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Abstract

In recent years, with the advance of computing equipment and image ac-
quisition techniques, the sizes, dimensions and content of acquired images
have increased considerably. Unfortunately as time passes, there is a steadily
increasing gap between the classical and parallel programming paradigms
and their actual performance on modern computer hardware. In this thesis
we consider in depth one particular algorithm, the continuous maximum flow
computation. We review in detail why this algorithm is useful and interesting,
and we propose efficient and portable implementations on various architec-
tures. We also examine how it performs in the terms of segmentation quality
on some recent problems of materials science and nano-scale biology.

Introduction

In this thesis we examine in depth the continuous maximum flow algorithm.
This algorithm uses a separable evolutionary non-linear differential equation
to find optimum curve and surface integrals on arbitrary integral measures.
The algorithm is a continuous version of the well-known maxflow-mincut
graph algorithm, which has been very popular in recent years in computer
vision applications. It is able to find the optimum and avoid all the local
minima of the formulation. The solution of the algorithm is isotropic. For the
reason of separability the differential equation is extensible to accommodate
fields (images) in arbitrary dimensions.

The solution of the differential equation is calculated by the broken line
approximation method. The equation can be iterated on locally, so this gives
space to a fine-grained parallelization in the implementations. Common archi-
tectures, however, are specialized in sequential execution, so a parallel imple-
mentation is not straight-forward. In this thesis we propose efficient parallel
implementation on the x86 architecture. The details of the implementation as
well as the challenges of the architecture are discussed in section 3.3. There
are also other architectures, some of which have explicitly been designed to
execute fine-grained parallel implementations. In section 3.4. we also propose
an implementation on the GPGPU architecture. According to the profiler,
the implementation saturates the GPGPU system up to 90%. With the im-
plementations being as cross platform as possible we test both the x86 and
the GPGPU implementation on the Cell Broadband Engine Architecture
(CBEA). The details of the portability are discussed in section 3.4.3. With
the optimal implementations we can achieve improvement of up to two orders
of magnitude compared with an optimized but sequential implementation.

Finally in chapter 4. we propose segmentation methods using the maxi-
mum flow algorithm to segment silica beads, lipidic membranes and fibrous
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materials. The images were reconstructed from a series of 2D tomographic
projections with growing tilt degree.

However, due to physical sample preparation constraints, the range of
projection angles is limited to 120 degrees (due to the thickness of the grid),
and so some parts of the resulting images are not reconstructed precisely. The
result of the microscopy are three-dimensional images, however the signal-to-
noise ratio becomes very low near object’s poles due to the so-called missing
wedge effect. In the case of the silica beads we use the Hough transform
to find the seeds for the objects, whereas we propose a special measure to
avoid the acquisition noise. For the lipidic membranes, we propose a method
for finding the seeds of the segmentation in case of higher noise-than-signal
ratios. The seeds are derived from the cumulated data using incomplete slice
segmentations. After the segmentation we carry out measurements of the
physical properties of the objects. These measurements include curvature
estimation for the extent of particle attraction and distance measurements.

We demonstrate that the continuous maximum flow algorithm is particu-
larly useful in the segmentation of 3D nanotomographic and medical images.
It is robust, little sensitive to noise. We show that the algorithm is paralleliz-
able and we propose efficient implementations on wide variety of hardware.
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The general problem of image segmentation is coeval with the digital image
acquisition. Segmentation can be defined as the problem of partitioning the
image into regions of interest. This general subject covers a wide variety
of potential applications [1]. Some applications, like bar-code recognition,
are common, but not always appreciated as image segmentation problems.
Others, like typical industrial applications, where cameras are installed on
the production lines are also not as known to the general public. Cameras
can record the products during fabrication. The acquired images can then
help filter the end products for defects [2]. They can also guide the machines
during the production. The product can have minor variations even within the
same series. Automatic welders, for example, can be guided by the segmented
image [3]. Cameras are frequently used in production of printed circuits. After
the segmentation of the wire track on the circuit, broken wires can be detected
by comparing the segmentation to the blueprint.

In materials science a sample of material is analyzed using X-ray or elec-
tron tomography, then important characteristics, like material degradation
or the extent of corrosion can be automatically assessed. The quality of a
composite material, like concrete, can be judged by detecting the proportion
of its components. For this we first need to segment each type of object in
the image.

In biological or agricultural applications companies often detect the dis-
tribution of the seed-size [4] or the proportion of broken seeds in the sample.

In medical application image acquisition is the general preferred way of
diagnostics as it is non invasive. An example is mammographic images [5] or
the diagnosis of a broken bone. White cell detection in blood samples is also a
widely adopted technique [6]. With the development of 3D or 4D acquisition
techniques, segmentation has become an even more important part of the
procedure than with 2D images. 3D segmentation is generally carried out on
2D slices. In [7] authors demonstrate that this approach can be very time
consuming. Moreover from 2D slices many of the typical 3D characteristics
like topology or connection hierarchy are difficult to enforce and validate.
Applications include tooth restoration [8], heart chamber segmentation, etc.

In the research area image segmentation has also been widely adopted.
Image segmentation is both used as a research tool and research is carried
out to improve existing segmentation techniques. For image data can repre-
sent huge quantities as well as 3D or 4D images, relying on computer vision
techniques is in many cases more a necessity than a convenience.





Chapter 1
Image Segmentation Problems

From the mathematical and algorithmic point of view, image segmentation is
a difficult, open problem. The problem can be divided in two general parts. As
we mentioned in the introduction, segmentation is equivalent to partitioning
the image into regions of interest. In the simplest case (in the sense of region
cardinality) there are only two regions: the object and the background. The
first problem is, therefore, to search conditions for an optimal partitioning.
In other words, given two partitioning of the image we need to be able to
decide which of them is a better segmentation. Human validation is sometimes
possible for the end result, but it is practically impossible to incorporate the
human factor in the mathematical formalisms.

