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It is well known that coalmine gas concentration forecasting is very significant to ensure the safety of mining. Owing to the high-
frequency, nonstationary fluctuations and chaotic properties of the gas concentration time series, a gas concentration forecasting
model utilizing the original raw data often leads to an inability to provide satisfying forecast results. A hybrid forecasting model
that integrates wavelet transform and extreme learning machine (ELM) termed as WELM (wavelet based ELM) for coalmine
gas concentration is proposed. Firstly, the proposed model employs Mallat algorithm to decompose and reconstruct the gas
concentration time series to isolate the low-frequency and high-frequency information. Then, ELM model is built for the prediction
of each component. At last, these predicted values are superimposed to obtain the predicted values of the original sequence. This
method makes an effective separation of the feature information of gas concentration time series and takes full advantage of multi-
ELM prediction models with different parameters to achieve divide and rule. Comparative studies with existing prediction models
indicate that the proposed model is very promising and can be implemented in one-step or multistep ahead prediction.

1. Introduction

It is well known that coalmine gas is one of the most
important factors affecting coalmine security in production
[1]. The accurate forecasting of coalmine gas concentration is
the basis of gas outburst prediction, gas explosion prevention,
ventilation design, and so on [2]. Therefore, enhancing
research on reliable methods for coalmine gas prediction
has positive significance on coalmine security [3]. However,
the coalmine gas is influenced by geological conditions,
occurrence of coal seam, gas content of coal and rock,
permeability coefficient of coal and rock, the depth of coal,
mining process, and so on. There are dynamic nonlinear
relationships among these factors [4-6]. In addition, these
factors are difficult to obtain in the coalmine, which bring
great difficulties to the forecast of coalmine gas.

With regard to this, many researchers have turned their
attention to gas time series prediction and many methods

have been proposed in the gas forecasting field. Models of gas
concentration forecasts are largely based on chaos time series
[7-9], grey theory [10, 11], fuzzy mathematics [12, 13], neural
networks [14, 15], intelligent algorithm [16-18], support vec-
tor machine [19], gaussian process regression [20], and other
mathematical or statistical methods [21, 22]. These methods
have the same characteristics: the observed original values
which are collected by gas sensors are usually directly used
for building gas concentration forecasting models [23-26].
However, owing to the high-frequency, nonstationary
fluctuations and chaotic properties of the gas concentration
time series, a gas concentration forecasting model utiliz-
ing the original raw data often leads to an inability to
provide satisfying forecast results. To solve this problem,
before constructing a forecasting model, many studies would
initially utilize information extraction techniques to extract
features contained in data and use these extracted character-
istics to construct independent forecasting model [27-30].



The useful or interesting information may not be observed
directly from the observed original data but can be revealed
in the extracted series through suitable signal processing
methods. The wavelet decomposition and reconstruction
can decompose the multicomponent signal information into
a low-frequency approximate signal and a set of high-
frequency detail signals. The low-frequency signal reacts to
the inherent variation trend of the information while the
high-frequency signal reacts to the stochastic disturbance
influence of it. In view of the different rules of these two types
of signals, different models and parameters can be utilized
to independently predict these signals [31]. In this study,
the improvement in the accuracy of a forecasting model is
achieved by wavelet-based transform. First, we decompose
the sample data sequence of gas concentration time series
into several components of various time-frequency domains
according to wavelet analysis; then we use the ELM particu-
larly established to make forecasts for all domains based on
these components; finally, we arrive at the algebraic sum of
the forecasts. Thereby, a relatively accurate forecast of mine
gas concentration could be achieved. Thus, by means of a
combination of ELM with wavelet analysis, we arrive at a
model to forecast gas concentration. Based on the research
and application in the 11826 Coal Face of Luling Coal Mine of
Huaibei Mining Group Company in Anhui Province, China,
it shows that this method can take advantage of different
features contained in data and effectively predict the gas
concentration.

The rest of this paper is organized as follows. Section 2
analyzes corresponding basic theories and methods. The
proposed hybrid method based on wavelet transform and
ELM is described in Section 3. The numerical results and
discussions are presented in Section 4. Section 5 includes the
conclusions of this paper.

