indicates the time that the "current" financial situation is following a common 

•In the profit calculation brokerage costs of 1% over the transaction price are also included 
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price C r e a t e d by ProGNOSIS 
PrOsc 5-30/50 

4 0 0 0 H 

1()()() 

- 1 (XK) H 

T 1 1 1 — T 1 1 1 1 1 r -

03 /98 0 8 / 9 8 0 1 / 9 9 0<S/99 11/99 t ime 
> 

f ̂  ^ j point to positions where trading signals are generated. 

Upper black line: Actual lime series 
Upper red line: Shon-ierm MA 
Upper green line: Long-term MA 

Lower black line: Price Oscillator 
Lower red line: Price Oscillator's MA 

Figure 4.3: An example of a price oscillator (PrOsc 5-30/50) applied on the Greek market 

index (01/01/1998 - 24/04/2000). The arrows on the graph point to trading signals generated 

from the price oscillator indicator. Buy and sell signals alternate through out the market series 

and they segment it in bought and sold areas. Buy signals are generated when the PrOsc curve 

crosses its moving average from below. The opposite situation indicates a sell signal. 

trend. This time interval indicates the length of the query pattern, which is going to be 

matched onto the time series' history. The advantage of this approach is that i t is based 

on data driven segmentation rather than on any subjective linear trend line tracing. 
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Figure 4.4: A segmented representetation of the CAC 40 French market index (January 1997 -

February 1998). The automated segmentation algorithm introduces a new time sampling of the 

time series which is based on the time series local trends-segments (see black and blue dashed 

lines). The length in data points of the last segment suggests a possible length for query pattern 

to be matched onto the financial time series. 

4.3 Graph Matching 

The pattern matching stage of the system depicted in figure 4.1, involves either the 

matching of patterns picked up from a database of already classified, technical analysis 

patterns (see selective representative patterns depicted in figure 4.2) or the matching of 

patterns that describe the "current" financial time series situation, as selected with one of 

the methods described in section 4.2. In this thesis, we wil l work with the latter option. 

Therefore, the purpose of the matching algorithm, we are about to describe, is to identify, 

in the time series, historical occurrences similar to the query pattern. 
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The matching algorithm consists of two phases: Graph Extract ion and Matching. 

4.3.1 Graph Extraction 

Graphs are representations of subsequent time series (TS) parts. In P R O G N O S I S , "cur

rent" patterns are portrayed with two dimensional Elastic Graph ( E G ) topologies, which 

capture the pattern's shape, value and time duration attributes. Elastic Graph Match

ing ( E G M ) techniques basically originated from a neurally inspired object recognition 

architecture ( L A D E S et al., (1993) [100], W I S K O T T et al., (1995-1996) , [181, 182], T R I -

E S C H et al. (1997), [172]), which is based on local image descriptions - G A B O R wavelet 

transforms - and geometric constraints. E G M has been very successfully applied to face, 

gesture and object recognition tasks. We will extend the E G M idea to time series recog

nition tasks and introduce a set of appropriate feature descriptions. We will also show 

E G M ' s performance on the recognition of financial time series. The correctly recognized 

patterns (patterns with high similarity values) will be used for prediction. 

An elastic graph is composed of a set of nodes, weighted with time series data point 

features, which are successively connected with edges weighted with distance measures as 

imposed between two successive nodes. In figure 4.5, graphs are positioned on subsequent 

time series patterns. As depicted there, the extracted graph model constitutes a com

pressed representation of the time series pattern, from which noise distortions and high 

frequency fluctuations are excluded. Its elastic attribute allows the matching of patterns 

distorted on the time axis because of local time shrinks and stretches. Each graph node 

is weighted with features which locally describe the time series point it is placed on. The 

feature set is composed of the magnitude value of the corresponding time series point, 

the slope of the edge that connects the node with the following one and the time duration 

until the next node appears. Correspondingly, each edge is weighted with its geometrical 

length. The number of nodes used for a graph representation varies between 15% and 

25% of the actual data points that represents. Extensive evaluation of diflferent graph 

representations showed that graphs with this range of number of nodes can describe the 
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shape of the query pattern. The reduction of the graph nodes compared to the actual 

number of data points that represents results to a speed-up in the similarity computation 

that ranges between 75% and 85%. 

A drawback of the graph model described above, is that it has to be extracted manually. 

For now, the injection of a priori knowledge, seen as expert graph extraction, has been 

judged as necessary. At that stage, we preferred to lay down the benefit of automization 

for graph model reliability. The automatic extraction of graph models is of great interest 

and could be pursued in further work. 

4.3.2 Matching 

The next step is to match the extracted graph model onto the time series. The purpose of 

matching algorithm is basically to position the graph model onto a set of node positions 

Xm of the time series. The search strategy for the nodes positions must simultaneously 

obey two constraints: The subsequent time series pattern information attached to each 

node must match the time series position information, where the node is projected. The 

edge lengths between the matched node positions must not dififer substantially from the 

original edge graph lengths. These demands are mathematically expressed by a similarity 

function for the nodes and a cost function for the edges. To each node, a set of three 

time series features is attached. The feature set is defined in equation 4.6. 

J'* = {Price", Time"}, n - node index. (4.6) 

The similarity function compares the node information attached to each node with the 

corresponding information at each time series point where the node is positioned. The 

similarity is calculated by taking the normalized average of the Euclidean distances of 

the individual features. This is shown in equation 4.7. 

S ' ( r , / ( x ) ) = ^ ^ ^ ± i | i ± ^ (4.7) 

where p + 5 + £ = 1. The total similarity, when the N nodes graph G is matched at a 

nodes position onto the time series, is given by the stamdard deviation of the similarity 
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of all the nodes (equation 4.8). 

S'' = std{S'{rj{xm))) (4.8) 

A total similarity curv̂ e is plotted, while scanning the processing time series with the graph 

extracted from the quer>' time series pattern P* .̂ When the similarity curve reaches a 

local maximum, the graph may be distorted in order to compensate for minor variations 

in time series pattern shape. A penalty factor to limit the local graph distortions is 

defined by a cost function C. This function does not allow big elongations or diminutions 

of the edges of the graph and controls the graph topology, as defined in equation 4.9: 

^/ ^ .original length — distorted length,^ . . . / 
('(^) = i— Jginal length ' - (̂  9) 

The square of the relative change in edges length prohibits large distortions and tolerates 

reasonably small changes. Again, for the whole graph, the total topological cost is given 

by the average of the costs calculated for each edge (equation 4.10): 

C''=^Y:C{ei) (4.10) 

where E is the total number of edges. 

However, the major role in the matching process is played by the qualitative similarity 

measure as defined in equation 4.8. Extensive experimentation has shown that the role 

of the topological cost function is minor. 

The total similarity of the whole graph structure, matched at a position Xm onto the time 

series is given by: 

S^ = 5 ^ - A C ^ (4.11) 

The coefficient A controls the distortion sensitivity of the graph. Large A penalizes distor

tions more heavily. Values of A varying between [0.2,0.3] give reliable matching results, 

as derived from an extensive stock indices evaJuation set. 

As outlined above the ultimate goal of the graph matching algorithm is to place the 

graph onto a time series position x, which yields high total similarity. The graph matching 

algorithm is summarised as follows: 
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Figure 4.5: Graph Matching: The graph depicted on the left has been extracted from the time 

series as the graph which describes the current position. The graph has been matched to a 

similar position on the time series after it has been reasonably distorted (on the right). 

1. Graph Extraction: Select the time series pattern to be matched. There are three 

options to select the query pattern. Choosing the optimal embedding dimension, 

applying the most profitable technical analysis price oscillator, and segmenting 

the data. A graph is manually extracted out of the query pattern. The graph 

carries necessary time series features which incorporate both magnitude and shape 

information. 

2. Sequential Scanning: The time series is sequentially scanned in coarse steps 

defined by the time series sampling rate. Daily stock index closing prices, for 

example, are scanned in daily steps. The similarity measure given in equation 4.8, 

is used for placing the graph on a candidate position of high similarity. The graph's 

main structure remains unchanged. 

3. Local Corrections: Each graph node is allowed to move forwards or backwards, 

up to three positions. The algorithm, using the topological cost function (equation 

4.9), seeks for the optimum node position. After the first node is positioned, the 

algorithm is applied to the next one. The total similarity is measured by equation 

4.11. 
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4.4 Forecasting 

Until now, we have only been concerned with the problem of searching for subsequent time 

series parts which appear geometrically similar to a recent time series pattern. As outlined 

in the introduction, in a financial time series, historical parts, which are characterised 

by movements similar to the current ones, can be used as indications for the time series 

future activity (Empirical matching is essential prediction). 

In this section, we propose a forecasting model which operates witli historical matched 

patterns as derived from the matching algorithm applied on financial time series. This 

model is adaptive to new market phenomena, comes to terms with the efficient market 

hypothesis by always considering the 'current' market situation for its calculations and 

is computationally simple, 

4.4.1 Forecasting Model Description 

Consider that a set of subsequent historical patterns pf^{t) has been found to fulfill 

our similarity constraints vnth respect to the "current" query pattern pF. 

^' ' = bf(ii):P$(i2).---,P?(iO:-••,?:;(««)], n = 1,2,-..,7V, (4.12) 

where each pattern is of duration ij, = 1, • • *, Tj. All historical patterns in equation 

4.12 are sorted with respect to their similarity value, i.e. S^? > S''̂  > - • • > 5^". Where 

more than one historical pattern exhibits the same similarity, they are then sorted from 

the most recent to the oldest one. 

The pattern set is used for the prediction model. a-day$ ahead prediction is performed 

using one of the following calculations: 

1. Best Matched Pattern 

(a) Relative to the last pattern value: 

pred^ = ^^gj^ X p̂ (r,) . (4.13) 
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(b) Relative to the mean pattern value: 

— • ( - ) 

t i 

(c) Normalized value: 

p...c = p;(r, + «) + ( ? ^ - M ) . ( 4 , 5 ) 

2. Whole Matched Pattern Set 

(a) Relative to the last pattern value - averaged; 

(b) Relative to the mean pattern value - averaged: 

pred^ = ^ . (4.17) 

(c) Normalized value - averaged: 

pred, = ' - ^ . (4.18) 

To select the appropriate forecasting calculation, the P R O G N O S I S pattern matching 

scheme is applied (a + l)-days ago to forecast a-days ahead. All six (4.13. 4.14, 4.15, 

4.16, 4.17, 4.18) forecasting mathematical sentences are used. The most successful one, 

i.e. the one that gives the minimum squared forecasting error is selected as the *Svinner" 

and is the one used for the actual forecasting model. 

The employment of this set of linear prediction calculations seems compatible with the 

notion of different market trends in terms of future movement. We believe that a financial 

asset time series can be classified in periods that are sometimes characterised by great 

efficiency, others where it follows the most recent trend and finally others where history 

simply repeats itself. Our efibrt is to capture this effect using the forecasting set composed 

by the equations 4.13, 4.14, 4.15. 4.16, 4.17, 4.18. 
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4.4.2 G N G - Forecasting 

In chapter 3 we described how Growing Neural Gas (GNG) networks can be used for 

forecasting univariate financial time series. There, several experiments were conducted 

using the sliding window method in order to extract the input-output patterns from the 

time series, necessary for the supervised neural network training. Here a more selective 

supervised training procedure is followed. The training set that will be learned by the 

GNG network is decided upon by the matching algorithm that has been described in the 

previous section. What the I / O patterns of this training set share in common is that they 

are similar according to the similarity function defined in equation 4.7. All the historical 

occurencies that are similar to the query pattern are used together with their output 

values to train a small GNG network so that it can perform forecasts. The reasons for 

choosing the GNG network architecture for the forecasting task are mainly the following: 

• Firstly, due to the fact that the number of the historical time series patterns that 

exceed the 70% similarity threshold does not remain constant, networks of varying 

complexity are needed. GNG net^vorks, as mentioned in chapter 3, can control their 

complexity according to the complexity of the problem that they are due to solve. 

• Secondly, there is some evidence the GNG networks converge to low training errors 

faster than their Multi Layer Perceptron (MLP) rivals (see section 3.3). Due to the 

fact that for different query patterns of variable length, different neural network 

architectures need to be trained, speed in the network's training process is vital. 

For the reasons above GNG networks are being selected at this point to accomplish 

the forecasting task. The one-day ahead GNG forecasting procedure is summarised in 

figure 4.6. The forecasting scheme that is depicted there cdJi easily be generalized to 

a-days ahead forecasts (a > 1). 

Experiments on the GNG - forecasting approach are conducted in section 4.6 and 

they are presented in parallel to those based on the forecasting method that has been 

previously described (see section 4.4.1). 
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Figure 4.6: The GNG-forecasting scheme. All matched patterns together with their next day 

values cire used to train the GNG network. The query pattern then is the input of the GNG 

which will produce the next day forecast. 

4.5 Trading 

Trading system development is a domain in which much work has concentrated. Differ

ent methodologies and investment strategies have been proposed, [173, 22, 38, 126, 65], 

to help brokers achieve maximum profit through their financial activities. An extensive 
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review on trading strategies is given by CoNRAD and K A U L , (1998), [43]. The authors 

of this review article claimed that less than 50% of the 120 trading modules they imple

mented yielded statistically significant profits. But what is a trading system in terms of 

computation? Basically, a trading system is a hybrid of two main modules. A prediction 

module, which optimises its performance to output accurate predictions and a trading 

module that, according to a trading strategy and the predictions originating from the 

prediction module, goes long, short or holds in the market. Other types of trading sys

tems have been proposed in [13, 88, 119). B E R G I O , (1996), [13], K A N G et al., (1996), 

88], and M O O D Y et al., (1996), [119] proposed merged variations of the prediction and 

trading modules in order to overcome the problem of taking trading positions using not 

profit but prediction criteria. However, they still trained their learning machines with 

data used for prediction. X u et al., (1997), [184], on the other hand, built a system which 

leaims past investment decision signals and outputs desired investment positions. More 

recently, M O O D Y et al. (1998), [120], used recurrent reinforcement learning (RRL) algo

rithms to train labelled trading data. For his experiments, he used profit and Sharpe ratio 

performance functions during the R R L . Both applications, according to his article, out

performed forecasting based trading modules. In the same year, T o w E R S and B U R G E S S , 

(1998) [171], employed parameterized decision rules to choose trading actions derived 

from a mispricing^ forecasting model. Intelligent trading systems, which implement so

phisticated trading rules may be of great interest but we prefer in this research to follow 

a simple trend following strategy. This makes our system's performance independent of 

sophisticated trading rules and simultaneously comparable to trading performance claims 

derived from fundamental, technical and computational analysis. 

One major strategy employed by many stock and futures traders is the use of trend as an 

aid in making trading decisions. The origin of this behaviour is located in Dow theory, 

123], where it is assumed that the market moves in trends which give profitable trading 

opportunities. Traders usually want to take positions in early trend stages and maintain 

their positions until trend reversal will occur or will be predicted. In P R O G N O S I S such 

'Significant work on mispricing forecasting models has been undertaken by BuRGESS in [24, 25, 26). 
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a simulated daily trading strategy is attempted. We buy (sell) on the previous closing 

price if a rising (falling) trend is forecasted. If no change in the trend from the previous 

day is predicted, the current position is maintained and unnecessary brokerage costs are 

avoided. This trading rule is sununarised as follows: 

if P{t~l)<P{t)andP{t)>P(t-\-l) then sell ~ "Go Short" . (4 .19) 

if P{t - 1) > P{t) and P{t) < P{t + 1) then buy - "Go Long" . (4 .20) 

P{t - l),P{t),P{t + 1) are the closing prices of yesterday's, today's and tomorrow's 

(forecast) respectively^. Trading costs are also considered to be 1% of the transaction 

price. L O E B , (1983), [107] and W A G N E R et al., (1993) , [176] note in their studies the 

importance of trade-execution costs. Although recently, C H R I S T I E et al., (1994) , [41], 

H U A N G et al., (1996) , [78] and B E S S E M B I N D E R et al. (1997, 1998), [15, 16], suggested 

that trading costs may depend on the structure of the market, in the present research we 

subtract constant trading costs of 1% of the transaction price. 

Finally, a stop loss criterion is considered for the system. Every time that losses exceed a 

5% threshold, open trading positions are closed in order to prevent extensive losses and 

the automatic trader waits for a new trading signal to take action. The profit achieved 

is accumulated over the testing interval. Both the accumulated profit curv̂ e and the final 

profit achieved are displayed by the system. 

4.6 Experiments 

We experimented with the system in order to find out how it responds to real forecasting 

environments. The data e\'aluation set that has been used to run several experiments is 

composed of six European market indices that have been obtained from the D A T A S T R E A M , 

[44], database. Those are the U K - D S - M K , F R A N C E - D S - M K , G E R M A N Y - D S - M K , S P A I N -

DS-MK, I T A L Y - D S - M K , G R E E C E > - D S - M K . The time ^\indow for these series extends from 

+ 1) is replaced with P{t + q) for a-days ahead predictions. 
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01.01.1990 to 26.04.2000 sampled daily - 2693 points for each series. For consistency 

the experimental framework is similar to the one described in chapter 3 and is repeated 

here for completion. 60% of each data series has been used to build its history and the 

remaining 40% has been used for testing. The test points, within the testing samples set, 

have been taken randomly. A normal distribution random number generator has been 

employed for that purpose. 5000 experiments (testing samples) have been conducted 

for each index time series. The systematic evaluation framework produces results for all 

three query selection methods (Minimum Embedding Dimension (MED), section 4.2.1, 

Optimum Price Oscillator (PrOsc), section 4.2.2, and Linear Segment Representation 

(LSR), section 4.2.3) and for the two forecasting methods (Forecasting Sentences (FS), 

section 4.4.1 and GNG Forecasting (GNG-F), section 4.4.2). The forecasting results are 

given in table 4.1. They involve the one day-ahead direction movement prediction of the 

UK D A T A S T R E A M market index. The rest of the results that correspond to the remaining 

European indices are presented in Appendix B (see tables B . l , B.2, B.3, B.4, B.5). 