Several models have been proposed, but most segmentation criteria try to
formalize the properties of the Human Visual System (HVS) model. In this
model, the objects are limited by edges, and objects appear in front of some
background. The HVS can interpolate missing parts of the object or filter the
noise in the image. This model has to deal with some aspects of human vision,
which are not yet fully understood. Humans are good at edge interpolation,
motion detection, face and handwriting recognition, color vision and raster
vision1.

The criteria for image segmentation can be as simple as the intensity of
the light in the image. A simple threshold can provide sufficient, though not
sophisticated results in some cases and it is also used as the last step of
many image processing frameworks. More complicated criteria can be based
on the connexity, the area, position and shape or the border of the objects
to segment as well as any combination of these.

Once that the mathematical criteria have been formulated, the second
problem is to propose algorithms for partitioning the image in order to meet
the given criteria. Methods can include starting with a degenerated partition2

1 we can distinguish many of different colors, but the number of different color sensors
(cones) is much lower then the number of brightness sensors (rods)
2 In a degenerated partition the whole image is either in the partition of the object or the
whole image is in the partition of the background.
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and successively erasing points until the searched criteria is met [9]. Other
methods try to reformulate, project or convert the image field. After the
reformulation the image can be thresholded into the optimal partition [10].

1.1 Minimum Surfaces

In this section we collect the basic notions and problems of image segmen-
tation and the contemporary work designated to address these problems. In
this thesis we deal with continuous image segmentation of grayscale images.
We perceive the image I as a continuous Rd → R function. Here d repre-
sent the image dimensionality. The images we work with are often noisy and
many feature acquisition artifacts. We seek the objects in these images which
are limited by their borders. We will also demonstrate that segmentation is
closely related to image denoising. Indeed, both deal with determining re-
gions of the image that are similar. In the following sections we are going to
collect the basic ideas and problems of continuous image processing.

Several authors have suggested continuous formulation for image process-
ing [11, 12]. They have also demonstrated why is it important to use edges
for segmentation. Scientists often use this formulations for image processing
problems. Let us consider a digital grayscale image of size [i0, i1, . . . , id−1].
In the computer memory representation the image I is a function I :
0 . . . i0 − 1 × 0 . . . i1 − 1 × · · · × 0 . . . id−1 − 1 → R. In the continuous do-
main, we interpret the same image as a function I : Rd → R, for which
I[x0, x1, . . . , xd−1] = I(x0, x1, . . . , xd−1)∀x0, . . . , xd−1. By abuse of notation
where there is no confusion, we refer to both functions as I. Now we are going
to describe the problems, that we can define with the continuous formulation.

The simple idea is to find an object in I. The object would be delimited
by edges. The edges can, however, be damaged or incomplete. We generate
a measure g which in every point x will represent the penalty g(x) of the
edge containing the point x. One intuitive choice could be the inverse of the
gradient ( 1

∇I ). We are now looking for a surface containing as many low
intensity points as possible.

More generally we would be looking for an object in I delimited by some
property in g. This property can be incomplete3. The general idea is that
there should be no constrain on the measure we would like to consider. It can
be based on any property, like edge detector or based on texture intensities.
In any case we convert the image I in image g. The intensities of g(x) will
represent penalty for x to be on the border of a partition. We are looking for
the hypersurface4 which contains low intensity parts while still remaining a
surface. We call this surface the minimum surface. Mathematically we can

3 not defined or not available everywhere
4 The hyper-surface is the d − 1 dimensional surface. It is a curve for 2D images and a
surface for 3D images.
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describe it as the result of the geodesic active contour (GAC)method.

min
S⊆C⊆Ω

∮
C

gds (GAC)

Here S is a subset of the image, which we constraint to be in the object.
The (GAC) functional represents the optimal curve on the field. The method-
ology of curve integral minimization is well established in mathematics of
differential equations. As a simple example we can consider a unit square
in R2, and seeking the shortest path, which connects its two points A and B
on opposite sides. We can now imagine the square to be a geodesic map of
some mountains. We would like to find a path between A and B using the
smallest energy possible. The general area of mathematics that concern itself
with such problems is called the study of variations. The unfortunate fact is,
that many of these problems do not posses a closed form solution. Therefore
the idea is to approximate the curves with some numerical methods.

In this chapter we have seen that image segmentation problems can be
solved with the continuous approach of minimum surfaces. The formulation
of the minimum surfaces represents a close model of the Human Visual System
and it can be mathematically formulated by simple means. In the next chapter
we collect some specific notions about these minimization problems.





Chapter 2
Maximum Flows

The integral minimization with numerical methods can be attacked in two
ways. These two ways are fundamentally different in their methods, precision,
computation time and theoretical guarantees which they can provide. The
first approach is to consider the image as a simple graph. The points are
usually connected with the neighboring points. In this case the paths can be
a set of edges or set of points meeting certain constraints. We generally refer
to the graph based methods as the discrete approach. The advantages of this
approach is, that we only have finite number of cases, so we generally do not
have to worry about the existence of the solution. Naturally as the number of
finite cases increases (possibly exponentially), many discrete methods quickly
become unusable for images of bigger size.

The second approach is to consider the image as a continuous field, usu-
ally a rectangle or a prism, however higher dimensions are also appropriate.
In this case our surfaces become topological planes and the function spaces
uncountable (but separable in certain cases). As the explicit solution does
not always exists, scientists are looking for iterative algorithms to approxi-
mate the solution of the problem. In the continuous case the problem of the
algorithmic efficiency shifts from the classical big O efficiency to the speed of
the convergence.

Also there is a newly raising issue concerning the speed of real implemen-
tations or certain algorithms. The big O efficiency measure of the algorithm
usually does not anticipate the possible parallelization of the algorithm; much
less the extent of parallelization. Local continuous iterative algorithms are of-
ten separable, so their parallelization is much easier than that of graph based
algorithms. In this chapter we are going to walk through some examples of
the curve integral minimization and demonstrate that the curve integral min-
imization is really a sub-problem of the family of total variation minimization
problems.