2. Methodologies

2.1. Wavelet Decomposition and Reconstruction. The essence
of the wavelet decomposition and reconstruction is to divide
a set of primitive sequences containing comprehensive infor-
mation into several groups of sequences with different char-
acteristics by a group of band pass filters [32]. In this paper,
the Mallat algorithm for discrete wavelet transform (DWT)
is adopted as the wavelet decomposition and reconstruction
method. Let Y = {y,,¥,..., ¥y} be the original sequence,
where N is the sequence length. The algorithm can be
described as follows:

a;, = H (),
di, = G(aj), ey
i=0.1,....],

where H(:) and G(-) represent the low-pass filter and high-
pass filter, and a;,; and d;,, are the components of the origi-
nal signal in adjacent frequency band under the resolution of
27U%D | while a;,, represent the low-frequency approximate
component and d;,, represent the high-frequency detail
component. Let ] be the decomposition level. We can get ]
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detail components d,,d,, ..., d; and an approximate compo-
nent a;. For the length of the decomposed sequence is the half
of that of the original one, binary interpolation method was
adopted in the reconstruction sequence reconstructing [33],

*\J

A;=(H")a,

#\j—1 ~%
D;=(G")"G'd,, ()

ji=0,1...,],
where H* and G* are the dual operators of H and G. Detail
sequences D;, D,,..., D; and approximate sequence A; are
the reconstruction sequences of dl,dz,...,d] and ay; they

have the same length with original sequence, and the original
sequence can be represented as the sum of reconstruction
sequences,

Y=D, +D,+---D;+Aj. (3)

It should be emphasized that the stationary wavelet
transform (SWT) can also be used for frequency division.
However, since the SWT is a nonorthogonal decomposition,
there will be cross correlations among the resulted com-
ponents. By contrast, the components will be independent
when using DWT, which is convenient for obtaining the
distribution of the original time series based on the forecasted
distributions of the components [34].

2.2. Extreme Learning Machine. ELM learning algorithm is a
kind of the feed forward neural network with a single hidden
layer. And the algorithm solves the problems including the
slow convergence speed, easily falling into local minimum,
and so forth, which exist in the most neural network
learning algorithms [35]. Both the theoretical analysis and
the numerous experimental results have indicated that the
ELM in most cases has better performance than that of the
general back propagation neural networks (BPNN) learning
algorithm [36]. Besides, with far less learning time than the
support vector machine (SVM) algorithm [37], the ELM
learning algorithm can achieve almost the same effect as SVM
[38]. Therefore, the ELM learning algorithm is suitable for the
practical application. And in view of this, this paper chooses
the ELM as the base predictor.

Let N be training samples as {(x;, yk)}kN: > Where x; =

[Xp1> Xpa» - - > Xgn] | € R™is the kth vector of the input sample
and ¥, € R is the output variable corresponding to xy.
Besides, the standard single layer feed forward network of
the mathematical model with L hidden layer nodes can be
described as follows:

L
ok=Zﬁg(Wi'Xk+bi)’ k=1,...,N, (4)
i=1

where o, is the output vector of the kth sample, w;, =
(w1, Wi - - -5 w,-n]T is the input weight vector of the ith hidden
layer node, B = [B,, By» - ., B]" is the output weight vector of
the hidden layer node, b, is the bias of the ith hidden neuron,
g(+) is the activation function of the hidden layer, and w; - x;,
is the inner product of w; and x;.
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For N training samples, to achieve zero error learning, we

need to meet Zszl llox — ¥l = 0, and the condition is that (5)
must be correct:

L
Y Bg(w; % +B) =y k=1,..,N. )

i=1

Equation (5) can be described as follows in the form of matrix:

HB=T. (6)
In (6),
gw, -x; +b) - glwy-x, +bp)
H - : : : 7)
gwy -xn+b) o gwy - xy+bp) | o

The character of ELM is that the value of input weight w;
and the value of hidden bias b; are randomly assigned, and
we can directly calculate the hidden layer output matrix H.
Therefore, training ELM is equivalent to obtaining the least-
squares solution f8 of the linear equation HB = T, and f8 can
be described as follows:

B=H'T, (8)

where H" is the Moore-Penrose generalized inverse of the
matrix H [38-40]. Since the output layer weight can be
directly obtained, the ELM has the fast learning speed. At the
same time, it also avoids the problem of easily falling into local
minimum values due to the repeated iterations which is used
by general neural network learning algorithms.

In summary, the ELM algorithm can be divided into the
following steps [41].

Step 1. Assign the random value of input weight vector w; and
threshold value b; in the hidden layer. According to Bartlett’s
theory [42], small weights will get better generalization
performance, so we use the random value between 0 and 1
in practice.

Step 2. Calculate output matrix H in hidden layer.

Step 3. Calculate output weight vector B based on (8) and
establish ELM model.

