196 research outputs found

    SYSTEM-ON-A-CHIP (SOC)-BASED HARDWARE ACCELERATION FOR HUMAN ACTION RECOGNITION WITH CORE COMPONENTS

    Get PDF
    Today, the implementation of machine vision algorithms on embedded platforms or in portable systems is growing rapidly due to the demand for machine vision in daily human life. Among the applications of machine vision, human action and activity recognition has become an active research area, and market demand for providing integrated smart security systems is growing rapidly. Among the available approaches, embedded vision is in the top tier; however, current embedded platforms may not be able to fully exploit the potential performance of machine vision algorithms, especially in terms of low power consumption. Complex algorithms can impose immense computation and communication demands, especially action recognition algorithms, which require various stages of preprocessing, processing and machine learning blocks that need to operate concurrently. The market demands embedded platforms that operate with a power consumption of only a few watts. Attempts have been mad to improve the performance of traditional embedded approaches by adding more powerful processors; this solution may solve the computation problem but increases the power consumption. System-on-a-chip eld-programmable gate arrays (SoC-FPGAs) have emerged as a major architecture approach for improving power eciency while increasing computational performance. In a SoC-FPGA, an embedded processor and an FPGA serving as an accelerator are fabricated in the same die to simultaneously improve power consumption and performance. Still, current SoC-FPGA-based vision implementations either shy away from supporting complex and adaptive vision algorithms or operate at very limited resolutions due to the immense communication and computation demands. The aim of this research is to develop a SoC-based hardware acceleration workflow for the realization of advanced vision algorithms. Hardware acceleration can improve performance for highly complex mathematical calculations or repeated functions. The performance of a SoC system can thus be improved by using hardware acceleration method to accelerate the element that incurs the highest performance overhead. The outcome of this research could be used for the implementation of various vision algorithms, such as face recognition, object detection or object tracking, on embedded platforms. The contributions of SoC-based hardware acceleration for hardware-software codesign platforms include the following: (1) development of frameworks for complex human action recognition in both 2D and 3D; (2) realization of a framework with four main implemented IPs, namely, foreground and background subtraction (foreground probability), human detection, 2D/3D point-of-interest detection and feature extraction, and OS-ELM as a machine learning algorithm for action identication; (3) use of an FPGA-based hardware acceleration method to resolve system bottlenecks and improve system performance; and (4) measurement and analysis of system specications, such as the acceleration factor, power consumption, and resource utilization. Experimental results show that the proposed SoC-based hardware acceleration approach provides better performance in terms of the acceleration factor, resource utilization and power consumption among all recent works. In addition, a comparison of the accuracy of the framework that runs on the proposed embedded platform (SoCFPGA) with the accuracy of other PC-based frameworks shows that the proposed approach outperforms most other approaches

    Real-time Cinematic Design Of Visual Aspects In Computer-generated Images

    Get PDF
    Creation of visually-pleasing images has always been one of the main goals of computer graphics. Two important components are necessary to achieve this goal --- artists who design visual aspects of an image (such as materials or lighting) and sophisticated algorithms that render the image. Traditionally, rendering has been of greater interest to researchers, while the design part has always been deemed as secondary. This has led to many inefficiencies, as artists, in order to create a stunning image, are often forced to resort to the traditional, creativity-baring, pipelines consisting of repeated rendering and parameter tweaking. Our work shifts the attention away from the rendering problem and focuses on the design. We propose to combine non-physical editing with real-time feedback and provide artists with efficient ways of designing complex visual aspects such as global illumination or all-frequency shadows. We conform to existing pipelines by inserting our editing components into existing stages, hereby making editing of visual aspects an inherent part of the design process. Many of the examples showed in this work have been, until now, extremely hard to achieve. The non-physical aspect of our work enables artists to express themselves in more creative ways, not limited by the physical parameters of current renderers. Real-time feedback allows artists to immediately see the effects of applied modifications and compatibility with existing workflows enables easy integration of our algorithms into production pipelines