19



20 2 Maximum Flows

2.1 Maximum Flows in the Discrete Domain

Historically image segmentation by optimization has evolved from the work
of [13]. The original problem dates back to the second world war and was
not motivated by image processing. It can be described as follow. Let us
take a weighted directed finite graph G(V,E,w), where w represents the
edges’ capacity. We separate this graph into two partitions A and V \A such
a way, that A contains a special region S called the source and V \A contains
another special region P called the sink. In the above setup, the edges which
go from A to V \A could be interpreted as the “surface” of A. Here because the
graph is directed, the direction A → V \A is chosen. We denote this surface
with ∂A. The smallest of these surfaces has a special interpretation. This was
first noticed by Ford and Fulkerson and has later been known as the min-cut
problem.

The extention of the problem for image processing can be described in the
following fashion. Let us consider an image with an object of interest in front
of some background. If the characteristics of the background are not rapidly
changing, then the border between the background and the foreground can
be seen as an unusual, rapid change in the local characteristics.

This change can be detected for example with a discrete gradient of the
image. Low gradient values of the image will represent the interior of the
background and the interior of the object. The high frequency parts; the
high gradient values will represent the border between the object and its
background. If we connect the points with high gradients, then we obtain a
hyper-surface. If for some reason the border is not continuous, then the object
will be limited by the hyper-surface which contains most of high frequency
places (most of the border of the object). The area enclosed by the surface
will segmentation. If the gradient of the image is properly calculated, then the
Ford-Fulkerson method provides a way of finding the minimum cut, which is
a curve traversing on the border of the object.

This general method has to be completed or improved for a given problem
in several aspects. First of all, the gradient has to be calculated and filtered.
Secondly, the source set has to be specified, which must be inside the object,
but not necessarily on the border of the object. And finally as the method
is discrete, it has some well known segmentation artefacts which have to be
treated a posteriori or dealt witch during the segmentation process.

Nonetheless, the Ford-Fulkerson algorithm finds an optimal solution in
some mathematical sense: Let us define a measure on G called the graph
measure Å1. For a set S ⊆ E; Å(S) = |S|. Let w denote the weight of the
edge. We define two dedicated sets S ⊆ V and T ⊆ V where S ∩ T = ∅,
referred as the source and sink. We can now define the original formulation
of the min-cut problem:

1 pronounce Jupiter
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min
A⊆V

∫
∂A

wdÅ s. t. S ⊆ A and T ⊆ V \A (FC)

We call (FC) the Ford-Fulkerson-cut. We do not need a special discussion on
whether the minimum exists as our graph G is finite. This definition conforms
the integral definition and the reader can easily verify that Å is a measure.

For the minimization of (FC), [13] used a dual approach. They had defined
a discrete flow F on G, which is represented on every edge by wF with the
properties from (FF). It essentially means, that we attribute each edge a
flow wF which is less then the capacity wG of the edge in G. In each inner
node of the graph the flow is divergence free.

F (V,E) ∼= G(V,E)

wF (e) ≤ wG(e) ∀e ∈ E∮
∂v

wdÅ = 0 ∀v ∈ {V \S\T}
(2.1.1)

If F satisfies (2.1.1), than we call F a discrete flow. With this definition, the
authors formulated the dual problem of (FC).

max

∮
S

wFdÅ s.t. F is a flow (FF)

The authors presented a proof that (FF) is equivalent with (FC) in the sense,
that the saturated edges of the discrete flow will form the minimum cut of
the graph G.

The traditional approach of image segmentation with the discrete maxflow
is to use a rectangular or parallelepipedic grid. The pixels of the image rep-
resent the nodes of the image and each node is connected with its four or six
neighboring pixels2. Due to the discrete nature of the graph formalism the
computation becomes both slower and more memory intensive as the image
becomes larger. Also, as the surface normals can only be the edges of the
graph, in a grid-graph the solution will likely be anisotropic3. On fig. 2.1(b).
the vertical line has smaller integral, because it is only using one arrow path,
whereas the desired border uses two. This artifact does not dissappear even
if the resolution increases.

The problem can, however, be solved using carefully chosen special graphs.
In [14] the authors have solved a more general problem on discretized fields.
They have used a well known mathematical formulations from variational the-
ory, the Euler-Lagrange functional. Let L(x, u,∇u) be a function which de-
pends explicitly on x some function u(x) and its gradient∇u(x). We call (EL)

2 a pixel has four neighbors in 2D and six in 3D
3 The horizontal and vertical planes will have lower integrals as their tilted counterparts.
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(a) (b)

(c)

Fig. 2.1: The optimal curves on images. On image (a) there is a locally optimal
curve. The optimum curves are presented on images (b) and (c). On image (b)
the curve is optimized on the edges, while on image (c) the curve is optimal
on the points.

the Euler-Lagrange functional.

E =

1∮
0

L(x, u,∇u)dx (EL)

To avoid trivial solutions, usually u is subject to some limit conditions. Here
we would like to remark that with (2.1.2), minimizing (EL) coincides with
the (GAC) functional. In this way the optimum of (EL) will be the curve with
the smallest integral, regardless on its position. The smoothness will not be
constrained on the gradient of the curve, but it will still be enforced, through
the length of the curve.

LGAC(x, u,∇u) := g (2.1.2)

We want to minimize E with respect to u. Simply stated, we have an energy
E which depends explicitly on x, u and ∇u. We want to find u for which (EL)
is the minimum.