To interpret the results shown in these tables and to draw global conclusions is a 

difficult task. However, apart from the fact that on average the directional ability of 

the pattern matching system exceeds the 50% random walk threshold, it can be said 

that the system that combines the minimum embedding dimension (MED) query pattern 

selection technique and the forecasting sentences method (section 4.4.1) performs better 

than the others. The statistical origin of the M E D technique compared to the empirical 

source of the remaining two query pattern selection methods, might offer an explanation 

for this performance. Additionally, due to the variable number of the matched historical 

patterns, it may be the case that not enough training patterns are presented to the GNG 

network and, therefore, it lacks in forecasting performance. 

Furthermore, the prediction results seem to be more satisfactory when the system is 

applied to reasonably short-time period time series rather than to longer ones. It can be 

seen from table 4.1, that the average directional ability of all the 2-ye£u:s sets is better 

than the total directional abihty over the 10-year period. We suspect that this is due to 

interference in the forecasting algorithm by the old matched patterns. We believe that 
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U K - D S - M K 

1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 

MED (%) 57.0 54.4 57.9 64.0 56.0 57.9 55.4 

PrOsc (%) 56.5 52.6 59.1 48.6 49.1 53.2 52.9 

L S R (%) 56.4 54.9 56.6 52.1 48.9 53-8 53.6 

Forecasting Sentences (FS) 

MED (%) 54.1 50.8 50.6 52.9 53.3 52.3 51.9 

PrOsc (%) 53.0 51.1 50.3 47.9 48.2 50.1 50.4 

LSR (%) 52.3 50.5 45.3 49.7 46.5 48.9 48.1 

GATG Forecasting (GNG-F) 

Table 4.1: Testing the forecasting directional ability of the pattern matching system. The UK-

DS-MK index case. MED, PrOsc and LSR stand for Minimum Embedding Dimension, Price 

Oscillator and Linear Segment Representation respectively. These correspond to the three 

methods for selecting the query pattern. The standard deviation of these forecasts is close to 

unity. Order of unit std holds for later forecasts as well. 

this happens because similar structures (patterns) that are observed on financial time 

series have different temporal durations, in particular when old patterns are compared 

to more recent ones. Such pattern relations cannot be captured by the present pattern 

matching algorithm and, therefore, old historical matched patterns that have the same 

temporal duration as the query pattern, produce faulty predictions. 

For a more realistic evaluation of the proposed pattern matching system, its profitability 

is measured through the trading strategy that has been described is section 4.5. Table 

4.2 presents the profitability test results together with the corresponding Sharpe Ratio 

(SR)^ measures. The trading results for the remaining European market indices are given 

^SR = (Annualized Return)/{std of the returns) 
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in appendix B (see tables B.6, B.7, B.8, B.9, B.IO). 

U K - D S - M K 

1990-92 1992-9^ [ 1994-96 1996-98 1998-2000 Average 90-2000 

MED 15.96 6.92 6.56 13.74 0.25 8.69 8.3 

(2.27) (0.70) (0.99) (2.03) (0.13) (1.22) (2.01) 

PrOsc 8.76 4.60 6.35 2.25 3.99 5.19 10.40 

(1.26) (0.21) (0.91) (0.33) (0.81) (0.7O) (1.81) 

L S R 9.45 2.94 -0.49 0.43 -4.26 1.61 0.24 

(1.97) (0.58) (-0.04) (0.08) (-0.29) (0.46) (0.08) 

Forecasting Sentences (FS) 

MED 6.85 -2.68 -2.16 2.94 5.51 2.09 0.73 

(0.73) (-1.08) (-0.94) (0.58) (0.76) (0.01) (0.20) 

PrOsc 4.70 -1.67 -1.68 -3-86 -4.98 -1.50 -0.93 

(0.60) (-0.85) (-0.15) (-0-94) (-1.08) (-0.48) (-0.24) 

L S R 0.99 -2.95 -4.25 -2.86 -7.17 -3.25 -0.67 

(0.11) (-1.05) (-0.78) (-0.45) (-1.48) (-0.73) (-0.67) 

GNG Forecasting (GNG-F) 

Table 4.2: Testing the trading ability of the pattern matching system. The U K - D S - M K index 

case. The values in quotes are the corresponding Shzirpe Ratio (SR) measures. 

The observations made previously in table 4.1 are not readily confirmed in the prof

itability results of table 4.2. That is because an additional parameter interferes in the 

profit (positive or negative) calculations. That concerns the question of whether big price 

changes are correctly predicted or not. In table 4.3, we give the average over the whole 

data set of the correct direction movement predictions that exceed a predefined threshold 

of 5% change. Financial and macroeconomic time series change usually very slowly over 
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time; even in deep recessions they rarely fall by more than 10% per day. Therefore, a 

5% change in the price of a financial index can be considered a big change. The figures 

in this table, are not significamtly above 50%. This is likely to be the reason why the 

trading results do not exactly correspond to the prediction ones. 

1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 

F S 

GNG-F 

60-5% 53.7% 52.2% 57.7% 42.2% 

59.6% 33.1% 41.3% 48.1% 45.3% 

53.3% 

45.5% 

48.0% 

28.8% 

Table 4.3: In this table, the average percentages of the correct direction movement predictions 

on the UK-DS-MK market index that exceed a threshold of 5% in price change, are displayed. 

In conclusion, however, it can be said that the response of the pattern matching 

system in terms of realistic trading is profitable overall. 

4.7 Extensions 

We have demonstrated here how pattern matching can be applied on financial time se

ries for forecasting and for trading. Throughout our experimentation some observations 

about the drawbacks of the system have been made. In particular, it has been detected 

that the forecasting performance of the pattern matching system drops when long time 

series are analysed. In addition, for very long time series, the sequential similarity search 

also causes problems in terms of computation. 

Both these effects play an important role in financial processing. Due to the fact that al

most all financial forecasting techniques are based, to a great extent, on past experience, 

longer processing data series are better for the forecasting system's performance. 

Any extension, therefore, of this pattern matching system, should include attempts to 

cope with these problems. That would allow the system to take advantage of the contin

uously growing financial databases. Here, we present some keypoints that can attenuate 

those problems, although they are not guaranteed to solve them. 

61 



A compressed representation of financial time series that is based on piecewise linear 

segments, [92], and retains most of the shape information of the series, contributes to 

fast data processing. In addition, the Dynamic Time Warping algorithm, [99, 14], when 

applied to segmented time series representations, allows time warped comparisons of the 

patterns and, therefore, supports the investigation of the hypothesis that current pat

tern formations are similar to older ones if some variability in their temporal duration is 

considered (see [9]). We investigate these ideas systematically in chapter 5. The same fi

nancial data sets have been employed for that purpose in order to allow direct comparison 

with the research that has been undertaken here. 
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Chapter 5 

Applications on Segmented 

Financial Time Series 

Who controls the past controls the future. 

Who controls the present controls the past. 

-George Orwell 

Time plays a very important role in equity index time series. One of the main attributes 

of financial time series, in general, is the rate at which they have been sampled. Look

ing back at the literature, researchers apply their models mostly to data sampled with 

constant rates. They usually refer to hourly, daily, weekly, monthly, or yearly data. The 

choice of the sampling rate is made a-priori depending on what the researcher wants 

to model. Even in technical analysis, all methods are applied on constantly sampled 

data. Consider, for example the moving average technical analysis indicator calculation 

which requires a moving window of constant length. This has a major impact on the 

system's performance, before the financial analysis even starts. In finance, there are 

strong arguments that suggest inaccuracies may be the result of constant sampling rates 

(see D E B O E C K , (1994) , [46], G A T E L Y , (1996) , [64], DeLuRGiO, (1998) , [48]). Consider, 

for example, that in financial modelling we wish to retain important aspects of the data 

while eliminating uninformative, or noisy, data. Many simple ways of approximating and 
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preprocessing data exist. However they require manual selection of fixed parameters, e.g. 

the selection of a window size, in a data smoothing calculation. 

In this chapter, we investigate the hypothesis that the rate at which important events oc

cur in financial time series varies, and that trend changes may be occurring more rapidly 

now than in the past. In such a case, a fixed data sampling rate is out of the question. 

We investigated this hypothesis using the method described in the previous chapter ap

plied this time only on piecewise linear segment represented time series. Experiments 

have shown that the limited graph distortion effect was not capable of capturing the 

momentum of time changes in equity index time series. On the other hand, more ex

tensive elongation of the graphs worsened the pattern matching performance by allowing 

differently shaped patterns to appear as similar. Therefore, we investigate a data rep

resentation based on piecewise hnear segments. The representation is derived from an 

algorithm proposed by K E O G H , (1997) . [92). It supports variable sanapiing of the time 

series and achieves high compression rates. A pattern matching algorithm applied on 

segmented time series is proposed in this chapter. This algorithm addresses the prob

lem of matching a query pattern P* ,̂ extracted from the recent past of a financial time 

series, onto historical occurencies of similar shape but different duration. Past pattern 

matches are used to predict the time series' future trend activity. These predictions are 

accompanied by slope and time duration attributes (BANAVAS et al., ( 2000) , [9]). As we 

believe that financial time series generate their own patterns, which do not always follow 

the shape of the known technical analysis chart patterns, we set the query pattern to 

illustrate the "current" situation of the market (see [8, 9, 10]). The linguistic expression 

"current" automatically inserts a parameter into the pattern matching system, that has 

to be fitted properly in order to perform successful predictions. To solve this problem, we 

introduce here the notation of Min imum Embedding Segment Dimension ( M E S D ) 

and a technique calculating it. M E S D , measured in number of segments, indicates the 

number of successive segments which compose the query pattern. M E S D calculations are 

also used as evidence for non-linear deterministic dynamic behaviour of the segmented 

time series. To my knowledge, embedding dimension calculations have never been applied 

64 



on segmented time series representations. The case that is examined in this chapter is 

the univariate case, where the financial time series are univariate ones. The matching 

of patterns, in this context, requires a method that can define a distance measure be

tween patterns of different length. The Dynamic Time Warping sAgohthm, introduced by 

K R U S K A L L and L I B E R M A N , (1983), [99], and employed by many reseairchers (eg. [14]), 

especially in the field of speech recognition, offers a suitable solution to that problem. 

By segmenting time series, we achieve a variable length sampling of the original time 

series, where the sampling intervals are determined solely by the data and the resulting 

representation shows the times at which the trend in the market changes significantly. 

On such representations, the pattern matching algorithm captures data structures which 

have similar shape but diflferent time scaling. This supports the hypothesis that there is 

a change in the rate of the msirket's evolution because of factors such as the spread of the 

computer technology in financial institutions and the huge expansion of the telecommu

nications capabilities which substantially increased the number of market participants. 

Figure 5.1, attempts to illustrate this eflfect. 

As mentioned before, trend duration indications are attached to the trend forecasting 

output of the system. In effect, the trading module of the system, that is described in 

this chapter, becomes more selective and efficient, in terms of entering and abandoning 

the market. Finally, all algorithms, which are also integrated into the P R O G N O S I S soft

ware package, are computationally verj' efficient because of the great data compression 

rates that can be achieved. 

The proposed system involves the following processing stages: 

• Time series linear segmentation. 

• Computation of the minimum embedding segment dimension for query pattern 

selection. 

• Pattern matching on segmented representations by incorporating similarity mea

sures based on Dynamic Time Warping (DTW) and Multiple Feature Sets (MFS). 
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la iMt Query raUtn, Q 

Patterns of Similar Shape 
but DirTrrrnl Duration 

Figure 5.1: The hypothesis: Patterns in finance occurred slower in the past than today, because 

of computer technology and telecommunication expansion. With conventional matching it is not 

possible to capture such similarities. Left: An artificial example of Head & Shoulders patterns 

occurring in different resolution. Right: We illustrate our hypothesis on the UK DATASTREAM 

market index from 01.01.97 to 27.04.2000. 

• Trend Prediction based on temporal ratios. 

• Market index trading based on selective trading rules. 

In the following, we briefly describe the time series segmentation problem (section 5.1) 

and the D T W algorithm (section 5.2). The pattern matching systenn, as adjusted for 

segmented time series is discussed in section 5.3 together with its forecasting and trading 

components. In this section, we also discuss the Minimum Embedding Segment Dimen

sion (MESD) algorithm applied on segmented time series representations. Forecasting 

and trading results as obtained from tests on market indices are given in the section 5.4, 

which also includes evidence about the hypothesised change of the rate that "things" 

happen in financial stock indices. The discussion and outlook section is located at the 

end of the chapter. 

66 



5.1 Segmentation 

Time series segmentation can be defined as the process of dividing the data into distinct 

subsets which have common characteristics. Segmentation is applied in many domains 

such as image processing, speech recognition and scene analysis. The purpose of segment

ing the data in most applications is to allow subsequent information processing using the 

data subsets. In financial time series, the aim of segmentation is to depict clearly local 

trends as determined from the data, and distinguish them from noise. The global time 

series shape must, after a successful segmentation, be retained. Moreover, time series 

segmentation resembles the way that humans reproduce/draw series wi th high frequency 

fluctuations. In figure 5.2 we depict a part of a financial time series, a manual repro

duction of it by the author and an automatic segmented representation as produced by 

P R O G N O S I S 

Figure 5.2: Left: The original JAPDOW stock index time-series. Center: A manual repre

sentation of the JAPDOW as obtained by the author. Right: A 50 linear segments JAPDOW 

stock index representation (93% data compression achieved). 

In order to make the search and matching process computationally tractable i t is de

sirable to operate on a reduced representation of the time series. In doing so it is desirable 

to retain important aspects of the data while eliminating uninformative, or noisy, data. 

There are many simple ways of approximating the data, however they require the selection 

of fixed parameters, eg. the selection of a window size in a moving average calculation. 

Since we wish to explore the hypothesis that the rate at which important events occur 



in financial time series varies, and that the changes may be occurring more rapidly now 

than in the past, such a fixed approximation window is not suitable. An algorithm which 

supports a variable sampling of the time series smd achieves high compression rates with 

minimal information loss, is that proposed by Keogh [92]. The key idea of this approach 

is to perform a local merging of adjacent segments until the resulting increase in residual 

error exceeds some threshold. The process results in a set of linear segments of varying 

length which approximate the original time series, as is shown in figure 5.2. 

In effect we have a variable length sampling of the original series, where the sampling 

intervals are determined by the data and the resulting segmentation shows the times at 

which the trend in the market changes significantly. 

5.2 Dynamic Time Warping (DTW) 

Generally, DTW, [14], [82], [151] is a technique for comparing time series patterns which 

may have different lengths. The D T W algorithm, via dynamic programming, expands 

and/or compresses the patterns in time in order to define a minimum distance measure 

between them. Here, DTW is used as part of a metric which calculates the distance 

between parts of a time series with different length. To construct the DTW matrix F , 

14], for two univariate subsequences T and M with lengths t and m respectively, the 

cumulative distances between corresponding subsequent time series elements (determined 

by individual segments and calculated via dynamic programming) is included in each cell 

[i.jY of the matrix. DTW then outputs a minimum distance DDTW (equation 5.1) and 

an optimum path P{k) (see figure 5.3), of size K , known as the warping path, where 

max{t, m) < K < t -\- m. 

DrrrwiT.M) = m i n ^ { ^ f y p i ^ } (5.1) 

and 

P(A:) = {P{1),P(2),..-,PW}. (5.2) 
j ) denote the time index of the segments T, M 
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Figure 5.3: A warping path as calculated via dynamic programming using the Dynamic Time 

Warping algorithm. 

Wk, k = I - • • K (equation 5.1) is a sequence of non-negative weights which summate to 

1. 

The optimisation/minimization problem of equation 5.1 is equivalent to finding the short

est path in the t x m DTW matrix subject to a number of constraints based on physical 

consideration, intuition and computational efficiency. These are outlined as follows [152], 

[14]: 

• Monotonicity: The points must follow a monotonic trend with respect to time, 

U - i < ik and jk-i < jk, where ikjk are the coordinates of the P{k) component of 

the warping path. Furthermore, the warping path is constrained to fall within a 

designed warping window, i.e. \ik-jk\ < UJ, where u; > 0 defines the window width. 
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• Start-Endpoint conditions: This imposes the alignment of the start/end points of 

both patterns to be matched. In other words, this means that the warping path 

must satisfy the equations: p(l) = 7 ( 1 , 1 ) and p{K) = 7 ( i , m). Other variants of 

the start-end point conditions can be found in [122]. 

• Local continuity: The steps in the matrix are confined to successive neighbouring 

points, ik < ik-i + 1 and jk < jk-i + 1-

Following the principles of dynamic programming, the following recursive formulation 

(equation 5.3) is used to construct the D T W matrix. The cumulative distance 7(i , j ) 

is given by the sum of the distance between the corresponding subsequent time series 

elements determined by individual segments and the minimum of the cumulative distances 

of the predecessor points. 

j { i j ) = d { i j ) + min{ 

j { i - h j ) 

7 ( z - l , j - l ) 2 = 1, • • • , i and J = 1, -,771 . (5 .3) 

7 { i J - l ) 

In this section our purpose was to briefly describe the D T W algorithm and the way it 

can be used to match parts of univariate time series of different length. More detailed 

studies on the DTW algorithm can be found in K R U S K A L L et al., (1983) , [99], R A B I N E R 

et al., (1993) , [144] and B E R N D T et al., (1994) , [14]. 

5-3 Matching-Prediction-Trading 

In this section, we analyse the way that pattern matching is performed on segmented 

time series. The key idea is to define a similarity measure based on the compound feature 

information that derives from each individual segment of the query pattern P^. We then 

introduce the notion of Minimum Embedding Segment Dimension (MESD). MESD is used 

as e\adence for non-linear deterministic beha\'iour of time series underlying dynamics and 

as an approach to assess the number of successive segments which compose the "current" 

pattern (see 4 .2) to be matched. As in the previous chapter, we perform matching for 

70 



forecasting and trading. The innovative aspects of the matching forecasting and trading 

algorithm are systematically presented here, 

5.3.1 Minimum Embedding Segment Dimension (MESD) 

The question that many researchers ask themselves when observing financial time series, is 

whether the dynamics of the data generating process derive from deterministic chaos. To 

answer this question suitable mathematical theories have been developed first by T A K E N S , 

(1981), [168] and later by SAUERetal., (1991), [157] and OTTeta l . , (1994) [128]. In these 

papers different types of embedding dimension calculation methods are discussed. Known 

as time-delay embedding, this theory has also been investigated by many researchers 

recently^. Among others, C E C E N et al., (1996), [34], Lis i et al., (1997), [103], C A O et al., 

(1998), [31] and S O O F I et al., (1999), [163] introduced different variants of calculating the 

optimal embedding dimension of financiad time series. By studying their experiments on 

a set of exchange rate series, it can be seen that the results on the embedding dimensions 

(ED), that they claim, strongly depend on fixed parameters, like the constant sampling 

rate of the data. C A O et al., (1999), [33] for example, reported much higher EDs on 

daily exchange rates than Lis i et al., [103], who used monthly data. Here, we calculate 

the E D of segmented stock indices. We call it Minimum Embedding Segment Dimension 

(MESD) and it is measured in number of segments, [10]. This overcomes the problem 

of constant sampling rate and allows the search for attractors in the data, which derive 

from linear segments of different length. Finally, the MESD calculations are faster than 

its ancestors. 

