30,339 research outputs found

    Clinical proteomics for precision medicine: the bladder cancer case

    Get PDF
    Precision medicine can improve patient management by guiding therapeutic decision based on molecular characteristics. The concept has been extensively addressed through the application of –omics based approaches. Proteomics attract high interest, as proteins reflect a “real-time” dynamic molecular phenotype. Focusing on proteomics applications for personalized medicine, a literature search was conducted to cover: a) disease prevention, b) monitoring/ prediction of treatment response, c) stratification to guide intervention and d) identification of drug targets. The review indicates the potential of proteomics for personalized medicine by also highlighting multiple challenges to be addressed prior to actual implementation. In oncology, particularly bladder cancer, application of precision medicine appears especially promising. The high heterogeneity and recurrence rates together with the limited treatment options, suggests that earlier and more efficient intervention, continuous monitoring and the development of alternative therapies could be accomplished by applying proteomics-guided personalized approaches. This notion is backed by studies presenting biomarkers that are of value in patient stratification and prognosis, and by recent studies demonstrating the identification of promising therapeutic targets. Herein, we aim to present an approach whereby combining the knowledge on biomarkers and therapeutic targets in bladder cancer could serve as basis towards proteomics- guided personalized patient management

    Ensuring sample quality for biomarker discovery studies - Use of ict tools to trace biosample life-cycle

    Get PDF
    The growing demand of personalized medicine marked the transition from an empirical medicine to a molecular one, aimed at predicting safer and more effective medical treatment for every patient, while minimizing adverse effects. This passage has emphasized the importance of biomarker discovery studies, and has led sample availability to assume a crucial role in biomedical research. Accordingly, a great interest in Biological Bank science has grown concomitantly. In biobanks, biological material and its accompanying data are collected, handled and stored in accordance with standard operating procedures (SOPs) and existing legislation. Sample quality is ensured by adherence to SOPs and sample whole life-cycle can be recorded by innovative tracking systems employing information technology (IT) tools for monitoring storage conditions and characterization of vast amount of data. All the above will ensure proper sample exchangeability among research facilities and will represent the starting point of all future personalized medicine-based clinical trials

    How shall we use the proteomics toolbox for biomarker discovery?

    Get PDF
    Biomarker discovery for clinical purposes is one of the major areas in which proteomics is used. However, despite considerable effort, the successes have been relatively scarce. In this perspective paper, we try to highlight and analyze the main causes for this limited success, and to suggest alternate strategies, which will avoid them, without eluding the foreseeable weak points of these strategies. Two major strategies are analyzed, namely, the switch from body fluids to cell and tissues for the initial biomarker discovery step or, if body fluids must be analyzed, the implementation of highly selective protein selection strategies

    Development of a MALDI MS-based platform for early detection of acute kidney injury

    Get PDF
    Purpose: Septic acute kidney injury (AKI) is associated with poor outcome. This can partly be attributed to delayed diagnosis and incomplete understanding of the underlying pathophysiology. Our aim was to develop an early predictive test for AKI based on the analysis of urinary peptide biomarkers by MALDI-MS. Experimental design: Urine samples from 95 patients with sepsis were analyzed by MALDI-MS. Marker search and multimarker model establishment were performed using the peptide profiles from 17 patients with existing or within the next 5 days developing AKI and 17 with no change in renal function. Replicates of urine sample pools from the AKI and non-AKI patient groups and normal controls were also included to select the analytically most robust AKI markers. Results: Thirty-nine urinary peptides were selected by cross-validated variable selection to generate a support vector machine multidimensional AKI classifier. Prognostic performance of the AKI classifier on an independent validation set including the remaining 61 patients of the study population (17 controls and 44 cases) was good with an area under the receiver operating characteristics curve of 0.82 and a sensitivity and specificity of 86% and 76%, respectively. Conclusion and clinical relevance: A urinary peptide marker model detects onset of AKI with acceptable accuracy in septic patients. Such a platform can eventually be transferred to the clinic as fast MALDI-MS test format