    Foundations and Methods for GPU based Image Synthesis

    Get PDF
    Effects such as global illumination, caustics, defocus and motion blur are an integral part of generating images that are perceived as realistic pictures and cannot be distinguished from photographs. In general, two different approaches exist to render images: ray tracing and rasterization. Ray tracing is a widely used technique for production quality rendering of images. The image quality and physical correctness are more important than the time needed for rendering. Generating these effects is a very compute and memory intensive process and can take minutes to hours for a single camera shot. Rasterization on the other hand is used to render images if real-time constraints have to be met (e.g. computer games). Often specialized algorithms are used to approximate these complex effects to achieve plausible results while sacrificing image quality for performance. This thesis is split into two parts. In the first part we look at algorithms and load-balancing schemes for general purpose computing on graphics processing units (GPUs). Most of the ray tracing related algorithms (e.g. KD-tree construction or bidirectional path tracing) have unpredictable memory requirements. Dynamic memory allocation on GPUs suffers from global synchronization required to keep the state of current allocations. We present a method to reduce this overhead on massively parallel hardware architectures. In particular, we merge small parallel allocation requests from different threads that can occur while exploiting SIMD style parallelism. We speed-up the dynamic allocation using a set of constraints that can be applied to a large class of parallel algorithms. To achieve the image quality needed for feature films GPU-cluster are often used to cope with the amount of computation needed. We present a framework that employs a dynamic load balancing approach and applies fair scheduling to minimize the average execution time of spawned computational tasks. The load balancing capabilities are shown by handling irregular workloads: a bidirectional path tracer allowing renderings of complex effects at near interactive frame rates. In the second part of the thesis we try to reduce the image quality gap between production and real-time rendering. Therefore, an adaptive acceleration structure for screen-space ray tracing is presented that represents the scene geometry by planar approximations. The benefit is a fast method to skip empty space and compute exact intersection points based on the planar approximation. This technique allows simulating complex phenomena including depth-of-field rendering and ray traced reflections at real-time frame rates. To handle motion blur in combination with transparent objects we present a unified rendering approach that decouples space and time sampling. Thereby, we can achieve interactive frame rates by reusing fragments during the sampling step. The scene geometry that is potentially visible at any point in time for the duration of a frame is rendered in a rasterization step and stored in temporally varying fragments. We perform spatial sampling to determine all temporally varying fragments that intersect with a specific viewing ray at any point in time. Viewing rays can be sampled according to the lens uv-sampling to incorporate depth-of-field. In a final temporal sampling step, we evaluate the pre-determined viewing ray/fragment intersections for one or multiple points in time. This allows incorporating standard shading effects including and resulting in a physically plausible motion and defocus blur for transparent and opaque objects

    Dynamic task scheduling and binding for many-core systems through stream rewriting

    Get PDF
    This thesis proposes a novel model of computation, called stream rewriting, for the specification and implementation of highly concurrent applications. Basically, the active tasks of an application and their dependencies are encoded as a token stream, which is iteratively modified by a set of rewriting rules at runtime. In order to estimate the performance and scalability of stream rewriting, a large number of experiments have been evaluated on many-core systems and the task management has been implemented in software and hardware.In dieser Dissertation wurde Stream Rewriting als eine neue Methode entwickelt, um Anwendungen mit einer großen Anzahl von dynamischen Tasks zu beschreiben und effizient zur Laufzeit verwalten zu können. Dabei werden die aktiven Tasks in einem Datenstrom verpackt, der zur Laufzeit durch wiederholtes Suchen und Ersetzen umgeschrieben wird. Um die Performance und Skalierbarkeit zu bestimmen, wurde eine Vielzahl von Experimenten mit Many-Core-Systemen durchgeführt und die Verwaltung von Tasks über Stream Rewriting in Software und Hardware implementiert