The authors of [14] then minimize (EL) on a discretized field. They start
with the idea of creating a planar graph, which approximates (EL) contin-
uously on the domain of F . In 3D they create a partition Pkirs of the field
into polyhedra instead of a graph. After the graph or the partition has been
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created, they can evaluate F on each segment (edge) or facet of each polyhe-
dron of the partition, either analytically or numerically. Each edge or facet
of each polyhedron can thus be attributed a weight. The authors proposed a
formulation for choosing a dense partition, and thus any plane of reasonable
regularity can be approximated with a subset of facets forming a topological
plane.

From the partition the authors derive a dual graph P ∗kirs. Each partition
from Pkirs represents a node in P ∗kirs two nodes are connected iff their cor-
responding partitions share a facet in Pkirs. The weight of each edge is the
weight of the common facet. This weighted graph can then be used to find
the optimum surface. In 2D, the surface is a path, in higher dimensions its a
hyper-surface.

In the 2D case, as the optimal surface is a path, it can be found with
the shortest path algorithm. In higher dimensions the surface or the hyper-
surface can be calculated from the dual graph. The authors show, that the
optimum surface is equivalent to the (FC) cut of P ∗kirs. The inconvenience of
the method is, that its computational demands increase rapidly. For this the
authors present a relaxed model in which the initial graph can be constructed
in a more sophisticated way.

They experiment both with deterministic and random constructions. Their
grids are generalizable to higher dimensions, but the number of nodes in
they graphs increase heavily. Their function domain is generally O(n2n+2),
where n is the extent of discretization (not the image size). In the random
graphs, they increase the density around anticipated solution thus decreasing
the n required.

No algorithm to the author’s knowledge has been proposed to find the
optimum solution for the general at least 2D (EL) problem in the continuous
domain. Some authors, however managed to find solutions for some subsets
of the problem. Now we are going to collect some interesting propositions
concerning some energy function minimizers in the continuous domain.

2.2 The Minimum Cut and Maximum Flow in the
Continuous Domain

The max-flow–min-cut formulation can be interpreted in the continuous do-
main. One of the propositions can be found in [15]. The author, Strang, has
used a continuous vector field F for representing the flow in the continuous
domain Ω. He has drawn special attention to the border of Ω, but we omit
the question of the borders in this thesis. In the formulation of Strang, F has
been subject to the following constraints:
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|F | < g on Ω

div F = −λS whereas


S > 0 on the source
S < 0 on the sink
S ≡ 0 otherwise

(2.2.1)

From the above consideration Strang then defined the (MFS) problem.

maximize λ s. t. (2.2.1) (MFS)

The dual formulation is also analogous to the discrete case, the Å plane be-
comes a hyper-plane, and the minimum cut becomes the (GAC) formulation.
Finally the author proves (2.2.2), namely that there is a similar equivalence
between the max-flow and the min-cut than as in the discrete case.

maxλ = inf
{S>0}⊆C

∮
∂C

gds∫
C

S
(2.2.2)

Nozawa in [16] goes even further by proving an equivalence, that is the min-
cut is essentially a total variation minimization problem.

inf
u

∫
Ω

g|∇u| (2.2.3)

(2.2.3) is minimized by a characteristic function 1C and ∂C is the optimal
cut for (GAC).

2.3 The Algorithm for Finding the Optimum Flow

We have based our work on the algorithm described in [17]. In the continuous
case the set of points is replaced by a continuous scalar field P and the set
of edges is replaced by a continuous vector field F. F is a flow if it satisfies
two conditions:

• Conservation of flow: ∇ · F = 0
• Capacity constraint: |F| ≤ g

The conditions are analogous to the discrete case. Every closed surface around
S limits the minimal surface. The continuous maximum flow system is de-
scribed by the following equations:
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∂P

∂τ
= −∇ · F (2.3.1)

∂F
∂τ

= −∇P (2.3.2)

|F| ≤ g (2.3.3)

Here P is analogous to a pressure field and F a vector field of the flow. P is
forced to 1 on the source and 0 on the sink. The solution of the equation will
be discussed in chapter 3. For the purposes of section 2.5. we can reformulate
the algorithm as:

Pn+1 = Pn − ∂τ∇ · Fn

F̃
n+1

= F
n − ∂τ∇P

F
n+1

= F̃
n+1

min

{
1,

g

|F̃n+1|

}

Now let us suppose that it converges for a given g. If the system is stable the
following statements apply:

∇ · F = 0 (2.3.4)

∇P = 0 if |F| < g (2.3.5)

∇P = −λF if |F| = g (2.3.6)

(2.3.4) simply restates the conservation of the flow. (2.3.5) applies if the
flow have stabilized during the evolution without the (2.3.3) constraint. If
without the constraint the flow would grow higher, still because the system
is stable, its direction and magnitude remain constant. From (2.3.2,2.3.3) we
can deduce that ∇P ·F ≤ 0, which means that P is a non strictly monotone
decreasing function along the flow lines. If F is dense, as it is divergence-free
these flow lines can only initiate in the source and end in the sink. Now we
define set A = {x|P (x) > p} with 0 < p < 1. On the iso-surface Y := ∂A
the ∇P 6= 0 by construction, which means, that in these points (2.3.3) applies
thus: ∫

A

∇ · FY =

∮
Y

NY · FdY =

∮
Y

gdY =

∮
Y

dG

This implies, that every iso-surface is a minimum. If there is only one min-
imum this also means, that the pressure field can be 0 ≤ P ≤ 1 on a zero
measure set. Before generalizing the integral formulation we would like to
introduce another problem of image processing; the image denoising.
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2.4 Discrete vs. Continuous Approach

If we consider the optimization approach to image segmentation we can find
several key differences. In this section we are going to compare the continuous
maximum flow algorithm with the Boykov-Kolmogorov version of the graph-
cut algorithm. The first main difference is the quality of the segmentation.
In the standard case the graph corresponding to the image is created the
following way: one considers the pixels of the image as nodes of the graph and
connects each node with its four or six neighbors in 2D and 3D respectively.
This approach has a well known side effect of preferring the vertical and
horizontal lines to interpolate the object at places, where the gradient is
weak. An example can be observed in fig. 2.2.