T h e Method Consider a time series x i , X 2 , • • • ,XAr which has been divided into M 

segments (M < .̂ V), using the method given in 5.1. The resulting segaiented series is: 

S = {si, si , 5̂ , • - •, Si, • • • , S M } , (5.4) 

^Similar research has been undertaken by BLASCO et al (1996), [18], in his effort to identif>' long 

memory in the Spanish stock market. 
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where each segment sj, corresponds to a segment subset, 5- of successive time series 

values: 

s' = {xjr'-.^j+ki} . (5.5) 

ki is the time duration of each segment sj. A time-delay vector z of the segmented time 

series (equation 5.4) can be written as follows: 

Zi{d) = {su Silu • • •, 2 = 0 ,1 ,2 , . . . , M - - 1) , (5.6) 

where d is an integer number considered as the systems embedding dimension. For 

simplicity, the time-delay parameter has been chosen to be 1. Following the notation in 

91], we define in equation 5.7, /? as the ratio of the distances of the time-delay segment 

vectors Zi with their corresponding nearest neighbours, when moving from embedding 

dimension d to d -h 1. This is illustrated as follows: 

/̂ A- lk i (rf+l ) -^.vA- , (d-H) | | , ^ , ^ ^ . 
P{i,d) = - — — J— , t = Q,l,2,"' ,M - d . (5.7) 

Zi{d) - z,w^.[d)\ 

I - II is a distance norm defined as the standard deviation (std) of the distances of the 

corresponding time series parts indicated by individual segments. This derives from the 

fact that similar vectors have point distances characterised by low standard deviation. 

Time series parts are compared using the DTW distance metric. So: 

\\z,{d) - Zy{d)\\ = std{DDTw{s'\, s'\), DDTW{S% 5 l ) , - - -, Dorw-(5-5, s*^)) .(5.8) 

DpTw is the minimum distance metric defined in equation 5.1. NNi is an index which 

indicates the position of nearest neighbour of the time-delay vector 2, on the segmented 

time series, NNi is the same in both the numerator and denominator of equation 5.7. 

According to the embedding theorems of [168] and [157], d is chosen to be the system's E D 

when two time-delay vector points mapped in the d-dimensional reconstructed space, \vill 

remain mapped in the d + 1-dimensional space. In effect the /?-ratio defined in equation 

5.7 will have a value close to one for a suitable minimum embedding segment dimension 
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U K F R A N C E G E R M A N Y S P A I N I T A L Y G R E E C E 

M E S D 24 21 22 16 17 16 

Table 5.1: The Minimum Embedding Segment Dimensions of a set of European stock indices, 

as given by DATASTREAM Inc. The MESD is measured in number of segments. 

d. However, because P might be different for every segment's time-delay vector Zj, we 

adopt the quantity defined by Cao, (1998), [31] to overcome this problem. 

E{d) = 
•I N-d 

N-d (5.9) 

E{d) in equation 5.9 solely depends on the value of dimension d (time delay has been 

set to one). To investigate the variations of E{d), Cao introduces the fraction W{d) = 

E{d'\-\)IE(d). The value of d for which the fraction W{d) stops changing substantially, 

indicates that the MESD of the underlying system is d + 1. However, the choice of the 

threshold that identifies the stopping point is not necessarily clear. Here, its validity 

is testing through the overall prediction and trading performance of the system. By 

applying the above described algorithm on segmented representations of a set of stock 

indices, we have found indications of non-linear deterministic behaviour. The MESDs on 

the whole data set is given in table 5.1. In figure 5.4 some example curves, as obtained 

from the MESD algorithm, show the embedding segment dimension values. 

5.3.2 Multiple Feature Sets (MFS) 

The purpose of the matching algorithm is to find past occurrences similar to the "current" 

time series situation, described by the query pattern. This time the query pattern is 

depicted with a sequence of segments, whose number is assessed by the MESD method. 

The detection of such query patterns in the history of financial time series requires a 

flexible matching process which can retrieve the patterns' time dependencies. Consider 

for example, the upwards trend in the JAPDOVV stock index starting at early 1993, the 

one starting at 1995 and the most recent one, as depicted in figure 5.5. 
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I mm 

Figure 5.4: Three paradigms of the ESD curves on a set of DATASTREAM market indices. Left: 

FRANCE . Center: GERMANY . Right: UK. For each curve, the values of d for which E{d) 

stops changing substantially correspond to the minimum embedding dimension. 

All rises have similar shape but occur in different time scales. Although, economists 

are very good at visually classifying such patterns, to achieve that computationally is 

a hard task because of the difficulties of matching patterns with some notion of time 

and shape fuzziness. The Multiple Feature Sets (MFS) matching algorithm we propose, 

addresses this issue. These feature sets incorporate D T W (section 5.2) to compare similar 

segment subsets^ of different duration, the linear segment's 1*' derivative function, i.e. 

A segment subset is the time series part corresponding to an individual segment 

T 
9-7 99 txwwx* 

Figure 5.5: The JAPDOV^* index from late 1993 until 1999. Similar trends appear in the index 

but with different durations. 
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Pattern Matching using 
Multiple Feature Sets 
on Segmented Time-Series 

DT\^-Dyanmic Time Warping 

DTW 

Dertv 
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Time-tl DTW 
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Similar Historical Pattern 

\ 
Query Pattern 

Figure 5.6: Pattern Matching using Multiple Feature Sets on Segmented Time-Series. 

the slope for linear segments, to include pattern orientation information, and time labels 

to distinguish more recent patterns from older ones. In figure 5.6, we depict the way that 

each MFS is attached to each of the corresponding segments. 

Dynamic Time Warping Distance Measure: As explained in section 5.2, D T W 

effectively maps time series with different number of points in a satisfactory way that can 

be used to extract a reliable distance measure between them. Because of the optimisation 

component of DTW, it is advisable to use it on short subsequences. Segment subsets 

comparison issues are ideal for the application of the D T W algorithm. While sequentially 

scanning the segmented time series 5 = {SQ, S"!, • • •, si, • • •, s^} using the query pattern 

= {s^-d^"-,s^_,^,---,s^}, k = 0, l,---,cf,'* the distance between and P, = 

{si, • • •, Silk,' •' 1 i = 0,1, • • •, m — ( d - 1), is defined as the average of the distances 

*d is the minimum embedding dimension of 5. 
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measured with the DTW metric DoTw{s*f jS*i) on the individual segment subsets^. So: 

DciP"^, P) = - . j : Dryrw{s'^.,^i, s\) (5.10) 
" i=l 

Note that in the D T W distance calculation (equation 5.10) the segment subsets as defined 

in equation 5.5 are used. DQ is the first feature used to find the best matched position 

for the query pattern P^. 

Orientation Information: The second feature which enriches the multiple feature sets 

and therefore the whole pattern matching process is the slope of the segment in process, 

which can be seen as the tan~^ of the derivative of the segment's linear function. This 

feature actually distinguishes a part of the time series corresponding to a segment, from 

another with the same range of magnitude but different orientation. This is the case 

where the usual distance measures fail. 

T ime Labels: Finally, a time label feature is included in the multiple feature set. 

Matching patterns are compared with the value of their similarity. To overcome the 

problem of more than one pattern having the same similarity, we make use of the time 

labels and select the most recent one. The way that each multiple feature set hangs on 

each corresponding segment is shown in figure 5.6. 

The feature set, described above, is integrated in the following similarity function Do-

where DDTW{S^?iS*i) is the minimum distance norm Ccdculation, according to the opti

mum path found via dynamic programming using the Dynamic Time Warping algorithm 

(see 5.2 and (99, 14]), DsioPEisf-.si) is the squared difference of the slopes of the seg

ments. Si and s*i refer to the segment and its corresponding time series subset at position 

i respectively. 

^The start and the end point of each time series subset s,-, is identified by the corresponding segment 

S i . A way of directly appl>ang DTW on segmented time series has been proposed in [93] 
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In equation 5.11, the distance measures for each feature are computed separately. Each 

constituent feature similarity is then added with certain normalized weighting factors. 

Satisfactory weighting can be found experimentally. Here, we have selected Wfyrw = 0.6 

and VJSLOPE = 0.4 {WDT\V +'WSLOPE = 1)- For this weighting set, desired matches are 

achieved experimentally when similarity is greater than 60% 

5.3.3 Trend Prediction with Time Considerations / Trading 

Trend Prediction: Once the "current" situation of the market (i.e. the query pattern 

P^) has been matched to a certain position, i.e. it is geometrically similar to what 

happened sometime ago in the time series, we hypothesise that the local reaction of the 

market after the historical matched occurrence will indicate some shape and magnitude 

information about the market's future activity. Economic or technical analysis of that 

information might also be possible at that stage. This kind of prediction system thinking 

becomes more valuable, because of affinities in the market's behaviour, derived solely 

from well established economic market interpretation theory, from broadly used technical 

analysis tools or even from the basic rule of demand and supply. Imponderable factors, 

such as political guidance or intervention and insider trading, are not considered here. 

Figure 5.7 depicts a graphical explanation of the above prediction hvTJothesis. Similar 

patterns captured with the MFS matching algorithm are shown within the dashed circles. 

Note that pattern P is stretched in time and amplitude relative to the query pattern P^. 

As a consequence of this, an analogous shrunken version of the segments following pattern 

P (bold lines outside the historical pattern P circle) is taken to be the predictive indication 

for the time series future activity (bold line at the end of the series). Technically speaking, 

each trend prediction is normalized in duration, according to the ratio of the durations 

of patterns P and Q. Moreover, analysis, based again on temporal ratios, that verifies 

whether the last univariate time series point is the end or part of the current trend, is 

performed as described below. So, the main issues here are: 
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Prediction of future activity 
(based on historical information) 

Two segments following the matched pattern P 
(a predictive indication, noted as the NEXT segments) 

Query Pattern Q 
(The 'current' situation of the time-series) 

time 

Matched Pattern P 
Historical Pattern similar to the Query Pattern Q 

Figure 5.7: How trend prediction can be made using multiple feature set pattern matching. 

1. Time Normalization: 

Let's assume that the matched pattern occurred for time Atp which is the sum of 

the duration of each segment: 

Atp = Atp, + A<P2 -f- • • • + (5.12) 

where m is the number of segments of the pattern. Using the same notation, the 

query pattern has time length AIQ. If Atp^ stands for the duration of the segment 

that follows the matched pattern, then the model indicates that the predicted linear 

segments will last for time: 

(5.13) 

For more than one step ahead prediction we form analogous calculations. 
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2. Edge Point Verification: 

A weakness of this prediction approach as described up to now is that it assumes 

that the last segment of the query pattern is a "siop" point i.e. in the next moment 

a new segment is about to appear. That might not be true and most possibly the 

current segment will continue following its own trend for some time in the future 

before changing direction. For that purpose we check the relation of the ratio riast 

of the time length of the last segment of the pattern Q and the time length of 

the corresponding segment of the matched pattern P {ria^t = ^^^) against the 

patterns length ratio r (r = If riast > we take the last segment to have 

finished its activity. In the opposite case the last segment will continue for time 

3. Confidence Measures: 

• Matching Confidence - The similarity value (%) measured between the query 

pattern, P^, and its best match P. 

• Prediction Confidence - A measure (%) of how well the k segments (lines) that 

follow the best match, P , fit the actual time series. 

We use these confidence measures to check the improvement on matching and pre

diction accuracy and to drive a selective trading strategy*. 

Trading: Basically, a trading system is a hybrid of two main modules. A prediction 

module, which optimises its performance to output accurate predictions and a trading 

module, which takes trading positions {buy-sell-hold) according to a set of trading rules 

and to the predictions originated from the prediction module. Other more sophisticated 

types of trading systems have been proposed [119, 184, 120, 171]. Here, we base trading 

on the performed segment predictions using simple trend following trading rules. If no 

change in the trend from the previous segment is predicted, the current trading position 

is maintained and unnecessar>' brokerage costs are avoided. The trading rule, we employ, 
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is summarised as follows: 

if SL{st-i) >Okk SL{st) > 0 && SL{st+i) < 0 sell - go short , (5.14) 

if SL(st-i) < 0 && SL{st) < 0 && SL{st+i) > 0 buy - go long . (5.15) 

SL{st-i), SL{st)i SL{st+i) are the slopes of the previous, current and predicted segments 

respectively^. Each transaction takes place at time t, guided by the duration of the 

predicted segment. The trading rules of equation 5.14, 5.15 are further enriched making 

use of the slope indication for each predicted segment. We force the trading system to 

buy(sell) more(less) stocks, depending on how aggressive the segment has been forecasted 

to be. Assuming that a is the slope of the predicted segment and ac is the slope of the 

regression line fitted on the whole time series, we set the following trading constraints: 

if < 1, sell/buy one stock , (5.16) 

if > 1, sell/buy I — J stocks . (5.17) 

Brokerage costs are considered to be 1% of the transaction price. Finally, a stop loss 

criterion is considered for the system. Every time that losses exceed a 10 basis points 

threshold, open trading positions close in order to prevent extensive losses. The automatic 

trader then waits for a new trading signal in order to take further action. The trading 

rules system is activated when the prediction confidence is more than 70%. The profit 

achieved is accumulated all over the testing interval. 

5.4 Evaluation 

The evaluation set used to test the system previously described, is composed of six Eu

ropean market indices. To increase objectivity about the generalization properties of the 

system, we chose to work with three market indices from north European countries and 

another three from coimtries bordering the Mediterranean. These are the UK, France, 

^SL{st+i) is replaced with SI'(sf+a) for a-segs ahead predictions. 
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Germany, Spain, Italy and Greece^. Data have been downloaded from the D A T A S T R E A M ^ 

database, as it is processed by the D A T A S T R E A M team. The time series range from 

01.01.1990 to 26.04.2000, in daily representations (2693 working days). The compression 

achieved with the segmentation algorithm is on average 84%. The results we present here 

have been obtained from the last 40% of the time series points. 

5.4.1 Non-linear Deterministic Behaviour 

All the European indices employed in this study, reveal non-linear deterministic be

haviour, according to the minimum embedding segment dimension (MESD) measures. 

In figure 5.8, we depict the variation of E{d) (equation 5.9) while d varies between 2 

and 50. It can be seen there that E{d) stops changing substantially after a value Dmin-

Dmin corresponds to the selected MESD. This behaviour may be some evidence that the 

data in process are not generated by purely random processes. Purely random gener

ated series do not follow patterns such as those depicted in figure 5.8. However, because 

high dimensional systems may be in practice indistinguishable from stochastic systems, 

the possibility that the market indices are generated from non-linear stochastic processes 

cannot be excluded. As showTi in table 5.1, the BSD for the European indices ranges 

between 25 and 35 segments. 

As mentioned earlier, MESD is measured in number of segments. An attempt to 

transform MESD in number of days (Et^lf^^(5i duration)) establishes the claim made 

by Cao, [33], that the minimum embedding dimension (MED) of financial data is usually 

high. According to our measures the MED of the European data set varies between 50 

and 70 days. High MED are computationally expensive to calculate. Using segmented 

representations and segmented embedding dimension calculations, reduces the numbers 

by at least a factor of two. For the tests undertaken here the calculations have been 

reduced on average by a factor of ten. The fact that the ESD calculations are reduced 

^We refer to the following market indices: UK-DS-MK, FRANCE-DS-MK, GERMANY-DS-MK, SPAIN-

DS-MK, ITALY-DS-MK, GREECE-DS-MK 
^Datastream International Limited, Monmouth House, 58-64 City Road, London E C I Y 2 A L 
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(iii) 

(iv) (V) (vi) 

F i g u r e 5.8: Identifying the Minimum Embedding Segment Dimension ( M E S D ) of a set of six 

Emropean indices. The curves depicted above are E(d) values for different embedding dimen

sions, d (see equation 5.9). T h e d value for which E{d) stops changing substantially is taken 

to be the minimum embedding dimension of the system, ( i ) : T h e U K - D S - M K index case, ( i i ) : 

T h e F R A N C E index case, ( i i i ) : The G E R M A N Y index case, ( i v ) : T h e SPAIN index case, ( v ) : 

T h e ITALY index case, ( v i ) : T h e G R E E C E index case. 

by at least a factor of two, makes our pattern matching , forecasting a n d trading system 

computationgdly faster than its predecessor. 
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5.4.2 Evidence for speed-up 

In table 5.2 we give some evidence in support of the hypothesis, that mentioned previously, 

that there is a speedup in the market's interaction possibly due to external factors, such 

as the technology- and the telecommunications expansion. As shown in table 5.2 for 

different query pattern lengths, measured in number of segments, the percentage of the 

best historical matches with duration longer than the one of the current query pattern 

exceeds 70% for all the European stock indices. The matching test has been performed 

on 40% of the data, which corresponds to 1077 working days. 

Market Index 3 4 5 6 7 8 9 10 Average 

F R A N C E 86% 84% 82% 83% 86% 87% 82% 81% 83.9% 

^ ^ ^ - - - ^ ^ ^ ^ ^ ' ^ 

SPALN 86% 7V;- 7-' ,' 71% 71% 78% 75% 71% 75.3% 

I T A L Y 

G R E E C E 85% 80% 81% 82% 86% 80% 84% 89% 83.4% 

Total Average 82.8% 

Table 5.2: More than 70% of the historical matches are longer in duration than the current 

query pattern. The hypothesis has been tested on 40% of each financial data series (six European 

DATASTREAM market indices between 01.01.1990 - 26.04.2000). Each column represents the 

query pattern length in number of segments. 