    Towards Predictive Rendering in Virtual Reality

    Get PDF
    The strive for generating predictive images, i.e., images representing radiometrically correct renditions of reality, has been a longstanding problem in computer graphics. The exactness of such images is extremely important for Virtual Reality applications like Virtual Prototyping, where users need to make decisions impacting large investments based on the simulated images. Unfortunately, generation of predictive imagery is still an unsolved problem due to manifold reasons, especially if real-time restrictions apply. First, existing scenes used for rendering are not modeled accurately enough to create predictive images. Second, even with huge computational efforts existing rendering algorithms are not able to produce radiometrically correct images. Third, current display devices need to convert rendered images into some low-dimensional color space, which prohibits display of radiometrically correct images. Overcoming these limitations is the focus of current state-of-the-art research. This thesis also contributes to this task. First, it briefly introduces the necessary background and identifies the steps required for real-time predictive image generation. Then, existing techniques targeting these steps are presented and their limitations are pointed out. To solve some of the remaining problems, novel techniques are proposed. They cover various steps in the predictive image generation process, ranging from accurate scene modeling over efficient data representation to high-quality, real-time rendering. A special focus of this thesis lays on real-time generation of predictive images using bidirectional texture functions (BTFs), i.e., very accurate representations for spatially varying surface materials. The techniques proposed by this thesis enable efficient handling of BTFs by compressing the huge amount of data contained in this material representation, applying them to geometric surfaces using texture and BTF synthesis techniques, and rendering BTF covered objects in real-time. Further approaches proposed in this thesis target inclusion of real-time global illumination effects or more efficient rendering using novel level-of-detail representations for geometric objects. Finally, this thesis assesses the rendering quality achievable with BTF materials, indicating a significant increase in realism but also confirming the remainder of problems to be solved to achieve truly predictive image generation

    GPU data structures for graphics and vision

    Get PDF
    Graphics hardware has in recent years become increasingly programmable, and its programming APIs use the stream processor model to expose massive parallelization to the programmer. Unfortunately, the inherent restrictions of the stream processor model, used by the GPU in order to maintain high performance, often pose a problem in porting CPU algorithms for both video and volume processing to graphics hardware. Serial data dependencies which accelerate CPU processing are counterproductive for the data-parallel GPU. This thesis demonstrates new ways for tackling well-known problems of large scale video/volume analysis. In some instances, we enable processing on the restricted hardware model by re-introducing algorithms from early computer graphics research. On other occasions, we use newly discovered, hierarchical data structures to circumvent the random-access read/fixed write restriction that had previously kept sophisticated analysis algorithms from running solely on graphics hardware. For 3D processing, we apply known game graphics concepts such as mip-maps, projective texturing, and dependent texture lookups to show how video/volume processing can benefit algorithmically from being implemented in a graphics API. The novel GPU data structures provide drastically increased processing speed, and lift processing heavy operations to real-time performance levels, paving the way for new and interactive vision/graphics applications.Graphikhardware wurde in den letzen Jahren immer weiter programmierbar. Ihre APIs verwenden das Streamprozessor-Modell, um die massive Parallelisierung auch für den Programmierer verfügbar zu machen. Leider folgen aus dem strikten Streamprozessor-Modell, welches die GPU für ihre hohe Rechenleistung benötigt, auch Hindernisse in der Portierung von CPU-Algorithmen zur Video- und Volumenverarbeitung auf die GPU. Serielle Datenabhängigkeiten beschleunigen zwar CPU-Verarbeitung, sind aber für die daten-parallele GPU kontraproduktiv . Diese Arbeit präsentiert neue Herangehensweisen für bekannte Probleme der Video- und Volumensverarbeitung. Teilweise wird die Verarbeitung mit Hilfe von modifizierten Algorithmen aus der frühen Computergraphik-Forschung an das beschränkte Hardwaremodell angepasst. Anderswo helfen neu entdeckte, hierarchische Datenstrukturen beim Umgang mit den Schreibzugriff-Restriktionen die lange die Portierung von komplexeren Bildanalyseverfahren verhindert hatten. In der 3D-Verarbeitung nutzen wir bekannte Konzepte aus der Computerspielegraphik wie Mipmaps, projektive Texturierung, oder verkettete Texturzugriffe, und zeigen auf welche Vorteile die Video- und Volumenverarbeitung aus hardwarebeschleunigter Graphik-API-Implementation ziehen kann. Die präsentierten GPU-Datenstrukturen bieten drastisch schnellere Verarbeitung und heben rechenintensive Operationen auf Echtzeit-Niveau. Damit werden neue, interaktive Bildverarbeitungs- und Graphik-Anwendungen möglich