(a) (b)

(c)

Fig. 2.2: An example of continuous maximum flow segmentation and graph-
cut segmentation with standard discretization. The input measure 2.2(a) is
set to zero on the black area and set to 1 on the white area. The graph-
cut 2.2(b) shows segmentation artefacts when compared to the continuous
maximum flows 2.2(c).

The above mentioned artefact can be avoided, as discussed in section 2.1,
but the solution is not always applicable for an other inconvenience of the
discrete approach: memory consumption. With the continuous maximum flow
algorithm, we can segment a [500 × 500 × 500] pixel size 3D image using a
GPGPU with 3GB of memory. For the same image the Boykov-Kolmogorov
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algorithm would consume 7 GB of memory (measured) using standard dis-
cretization. This fact in itself would rule out many embedded applications.
Furthermore, if we would refine the graph further to avoid segmentation
artefacts we would easily run out of the memory of any contemporary SMP
machine.

As for the computation time, the Boykov-Kolmogorov algorithm performs
well, however it is much less flexible when considering sub-optimal solutions.
On fig. 2.3, which is a 3D image, the surface of the cumulated surface of
the fibers is bigger than of a single cylinder encompassing all of the fibers.
This means, the graph-cut will always return the cylinder if we specify all
the sources at once. With continuous maximum flows, we can stop the seg-
mentation before it reaches the steady state and we can get the fibers by
thresholding the potential field. The problem can be solved optimally with
both algorithms by segmenting the fibers one-by-one, but this would mean
620 segmentations, that is one for each fiber, in which case the segmenta-
tion time of the graph-cuts would be incomparably higher than that of the
suboptimal segmentation with the maxflow algorithm.

Fig. 2.3: An example of the graph-cut segmentation artefacts in 3D. The
yellow continuous maximum flow segmentation is superimposed by the red
graph-cut segmentation. The red “bumps” are the segmentation artefacts of
the discretization.

2.5 Total Variation in Convex Analysis and the Maxflow
Algorithm

In the image denoising problem, we suppose that the image I is created by
the real image and some noise as

I = Ireal + Z

The problem is to determine the noise and reconstructing the image Ireal.
The key observation is that the noise can be modeled as the continuation of
some kind of discrete i.i.d. probability variable z. This variable will have high
total variation, that is
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Ω

|∇Z| � 1

The natural idea then follows, namely to find an image u which is close to the
image, but has low total variation. There are two similar approaches to the
problem. One formulation has been proposed in [18]. In this paper the authors
were looking for a partition of the image into n regions, separated by piece-
wise smooth boundaries. Than they propose to minimize the Mumford-Shah
energy functional on these regions.

EMS(u) = λ

∫
Ω

(I − u)2dx+ µ

∫
Ω\Γ

|∇u|2 + |Γ | (Mumford-Shah)

The first term in EMS is the fidelity term. It ensures that the optimal im-
age will be close to the original in the integral metric, the second term is a
regularity term, which assures, that the image will have low total variation
in the interior of the partitions. The third term is also a regularity term. It
assures that the total length of regions will remain small, that is we should
not consider every pixel a separate partition. The disadvantage of the formu-
lation is that the minimizers have to consider the curve integral and the total
variation together.

For us, the interest in image denoising lies in its connection to the integral
minimization. We can reformulate (GAC) using a Sobolev function u with
sufficient regularity and codomain [0, 1] as

min
u|S≡1

∫
Ω

g |∇u| (2.5.1)

that is the weighted total variation of u with u constrained to 1 on some set S.
We are going to demonstrate the equivalence in R. In (2.5.1) we consider the
differential in the sense of distributions.

Definition 2.1. We consider the set of functions ϕ ∈ C∞0 (Ω), i.e. the func-
tions infinitely differentiable with compact support supp ϕ ⊆ Ω. For ev-
ery f ∈ L1(Ω) we define the linear operator (2.5.2) to be the distribution
associated with f . We note the set of distributions with D.

Tf := 〈f, ϕ〉 =
∫
Ω

fϕ (2.5.2)

Two distributions Tf , Tg ∈ D are equivalent iff the following holds:

〈f, ϕ〉 = 〈g, ϕ〉 ∀ϕ ∈ C∞0 (Ω)
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We consider that f ∼= g in the sense of distributions, if they behave similarly
on the ϕ test functions. The interest of distributions lies in the differential
operator and later in the integral generalization.

Definition 2.2. Let Tf be a distribution for some function f ∈ L1(Ω). We
consider (2.5.3) to be the differential of f in the sense of distributions.

∇Tf := −〈f,∇ϕ〉 (2.5.3)

Now we consider the relation between ∇Tf and T∇f . Substituting the
definition we integrate per partes:

T∇f = 〈∇f, ϕ〉 =
∫
Ω

∇fϕ p.p.
= [fϕ]∂Ω −

∫
Ω

f∇ϕ = −〈f,∇ϕ〉

After the integration per partes, we consider [fϕ]∂Ω . In the definition we have
restricted ϕ to have a compact support within Ω, therefore the product is zero
everywhere on the border. From this demonstration we can see, that if f is
differentiable in the classical sense, then ∇Tf ∼= T∇f . If f is not differentiable
in some point x0 ∈ Ω we can still attribute a differential distribution to f .
This means that the differential in the sense of distributions is an extension
of the differential operator to L1, that is every L1 function is differentiable
in the sense of distributions. If there is no confusion we note Tf and ∇Tf
simply f and ∇f respectively. The integral can also be interpreted on D. We
note that C∞0 (Ω) is dense in L1(Ω). If we consider f ∈ D(Ω) and g ∈ L1(Ω).
Then for the integral

∫
Ω

fg we can apply

∫
Ω

fg = lim
ϕ→g
〈f, ϕ〉

We note that the unicity comes from the continuity of the integral operator.
Here we would like to remark, that the product fg of two distributions f

and g is not necessary a distribution. Therefore the differential equations
cannot generally be solved using the distributions alone.