Furthermore, in figure 5.9 some visual evidence to support this hypothesis is given. In 

this figure, the distributions of the durations (lengths in number of points) of the segments 

that represent the European market indices are depicted. I t can clearly be seen, that the 

segment durations tend to decline as the series evolves through time. According to these 

results, it becomes critical for the forecasting performance of a pattern matching system to 
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Figure 5.9: Distribution of segment duration(length) through time for six European market 

indices. A clear concentration of long segment lengths can be seen in the early stages of all 

series, ( i ) : The UK index case, ( i i ) : The F R A N C E index case, ( i i i ) : The G E R M A N Y index 

case, ( i v ) : The SPAIN index case, ( v ) : The ITALY index case, ( v i ) : The G R E E C E index case. 

be able to capture this dynamic time evolving change. This is exactly what the proposed 

segmented pattern matching algorithm attempts to accomplish by using dynamic time 

warping. The distributions in this figure correspond to the period from 01.01.1990 to 

26.04.2000 for six European market indices. Similar results have been obtained with 
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most of the known stock indices and some stock assets. 

5.4.3 Prediction Results 

Tables 5.3 and 5.4 show the accuracy of the system in predicting one segment ahead. 

The query pattern length is fixed using the MESD indications for each of the time series. 

Each prediction is accompanied by average matching and prediction confidence measures. 

1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 

DA 58.06 63.33 58-06 55.17 53.00 5 7 . 5 2 5 8 . 4 1 

AMC 66.71 63.85 64.21 62.05 64.39 64.24 6 0 . 6 0 

APC 58.30 61.34 63.54 63.88 60.58 61.53 5 8 . 6 9 

U K - D S - M K 

DA 64.29 66.67 62.50 48.15 75-76 63.47 6 0 . 8 6 

AMC 67.88 69.00 64.61 63.02 68-12 66.53 6 1 . 5 5 

APC 62.72 64.41 66.05 60.42 63.05 63 .33 59 .38 

F R A N C E - D S - M K 

DA 62.96 70.97 64.52 44.44 59.14 6 0 . 4 1 57.45 

AMC 67.95 65.03 62.83 60.29 71-54 65.53 6 0 . 9 1 

A P C 66.13 65.46 62.30 60.59 65.57 64.01 58.96 

G E R M A N Y - D S - M K 

Table 5.3: Testing the one-segment ahead forecasting directional ability (%) of the segmented 

pattern matching system on the European DATASTREAM market indices set ( U K , F R A N C E , 

G E R M A N Y ) . DA, AMC, APC stand for Directional Ability, Average Matching Confidence and 

Average Prediction Confidence respectively. 

This prediction scheme has been tested on several 2-year and 10-year periods of six 

European D A T A S T R E A M market indices. The minimum and the maximum correct di

rection prediction percentages for all the 2-year index periods are 44.44% and 75.76% 

respectively. These figures translate to an average directional abilitj^ of 59.31% for the 
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1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 

DA 59.37 57.45 62.82 60.49 55-73 5 9 . 1 7 5 9 . 5 5 

AMC 70.29 64.36 66.21 63.68 64.15 6 5 , 7 4 5 9 . 6 7 

APC 63.15 64.49 64.01 66.12 64.30 6 4 . 4 1 6 1 . 0 1 

S P A I N - D S - M K 

DA 64.29 58-65 66.00 48.15 60.00 5 9 . 4 2 6 4 . 6 8 

AMC 66.01 61.49 67.77 64.03 66.11 6 5 . 0 8 6 3 . 8 4 

APC 62.34 61.53 60.82 68.51 60.31 6 2 . 7 0 6 1 . 3 6 

I T A L V - D S - M K 

DA 51.43 56.72 56.17 52.15 62.76 5 5 . 8 5 5 8 . 4 3 

AMC 64.52 64.13 66-57 63-45 62.80 6 4 . 2 9 5 8 . 6 2 

APC 64.48 64.01 68.04 64.15 61.57 6 4 . 4 5 5 6 . 6 3 

G R E E C E - D S - M K 

Table 5.4: Testing the one-segment ahead forecasting directional ability (%) of the segmented 

pattern matching system on the European DATASTREAM market indices set (SPAIN , I T A L Y 

G R E E C E ) . DA, AMC, APC stand for Directional Ability, Average Matching Confidence and 

Average Prediction Confidence respectively. 

2-year long market indices. The corresponding vslue for the 10-year period is 59.90%. In 

addition, not only does the prediction performance of the segmented pattern matching 

scheme reach an average of 60% in terms of correct direction prediction but it also ex

hibits robustness in terms of the duration of the series that it has been tested on. The 

system seems to perform similarly for shorter and for longer time periods. This effect has 

not been recorded for the pattern matching scheme of chapter 4. Finally, the matching 

confidence is over 60% for most of the time. This indicates the reliabihty of the similarity 

function and the matching algorithm. 
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5.4.4 Trading 

Following the strategy described in section 5.3.3, we trade on each of the European 

D A T A S T E A M indices independently, starting from 01.08.1995 until the 26.04.2000. This 

corresponds to 1236 working days. The strategy' followed, extracts on average 138 trading 

actions per index. This number has been achieved after applying the stop loss criterion 

(section 5-3.3) on the 10-year long market indices. These figures are correspondingly 

different for the 2-year periods. The average profits gained for each index are represented 

in tables 5.5 and 5.6. 

'90-'92 '92-'94 '94-'96 '96-'98 '98-2000 Average '90-2000 B / H 

CP 14.47 9.43 19.69 15.60 7.52 13.34 8.61 13.49 

SR 2.60 1.03 2.11 1.31 1.09 1.63 1.04 

NoT 31 30 31 29 32 31 136 

U K - D S - M K 

CP 17.74 10.23 18.33 20.02 12.41 15.75 25.33 12.76 

SR 2.13 1.48 2-69 2.87 1.95 2 . 2 2 2.66 

NoT 28 33 32 27 33 31 140 

F R A N C E - D S - M K 

CP 19.78 12.77 13.16 -9.20 19.22 11.15 19.14 4.41 

SR 2.35 1.41 1.87 -0.99 2.46 1.42 2.37 

NoT 27 31 31 27 28 2 9 137 

G E R M A N Y - D S - M K 

Table 5.5: Testing the profitability (basis points) of the segmented pattern matching system 

on the European DATASTREAM market indices set (The UK, F R A N C E and G E R M A N Y case). CP, 

SR, NT stand for Cumulative Profit, Sharpe Ratio and Number of Transactions respectively. 

B/H corresponds to the Buy and Hold (B/H) trading strategy. 

For all market indices the average profit gained for the 2 and 10 - year periods is 

15.43 and 16.16 basis points respectively. Prediction confidence greater than 60% has 
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'90-'92 '92-'94 '94-̂ 96 '96-'98 '9&-2000 Average '90-2000 B / H 

CP 26.38 -1.06 7.76 33.65 25.69 1 8 . 4 8 6 . 0 7 2.23 

S R 6.47 -0-20 1.89 7.33 7.01 4 . 5 0 1 . 4 6 

NoT 28 30 28 26 28 2 8 1 3 8 

S P A I N - D S - M K 

CP 9.16 14.37 23.44 29.04 32.55 2 1 . 7 1 1 3 . 6 9 14.64 

S R 1.17 1-93 3-44 4.52 5-19 3 . 2 5 1 . 8 7 

NoT 28 37 30 27 28 3 0 1 3 9 

I T A L Y - D S - M K 

CP 18.68 12.05 -9.20 17.75 21.53 1 2 . 1 6 2 4 . 0 9 12.90 

S R 2.54 2.04 -1.42 2.39 3.96 1 . 9 0 4 . 1 1 

NoT 28 29 29 26 29 2 8 1 4 0 

G R E E C B - D S - M K 

Table 5.6: Testing the profitability (basis points) of the segmented pattern matching system 

on the European DATASTREAM market indices set (The SPAIN, I T A L Y and G R E E C E case). CP, 

SRj NT stand for Cumulative Profit, Sharpe Ratio and Number of Transactions respectively. 

been taken as the constraint for the automatic trader to enter the market. In tables 

5.5 and 5.6, these figures together with Sharpe Ratio (SR) risk measures are depicted 

analytically- In this table the average profit numbers that are generated by the "Buy & 

Hold' trading strategy adjusted to the number of transactions are given too-

In tables 5-7 and 5.8. similar trading performance figures are presented after enhancing the 

trading strategy with the slope rules given by the equations 5.16 and 5.17. Improvement 

in terms of profit can be seen in this table. However, the number of transactions drops 

substantially when applying slope selective trading. Therefore, the increase in the trading 

performance is amplified by the decrease of the overall transactions costs payed. 

Representative mean cumulative curves over the 1236 working days periods are de

picted in figure 5.10. These curves are characterised by upward trends. 
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1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 B / H 

CP 15.93 10.06 16.49 20.23 10.05 1 4 . 5 5 1 0 . 1 9 13.49 
SR 2.80 1.27 2.36 2.77 2.56 2 . 3 5 1 . 1 7 

NoT 9 10 17 11 9 1 1 3 3 

U K - D S - M K 

CP 16.91 17.61 16.22 20.12 12.03 1 6 . 5 8 2 6 . 1 8 12.76 

SR 1-98 2.36 3.83 2.27 2.59 2 . 6 1 2 . 7 5 

NoT 16 21 17 8 14 1 5 4 0 

F R A N C E - D S - M K 

CP 21.72 14.87 14.16 1.31 24.69 1 5 . 3 5 2 3 . 0 9 4.41 

SR 2.31 1.83 2.01 0.10 2.88 1 . 8 3 2 . 6 7 

NoT 15 16 7 9 17 1 3 3 4 

G E R M A N Y - D S - M K 

Table 5.7: Testing the profitability (basis points) of the segmented pattern matching system 

on the Emropean DATASTREAM market indices set using confidence measures (The UK. F R A N C E 

and G E R M A N Y case). CP. SR, NT stand for Cumulative Profit, Sharpe Ratio, and Number of 

Transactions respectively. Note that the difference between this table and table 5.5 is that here 

confidence measures are used for trading as well. 

In conclusion, it can be said that: 1) the trading results show that the average profit 

measures constantly have positive signs; 2) the number of trading transactions indicate 

that the automatic trader acts only for almost 10% of the time applied and this avoids 

excessive brokerage costs and risky every day trading. 
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1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 B / H 

CP 20.74 6.84 12.25 27.06 26.38 1 8 . 6 5 1 1 . 7 3 2.23 

S R 2.26 1.39 1.52 3.06 2.73 2 . 1 9 1 .12 

NoT 16 18 13 9 15 1 4 3 4 

S P A I N - D S - M K 

CP 10.66 13.29 25.67 25.88 28.00 2 0 . 7 0 1 4 . 4 9 14.64 

S R 1.62 1.76 4.15 4.44 3.48 3 . 0 9 2 . 7 8 

NoT 12 10 12 11 11 11 4 8 

I T A L Y - D S - M K 

CP 28.80 16.24 -5.28 20.42 24.58 1 6 . 9 5 1 7 . 3 2 12.90 

S R 4.72 3.14 -0.86 3.09 4.05 2 . 8 3 2 . 4 8 

NoT 13 8 17 11 13 1 2 2 3 

G R E E C E - D S - M K 

Table 5.8: Testing the profitability (basis points) of the segmented pattern matching system on 

the European DATASTREAM market indices set using confidence mecisures (The SPAIN, ITALY 

and G R E E C E case). CP, SR, NT stand for Cumulative Profit, Sharpe Ratio, and Number of 

Transactions respectively. Note that the difference between this table and table 5.6 is that here 

confidence measures are used for trading as well. 

Figure 5.10: The evolution of profit (in basis points) for the G E R M A N Y (left), U K (center) and 

G R E E C E (right) datastream market indices starting from 01.08.1995 - 26.04,2000. 
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5.5 Conclusion 

We have shown a way of variable sampling of financial time series based on time series 

segmentation. Then, a pattern matching system, applied to segmented time series rep

resentations, has been described. The main purpose of this system was to detect similar 

time series patterns, which occur at different time scales, in order to perform trend pre

diction with time and slope indications. The pattern matching system was based on 

embedding segment dimension calculations and on dynamic time warping. 

The conclusions that have been made after the system was applied to a set of European 

market indices, can be summarised in the following: 

• The segmented time series representations and the pattern matching algorithm 

have shown that there is a speed-up in the evolution of the market indices, that 

may be due to external factors such as the technology* and the telecommunications 

expansion in finance. 

• The use of the forecasting pattern matching system has achieved prediction accu

racy which on average exceeded 59%. The trend's slope and duration predictive 

indications were also satisfactory. 

• The transformation of the system's trend predictions into trading actions resulted 

in average returns which were positive. Furthermore, the trend of the profitability 

curves over the testing periods of the market indices was also upward. The trading 

mechanism that has been used for those experiments has acted on average for only 

10% of the time. Therefore, unnecessary trading costs have been avoided. 
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Chapter 6 

Exploring regression relationships 

"The future isn't what it used to be," 

Anonymous, 

'Supplied by Joseph Silling' 

Until now, our investigations have been concentrated on univariate financial time series 

analysis with respect to predictability and investment decision making. The multivariate 

case will be addressed in this chapter. The field of multivariate ansJysis generally con

sists of those techniques that consider two or more related variables as a single entity and 

attempts to produce an overall result taking the relationship among the \ariables into 

account. Looking back to time series literature, it is easy to track a vast dominance of 

univariate time series studies in contrast to the multivariate ones. In principle, univariate 

scalar time series are on their own sufficient to discover the dynamics of the underlying 

systems if enough historical data is available. However, in practice the situation may be 

different. A representative example to illustrate this is the reconstruction of the Lorenz 

equation, [108], from its z-values. The z-values cannot on their own explain the dy

namics of the Lorenz system because they cannot resolve the x - y symmetry of the 

system. Examples from other application domains also suggest that trivial problem solu

tions considered in a M-dimensional space cannot be solved in lower k < M dimensions^ 

'The X O R classification problem is trivial when seen in two dimensions but impossible to be solved 

in one. The Support Vector Machines is an advanced theor>' which attempts to offer problem solutions 
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Therefore, we cannot be sure in practical time series problems, as those discussed here, 

whether one scalar time series can be sufficient for analysing the dynamics of the system. 

The use of several different time series might add considerable advantages in predicting 

noisy economic time series data. 

Economic data is usually multidimensional. In this chapter, we first discuss the prediction 

problem of multivariate time series as a generalization of the univariate procedures, we 

proposed in chapters 4 and 5. Generally, we operate under the hypothesis that multiple 

economic data streams, if used effectively for modelling and prediction, can significantly 

improve predictability and investment decision making. We evaluate this approach on 

the same set of European stock indices in order to allow a straightforward comparison to 

the univariate performance given in the previous chapters and illustrate the improvement 

achieved using more relex'ant data sources for prediction and trading. In the second part 

of this chapter, we deal with the concept of co-integration (see E N G L E and G R A N G E R 

(1987) [52]) between economic time series. Within the framework of co-integration, which 

simply tests whether various market indices and/or economic'variables revegd common 

movement in the long run while showing temporary divergences, we propose here a sys

tematic method for exploring co-integration within a temporal framework which reveals 

local time relations between the time series in process. We call this type of co-integration 

time-warped co-integration. It is our belief that non-synchronous movements, i.e. 

local time shifts and delays or shrinks and stretches, occur locally in economic time series 

when seen relative to each other. Therefore, adding local relative time information when 

looking for co-integration between economic time series may reveal more pragmatic co-

movement inferences. The algorithm used to identify those local relative time relations 

is the Dynamic Time Warping Algorithm (DTW) (see chapter 5). D T W performs a non

linear "one-fo-monj/" points mapping of the time series which reveals local relative time 

delays and shifts between economic time series. Time-warped co-integration is proposed 

as a new equilibrium relationship between economic time series, whose mispricing dise

quilibrium error correction mechanism is considered for trading arbitrage opportunities. 

by increasing the problem's dimensionality (see [158]). 
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In section 6.2, the terms of equilibrium, mispricing, arbitrage together with those of mean 

reversion^ error correction and statistical arbitrage, will be discussed in further detail. 

Time-warped co-integration is presented in parallel with the known co-integration theorj' 

and is evaluated through the statistical arbitrage framework as proposed by B U R G E S S et 

al. (1996), [24]. The discussion and outlook section, concludes this chapter with ideas 

for possible generalization extensions of the proposed methods. 

6*1 Multivariate Pattern Matching 

The question that initially arises when working with multiple data channels is which data 

sources should be employed for solving the problem and how many of those should be 

selected. This is surely a very difficult task considering the huge amount of data wait

ing for processing. Objective functions, therefore, become a necessity in addressing this 

problem. In relation to the above questions, objective functions may concern computa

tional efficiency, avoidsince of information repetition and degree of relevance of the data 

to the problem. Sophisticated computational and statistical techniques aim to optimise 

these objective functions. Correlation analysis [19]. Reduced Autocorrelation Modelling 

[87], Principal Component Analysis (PCA) [83], Independent Component Analysis (ICA) 

[80, 81], Singular Value Decomposition (SVD) [23,141] and co-integration [52] are modern 

statistical techniques applied in controlling the dimensionality of multivariate problems 

under the constraint of keeping substantial amounts of information. Utans et al., (1997), 

[175], showed that it is possible to reduce the number of input series to a model of hourly 

exchange rates using principal component analysis to reveal the main uncorrelated fac

tors driving the market. However, extracting uncorrelated time series which are also 

independent and identically distributed (IID), is not always possible. HsiEH, (1988); 

76], identified for example, that although price changes of a set of currencies are uncor

related, they are not IID. One year later, [77], he demonstrated non-linear dependence 

in daily exchange rates using non-linear stochastic functions. Here, a rather simple, two 

stage method is used for data set selection and dimensionality reduction. 
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6.1.1 Data Selection 

To achieve compatibility with the rest of the thesis, the data set to be processed consists 

of the series used in the previous chapters. Thus, we investigate the forecasting and 

trading ability of the pattern matching method on the multivariate set of market indices 

of the following European countries: UK, France, Germany, Spain, Italy, Greece and 

Switzerland. The selection of the input data is performed in two stages. Firstly, a set 

of indices that meet specific constraints, eg. stock indices that are strongly affected by a 

conmion economic policy, European indices, are a-priori selected. Secondly, the selected 

data set is processed using Principal Component Analysis in order to reveal data sources 

that do not sufficiently contribute to the overall variance of the underlying system. In 

effect, dimensionality reduction of the input is achieved and also correlation information 

on the data set is statisticadly justified. 