Step 4. Obtain the predicted values based on input variables.

3. The Proposed Wavelet-ELM Gas
Concentration Forecasting Method

Firstly, we use the Mallat algorithm to decompose and
reconstruct the original gas time series. Then, the different
prediction models are established for the low-frequency
approximate sequence and high-frequency detail sequences.
At last, the final predicted value was calculated by the sum
of the results of every prediction model. The flowchart of the
multistep ahead prediction framework is depicted in Figure 1.
The forecasting procedure is described as follows.

Step 1. Decompose and reconstruct the gas concentration
time series into different component series (some detail

sequences Dy, D,, ..., D; and an approximate sequence A ).
In this process, there are two parameters that should be
determined: the basic wavelet and decomposition level.
Daubechies wavelet families are most appropriate for treating
a nonstationary series and have been chosen as the basic
wavelet in this paper [43], and the selection of Daubechies
wavelet order is discussed in Section 4. The selection of
decomposition level has a significant effect on the results
obtained and this is also discussed in Section 4.

Step 2. C-C method is applied to get the optimum time
delay 7 and embedding dimension m for each individual-
decomposed component (D;, D,,..., Dy, and A]) [44].

Step 3. Input and output vectors for the ELM model are
obtained through phase space reconstruction with the time
delay 7 and embedding dimension m. The training process
of each component is described in the previous section and
the only parameter that should be ensured is the count of the
hidden layer nodes.

Step 4. One-step ahead predicted value of each component
series is obtained by trained ELM model.

Step 5. Predicted value of the gas concentration time series
is obtained by superimposing the predicted values of all
components.

Step 6. Determine whether the current reaches the need of
look-ahead steps. If the condition is met, current predicted
value is the last multistep forecasting value. Otherwise,
append predicted value to the time series and go to Step 1.

4. Experimental Results

In this section, the effectiveness of the proposed method
is evaluated by some experiments. The dataset used in
our experiment is collected from the Coalmine Security
Monitoring System named KJ98 in the 11826 Coal Face of
Luling Coal Mine of Huaibei Mining Group Company in
Anhui Province, China. We test the proposed model with
1000 gas concentration samples; the first 800 data points are
used as the training sample, and the remaining 200 data
points are used as testing sample, and every data points scale
is 10 seconds.

The prediction performance is evaluated by the mean
absolute error (MAE), the mean absolute percentage error
(MAPE), the root mean square error (RMSE), and the nor-
malized root mean square error (NRMSE). The definitions of
these criteria are as follows:

1& .
MAE = —3 |y, - 7
i=1

yi_j;i‘

1 n
MAPE = —
Z Yi

RMSE =
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FIGURE 1: Gas concentration multistep ahead prediction framework based on WELM.

n ~\2
NRMSE = 1. Yo i = 7) ’

n Z?=1 (J’i - 71)
9)

where y and J represent the actual and predicted value,
respectively; ¥ is the mean value; » is the total number of
data points in the test set. A smaller indicator means higher
accuracy of the forecast.

The original data is firstly decomposed and reconstructed
into 3 levels by wavelet transform based on db3 (db is the
abbreviation of Daubechies, and db # means the Daubechies
wavelets of order n). The original gas concentration time
series and time spectra of the subbands at the 3rd layer are
shown in Figure 2. It can be seen from Figure 2 that the low-
frequency signals embody the overall trend of the original
gas concentration and several other subsignals represent

the uncertainty inference. The wavelet decomposition can
well identify the different characteristics from the original
data and benefit the gas concentration prediction through
different ELM models.

Then, the ELM models are established to get the one-
step look-ahead prediction component of each subsignal and
their sum indicates the final short time gas concentration
prediction value. In the ELM models, the count of hidden
layer is firstly set to 20; we get the average value of ten time-
independent predictions as the final predicted value. Table 1
gives the prediction performance of each component.

From Table 1, we will find that the order of the prediction
performance is A3, D3, D2, and DI. That is because A3
is the smoothed low-frequency approximate component of
the original gas concentration series which react to the
inherent variation trend of the information and it can be
easy to get a high fitness, while D3, D2, and DI are the
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FIGURE 2: Wavelet decomposition and reconstruction of the original
gas concentration time series.

TABLE 1: Prediction error of wavelet decomposition sequence.