Next we are going to discuss the relation of (GAC) and (2.5.1) in R. The
1D (GAC) formulation can be written as (2.5.4), where a, b ∈ R, Ω and S
are a connected intervals of R. We can assume that Ω = [0, 1] without loss
of generality.

min
S⊆[a,b]⊆[0,1]

g(a) + g(b) (2.5.4)

In simple terms, we are looking for an segment [a, b] which encloses S, and
has the smallest possible weight. Now let [a0, b0] be the optimum interval.
We define u as:

u(x) :=

{
1 if x ∈ [a0, b0]

0 otherwise
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We are looking for the integral
1∫
0

g|∇u|. For this we consider first a simpler

integral; that of the Heaviside function H.

H(x) :=

{
0 if x < 0

1 if x > 0
(Heaviside)

From the definition we can calculate the differential of H:

∇TH = −〈H,∇ϕ〉 = −
∞∫
0

∇ϕ = [ϕ]
∞
0 = ϕ(0)

Now substituting u = H(a0 − x)−H(b0 − x) we have equality

〈|∇u|, ϕ〉 =
1∫

0

ϕ|∇u|

=

1∫
0

ϕ|∇ (H(a0 − x)−H(b0 − x)) |

=

1∫
0

ϕ|∇H|(a0 − x) +
1∫

0

ϕ|∇H|(b0 − x)

= ϕ(a0) + ϕ(b0)

Note that in the final step, we have considered the differentials of the Heavi-
side function with the signs of their mollifiers. We can see, that if we substi-
tute ϕn → g we obtain

〈|∇f |, g〉 = lim
n→∞

ϕn(a0) + ϕn(b0) = g(a0) + g(b0) (2.5.5)

With (2.5.5) we can see that in R, for every g we can find an image with the
same total variation as the weight of the minimum surface (2.5.4) on g. If we
would like to show that this image has also the lowest total variation, we can
use the Coarea formula.∫

Ω

g|∇u| =
∫
R

∮
u−1(t)

gdHn−1dt (Coarea)

In the Coarea formula g represents our measure, u is the image with the
minimum variation, u−1 is the inverse of u, whereas Hn−1 is the n − 1 di-
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mensional Hausdorff4 measure [19]. A version of the Coarea formula has been
proven for the continuous maximum flow problem in the space of the distri-
butions D, but here for the sake of simplicity we use a more restricted field.
Let us consider ψ ∈ C∞0 with ‖ψ‖L∞ ≤ 1.

The domains in R degrade into intervals. As the curves are the border
points of domains, the curves in R degrade into the endpoints of intervals.
Let’s therefore consider an image ψ. The weighted total variation of ψ can
be written using the Coarea formula as

∫
Ω

g|∇ψ| =
1∫

0

∮
ψ−1(t)

gdH0dt (2.5.6)

For our case H0(p) = 1 for all points of the interval. Now we are going to
examine ψ−1. ψ−1(t) represents the set of points pi(t), i < Nt, of ψ for which
ψ(pi(t)) = t. If

∫
Ω

g|∇ψ| ≤ ∞ then there are only zero measure values of t for

which Nt =∞. We can therefore continue (2.5.6) as:

∫
Ω

g|∇ψ| =
1∫

0

N−1∑
i=0

g(pi)dt ≥
1∫

0

g(p0(t)) + g(p1(t))dt (2.5.7)

The inequality (2.5.7) holds because an interval has at least two extremal
points. Also as ψ is continuous there will be at least one interval for every t ∈
[0, 1]. Therefore:

g(p0(t)) ≥ g(a0(t))
g(p1(t)) ≥ g(b0(t))

}
=⇒

∫
Ω

g|∇u| ≥
1∫

0

g(a0) + g(b0)dt = [t]10 [g(a0) + g(b0)]

(2.5.8)
The last thing to consider is that if a0 6= b0 then p0(t) 6= p1(t) as the interval
has to contain the source S.

Now we collect our observations. From (2.5.8) we know that on R, the total
variation is greater than the minimum surface for every admissible ψ and
from (2.5.5) we know that there exist a minimizer which is the characteristic
function of the interior of the minimum surface. From this we have shown
or R that (GAC) and the weighted total variation (2.5.1) are equivalent.

In [16] a more general relation between (GAC) and (2.5.1) is proven,
namely that the two relations are also equivalent in the space of distribu-
tions in arbitrary finite dimension.

4 The Hausdorff measure is the generalization of the area in arbitrary dimensions. In trivial
cases it coincides with the intuitive notion of area. The Hausdorff measure gives the surface
in 3D, the curve length in 2D and the number of points in R.



32 2 Maximum Flows

EROF (u, λ) =

∫
Ω

|∇u|+ λ

∫
Ω

(u− f)2 (ROF)

Using the notion of distributions [20] proposed another energy function for
image denoising. The authors in the paper have restricted u to be a Sobolev
function and considered ∇u in the sense of distributions. Their formula-
tion (ROF)5 while similar, avoids referencing the total length of the regions.
Naturally, if we choose a characteristic function χL for some set L ⊆ Ω, the
total variation

∫
Ω

∇L = per(L) will be the Hn−1 perimeter of L. This property

limits naturally the total length of the region- or regions in the image.