Principal Component Analysis ( P C A ) Principal Component Analysis (PCA) is an 

ad\'anced technique for extracting structure from possibly high-dimensional data sets. It 

is readily performed by solving the eigenvalue problem, or by using iterative algorithms 

which estimate principal components. For reviews of the existing literature, see J O L L I F F E , 

(1986), [86] and D I A M A N T A R A S et al., (1996) , [49]; some of the classical papers on P C A 

are due to P E A R S O N , (1901) , [130]; H O T T E L L I N G , (1933) , [75]; K A R H U N E N , (1946) , [89 . 

PCA is an orthogonal transformation of the coordinate system in which we describe the 

data. The new coordinate values which represent the data are called principal compo

nents. It is often the case that a small set of principal components is sufficient to account 

for most of the structure of the data. These are sometimes called factors or latent vari

ables of the data. 

The present work studies PCA in the case where we are not interested in principal com

ponents in input space, but rather in correlations of the principal components with the 

input space. In the next, we will first review the standard P C A algorithm and give the 

formulas for calculating the correlation coefficient between the i*^^ input variable and the 

principal component. 
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Given a set of centered^ input vectors x" = {x", , • • •, xj", - • •, x^}, i = 1, • • •, n = 

l,-*-.A'', P C A aims at a linear transformation of the original input variables x" that 

results d uncorrelated - orthogonal - variables z". the principal components. The trans

formation matrix S (covariance matrix) of the set of vectors {x"} is: 

s = f : ( x ' ' ) ( x " r • (6.1) 
n=l 

PCA diagonalizes the covariance matrix 5 by solving the eigenvalue equation: 

Sui = XiUi , (6.2) 

where Ui, i = 1, • • •, rf are the eigenvectors and A; the eigenvalues of the covariance matrix 

S^. The transformed variables are refered to as the principal components - t-scores - and 

are ordered by explained variance: 

variz"^) > var{z^) > > uar(22) . (6.3) 

The variances of the principal components are given by the eigenvalues of the covariance 

matrix. The eigenvectors of the covariance matrix are refered to as the loadings and they 

indicate the contribution of the original variables to the system's variance. 

In this work, we are interested in the correlation coefficients between the input and 

the principal component variables. It is possible to determine the correlation of the i^^ 

principal component and the j^^ original variable using the following formula: 

r,-,- = - - , (6.4) Sj 

where Uij are the loadings (eigenvectors of the covariance matrix), A,- the eigenvalues - the 

contribution in terms of variance of the principal components to the overall system and 

Sj is the variance of the original input variable x^ (Here, Sj = 1 because data has been 

normalised to unit std). The original time series variables which are highly correlated to 

the first principal component are the ones which construct the multivariate data set on 

which the pattern matching and prediction algorithm is applied. 

^The time series signal is normalized to zero mean and unit stemdard de\iation 
comprehensive proof of the PCA algorithm can be found in [17] 
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6.1.2 Matching Forecasting 

Having the multivariate data set selected using principal component analysis, the pattern 

matching and prediction method, presented in the previous chapter, is employed in its 

generalized form for the multivariate case. On segmented time series the 'current' pat

tern is selected from the series to be forecasted using the segment embedding dimension 

technique of section 5.3.1. This pattern is matched on the whole multivariate set at sev

eral historical positions so that a vector of historical matched patterns is extracted. The 

averaged movements that follow those historical matched patterns, after normalization in 

terms of level and duration, give the predictive indication for the series to be predicted. 

Because this is a simple generalization of the pattern matching and prediction univariate 

approach, we refer the reader to the previous chapter. What we want to emphasise here 

is that the employment of additional time series for the forecasting task, may improve 

the performance of the pattern matching and prediction algorithm. Before presenting 

the forecasting and trading results of the simulations done using this approach, we must 

state that the improvement achieved does not suffer from any substantial increase in the 

computational time. The computational time increases linecu*ly as more than one series 

is added to the prediction system. 

PCA is applied to the selected data set to calculate the correlation coefficient of 

equation 6.4. The market index time series that are highly correlated to the first principal 

component are selected as the winners and are the ones to which the pattern matching 

and prediction algorithm is applied. As seen in table 6.1, the German, French, British and 

the Spanish market indices are those highly correlated to the first principal component. 

Each time we predict one market index using all the others from the data set. For 

each simulation 60% of the data is used as the historical part of the time series needed for 

pattern matching. Therefore, the forecasting performajice for a segment ahead is tested 

together with the trading performance of the system on the remaining 40% of the data. 

This corresponds to almost 1100 points of daily prices, or to a four years period. The 

trading strategy' is the same as the one used in evaluating the univariate case (see section 
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Figure 6.1: The European market indices (01.01.1990 - 26.04.2000) that were used for experi

ments in this thesis. All series are scaled to lie between 0.2 and 0.8. 

5.3.3) That allows straight forward comparison to the results presented in section 5.4. 

In table 6.2, it can be seen that there is not a significant improvement in the forecasting 

direction ability of the multi-pattern matching system compared to the univariate one. 

In addition similar performance is recorded for the case when market indices which are 

characterised by high correlation coefficients are employed for the multivariate prediction 

task. The average trading performance of the system remains positive for the multivariate 

pattern matching system. The auto-trade component of P R O G N O S I S on multivariate 

data, however did not significantly outperform the univariate one on the market indices 

used in this study. Note that brokerage costs of 1% are also considered in our calculations. 

Overall, a substantial improvement in the performance of the algorithm was not achieved 

after applying PCA. However, computational time was saved. 
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U K F R A N C E G E R M A N Y S P A I N I T A L Y G R E E C E 

0.83 0.87 0.94 0.78 0.73 0-69 

Table 6.1: The correlation coefficient, r of each of the european DATASTREAM market indices to 

the corresponding 1*̂  principal component as calculated from equation 6.4. The original time 

series are daily prices between January 1990 and April 2000. A predefined threshold of 75% is 

set for selecting time series from the data set for dimensionality reduction. 

market index pred (%) profit SR pred* (%) profit* SR* 

UK-DS-MK 58.70 10.1 1.46 59.35 7.64 0.78 

FRANCE-DS-MK 60.25 6.47 0.61 61.30 11.02 1.87 

GERMANY-DS-MK 60.00 12.2 1.34 60.65 8.43 1.36 

SPAIN-DS-MK 58.38 15.58 2.31 56.83 13.62 2.09 

ITALY-DS-iMK 54.86 3.36 0.70 59.68 8.30 1-36 

GREECE-DS-MK 56.75 7.11 0-87 55.45 7.61 0.95 

Table 6-2: Prediction and trading results using multivariate pattern matching. The series are 

between 01.1990 and 04.2000. All simulations have been performed for 60% of the data set and 

tested on the remaining 40%. In the columns indicated by +. the results obtained without using 

PCA are given (all the series are used). SR stands for Sharpe Ratio, a risk measurement which 

accompanies the trading performance- Profit is measured in basis points. 
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6.2 Time-warped co-integration 

In this section, we will discuss a novel way of exploiting long term relationships using 

the theory of co-integration ( E N G L E and G R A N G E R (1987) [52]; H A R G R E A V E S , (1994) , 

72]; M A D D A L A et al., (1998) , [109]) between economic and financial time series. Local 

time dependencies between the time series in this framework are taken into account to 

test their co-integrating relationships. Intuitively, the reasoning behind this approach 

is that non-stationarities in the residuals of two time series may occur due to the fact 

that the differences of the time series points are taken synchronously. This means that 

each point of the residual series is calculated by differencing the prices of the original 

series X, Y that are identified by the same time index {r{t) = x{t) - y{t)). Local time 

shifts or delays between the time series introduce data point projections between the time 

series that do not occur synchronously. A data point of the series X at time t may be 

projected to others of series Y that occur forwards or backwards in time, i.e. at time 

i ± a, a > 0. In addition, a point of series X may be projected to more thsin one point 

of series Y. This corresponds to local time stretches or shrinks of one time series relative 

to the other. Such data point projections may identify local time dependencies between 

the time series. Furthermore, a projection between two time series X, Y that reveals 

local time dependencies may overcome the spurious regression problem** and can lead 

to a form of co-integration. The economic time series regression literature ([98, 42, 48] ) 

suggests that the one time that the spurious regression problem can be surmounted is 

when two time series X , Y, are co-integrated. This concerns the errors of the following 

regression model: 

e, = - Q - I5X^ (6.5) 

In particular, if the regression error series (also known as the residual series) that results 

from the regression equation 6.5 exhibits stationary behaviour (does not have a "unit 

root"), it is said that X, Y are co-integrated. 

^If two time series X, Y are non-stationary, i.e. they have a "unit root", then all the usual regression 

results might be misleading and incorrect. This problem is known as the spurious regr^sion problem. 
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However, it is expected that the residuals series of two non-stationary time series will 

also be non-stationary. Statistically, it is this non-stationarity that causes the spurious 

regression problem mentioned earlier. What we want to investigate here is whether any 

local time dependencies (shifts, delays, shrinks, or stretches) identified between two time 

series, can reveal stationary residual series. To test this, we apply the Dynamic Time 

Warping (DTW) algorithm, [99,14] (see section 5.2), to the time series in order to identify 

local time dependencies and to extract the residual series based on those dependencies. 

In particular, D T W is used to discover an optimal projection between the time series. 

Details on this approach together with explanatory figures and examples are presented 

later in this chapter. 

Stationarity in the residual series introduces a co-integrating relationship between the 

original time series. Because of the time relations that are identified between the time 

series, we call this type of co-integration, time-warped co-integration. This is dis

cussed in section 6.2.3. Within this framework, the mean reversion eflfect, [6, 94, 140], 

of the residuals of co-integrated series is also discussed as a consequence of the proposed 

time-warped co-integration relationship (section 6.2.1). Basically, mean reversion con

stitutes a forecasting indication for the future movement of the equilibrium error series 

(residuals). It indicates that when two series are linked with co-integration, indeed, their 

equilibrium error series will sooner or later return near the zero line. This constructs a 

'/air price' relationship for the time series. To further support the forecasting indication 

of the mean reversion effect and to check when the "fair price' is likely to occur, a fore

casting mechanism based on historical pattern matching predicts the next values of the 

residual series as well as the time movement of one series relative to the other. These 

predictions drive the timing of the trading system, which operates as a technical arbi

trageur and takes opposite trading positions on the co-integrating financial time series. 

We evaluate the proposed system, in terms of trading performance, within the ''statistical 

arbitrage' framework, as discussed by B U R G E S S , (1997), [25 . 

Before exploring these ideas in more depth, we give here some initial visual intuition 

about the time series local time dependencies and the time series points projection that 
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identifies them. In figure 6.2 the local time dependencies are demonstrated on simulated 

data. Local time delays and shifts have been inserted into two perfectly co-integrated 

series. The DTW based algorithm, when applied to these two time series, managed to 

almost perfectly recover all the locally inserted shifts and delays (see 2"*̂  row of the fig

ure). 

In figure 6.3, the same procedure has been apphed to real financial time series. In this 

figure the equity series of B A R C L A Y S and HSBC are drawn from January 1999 until 

January 2000 in daily closing prices. These time series were picked randomly for illustra

tion purposes. The local time projection of the series and a new time series representation 

that derives from this projection are also depicted there. It is ver>' difficult to draw any 

valid conclusions out of these figures about the local time dependencies between the se

ries. However, our aim here is only to give some visual intuition about this. Detailed 

evaluation, both statistical and in terms of trading performance is given later in this 

chapter. 

In the following, we first address the basic attributes of co-integration as an econometric 

theory and consequently the co-integration mean reversion effect (section 6.2.1). Some 

stationarity issues are addressed in section 6.2.2. Time-warped co-integration and the 

djTiamic time warping mechanism that retrieves time dependencies between two series 

is discussed in section 6.2.3. In section 6.2.4, the algorithm that predicts the way that 

the time series will move relative to each other is presented. The model is systematically 

e\'aluated through profit measures, calculated with a statistical arbitrage trading strat

egy, in section 6.2.5. Finally, we summarise the main aspects of the proposed systems 

and we conclude with future research ideas (section 6.2.6). 
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Figure 6.2: Introducing time delays or shifts in the relation between simulated data. From 

top to bot tom: Top: Original time series (with time shifts and delays). Middle: The time 

series projection using dynamic time warping. Bot tom: Expanded time series. 
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Figure 6.3: Introducing time delays or shifts in the relation between two stock from the UK 

bank sector. Here we depict the BARCLAYS and the HSBC stocks for 1999 (01.99-12.99) From 

top to bot tom: 1. Original time series. 2. DTW mapping between the series 3. Time series 

after local expansion (The arrows on the figure point to local expansion positions). 
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6.2.1 Co-integration 

The econometric concept of co-integration Co-integration initially arose from the 

concept of E r r o r Correction Models ( E C M ) , which dated back to the paper by 

S A R G A N , (1964) , [154]. Sargan in this paper, studies non-stationarities and spurious 

correlation between wages and price time series in the UK. Generally, co-integration is 

based on the idea that two financial time series are moving relative to each other. That 

is often refered to as the equilibrium relationship and in its simplest form is given by 

the following equation: 

yt = a-ht3xt . (6 .6 ) 

vt = y t - a - ' 0 x t , (6 .7 ) 

is the mathematical formula which writes the disequilibrium error as a linear combi

nation of Xt and yt. 

E N G L E and G R A . N G E R in 1987, systematically defined the concept of co-integration by 

the following: 

"If a long-run equilibrium relationship such as in equation 6.6 exists, then disequilibrium 

errors should form a stationary time series and have zero mean'. 

In econometric terms, that is Vt in equation 6.7 should be integrated of order zero^. and 

E(vt) = 0. 

To summarise this, we can say that the time series Xt and yt are co-integrated, i f both the 

time series become stationary on first differencing, i.e. are integrated of order one and 

their disequiHbrium error linear relationship (equation 6 .7) is stationary, i.e. integrated 

^Consider two time series Xt, yt which are integrated of order d, i.e. become stationary after differ

encing d times. If the parameter set (a, ^ in equation 6.6) of the linear transformation of Xt, yt is such 

that the long-run changes in level of Xt. yt cancel out, i.e. are approximately the same, then it is possible 

that Vt = yt - Q 13 Xt is integrated of order <f - 6, for 6 > 1. In our example, we take Xt. yt to be 

integrated of order one and we expect the disequilibrium error series to be integrated of order zero, i.e. 

stationary in lev-el, for the long-run co-integration relationship between Xt and yt to exist. 
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of order zero, for a parameter set Q, i3. This theorem is of great \'alue in econometrics 

because it has often been stressed that economic time series become stationary after first 

differencing. In other words, economic time series often may be mean reverting. 

Mean Reversion ''Mean reversion refers to a tendency of asset prices to return to a 

trend path'' ( B A L V E R S et al.. (2000), [6]). By itself this definition points out the forecast

ing character on the mean reversion effect. It has been said earlier that mean reversion 

indicates a 'fair price' relationship between two co-integrated financial time series. This 

relationship derives from the tendency of the residuals (disequillibrium) series to return 

near the zero line. Empirical evidence for the presence of mean reversion over long hori

zons in the U S stock market has been provided first by F A M A et al., (1988), [55] and 

POTERBA et al., (1988), [140]. Others like L o and MacKiNLAY, (1988), [104] and KiM 

et al., (1991), [94] argue for the absence of the mean reversion effect on U S stock prices 

using weekly data and conclude that mean reversion may occasionally occur in selected 

time periods but not broadly. Between those contradictor\' opinions, we quote C A M B E L L 

et al., (1997), [28] saying: 

''Overall, there is little evidence for mean reversion in long horizon returns, though this 

may be more of a symptom of small sample sizes rather than conclusive evidence against 

mean reversion - we simply cannot tell.'' 

Therefore, we have taken mean reversion on financial markets as an open research area 

upon which to base our work in this section. Here, it is assumed that the residucd series 

is mean reverting, if it does not have a "unit root'* ,̂ i.e. it is stationary. Due to local 

time dependencies that are embedded in the residual series calculation, we call this type 

of mean reversion, time-warped mean reversion. 

As it will be shown later in this section, local time dependencies of economic time series 

reveal considerable correction in terms of co-integrating movement. To test this hypoth-

®"Umt root" tests are tests for time series stationarity. The most well known '*miit root" tests are 

the Dickey-Fuller (DF), Augmented Dickey-Fuller (ADF), suggested by E N G L E and G R A N G E R (1987). 

[52] or the Durbin-Watson test proposed by SARGAN and BHARGAVA (1983), [155]. 
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esis, we evaluate time-warped mean reversion through the statistical arbitrage trading 

strategy- as defined by BuRGESS, (1997) , [25]. In the next (section 6 .2 .3 ) , we define the 

time-warped co-integration, i.e. co-integration using local time shifts and delays. 

6.2.2 Stationarity issues 

A time series is said to be stationary if its mean, variance and covariances remain con

stant over time. Formally, non-stationary merely means anything that is not stationary. 

However, a time series is non-stationary if it fails to satisfy any part of the definition 

above. 

Financial analysts usually focus on a particular type of non-stationarity that seems to be 

present in many financial and macroeconomic time series: "unit root" non-stationarity 

(see [72, 170]). The ''unit root" stationarity rule says that if a time series has a "unit 

root'' then it is non-stationar\-. Stationarity is exhibited in the opposite condition. 