Reconstructed sequence MAE ~ MAPE RMSE NRMSE
D, 0.0024  9.0188  0.0032  0.0378
D, 0.0036  4.0222  0.0045  0.0333
D, 0.0024 07098  0.0032  0.0233
A, 0.0015  0.0037 0.0022  0.0035

high-frequency component of the original gas concentration
series which react to the stochastic disturbance influence
of the information; the higher the wavelet decomposition
and reconstruction level, the stronger the detail component’s
randomness and the lower the prediction accuracy. This
result coincides with the theory analysis. Figure 3 shows the
chart of the final predicted value superimposed upon every
subsequence and the actual data. From Figure 3, it can be seen
that the final predicted data of the proposed method can fit
the actual gas concentration data well.

To verify the effectiveness of the proposed method,
routine methods are used to predict the gas concentration
samples for comparison. These methods include classification
and regression trees prediction model (CART) [45], back
propagation neural network prediction model (BPNN) [36],
support vector machine prediction model (SVM) [37], and
extreme learning machine prediction model (ELM) [35]. In
the BPNN prediction model, we get the average value of ten
time-independent predictions as the final predicted value, the
network hidden layer transfer function is Sigmoid function,
the transport layer transfer function is Purelin function, the
training algorithm is gradient descent algorithm with variable
learning rate momentum, and the learning rate is set to 0.1. In
the SVM model, we choose radial basis function as the kernel
function, particle swarm optimization (PSO) algorithm is
used to optimize the parameters of SVM [46], optimized
parameters include the penalty parameter C, insensitive loss

0.55
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0.35

0 20 40 60 80 100 120 140 160
Forecast time (hour)

180 200

—— Actual
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FIGURE 3: Actual value (the solid line) and one-step ahead WELM
model output (the dashed line).

parameter ¢, and kernel parameter o, the number of particles
is initialized to 30, ¢¢ = ¢ = 2, w = 0.7, iteration
number is set to 1000, and initialization range of C, ¢, and
o is set to [1,1000], [0.001, 0.1], and [0, 10], respectively. The
comparison of predicted results is shown in Table 2.

From Table 2, the forecasting accuracy of the WELM
model is more promising than the results of previous works.
Improvement in the MAE of the proposed approach with
respect to the four previous approaches (CART, BPNN, SVM,
and ELM) is 80.32%, 74.74%, 74.61%, and 74.07%, respec-
tively. Improvement in the MAPE of the proposed approach
with respect to the four previous approaches is 80.23%,
74.43%, 74.32%, and 73.72%, respectively. Improvement in
the RMSE of the proposed approach with respect to the four
previous approaches is 80.57%, 74.69%, 74.48%, and 74.26%,
respectively. Improvement in the MAE of the proposed
approach with respect to the four previous approaches is
80.64%, 74.79%, 74.58%, and 74.29%, respectively. From the
column of training time and testing time, it can be seen that
WELM method spent only 0.0155s CPU time for training
and 0.0073s CPU time for testing, it is much less than
CART, BPNN, and SVM algorithm, it is slightly more than
ELM method because of the extra processing time of wavelet
transform, this time is far less than the sampling interval, and
it can be trained every time when the new data arrived that
means the WELM model is suitable for automatic adjustment
according to the time, while other models are not suitable
for doing so due to long training time. Supplementary note:
SVM algorithm requires a parameter optimization process
which is too time-consuming, and the calculated training
time is out of the statistical significance, so we did not list the
corresponding calculation time.

Figure 4 shows the multistep (from 1 to 24 steps ahead)
ahead forecast accuracy of the expectation value measured by
the MAPE, the CART, BPNN, SVM, and ELM models used
here for comparison.

For multistep ahead forecast, the gas concentration fore-
cast is carried out by recursively taking the previous forecast
values which is described in Section 3. That means the error
will be recursively along with the increased steps, so the error
will be increased according to the look-ahead step. According
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TaBLE 2: Comparison of different prediction methods.
Method MAE MAPE RMSE NRMSE Training time (s) Testing time (s)
CART 0.0249 0.0622 0.0314 0.0470 0.0280 0.0084
BPNN 0.0194 0.0481 0.0241 0.0361 0.5531 0.0650
SVM 0.0193 0.0479 0.0239 0.0358 N/A N/A
ELM 0.0189 0.0468 0.0237 0.0354 0.0063 0.0054
WELM 0.0049 0.0123 0.0061 0.0091 0.0155 0.0073
[Sa)
w 4
=
~ ; ; ; ; ; ; ; ;
10 15 20 25 30 35 40 45 50
Nodes
FIGURE 5: Performance comparison with different ELM hidden layer
0 : - : : nodes.
0 5 10 15 20 24
Look-ahead step (10s)
—— CART ELM
—— BPNN —— WELM

—— SVM

FIGURE 4: Multistep ahead forecast accuracy comparison with
different methods.

to Figure 4, BPNN, SVM, and ELM have obviously better
forecast accuracy than the CART model. Compared with the
other four models, the proposed WELM model can improve
the forecast accuracy significantly.