ETV(g, λ) :=

∫
Ω

g |∇u|+ λ

∫
Ω

(Ku− f)2 (2.5.9)

We can connect (GAC) with (ROF) using weighted total variation as
in (2.5.9). Here g represents the local cost measure. At higher values of g
we want smoother image, generally in regions, whereas at low values of g
we would like higher fidelity to the original image. We choose low values
of g on the edges, where it permits us to have discontinuities between re-
gions. λ represents the global fidelity. The higher the value of λ, the closer
the solution will be to the original image, that is less noise will be removed
minimizing (2.5.9).K is a linear operator which represents some image degra-
dation, like blurring or tilted projections of the image. K can be, for exam-
ple, the convolution of the image with the Gaussian kernel. An example is
shown on fig. 2.4. Images with differend noise damage are reconstructed using
the (ROF) energy function and the continuous maximum flows. We can see,
that ETV(1Ω , λ) ∼= (ROF) whereas ETV(g, 0) ∼= (GAC). With (2.5.9) we can
see that the image segmentation with minimal surfaces and image denoising
with total variation minimization are both a sub-problem of the total vari-
ation minimization. In the next section we are going to review the problem
from the algorithmic perspective, which will lead us to the same conclusion.
We also look at the numerical solution of the total variation minimization.

In addition to the similarity between the minimum surfaces and total vari-
ation denoising, there exists another set of algorithms, which raise interest in
the continuous maximum flow method. We consider (2.5.10) from the frame-
work of convex analysis.

Econv := min
u∈H

f1(u) + f2(u) (2.5.10)

Here we assume that both f1 and f2 are convex problems. We consider u to
be defined over some Hilbert space. We note that if we set f1 :=

∫
Ω

g |∇u| and

f2 := λ
∫
Ω

(u− f)2, we find ETV.

5 Rudin, Osher and Fatemi
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i)

Fig. 2.4: Total variation denoising with continuous maximum flows. We min-
imize the (ROF) energy. Image 2.4(a) and 2.4(f) have been damaged by a
gaussian noise. Their denoised versions are on subfigures 2.4(b) and 2.4(g).
Images 2.4(c) and 2.4(i) have been damaged by a poisson noise. Their de-
noised versions are on subfigures 2.4(d) and 2.4(i). Subfigure 2.4(e) is a crop
from the original images. It is shown for comparison.
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As both f16 and f2 are convex, (2.5.10) is a convex optimization problem.
Many authors have proposed algorithms to optimize Econv [21, 22, 23, 24].
When both f1 and f2 are differentiable everywhere, the problem is largely
classical and can be solved with variations of the gradient descent algorithm.
If either f1 or f2 is not everywhere differentiable, some authors have proposed
using the proximity operator to solve Econv. In the optimizations, the authors
use a proximity operator for the addends of Econv. The proximity operator
is the unique solution of:

proxf (u) := min
u∈H

f(y)− 1

2
‖u− y‖2 (2.5.11)

Proximity operators have convenient properties, which make them particu-
larly well suited for iterative optimization. In particular, the operator has an
explicit solution in many cases, and an algebra of prox operators exists. As
several problems can be solved using convex analysis, an efficient algorithm
and implementation of the proximity operators is considerably important.

An exact proximity iterator for the total variation was first proposed
in [25]. Later the authors of [26] gave an explicit link between TV minimiza-
tion and a variation of the maximum flow algorithm, which correspond to a
projected gradient operator discussed along this thesis. In the remainder of
this section we present the chain of thought from the two papers, that lets us
use the continuous maximum flow algorithm for noise removal by minimizing
the total variation.

As mentioned earlier, historically there have been two independent propo-
sitions for the maximum flow algorithm. From [27], we can deduce the follow-
ing argumentation. We want to obtain the solution of the proximity operator
for the total variation:

min
u

∫
Ω

g|∇u|+ 1

2θ

∫
Ω

(u− v)2 (2.5.12)

We observe that we can replace the total variation computation with the
following convex maximization problem:

g|∇u| = max
‖F‖≤g

F · ∇u (2.5.13)

We can express F explicitly as F = g ∇u|∇u| . After substituting (2.5.13)
into (2.5.12) we obtain:

min
u

max
‖F‖≤g

∫
Ω

F · ∇u+
1

2θ

∫
Ω

(u− v)2

6 The convexity of f1 has been proven in [16]
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As the minimization is convex, we can exchange the min-max operators, and
with

∫
Ω

F · ∇u = −
∫
Ω

u div F, we can eliminate the gradient:

max
‖F‖≤g

min
u
−
∫
Ω

u div F+
1

2θ

∫
Ω

(u− v)2 (2.5.14)

With the corresponding Euler-Lagrange equation:

− div F+
1

θ
(u− v) = 0 (2.5.15)

u = θ div F+ v (2.5.16)

Re-substituting (2.5.16) into (2.5.14) we can eliminate u from the equation:

max
‖F‖≤g

∫
Ω

−
(
θ div F+ v

)
div F+

1

2θ

∫
Ω

(
θ div F+ v − v

)2
= max
‖F‖≤g

∫
Ω

−
(
θ div 2F+ v div F

)
+

1

2θ

∫
Ω

θ2 div 2F

= max
‖F‖≤g

−
∫
Ω

v div F− θ

2

∫
Ω

div 2F

= min
‖F‖≤g

∫
Ω

v div F+
θ

2

∫
Ω

div 2F

The Euler-Lagrange of which is:

v + θ div F = 0

From the above consideration and (2.5.16), we can deduce the following pro-
jected gradient descend algorithm:

F̃
n+1

= F
n
+
τ

θ
∇un (2.5.17)

F
n+1

= F̃
n+1

min

1,
g∥∥∥F̃n+1
∥∥∥
 (2.5.18)

un+1 = v + θ div F
n

(2.5.19)

This proximity operator has been independently discovered by [27] and re-
discovered by [10]. This provides a solution for the proximity operator of
the total variation. Furthermore if we substitute v := un, then the system
changes to:
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En =

∫
Ω

g|∇un|+
1

2θ

∫
Ω

(un − un−1)2

Experimental results show, that the above modification is still stable and
En → minu

∫
Ω

g|∇u|. This is the modification, that we use for segmentation

in chapter 4. From the above argumentation we can see, that an efficient
implementation of the maximum flow algorithm is important both from the
segmentation and the total variation minimization point of view.