D I C K E Y and F U L L E R 1979, [51], first proposed a "unit root" test that overcomes the 

problems that arise when using aut©regressive (AR) processes with O L S estimators to 

check for stationarity (see T H O M A S 1997. [170]). Other known "unit root" tests for 

stationarity based on the residuals of the OLS regression are: the Augmented Dickey-

Fuller ( S A I D and D I C K E Y 1984, [150]); the Co-integrating Regression Durbin-Watson 

( E N G L E and G R A N G E R 1987, [52], S A R G A N and B H A R G A V A (1983) . [155]); the Phillips 

and Phillips-Perron ( P H I L L I P S 1987, [136] and P H I L L I P S and P E R R O N 1988. [138]) etc.^ 

Here, we test for "unit root" stationarity of residuals series using the t-statistic (t-stat) 

\-alues of the Dickey-Fuller test, [51]. Autoregressive (AR) models of the residuals series 

are estimated. 

• If the final models include deterministic trend the Dickey-Fuller critical value for 

the t-stat is approximately -3 .45 taking the level of significance of the regression to 

be 0.05 

"Other stationarity tests based on principal components or canonical correlation have been developed 

by JoHANSEN (1988), [84] and P H I L L I P S and G U L I A R I S (1988), [137]. 
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• If the final models do not include deterministic trend the Dickey-Fuller critical value 

for the t-stat is approximately -1.65 taking the level of significance of the regression 

to be 0.05 

If the t-stat on the first explanatory variable of the regression model is more negative than 

the proposed critical values, the "unit root" hypothesis is rejected and it is concluded 

that the residual series is stationar\', [98]. 

In table 6.3, the t-stat values of the regression with no deterministic trend of the residual 

series that derive from six European D A T A S T R E A M market indices (01.01.1998-26.04.2000) 

are presented. 

t-stat t-stat 

U K - F R A N C E -1.96 F R A N C E - G R E E C E -0.06 

U K - G E R M A N Y -1.86 G E R M A N Y - SPAIN -2.39 

U K - SPAIN -2.19 G E R M A N Y - I T A L Y -2.92 

U K - I T A L Y -1.92 G E R M A N Y - G R E E C E -0.64 

U K - G R E E C E -2.71 SPAIN - I T A L Y -3.44 

F R A N C E - G E R M A N Y -2.37 SPAIN - G R E E C E -2.17 

F R A N C E - SPAIN -1.82 I T A L Y - G R E E C E -1.46 

F R A N C E - I T A L Y -1.77 

Table 6.3: The t-stat values of the regression with no deterministic trend of the residuals 

series that derive from six European D A T A S T R E A M market indices (01.01.1998-26.04.2000). The 

regression level of significance was 0.05. The critical t-stat value for the Dickey Fuller test is 

-1.65. 

The next table, (table 6.4), depicts the t-stat values for the same data set after 

applying the DTW time series projection algorithm. 

A comparison between the two tables shows that the D T W projected time series give 

more negative or at least similar t-stat values than the critical Dickey-Fuller ones for more 

than 60% of the time. In figure 6.4 a plot of the t-stat values given in tables 6.3 and 6.4 
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t-stat t-stat 

U K - F R A N C E -2.42 F R A N C E - G R E E C E 0-85 

U K - G E R M A N Y -2.58 G E R M A N Y - SPAIN -2.96 

U K - SPAIN -2.57 G E R M A N Y - I T A L Y -2.56 

U K - I T A L Y -1.90 G E R M A N Y - G R E E C E -1.11 

U K - G R E E C E -2.22 SPAIN - I T A L Y -4.08 

F R A N C E - G E R M A N Y -1.97 SPAIN - G R E E C E -2.44 

F R A N C E - SPAIN -0.59 I T A L Y - G R E E C E -1.53 

F R A N C E - I T A L Y 0.13 

Table 6.4: The t-stat values of the regression with no deterministic trend of the residuals series 

that derive from six European DATASTREAM market indices (01.01.1998-26.04.2000) after they 

have been projected using DTW. The regression level of significance was 0.05. The critical 

t-stat value for the Dickey Fuller test is -1.65. 

compared to the Dickey-Fuller critical value, is depicted. According to this the residuals 

of the D T W projected time series remain stationary i f the original residual series are 

stationary too. This allows us to assume that co-integration theory can be applied to the 

Figure 6.4: The t-stat values of the residual series of the European DATASTREAM market 

indices. This plot corresponds to tables 6.3 (solid line), 6.4 (dashed hne). The straight line 

corresponds to the Dickey-Fuller critical value. 
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time series representations that include local time dependencies. In the next section, we 

explain how co-integration is considered in this context. 

6,2.3 Dynamic Time Warping and Co-integration 

In line with the estabUshed concept of co-integration, we make the following hypothesis: 

''Economic time series follow an equilibrium relationship which can be recovered when rel

ative successive local time delays and shifts or shrinks and stretches of one series relative 

to the other are presumed'. 

Under this hypothesis, a new form of equilibrium relationship and error correction model, 

using time delays and shifts information may be introduced. 

In the simple case of two time series xt, yt which are taken to be integrated of order one, 

we write the following equihbrium state formula: 

y, = a + / ? - - - ^ - ' - ; ; ^ + (6.8) 

where fct is a time varying parameter which introduces higher order lags in the equilibrium 

relationship. Note that for kt = 0, the equilibrium relationship of equation 6.6 can be 

reproduced. Following the terminology of the previous section, we can also write: 

= - a + + (6.9) 

Equation 6.9 stands for the disequilibrium error series, which is the linear combination 

ofyt and a vector of x past values, { i ( ,x t_ i , • - - ,Xt-kt}-

The key idea behind this new equilibrium relationship is the estimation of the parameter 

kt, which varies over time, kt is the parameter that indicates how far to look in the past 

of a series X in order to explain its relation to the current situation of series Y and vice 

versa. A graphical explanation of this idea is given in figure 6-5. 

In that figure we show that if a mapping that extracts the connections between rele

vant points of the series X, Y can be identified in such a way that represents the relative 

successive time delays or shifts between them, then a more realistic error correction model 
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Figure 6.5: Mapping between two time series, X, Y. Left: The usual "one-to-one'' time series 

mapping with no time relations. Right: The proposed ''one-to-many" mapping with time 

relations. An illustration of relative time delays and shifts. 

can be designed. 

A method to achieve that kind of mapping is the Dynamic Time Warping (DTW) algo

rithm. As described in section 5.2, DTW can be used for comparing time series because 

it optimally aligns the time series. This is realized through the warping path of the 

DTW-matrix, which is optimally calculated via dynamic programming. In figure 6.6, the 

warping path of the example series X,Y is drawn. There, it can be seen that the warping 

path can clearly identify the positions where one time series is locally delaying Of shifting 

against the other (moving across a column or a row in the DTW-matrix). 

In figure 6.6, it can been seen that an individual point of series X , eg. Xs, may be 

projected on more than one point of series Y, (yd^Ve^y/) and vice versa, i.e. Xs is not 

only related in terms of co-integation, to its time synchronous partner point y^ but also 

to other neighbouring points of series V, (7/d,y/). Such projections on the DTW-matrix 

reveal local delays and shifts between two time series X, Y. 

Before demonstrating realistic examples, using DTW type time series projections, we 

must define kt of equation 6.8 in a systematic way. 
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Figure 6.6: The optimum warping path, calculated via dynamic programming, is used to 

identify the local time delays and shifts between the series X, Y. Moves along columns of the 

DTW-matrix reveal delays of series X against K, while those along rows reveal delays of series 

Y against X. Moving across the diagonal identify synchonous time series movement. 

D E F I N I T I O N : kt at time t, when measured regarding one of the series in process, is the 

number of successive points that are placed in the column of the DTW-matrix indexed by 

the same time index t (see figure 6.6). 

By applying the above definition on the example of figure 6.6, we can write the values of 

kt shown in table 6.5, together with the corresponding forms of their equilibrium function. 
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time t (ref. X) ki values Equilibrium Relationship 

1 0 X, =a + l3[yj(0+l)] 

2 0 x2 = a + ,8[yt/{0+l)] 

3 0 X3 = a + p[yJiO+l)] 

4 0 X i = a + p[yj{0+l)] 

5 2 xs=a + /} [{ya + + y/)/(2 + 1)] 

6 0 X6 = a + /3[y , / (0+l ) ] 

t-3 1 Xt-3 = Q -f /? [(Vf-c + yt'-6)/(l + 1)1 

t-2 0 Xt-2 = a + 8 [yf-a/{0 + 1)] 

t-1 0 x,_i = Q + /?[y«-/(0 + l)] 

t 0 Xt=a+3[ye/(0+l)] 

Table 6.5: kt values and the equilibrium relationship - kt varies over time and the so 

does the eqiiihbrium relationship. The values for k in this table correspond to the warping path 

depicted in figure 6.6. 

Finally, to calculate the difference series after projecting the time series X, Y using 

dynamic time warping, we need to locally expand or compress (shrink or stress) them. 

This is shown in figure 6.7. In this thesis the expanded time series version is solely 

used. Extracting expanded representations of the time-warped co-integrated time series 

allows a ''one-tO'One' mapping between the series, which is compatible to the classic 

co-integrating time series theory. This, therefore, allows the usage of conventional co-

integration evaluation technolog}', like arbitrage trading, on time-warped co-integration 

statistics and helps the user to monitor their performance in parallel®. 

*It is not very clear that the stationarity of the two time series is preserved under the DTW trcins-
formation. This point presumes future research 
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Figure 6.7: According to figure 6.5, we show here how the "one-to-many" mapping can be 

seen as 'one-to-one' mapping after locally compressing or expanding the time series. Note the 

decrease or increase of the number of points of the compressed or expanded time series. 

We apply the Dynamic Time Warping based co-integration approach on a set of Eu

ropean stock indices. For clarification purposes, short duration parts of three European 

indices are depicted in figures 6.8, 6.9, 6.10. In these figures, the original series are de

picted together with the projection lines which represent the time dependencies that are 

retrieved from dynamic time warping. Additionally, to each block of figures, the DTW 

path and the expanded version of the series are shown too. 

We expect that through our time-warped co-integration time series study, 'equilibrium 

will occasionally occur at least to a very close approximation', [52]. In effect, "mispric-

ing" conditions may be detected and can be used for trading opportunities for ''statistical 

arbitrage'' ( B U R G E S S and R E F E N E S , (1996) , [24]). Our effort is to evaluate the model 

through the statistical arbitrage trading strategy and directly compare our results with 

already published ones. Before that though, another important component of the pro-
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posed system has to be discussed. This is the forecasting component which predicts the 

disequilibrium error value itself as well as local relative delays of one series against the 

other. This is achieved by predicting the warping path value as well as its movement 

within the DTW-matrix. 
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Figure 6.8: France - Germany D A T A S T R E A M market indices. Profit: Arbitraige = -14.09, Arbi

trage with DTW = 33.85 
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Figure 6.9: Germany - Spain D A T A S T R E A M market indices. Profit: Arbitrage = 0.26, Arbitrage 

with DTW = 54.18 
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Figure 6.10: France - Spain D A T A S T R E A M market indices. Profit: Arbitrage = -15.84%, Arbi

trage with DTW = -16.38% 
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6.2.4 Predicting the Warping Path 

To integrate forecasting power into the dyneimic time warping co-integrating scheme, 

we present here a prediction model whose aim is to capture part of the deterministic 

behaviour in the mispricing dynamics. Two major prediction components are contained 

within this prediction model. The first provides forecasting indications about the changes 

of the actual prices of the linear combinations of the time series, that is the prices of 

the disequilibrium error series, which define the co-integration relationship. The second 

provides forecasting indications about the relative local time movements - local delays or 

shifts - of the time series. The latter forecasting component is vital for the estimation of 

the future equilibrium ''fair priced' relationship to be calculated. 

This multicomponent prediction task may be achieved, when predicting the values of the 

cumulative distances corresponding to the warping path and its movement within the 

DTW-matrix. Here, we call the cumulative distances the magnitude of the warping path. 

The prediction model employed, is the one proposed in chapters 4 and 5. This model, 

adjusted for the warping path prediction task, is based on the idea of predicting the 

future movement and magnitude of the warping path using past warping path patterns 

which are similar to its 'current' situation. Figure 6.11 conveys that schematically. 

To each node of the warping path three values are attached, its coordinates in the 

DTVV-matrix and the \^lue that corresponds to the cumulative distamce measure between 

the i^^ and price of the series X, Y respectively. The prediction output of the pattern 

matching prediction algorithm, therefore, is of three values. Apart from the residual dis-

equihbrium error that is predicted, the next step movement of the warping path in the 

DTW-raatrix is also given. This indicates whether series A' will move forward relative to 

series Y or vice versa. Remember here, that delays of one series against the other in the 

DTW-raatrix are represented with movements of the warping path along one column or 

row of the matrix. Diagonal steps in the matrix correspond to synchronous movements 

(see figure 6.6). 

Before applying the pattern matching prediction algorithm, a transformation of the two 
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Figure 6.11: Graphical representation of the way that the warping path can be predicted. 

The small rectangles of different height represent the normalized cumulative distances which 

correspond to the warping path positions - cells - in the DTW-matrix. The dashed lines at the 

end of the warping path show the possible next step warping path movements. 

coordinate series is required. These series are in ascending form and for warping path 

movement patterns to be revealed, we transform the series according to the following 

rule: 

R U L E : ''Write zero in the x-coordmates (y-coordinates) series for movements of the 

warping path along the same column (row) in the DTW-matnx and one for movements 

to successive columns (rows)'' 

Having performed this transformation, the pattern matching prediction algorithm is ap

plied to search for historical pattern movements of the warping path which are similar to 
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its "current" pattern movement. The length (number of warping path cells) of the recent 

pattern movement of the warping path is selected a-pnon. Statistically derived tech

niques, like embedding dimension measures, which may identify' patterns of non-linear 

deterministic behaviour within the warping path, may add some value to the prediction 

task by defining the length of the "current" warping path pattern. However, this matter 

is not investigated here. 

In the next section, we present some results which have been obtained after applying 

the pattern matching prediction algorithm to predict the warping path generated for the 

British, French, German, Spanish, Italian and Greek stock market indices. 

RESULTS In table 6.6, we present the performance of the pattern matching prediction 

algorithm in predicting the next day relative movement of the warping path. More 

specifically this involves the question of whether one series will delay against the other 

for the next time step or not, by having the co-integration relationship given. Speaking 

in terms of the time series warping path, we actually predict whether the warping path 

will move along the current column (series X will delay against y , row (series Y will 

delay against X) or diagonally (synchronous time movement is more likely to occur) 

for the next time step. A random guess, to predict the next movement of the warping 

path within the DT\V-matrix, would reveal a 33.33% opportunity of getting the correct 

movement. The pattern matching algorithm outperforms this almost every time. The 

average directional ability percentage of the system is greater than 38%. These results 

have been produced for the European D A T A S T R E A M market indices over a ten years period 

(01.01.1990 - 26.04.2000). The prediction algorithm was tested on 50% of the warping 

path points. 

The pattern matching algorithm, applied to warping path direction movement pre

diction seems to work better for longer time periods. As seen in table 6.6, the prediction 

accuracy is on average higher for the 10-year periods than for the 2-year ones. This maybe 

indicates that long warping paths support the pattern matching prediction algorithm. 

The actual value prediction ability of the algorithm applied on the residual series is pre-
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sented in table 6.7. As shown there, the root mean square prediction error (RMSE) does 

not exceed on average the value of 3.63% for the 2-year daily data and the value of 2.21% 

for the 10-year period. Once more, the prediction RMSE seems to be smaller for the 

10-year data set. 

Arbitrage is a trading behaviour, which mainly takes advantage of co-integrating relation

ships in order to buy cheap and sell expensive. In this context, we rely on the previous 

Market Index '90-'92 '92-'94 '94-̂ 96 '96-'98 '98-2000 Aver. '90-2000 

U K - F R A N C E 38.69 41.16 39.38 41.54 42.31 40-62 41.54 

U K - G E R M A N Y 39.23 38-46 38.87 42.70 36.71 39.19 46.32 

U K - SPAIN 43.67 33.72 41.09 36.04 41.16 39.14 39.67 

U K - I T A L Y 39-44 33.58 31.79 45.64 39.62 38.01 39.35 

U K - G R E E C E 46.74 39.85 38-39 42.31 37.54 40-97 43.11 

F R A N C E - G E R M A N Y 41.54 39-23 40-51 50.77 42-31 42.87 48.29 

F R A N C E - SPAIN 37.69 37.69 44.03 37-55 40-77 39.55 39.01 

F R A N C E - I T A L Y 41.93 37.74 38.71 41-93 32.05 38-47 40.95 

F R A N C E - G R E E C E 34.47 43.62 40.00 32.12 43.08 38-66 43.74 

G E R M A N Y - SPAIN 42.69 45.77 45.96 42.32 43.56 44-06 45.21 

G E R M A N Y - I T A L Y 36.54 36.54 41.09 41.54 41.34 39.41 41.12 

G E R M A N Y - G R E E C E 43.24 35.91 40.05 44.23 40.95 40.88 42.32 

SPAIN - I T A L Y 36.54 43.08 39.93 38.93 44.47 40.59 41.28 

SPAIN - G R E E C E 42.60 37.84 42.25 33.36 38.06 38.82 39.57 

I T A L Y - G R E E C E 42.53 40.77 39.93 36.54 40.39 40-03 39.85 

Table 6.6: Results (directional ability (%)) after predicting the next step movement of the 

warping path using pattern matching. The warping path direction movement has been predicted 

for combinations of the six European DATASTREAM market indices. A random guess corresponds 

to 33.33%. 
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warping path prediction scheme to form a trading strategy which derives from statistical 

arbitrage. 