To illustrate the influence of the hidden layer nodes of
ELM, the MAPE of WELM using different hidden layer nodes
from 1 to 50 is shown in Figure 5. In the figure, we will
find that the MAPE values are comparatively higher for less
number of hidden nodes (from 1 to 5), while the forecast
accuracy is flat which shows that the model performs equally
well for different hidden nodes if they have high values,
and this fact is equal to [35] that means ELM generalization
performance is independent of the number of hidden nodes
if the number of hidden nodes is considerably large, so, in the
practice, we must choose hidden nodes higher than 5.

To illustrate the influence of the orders of Daubechies
mother wavelets, the MAPE of WELM using Daubechies
wavelets of different orders from 1 to 45 is shown in Figure 6.
In the figure, db is the abbreviation of Daubechies, and db n
means the Daubechies wavelets of order 7. It can be seen from
the figure that MAPE according to n from 1 to 25 is decreased
sharply, and the other mother wavelets have almost the same
performance, particularly in the tail, so, in the practice, it
is better to choose the Daubechies orders from 25 to 45. It
should be noted that the MAPE of dbl which has the worst
forecasting accuracy than others is only 2.03%, compared in

MAPE (%)

dbN

FIGURE 6: Performance comparison with different orders of the
Daubechies wavelets.

Table 2, and this is also more promising than other methods
(CART, BP, SVM, and ELM) without wavelet transforms;
the paper discussed above in Table 2 is using db3, which is
comparably higher than Daubechies orders from 4 to 45,
so there is still a lot of promising space when using other
Daubechies orders.

Furthermore, wavelet decomposition level has influence
on the prediction results. Specifically, the higher the wavelet
decomposition level is, the smoother and more stable the
approximation signal is, and the prediction accuracy is higher
as well. However, with the increase of decomposition layers,
the number of detail signals will also increase, and the errors
will be superimposed because the number of detail signals
has increased. More decomposition layers will bring more
prediction errors, so the forecast accuracy will not increase
with the increase of decomposition level. As a result, the
prediction accuracy will fluctuate in a certain range.

Figure 7 shows the prediction errors of WELM using
db3 wavelet decomposition when decomposition level is
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FIGURE 7: Performance comparison with different wavelet decom-
position levels.

from 1 to 50. It can be seen from the figure that MAPE
according to wavelet decomposition level from 1 to 3 is
decreased sharply. The reason is that the forecast performance
promising is source by the extraction of the stochastic
disturbance influence, but the small wavelet decomposition
level cannot extract significantly the random component
which still remains in the approximate component. The
MAPE according to wavelet decomposition level higher than
3 is fluctuating around 1.21%, according to the calculated
performance; we can use 3 to 5 as the decomposition layers
in the practical application.

5. Conclusions

The focus of this paper is to combine wavelet transform
and extreme learning machine for predicting coalmine gas
concentration. The coalmine gas time series is influenced by
geological conditions, occurrence of coal seam, gas content
of coal and rock, mining process, and many other factors.
As a result, it shows strong nonstationary and stochastic
characteristic. Using a single model to forecast gas concen-
tration is equal to forecasting a mixed signal by unified
methods and parameters. Meanwhile, the random factors of
gas concentration sequence will have an impact on determi-
nation of model parameters and final prediction results. The
wavelet decomposition and reconstruction can decompose
the multicomponent signal information into a low-frequency
approximate signal which reacts to the inherent variation
trend and a set of high-frequency detail signals which react to
the stochastic disturbance influence. Different ELM models
with different parameters can be utilized to predict these new
signals independently. The proposed model is compared with
CART, BPNN, SVM, and ELM for one-step and multistep
prediction. Simulation results show that the ELM model
with wavelet-based preprocessing greatly outperforms the
other four models. Furthermore, we still discuss the selec-
tion principles of ELM hidden layer nodes, the orders of
Daubechies mother wavelets, and the wavelet decomposition
level. For coalmine gas concentration time series, we must
choose hidden nodes higher than 5, it is better to choose the
Daubechies orders from 25 to 45, and we can use 3 to 5 as
the decomposition layers in the practical application for good
performance and accuracy.
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