    Urinary CE-MS peptide marker pattern for detection of solid tumors

    Get PDF
    Urinary profiling datasets, previously acquired by capillary electrophoresis coupled to mass-spectrometry were investigated to identify a general urinary marker pattern for detection of solid tumors by targeting common systemic events associated with tumor-related inflammation. A total of 2,055 urinary profiles were analyzed, derived from a) a cancer group of patients (n = 969) with bladder, prostate, and pancreatic cancers, renal cell carcinoma, and cholangiocarcinoma and b) a control group of patients with benign diseases (n = 556), inflammatory diseases (n = 199) and healthy individuals (n = 331). Statistical analysis was conducted in a discovery set of 676 cancer cases and 744 controls. 193 peptides differing at statistically significant levels between cases and controls were selected and combined to a multi-dimensional marker pattern using support vector machine algorithms. Independent validation in a set of 635 patients (293 cancer cases and 342 controls) showed an AUC of 0.82. Inclusion of age as independent variable, significantly increased the AUC value to 0.85. Among the identified peptides were mucins, fibrinogen and collagen fragments. Further studies are planned to assess the pattern value to monitor patients for tumor recurrence. In this proof-of-concept study, a general tumor marker pattern was developed to detect cancer based on shared biomarkers, likely indicative of cancer-related features

    Personalized medicine—a modern approach for the diagnosis and management of hypertension

    Get PDF
    The main goal of treating hypertension is to reduce blood pressure to physiological levels and thereby prevent risk of cardiovascular disease and hypertension-associated target organ damage. Despite reductions in major risk factors and the availability of a plethora of effective antihypertensive drugs, the control of blood pressure to target values is still poor due to multiple factors including apparent drug resistance and lack of adherence. An explanation for this problem is related to the current reductionist and ‘trial-and-error’ approach in the management of hypertension, as we may oversimplify the complex nature of the disease and not pay enough attention to the heterogeneity of the pathophysiology and clinical presentation of the disorder. Taking into account specific risk factors, genetic phenotype, pharmacokinetic characteristics, and other particular features unique to each patient, would allow a personalized approach to managing the disease. Personalized medicine therefore represents the tailoring of medical approach and treatment to the individual characteristics of each patient and is expected to become the paradigm of future healthcare. The advancement of systems biology research and the rapid development of high-throughput technologies, as well as the characterization of different –omics, have contributed to a shift in modern biological and medical research from traditional hypothesis-driven designs toward data-driven studies and have facilitated the evolution of personalized or precision medicine for chronic diseases such as hypertension

    Development of Integrative Bioinformatics Applications using Cloud Computing resources and Knowledge Organization Systems (KOS).

    Get PDF
    Use of semantic web abstractions, in particular of domain neural Knowledge Organization Systems (KOS), to manage distributed, cloud based, integrative bioinformatics infrastructure. This presentation derives from recent publication:

Almeida JS, Deus HF, Maass W. (2010) S3DB core: a framework for RDF generation and management in bioinformatics infrastructures. BMC Bioinformatics. 2010 Jul 20;11(1):387. [PMID 20646315].

These PowerPoint slides were presented at Semantic Web Applications and Tools for Life Sciences December 10th, 2010, Berlin, Germany (http://www.swat4ls.org/2010/progr.php), keynote 9-10 am

    Mining whole sample mass spectrometry proteomics data for biomarkers: an overview

    No full text
    In this paper we aim to provide a concise overview of designing and conducting an MS proteomics experiment in such a way as to allow statistical analysis that may lead to the discovery of novel biomarkers. We provide a summary of the various stages that make up such an experiment, highlighting the need for experimental goals to be decided upon in advance. We discuss issues in experimental design at the sample collection stage, and good practise for standardising protocols within the proteomics laboratory. We then describe approaches to the data mining stage of the experiment, including the processing steps that transform a raw mass spectrum into a useable form. We propose a permutation-based procedure for determining the significance of reported error rates. Finally, because of its general advantages in speed and cost, we suggest that MS proteomics may be a good candidate for an early primary screening approach to disease diagnosis, identifying areas of risk and making referrals for more specific tests without necessarily making a diagnosis in its own right. Our discussion is illustrated with examples drawn from experiments on bovine blood serum conducted in the Centre for Proteomic Research (CPR) at Southampton University
    corecore