Market Index '90-'92 '92-'94 '94-̂ 96 '96-'98 ^98-2000 Aver. '90-2000 

U K - F R A N C E 3.97 2.51 4.37 3.05 3.59 3.50 2.21 

U K - G E R M A N Y 4.23 2.32 4.36 3-26 3.99 3.63 1.67 

U K - SPAIN 4.11 2.14 3.92 3.03 3.75 3.39 1.63 

U K - I T A L Y 4.18 2.32 3.91 3.62 3.86 3.59 1.73 

U K - G R E E C E 3.81 2.35 3.73 2.26 3.59 2.39 1.65 

F R A N C E - G E R M A N Y 3-66 3.10 3.74 3.29 2.55 3.27 1.19 

F R A N C E - SPAIN 3-86 2.85 3-81 3-42 2.55 3.30 1.04 

F R A N C E - I T A L Y 3-65 3.19 3.46 4.01 2.47 3.36 1.12 

F R A N C E - G R E E C E 3.51 3-69 3.41 3.52 2.14 3.25 1.18 

G E R M A N Y - SPAIN 3.07 2.10 4.95 3.24 3.51 3.37 1.43 

G E R M A N Y - I T A L Y 3.26 2.47 4.89 3.42 3.15 3.44 1.58 

G E R M A N Y - G R E E C E 3.24 2.85 5.01 3.26 3.26 3.52 1.46 

SPAIN - I T A L Y 3.82 2.39 3-44 3.22 4.27 3.43 1.52 

SPAIN - G R E E C E 3.66 2.65 3.59 2.95 4.21 3.41 1.56 

I T A L Y - G R E E C E 2.68 3.83 3.00 3.85 3.32 3.34 1.46 

Table 6.7: Results (Root Mean Square Prediction Error (%)) after predicting the next step 

cumulative distance of the warping path using pattern matching. The warping path cumulative 

distance value has been predicted for combinations of the six European D A T A S T R E A M market 

indices. 
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6.2.5 Statistical Arbitrage - Evaluation 

Generally, the Arbitrage Pricing Theory (APT) offers an alternative to the traditional 

asset pricing model in finance. Basically, arbitrage involves the law of one price for the 

same item. That is one item should not be sold at different prices. If this is not the 

case, arbitrage trading opportunities appear, through which arbitrageurs buy the item 

at low prices and simultaneously seD at higher ones. This kind of trading will continue 

until the different prices for one item become equal. Popular usage has expanded the 

meaning of the term "arbitrage" to include any activity which attempts to buy a relative 

underpriced item and sell a similar overpriced one, expecting to profit when the prices 

resume a more appropriate theoretical and/or historical relationship. This effect can be 

linked to some extent, to co-integration. Co-integration suggests that economic, financial, 

political and other factors cause the prices to move together in a long-term relationship 

and that the effect of "mispricing" will cause prices that diverge from the "fair" price to 

move back together. However, the main difference between co-integration and arbitrage 

relationships, as stated by B U R G E S S et al., (1996), [24], can be sumnaarised as follows: 

''co-integration is a statistical rather than a guaranteed relationship. The fact that prices 

have moved together in the past can suggest that they will continue to do so in future but 

cannot guarantee that this will in fact happen''. Because of that difference, BuRGESSet al., 

(1996), [24] have considered the arbitrage opportunities that derive from the "mispricin^' 

effect of the co-integration theory, as "statistical arbitrage", opposed to the classic 

arbitrage which involves no risk. 

In section 6.2.3, we defined the equilibrium time warped co-integration relationship with 

a formula that is reproduced here: 

= . + . (6.10) 

The disequilibrium or 'mispricing error series of this relationship, can therefore be 

calculated as follows: 
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Following, the notation of BuRGESS, (1997), [25], we expect the co-integration residual 

of equation 6.11 to be zero mean reverting and thus values of Vt that diverge from zero are 

considered as opportunities for statistical arbitrage. In this work, our expectation does 

not solely depend on mean reversion but also uses the disequilibrium residual prediction 

model (section 6.2.4). The decision to adopt a trading position at a particular moment 

using statistical arbitrage is taken when the prediction of the disequilibrium error tends 

to move towards zero. Additionally, the time index of the trading actions is decided by 

the predictive indication for the future movement of the warping path (see section 6.2.4). 

To formalise these arbitrage traxiing ideas using time warped co-integration, we write the 

following trading rule, which transforms the disequilibrium error predictions into trading 

positions: 

• ifvt+i converge {vt > Wt+i) , then 

- if < 0, then go long (position = +1) 

- if i;t > 0, then go short (position = - 1 ) 

- if = 0, then hold (position = 0) 

• else (i.e. Vt+i diverge {vt < €7+1)), then no trading position is taken 

Vt is the disequilibrium error (see equation 6.11) and Vt+i is the prediction of the dis

equilibrium error via the warping path prediction algorithm, which have been previously 

described. Furthermore, going short in the portfolio actually means selling the index 

which is taken as the reference index in the portfolio and buying the other one. Just the 

opposite happens when going long. The buy sell transactions may happen in different 

times. The closing arbitrage position may occur in the future. That time point is indi

cated by the prediction of the relative movement between the indices, i.e. the prediction 

of the warping path movement. The profit, therefore, is calculated as return multiplied 
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by position^. 

return =^^y^l^^^±^ 

I.e. 

eturn — change in combined portfolio 
absolute value of the two parts of the portfolio 

TRADING RESULTS Here we apply the time-warped co-integration framework to

gether with the warping path prediction model on the same set of European stock market 

indices. Statistical arbitrage trading has been applied to market indices pairs whose resid

uals have t-statistic values more negative than -1.90 (see table 6.3)^° for both the classical 

and the time-warped co-integration frameworks. Moreover, tests have been made sepa

rately for 2-year periods of the data as well as on the whole data set. For every test 40% of 

the data has been used as the time series historical part needed for the prediction model 

to perform. All profit measures are accompanied by the corresponding Sharpe Ratio (SR) 

risk metric. This is a measure of risk-adjusted return which represents the ratio of the 

annualised return divided by the standard deviation of the return. Trading costs are 

not taken into account, [25]. These results are summarised in tables 6.10, 6.9, 6.8, C . L 

C.2, C.3, C.4, 0.5, C.6. On average this shows that statistical arbitrage trading, based 

on time-warped co-integration, outperforms on the set of European D A T A S T R E A M market 

indices the arbitrage trading strategy that derives from the classical co-integration theory 

for almost 80% of the time. 

6-2.6 Conclusion 

Seen in the time-warped co-integration study of this section, only the case of a pair of 

time series has been addressed. To extend this to Â" series, one can calculate the linear 

regression series of N - 1 and search for co-integration betw êen the regression series and 

the remaining one. However, a more general method involves the extension of the dynamic 

^Pri\'ate communication between the author and A.N. Burgess 
^°t-stat values close to the Dickey-Fuller critical value may lead to confusing results. 
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'90-^92 '92-'94 '94-'96 '96-'98 ^98-2000 Aver. '90-2000 

SA 

SA-DTW 

25.80 

41.49 

29.17 

38.49 

24.69 

30.30 

19.92 

41.71 

33.29 

65.66 

26 .57 

43 .53 

32.01 

42.67 

Table 6.8: U K - F R A N C E D A T A S T R E A M market indices. SA and SA-DTW correspond 

to Statistical Arbitrage and Statistical Arbitrage using DjTiamic Time Warping respec

tively. Profit is measured in number of basis points. No trading costs are included in the 

calculations. 

time warping algorithm to more than two dimension, say A .̂ Consider for example a 3-D 

optimal warping path in a cubic DTW-matrix. Such a path could be used for mapping 

three time series in order to retrieve time dependencies and to test for time-warped co-

integration among them. Further increase in the dimension of the input space, therefore, 

may be viable. Although we believe, that there is much potential in investigating this 

idea, we leave it as part of our future work. 

'90-'92 '92-^94 '94-^96 '96-'98 '98-2000 Aver. '90-2000 

SA 22.99 20.58 48 .03 43 .57 20.76 31-19 53.07 

SA-DTW 31.74 44.42 50.09 15-92 43.45 3 7 . 1 2 78.62 

Table 6-9: U K - G E R M A N Y D A T A S T R E A M market indices. SA and SA-DTW correspond 

to Statistical Arbitrage and Statistical Arbitrage using Dynamic Time Warping respec

tively. Profit is measured in number of basis points. No trading costs are included in the 

calculations. 
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'90-'92 '92-'94 *94-'96 ^96-^98 '98-2000 Aver. '90-2000 

SA 48.72 53.84 46-52 3.44 46 .62 39 .83 26.55 

SA-DTW 23.06 49 .47 25.32 48.49 40 .64 37.40 72.45 

Table 6.10: F R A N C E - G E R M A N Y D A T A S T R E A M market indices. SA and SA-DTW cor

respond to Statistical Arbitrage and Statistical Arbitrage using Dynamic Time Warping 

respectively. Profit is measured in number of basis points. No trading costs are included 

in the calculations. 

6.3 Discussion and Outlook 

In this chapter, we proposed two separate methods for trading multivariate economic 

time series. The first method is based on predictions made by a generalized version of 

the pattern matching algorithm described in chapter 5. The second method is based on a 

novel way of seeking for co-integrating long run relationships between two economic time 

series by considering local time delays or shifts between them. 

The main hypothesis behind the pattern matching approach is that multivariate data sets 

add not only quantitative but also qualitative predictive information to the forecasting 

task. A necessary dimensionality reduction mechanism based on principal component 

analysis and correlation measures, distinguishes from a given data set those series that 

are highly correlated to its principal components. The time series selected improve the 

overall performance in terms of prediction and computational time. Testing the pattern 

matching approach on a set of European stock market indices has revealed profitability 

and risk reduction. Although, the inferences shown for the European market indices 

data set are statistically significant, we cannot say that the pattern matching system will 

universally perform the same way. Further tests using other data sets must be performed 

to support the forecasting and trading stability of the multivariate pattern matching 

system. 
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The co-integration framework we proposed in the second part of this chapter, is derived 

from a mechanism based on the dynamic time warping algorithm to identify local time 

relations between two economic time series. As a consequence of the dynamic time 

warping algorithm, we called this long run time series relationships framework, time-

warped co-integration. In this part of the chapter, we introduced the concept of time-

warped co-integration and showed how local time delays or shifts between two economic 

time series can be seen as variable time lags in a co-integrating framework. Following 

common practice found in the literature, we evaluated the time-warped co-integration 

framework through statistical arbitrage trading and compared the results against those 

obtained using the classic co-integration practise. The simulations on the European stock 

market indices set have shown promising results. Almost 80% of the time, the time warped 

version of co-integration gave higher profits or lower losses compared to the classic version 

of co-integration. The Sharpe Ratio risk measures also appear to drop correspondingly for 

the data set used. However, tests on different data sets, like macroeconomic indicators will 

also be interesting. An important point that will be investigated in the future research 

is the way that the DTW local time transformation of the series affects their level of 

integration, i.e. their stationarity properties. A point that also has to be stressed, is 

that the case examined here involves only pairs of financial time series. This has been 

deUberately done in order to examine the system in its simplest form. It is viable though, 

to expand the concept of time-warped co-integration to more than two time series. In that 

case, a n-dimensional version of the dynamic time warping algorithm may be implemented 

and tested. In this case the corresponding optimsd warping path calculated within the 

n-dimensional DTW-matrix would identify local time relationships among a set of n time 

series. Therefore, a portfolio of n financial time series may be tested for multiple time-

warped co-integration. However, we leave the systematic examination and development 

of this idea as part of our future research. 
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Chapter 7 

Discussion and Outlook 

The Truth Is Out There. 

I want to Believe. 

Slogans from The X-files. 

Forecasting and trading on financial markets is a hard task, since under the very 

broad laws of demand and supply there is no specific mechanism that drives the market 

prices, A large number of people and organizations participate simultaneously in the 

markets and they constantly change the "rules of the game". How does this situation 

reflect on the financial time series? Volatile financial time series that sometimes seem 

to be generated from random processes, efficient markets, uncertainty in forecasting and 

risk and disappointment in trading could be offered as answers to the question above. 

Computational inteUigence systems may, however, offer an oasis in the financial markets 

desert by continuously keeping an eye on the financial facts and alerting users to financial 

opportunities or dangers. The aim of this thesis was to add a small contribution to this 

context. 

Three approaches to financial analysis are proposed in this thesis. A topological neural 

network, the Growing Neural Gas, that controls its architecture complexity according 

to the complexity of the problem it has to solve was applied on financial market indices 
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(chapter 3). The 'growing' attribute of the network's architecture plus its ability to follow 

non-stationary distributions, according to tests performed on classification problems, was 

the motivation for applying Growing Neural Gas to financial forecasting and trading. To 

my knowledge this network has never been applied in this domain before. 

The aim of the core part of this thesis was to build a computational intelligence pattern 

matching and recognition system that operates as an 'electronic eye' over financial time 

series. Its purpose was to isolate the 'current' situation of the market, as derived from fi

nancial data series, and to draw predictive conclusions from historical patterns similar to 

the ^current' situation. In my opinion, financial pattern matching and recognition would 

be adequate for practitioners if it met the following objectives: operational simplicity, 

robustness, autonomy, robustness to noise and minor data changes and computational 

efficiency. No computational system in the financial literature satisfies all these require

ments. Neural networks, for instance, are dependent on a-priori expert tuning and they 

are not famous for their operational simplicity. The systems proposed in chapters 4 and 

5 owe their success to the flexible pattern matching algorithm that incorporates changes 

in the momentum of the financial data series' evolution. Time series piecewise linear 

segment representations, dynamic time warping, graph pattern matching and embedding 

dimension statistical measures have all contributed to build an autonomous and robust 

computationally efficient system that is based on the simple hypothesis that similarity 

with the past is essentially prediction. 

In the last chapter (chapter 6) of this work, multivariate aspects of the pattern matching 

system have been addressed. A novel co-integration scheme, based on possible local time 

relations between two time series, is proposed. The hypothesis from u^hich this research 

derived, was that local time shifts, delays, shrinks or stretches, if identified, could help 

to reveal co-integrating movement between two time series. The Dynamic Time Warp

ing algorithm was used to identify^ these local time relations and stationarity statistical 

measures have supported this idea. The overall co-integrating scheme has been tested 

for arbitrage trading. It has been shown that statistical arbitrage trading based on time-

warped co-integration outperforms the one that derives from the classical co-integration 
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theory. 

The most useful way of developing financial forecasting systems for decision support or 

trading would be to develop them for real time use. Given that the exponential increase 

in processing power of standard computers is on our side, our future work should study 

computational finance applications in real time. 
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Appendix A 

Technical Analysis Price Oscillators 

Information is pretty thin stuff, 

unless mixed with experience. 

Clarence Day, 1920. 

One of the most popular indicator classes in technical analysis (TA) theory is the one 

loosely referred to as oscillators. Among others, the relative strength index (RSI), the 

price oscillator (PrOsc), the moving average convergence-divergence (MACD) indicator 

and the rate of change (ROC) are some known representatives of TA oscillators. Usually 

oscillators are used by chartists as countertrend indicators. That is they are used to 

identify short-term price reversal points rather than long-term ones. Table A . l shows the 

main attributes of the oscillator indicators as retrieved from the TA literature ([2, 121, 

142, 143]). 
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Oscillators: 

1. 

2. 

3. 

4. 

5. 

6. 

axe useful in trending markets. 

alert traders to short market extremes - overbought or oversold conditions. 

warn traders when the trend is loosing momentum. 

signal when a trend is near completion by displaying certain divergences. 

are misleading at the beginning of important moves. 

are extremely valuable towards the end of trend movements. 

Table A . l : Main technical ancdysis attributes. 

A . l Price Oscillator 

A price oscillator (PrOsc) is simply the series that derives after differencing two moving 

averages of a financial time series. The difference between the moving averages can be 

expressed in either points or percentages^ A longer-term moving average that picks the 

broad changes in the time series, is subtracted from a shorter-term one that is responsible 

for identifying the short-term trend reversals. Such an oscillator is noted as P r O s c A - B , 

where A represents an A-days moving average and B a B-days one (A < B). 

PrOscA ~B = {A- daysMA) - ( 5 - daysMA) (A.l) 

or in percentages 

PrOscA - B = (A - daysMA)-(B -daysMA) ^ 
{A - daysMA) 

Figure A . l shows the curv̂ e of the PrOsc 10-30 as applied on the Amazon security 

drawn between May 1999 and Feb 2000. The moving averages are drawn over the actual 

time series (green and red lines) and on the top both the absolute and the percentage 

price oscillators are depicted (black and blue lines). As seen in the figure the oscillator 

^The Price Oscillator is almost identical to the MACD, except that the Price Oscillator can use any 

two user-specified moving averages. (The MACD always uses 12 and 26-day moving averages, and always 

expresses the difference in points.) 
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Figure A . l : The PrOsc 10-30 (both absolute and percentage mode) applied on the Amazon.com 

security. The green and the red lines represent the 10- and 30-days moving averages. The blue 

and the black curves on the top of the figure axe the percentage and absolute price oscillators 

respectively. (This figure obtained from StockCharts.com Inc.) 

curves fluctuate on the zero equilibrium lines showing when the diff"erence between the 

short-term and the long-term averages is positive or vice versa. The crossover points, the 

points where the price oscillator crosses the equilibrium line, produce trading buy and sell 

signals. Everytime that the price oscillator curve crosses the equillibrium line from below 

a buy signal is considered. Sell signals are generated when the equillibrium line is crossed 

from above. However, taking into account that the PrOsc trading signals are generated 

delayed against the actual trend reversals of the security time series, the PrOsc's are used 

in combination with their own moving averages^. This is done by calculating the C-days 

moving average of the price oscillator curve. The crossover points between the oscillator 

curve and its moving average generate the trading signals similar to the way that has 

See [2, 121, 142, 143] for a detailed analysis on price oscillators. 
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been described above. Crossovers of the oscillator curve from below represent buy sig

nals while others from above indicate sell actions. The notation of a price oscillator is 

therefore, summarised as PrOscA — B/C where A, B, C are the moving average param

eters needed to construct the price oscillator indicator in order to generate trading signals. 

In conclusion ([121, 142, 143, 53]): 

1. PrOsc can be used by everyone because their implementation and evaluation on 

particular securities are very simple and do not require any specialized software. 

2. Usage of PrOsc has proven to be very useful and reliable for supporting trading 

decisions, particularly when trading decisions are difficult to make. 

3. When PrOsc are employed for trading, users must rely on their effectiveness and 

avoid 'second thoughts'. 

4. PrOsc based trading prevents everyday trading and thus avoids extensive transac

tion costs. 