    Fast algorithm for real-time rings reconstruction

    Get PDF
    The GAP project is dedicated to study the application of GPU in several contexts in which real-time response is important to take decisions. The definition of real-time depends on the application under study, ranging from answer time of ÎĽs up to several hours in case of very computing intensive task. During this conference we presented our work in low level triggers [1] [2] and high level triggers [3] in high energy physics experiments, and specific application for nuclear magnetic resonance (NMR) [4] [5] and cone-beam CT [6]. Apart from the study of dedicated solution to decrease the latency due to data transport and preparation, the computing algorithms play an essential role in any GPU application. In this contribution, we show an original algorithm developed for triggers application, to accelerate the ring reconstruction in RICH detector when it is not possible to have seeds for reconstruction from external trackers

    Lattice-Boltzmann simulations of cerebral blood flow

    Get PDF
    Computational haemodynamics play a central role in the understanding of blood behaviour in the cerebral vasculature, increasing our knowledge in the onset of vascular diseases and their progression, improving diagnosis and ultimately providing better patient prognosis. Computer simulations hold the potential of accurately characterising motion of blood and its interaction with the vessel wall, providing the capability to assess surgical treatments with no danger to the patient. These aspects considerably contribute to better understand of blood circulation processes as well as to augment pre-treatment planning. Existing software environments for treatment planning consist of several stages, each requiring significant user interaction and processing time, significantly limiting their use in clinical scenarios. The aim of this PhD is to provide clinicians and researchers with a tool to aid in the understanding of human cerebral haemodynamics. This tool employs a high performance fluid solver based on the lattice-Boltzmann method (coined HemeLB), high performance distributed computing and grid computing, and various advanced software applications useful to efficiently set up and run patient-specific simulations. A graphical tool is used to segment the vasculature from patient-specific CT or MR data and configure boundary conditions with ease, creating models of the vasculature in real time. Blood flow visualisation is done in real time using in situ rendering techniques implemented within the parallel fluid solver and aided by steering capabilities; these programming strategies allows the clinician to interactively display the simulation results on a local workstation. A separate software application is used to numerically compare simulation results carried out at different spatial resolutions, providing a strategy to approach numerical validation. This developed software and supporting computational infrastructure was used to study various patient-specific intracranial aneurysms with the collaborating interventionalists at the National Hospital for Neurology and Neuroscience (London), using three-dimensional rotational angiography data to define the patient-specific vasculature. Blood flow motion was depicted in detail by the visualisation capabilities, clearly showing vortex fluid ow features and stress distribution at the inner surface of the aneurysms and their surrounding vasculature. These investigations permitted the clinicians to rapidly assess the risk associated with the growth and rupture of each aneurysm. The ultimate goal of this work is to aid clinical practice with an efficient easy-to-use toolkit for real-time decision support

    On continuous maximum ow image segmentation algorithm

    Get PDF
    Ces dernières années avec les progrès matériels, les dimensions et le contenu des images acquises se sont complexifiés de manière notable. Egalement, le différentiel de performance entre les architectures classiques mono-processeur et parallèles est passé résolument en faveur de ces dernières. Pourtant, les manières de programmer sont restées largement les mêmes, instituant un manque criant de performance même sur ces architectures. Dans cette thèse, nous explorons en détails un algorithme particulier, les flots maximaux continus. Nous explicitons pourquoi cet algorithme est important et utile, et nous proposons plusieurs implémentations sur diverses architectures, du mono-processeur à l'architecture SMP et NUMA, ainsi que sur les architectures massivement parallèles des GPGPU. Nous explorons aussi des applications et nous évaluons ses performances sur des images de grande taille en science des matériaux et en biologie à l'échelle nanoIn recent years, with the advance of computing equipment and image acquisition techniques, the sizes, dimensions and content of acquired images have increased considerably. Unfortunately as time passes there is a steadily increasing gap between the classical and parallel programming paradigms and their actual performance on modern computer hardware. In this thesis we consider in depth one particular algorithm, the continuous maximum flow computation. We review in detail why this algorithm is useful and interesting, and we propose efficient and portable implementations on various architectures. We also examine how it performs in the terms of segmentation quality on some recent problems of materials science and nano-scale biologyPARIS-EST-Université (770839901) / SudocSudocFranceF
    • …
    corecore