5. PrOsc are very reliable in clear ascending or descending markets and they guarantee 

that in such markets price oscillator driven investors will be "in" the market in 

ascending periods and out of it is descending ones. 
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Appendix B 

Further Results on Pattern 

Matching 

On the following pages some more results (forecasting and trading) of the univariate 

pattern matching architecture are presented. These results concern the F R A N C E - D S - M K , 

G E R M A N Y - D S - M K , S P A I N - D S - M K , I T A L Y - D S - M K , G R E E C E - D S - M K D A T A S T R E A M market 

indices. The follo\\ang tables are presented in the same way as those in chapter 4 (tables 

4.1, 4.2). 
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FRANCE-DS-MK 

1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 

MED 61.9 58.4 60 61 57.6 59.8 58.1 

PrOsc 57.3 54.9 55.5 56.5 59.1 56.7 59.8 

LSR 52.3 50.8 64.8 55.1 62.7 57.1 56.9 

Forecasting Sentences (FS) 

MED 56.7 52.6 63.9 57.3 53.5 56.8 54.3 

PrOsc 59.2 52 59.9 53.1 45.1 53.9 52.1 

LSR 59.3 55.4 56.3 53 46.7 54.1 51.1 

GNG Forecasting (GNG-F) 

Table B . l : Testing the forecasting directional ability of the pattern matching system. The 

F R A N C E - D S - M K index case. MED, PrOsc and LSR stand for Minimum Embedding Dimension, 

Price Oscillator and Linear Segment Representation respectively. These correspond to the three 

methods for selecting the query pattern. 
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GERMANY-DS-MK 

1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 

MED 56.9 49.4 58.8 62.7 61.4 57.8 55.6 

PrOsc 57.4 51.2 59.1 56.9 58.4 56.6 58.3 

LSR 55.3 46.9 57.7 62.3 56.9 55.8 58.5 

Forecasting Sentences (FS) 

MED 60.7 53.6 61-1 46.8 50.9 54.6 50.9 

PrOsc 54.9 54.5 63-0 49.0 52.8 54.8 50.1 

L S R 54.4 44.8 56.5 47.6 54.5 51.6 49.1 

GNG Forecasting (GNG-F) 

Table B.2: Testing the forecasting directional ability of the pattern matching system. The 

G E R M A N Y - D S - M K index case. MED, PrOsc and LSR stand for Minimum Embedding Dimen

sion, Price Oscillator and Linear Segment Representation respectively. These correspond to the 

three methods for selecting the query pattern. 
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SPAIN-DS-MK 

1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 

MED 57.5 53.5 64.7 59.5 61.5 59.3 58.2 

PrOsc 58.9 62.6 60.8 60.8 51.1 58.8 57,8 

L S R 55.8 58.8 55.1 53.9 55.4 55.8 58.4 

Forecasting Sentences (FS) 

MED 56.1 51.7 55.2 46.5 54.6 52.8 48.7 

PrOsc 52.4 56.6 61.3 52.6 58.4 56.3 52.3 

L S R 55.4 47.2 53.6 48.7 55.2 52.0 51.2 

GNG Forecasting (GNG-F) 

Table B.3: Testing the forecasting directional ability of the pattern matching system. The 

S P A I N - D S - M K index case. MED, PrOsc and LSR stand for Minimum Embedding Dimension, 

Price Oscillator and Linear Segment Representation respectively. These correspond to the three 

methods for selecting the query pattern. 
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ITALY-DS-MK 

1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 

MED 55.8 61.5 59.5 57.9 56.9 58.3 57.2 

PrOsc 54.2 63.7 54.4 61.9 61.6 59.2 57.3 

LSR 58.8 58.3 59.3 60-6 52.6 57.9 58.8 

Forecasting Sentences (FS) 

MED 51.8 53.8 55.4 53.6 59.5 54.8 54.9 

PrOsc 53.6 52.5 52.5 50.8 58.9 53.4 52.8 

LSR 60.7 48-6 58.2 52.4 53.9 54.8 54.1 

GNG Forecasting (GNG-F) 

Table B.4: Testing the forecasting directional ability of the pattern matching system. The 

I T A L Y - D S - M K index case. MED, PrOsc and LSR stand for Minimum Embedding Dimension, 

Price Oscillator and Linear Segment Representation respectively. These correspond to the three 

methods for selecting the query pattern. 
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G R E E C E - D S - M K 

1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 

MED 61.0 60.8 58.1 58.9 61-8 60.1 60.2 

PrOsc 60.2 58.7 62.2 56.9 55.8 58.8 60.1 

LSR 56-4 55.7 62.0 56.4 57.8 57.7 59.5 

Forecasting Sentences (FS) 

MED 59.5 62.9 58-5 57-3 57-6 59.2 56.2 

PrOsc 58.7 58.1 61.1 54.9 54.7 57.5 54.5 

LSR 52.2 50.1 52.8 61.5 59.2 55.2 55.7 

GNG Forecasting (GNG-F) 

Table B.5: Testing the forecasting directional ability of the pattern matching system. The 

G R E E C E - D S - M K index case. MED, PrOsc and LSR stand for Minimum Embedding Dimension, 

Price Oscillator emd Linear Segment Representation respectively. These correspond to the three 

methods for selecting the query pattern. 
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F R A N C E - D S - M K 

1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 

M E D 13.94 1.1 17.55 9-29 4.83 9.34 7.98 

(1 .59) (0 .03) (2 .26) (0 .91) (0 .15) (0 .99) (0 .28) 

PrOsc 8.46 3.95 10.96 6.83 7.63 7.57 7.70 

(0 .79) (0 .11) (1 .22) (0 .30) (0 .39) (0 .56) (0-26) 

LSR 8.61 -8.94 16.17 9.08 8.18 6.62 8.87 

(0 .81) (-1.49) (2.09) (0 .87) (0 .60) (0-58) (0 .57) 

Forecasting Sentences (FS) 

M E D 11.94 -4 .50 18.18 14.10 2.89 8.52 9.11 

(1 .22) (-0.58) (2 .42) (1 .45) (0 .05) (0 .91) (0 .78) 

PrOsc 13.12 -1 .92 10.01 1.66 -5 .86 3.40 6.17 

(1 .37) (-0.22) (1 .00) (0 .14) ( -1 .25) (0 .21 ) (0 .22) 

LSR 14.80 -0-25 13.26 4.62 -4-19 5.65 6.25 

(1.59) (-0.11) (1-52) (0 .42) (-0.93) (0 .50) (0 .24) 

GNG Forecasting (GNG-F) 

Table B . 6 : Testing the trading ability of the pattern roatching system. The C A C 40 ( F R A N C E ) 

index case. The values in quotes aire the corresponding Shairpe Ratio (SR) measures. 
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G E R M A N Y - D S - M K 

1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 

MED 9.90 2.62 16.46 8.68 6.65 8.86 7.61 

(1,17) (0.34) (2.54) (1.93) (0.83) (1.36) (2.58) 

PrOsc 10.82 -3.23 8-79 12.09 8.89 7.47 7.83 

(1.16) (-0.64) (0.96) (1.26) (1.04) (0.76) (2.80) 

LSR 9.12 4.88 9-79 3.71 1.08 5.72 8.18 

(1.15) (0.34) (1.35) (0.87) (0.17) (0.78) (2.92) 

Forecasting Sentences (FS) 

MED 9.83 7.22 14.34 3.95 -1.76 6.72 6.52 

(2.21) (0.98) (1.09) (0.44) (-0.14) (0.92) (1.64) 

PrOsc 11.35 0.74 13.47 6.58 -6.02 5.22 7.34 

(3.48) (0.14) (1.14) (0.81) (-0.74) (0.97) (1.77) 

LSR 10.09 -3.21 -2.48 7.16 3.56 3.02 6.58 

(1.40) (-0.58) (-0.19) (0.93) (0.32) (0.38) (1.44) 

GNG Forecasting (GNG-F) 

Table B.7: Testing the trading ability of the pattern matching system. The G E R M A N Y - D S - M K 

index case. The values in quotes are the corresponding Sharpe Ratio (SR) measures. 
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S P A I N - D S - M K 

1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 

MED 14.74 2.68 15.11 7.77 14.38 10.94 9.86 

(1.55) (0.43) (2.45) (0.54) (2.14) (1.42) (1.53) 

PrOsc 11.50 4.28 6.24 6.24 4.07 6.47 9.23 

(1.18) (1.26) (1.11) (1.32) (0.79) (1.13) (3.63) 

LSR 10.42 4.50 8.66 1.38 -0.44 4.90 8.02 

(1.04) (1.26) (1.30) (0.13) (-0.48) (0.65) (3.56) 

Forecasting Sentences (FS) 

MED 14.27 3.32 7.74 6.45 5.68 7.49 6.71 

(1.49) (0.51) (0.96) (0.99) (0.77) (0.94) (1.44) 

PrOsc 20.60 4.30 10.72 4.27 12.15 10.41 7.62 

(1.89) (0.66) (1.09) (0.69) (1.28) (1.12) (1.31) 

LSR 13.97 0.48 -1.19 4.21 9.64 5.42 8.72 

(1-72) (0.16) (-0.16) (0-69) (1.19) (0.72) (2.31) 

GNG Forecasting (GNG-F) 

Table B.8: Testing the trading ability of the pattern matching system. The SPAIN-DS-MK index 

case. The vzilues in quotes are the corresponding Sharpe Ratio (SR) measures. 
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I T A L Y - D S - M K 

1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 

MED 11.94 15.75 15.39 5.96 2.14 10.24 8.63 

(1.08) (2.13) (3-75) (0.80) (0.30) (1.61) (2.89) 

PrOsc 12.47 9.50 16.31 5.25 2.50 9.21 7.31 

(1.72) (1.33) (2.19) (1.02) (0.32) (1-32) (2.72) 

LSR 10.81 9.97 11.92 5-11 9-91 9.54 8.71 

(1.35) (1.04) (1.59) (0-81) (1-00) (1.16) (2.63) 

Forecasting Sentences (FS) 

MED 9.02 10.05 8.45 -1.23 6.97 6.65 5.66 

(2.62) (1.12) (2.04) (-0.37) (0.93) (1-27) (1.19) 

PrOsc 16.04 9.89 13.60 0.30 4.53 8.87 8.91 

(1.86) (1.38) (1-88) (0.05) (0.63) (1-03) (2-37) 

LSR 13-13 0.65 9.48 3.32 1.76 5.67 9.11 

(2.31) (0.09) (2.17) (0.38) (0.19) (1.03) (1.95) 

GNG Forecasting (GNG-F) 

Table B.9: Testing the trading ability of the pattern matching system. The I T A L Y - D S - M K index 

case. The values in quotes are the corresponding Sharpe Ratio (SR) measures-
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G K E E C E - D S - M K 

1990-92 1992-94 1994-96 1996-98 1998-2000 Average 1990-2000 

MED 15.02 14.81 6.67 11.70 9.09 11.46 8.69 

(2.18) (1.49) (0.82) (1.30) (1.52) (1.46) (2.64) 

PrOsc 20.27 8.89 5.78 11.24 8.07 10.85 10.13 

(2.87) (0.88) (0.72) (1.14) (1.13) (1.35) (1.04) 

LSR 14.72 6.63 8.60 8.88 9.65 9.70 11.06 

(2.09) (0.72) (0.98) (1.74) (1.05) (1.32) (1.31) 

Forecasting Sentences (FS) 

MED 18.13 7.66 6.36 7.19 5.51 8.97 7.75 

(2.30) (0.63) (0.74) (1.36) (0-69) (1.14) (1.39) 

PrOsc 17.27 13.28 4.69 8.32 9.47 10.61 8.60 

(2.40) (1.23) (0.45) (1.14) (1.07) (1.26) (1.72) 

LSR 13.75 -5.08 -2.16 12.68 6.76 5.19 8.74 

(1.75) (-0.58) (-0.45) (1.36) (0.82) (0.58) (1.87) 

GNG Forecasting (GNG-F) 

Table B . I O : Testing the trading ability of the pattern matching system. The G R E E C E - D S - M K 

index case. The values in quotes are the corresponding Sharpe Ratio (SR) measures-
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Appendix C 

Further Statistical Arbitrage Results 

On the following pages some more results concerning the comparison of the co-integration 

and time-warped co-integration statistical arbitrage trading are presented. The tables in 

this appendix are presented in the same way as those in section 6.2.5 (tables 6.8, 6.9, 

6.10). 
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'90-'92 '92-'94 '94-̂ 96 '96-'98 '98-2000 Aver. '90-2000 

SA 10.18 42.64 14.53 19.31 64.88 30.31 30.20 

SA-DTW 20.77 30.84 66.58 20.49 24.15 32.57 70.95 

Table C . l : U K - S P A I N D A T A S T R E A M market indices. SA and S A - D T W correspond 

to Statistical Arbitrage and Statistical Arbitrage using Dynamic Time Warping respec

tively. Profit is measured in number of basis points. No trading costs are included in the 

calculations. 

'90-'92 '92-'94 '94-'96 '96-'98 .'98-2000 Aver. '90-2000 

SA 56.35 10.58 21.75 65-05 48.75 40.50 3.10 

SA-DTW 60.25 31.51 31.80 39.03 64.15 45.35 14.25 

Table C.2; U K - G R E E C E D A T A S T R E A M market indices. SA and SA-DTW correspond 

to Statistical Arbitrage and Statistical Arbitrage using Dynamic Time Warping respec

tively. Profit is measured in number of basis points. No trading costs are included in the 

calculations. 
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'90-'92 '92-'94 '94-'96 '96-'98 '98-2000 Aver. '90-2000 

SA 61.80 21.02 14.94 27.70 57.22 36.54 60.74 

SA-DTW 24.93 33.79 46.29 19.18 34.59 31.76 46.76 

Table C.3: G E R M A N Y - S P A I N D A T A S T R E A M market indices. SA and SA-DTW corre

spond to Statistical Arbitrage and Statistical Arbitrage using Dynamic Time Warping 

respectively. Profit is measured in number of basis points. No trading costs are included 

in the calculations. 

'90-'92 '92-'94 '94-'96 '96-'98 '98-2000 Aver. '90-2000 

SA 54.58 17.23 10.61 61.77 73.83 43.60 51.43 

SA-DTW 63.35 59.17 27.55 43.38 33.35 45.36 67.43 

Table C.4: G E R M A N Y - I T A L Y D A T A S T R E A M market indices. SA and SA-DTW corre

spond to Statistical Arbitrage and Statistical Arbitrage using Dynamic Time Warping 

respectively. Profit is measured in number of basis points. No trading costs are included 

in the calculations. 
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'90-'92 '92-'94 '94-̂ 96 '96-'98 '98-2000 Aver. '90-2000 

SA 2.82 22.49 17.66 16.81 41.76 20.31 44.43 

SA-DTW 34.66 28.26 45-42 37.51 18.32 32.83 43.64 

Table C.5: S P A I N - I T A L Y D A T A S T R E A M market indices. SA and SA-DTW correspond 

to Statistical Arbitrage and Statistical Arbitrage using Dynamic Time Warping respec

tively. Profit is measured in number of basis points. No trading costs are included in the 

calculations. 

'90-'92 '92-'94 '94-'96 '96-'98 '98-2000 Aver. '90-2000 

SA 10-50 68.85 11.61 17.80 4.25 22.60 34.12 

SA-DTW 30.92 28.92 57.44 21.78 73.66 42.54 42.79 

Table C.6: S P A I N - G R E E C E D A T A S T R E A M market indices. SA and SA-DTW correspond 

to Statistical Arbitrage and Statistical Arbitrage using Dynamic Time Warping respec

tively. Profit is measured in number of basis points. No trading costs are included in the 

calculations. 
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Appendix D 

P R O G N O S I S 

In this appendix, some snapshots of the financial time series simulator P R O G N O S I S are 

given. Figure D . l , on the next page, is a snapshot of the P R O G N O S I S simulator (version 

1.1a) that performs the pattern matching algorithm that has been described in chapter 

4. The next snapshot (figure D.2) shows the simulator that performs segmented pattern 

matching using dynamic time warping (chapter 5). The last snapshot that is given 

in figure D.3 depicts the P R O G N O S I S simulator that performs multivariate pattern 

matching analysis and time-warped co-integration (chapter 6). 
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Figure D.l: Snapshot of the P R O G N O S I S simulator (vl.la). 
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COINTC ORATION I PHEO 

C » (display) • anE ; : x - O S -K 90-91 -> r*d 
C«« (display) - Tad.r-OS-m. 90-91 cav -> gtaan 
C . (diMlayO) - data diapLsyad 
C** (acalaO) - data scalad batvaan 0 2 and 0 t 
C*« (display) - CK-OS-K 90-91 csv -> black 

(display) - rMkVCZ-DS-A 90-91 csv -> blaa 
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C** (dispIafO) - data displayad 

pfocssting 

Figure D.3: Snapshot of the P R O G N O S I S simulator (vL3a). 
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Appendix E 

Abbreviations 

AFDSS Automated Forecasting Decision Support System 

AMC Average Matching Confidence 

ANN Artificial Neural Network 

APC Average Prediction Confidence 

A P T Arbitrage Pricing Theory 

AR Autoregressive 

ARIMA Autoregressive Integrated Moving Average 

CD Correlation Dimension 

CHL Competitive Hebbian Learning 

CI Computational Intelligence 

C P Cumulative Profit 

DA Directional Ability 

D F T Discrete Fourier Transform 

DTW Dynamic Time Warping 

E C M Error Correction Model 

E D Embedding Dimension 

E G M Elastic Graph Matching 

EMH Efficient Market Hypothesis 

ESD Embedding Segment Dimension 
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FS Forecasting Sentences 

GA Genetic .\lgorithm 

GNG Growing Neural Gas 

ICA Independent Component Analysis 

IID Independent and Identically Distributed 

LSR Linear Segment Representation 

MA Moving Average 

MACD Moving Average Convergence Divergence 

MED Minimum Embedding Dimension 

MESD Minimum Embedding Segment Dimension 

MFS Multiple Feature Sets 

MLP Multi Layer Perceptron 

NG Neural Gas 

NT Number of Transactions 

OLS Ordinar\' Least Squares 

PGA Principal Component Analysis 

PrOsc Price Oscillator 

QR Query Pattern 

RBF Radial Basis Functions 

RMSE Root Mean Square Error 

ROC Rate Of Change 

RSI Relative Strength Index 

SOM Self Organising Map 

SR Sharpe Ratio 

StOsc Stochastic Oscillator 

SVD Singular \'alue Decomposition 

TA Technical Analysis 

UCM Unobservable Components Models 
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