2.6 Summary

In this chapter we have discussed the mathematical approaches to surface
minimization. From the two main approaches, the graph-based and contin-
uous, we have discussed the most historically relevant and the most recent
propositions. From the graph based approach we have reviewed the Ford-
Fulkerson algorithm and its recent improvement by [14] We have seen that
one of its major drawbacks for image processing is due to its preferred di-
rections. The Ford-Fulkerson algorithm prefers the direction along the axis
which often introduces segmentation artifacts. We have seen that the dis-
crete approach also lacks the parallelization property, as well as it is very
demanding on the computer memory as the desired precision of the results
increase.

We have seen that the continuous approach is also actively researched area
of image segmentation. From the historical formulations of Strang, we went
through the algorithm of Appleton and Talbot, and we have also seen that
the formulation does not end there. We went through a demonstration and
we have seen that the proposed algorithm is also applicable to total variation
minimization. We could then use the same algorithm for image denoising
and image sharpening. The reviewed algorithm is separable and it has mild
memory demand.

In the next part we look into the implementation of the projected gradient
algorithm as well as its parallelization.



Part II
Continuous Maximum Flows:

Implementation and Applications
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There are only two kinds of
programming languages: those that
everybody’s bitchin’ about and
those nobody’s usin’.

Bjarne Stroustrup





Chapter 3
Implementing Continuous Maximum
Flows

The general proposition of algorithms, tend to address the problems, that we
encounter in real-world architectures. Until approximately 2004 the main im-
provement in computation power had been through the increase of processor
frequency [28]. This was a convenient approach from the theoretical point of
view, as the improvement of the speed of the implementations was roughly
proportional to the increase of the processor frequency. Since 2004 the main
source of theoretical performance improvement is in the number of process-
ing units, cores. A modern x86-64 architecture can have as many as 16, while
GPGPU architectures can have several hundreds of identical (but simpler)
cores on a single die as of 2011. These are examples of homogeneous archi-
tectures. Apart from this path of architecture development, the computing
industry has also begun to experiment with massively SIMD1 and heteroge-
nous architectures.

As for any algorithm, an efficient implementation is inevitable. The al-
gorithm presented in [10] is a fine-grain parallel algorithm. We present here
implementations on three different architectures. Particular attention will be
given parallelization. We carry out estimations and the measurements for 2D
and 3D images. The algorithm (and the implementation) supports images
of arbitrary dimensions, however the majority of the problems (as of august
2011) still remain at most 3D.

To understand the main challenge let us imagine the following maxflow-like
but simpler algorithm:

ai = bi + bi+1 + bi+2 + · · ·+ bi+k

bi = ai + ai+1 + ai+2 + · · ·+ ai+k
(3.0.1)

(3.0.1) is an iterative update scheme. Let us say we want to parallelize this
algorithm. If we would simply partition the indices between the threads A
and B, than very likely one of the threads (A) would finish updating a faster

1 Single Instruction Multiple Data

41
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than the other. Then A would proceed to update b from the values of a
which would not have been updated by B yet. The only way to avoid the
interference is if the two threads synchronize, that is to say the threads wait
for each other, both after updating a and b. (3.0.1) is therefore a fine-grain
parallel update scheme.

The most common computer architecture today is x86. Historically x86 is
a sequential architecture. The commands are input into a pipeline and are ex-
pected to be executed in-order. More precisely, the result of the computation
is supposed to be that of the in-order execution. In practical implementations
the processor executes the commands out-of-order but only if it can guaran-
tee that the result will be unaltered by the permutation. During the past two
decades the x86 architecture has accumulated lots of instructions. Some of the
instructions are composed of several simple operations. This can be an addi-
tion followed by a multiplication or a jump based on a condition. The natural
way to implement these instructions is by reusing the existing operations. The
simple operations are collected into pipelines, where an instruction traverses
through units, in which the appropriate operations are carried out. Using
this approach the simple operations can be carried out independently. For
example we want to carry out an addition followed by a multiplication. After
the first part of the instruction, the addition module is ready to compute
for a different instruction. The accumulating number of processor instruc-
tions has made the computation pipes longer. Several reimplementations of
the architecture have tried to reduce the length of the pipelines, but they
are still longer than in the early years of x86. This has an inconvenient side
effect for the fine-grained parallel computation. The pipe works as follows.
We insert the commands into the pipe one-by-one. On the end of the pipe
we can collect the results of the computation one-by-one. There are several
instructions pending in the pipe in normal operations. Therefore if we want
to synchronize the threads on different cores we need to stop inserting data
into the pipe. In (3.0.1) we could not continue as the input may not be ready.
As we stop feeding the pipe, as the pipe finishes the ongoing computations,
it becomes empty. For example, if the pipe processes 10 instructions at the
time, emptying the pipe takes 10 instructions. Therefore the synchronization
on x86 is expensive. Generally x86 will be difficult to implement fine-grained
parallel algorithms on x86 and the details will be discussed in chapter 3.3.

The GPGPU architectures are becoming more and more significant. His-
torically, the GPGPU architectures have begun as graphical processors in
graphics cards. In a very simplified settings, the 3D scene is a set of triangles
and light sources. In the raster graphic rendering the GPU has to calculate
the color of the triangle based on the illumination. The triangles are then
projected to the computer screen thus creating the image. The color of the
triangle can be calculated using a simple and reduced instruction set2. As
the GPU core is much smaller and simpler than an x86 core, the natural

2 compared to the x86
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way of acceleration was to put more of them on a single die. Today a GPU
can contain hundreds of identical cores. Another advantage of the reduced
instruction set comes from the simplicity of the circuit diagram. As the pipes
are much shorter the GPU cores can be synchronized more strictly, that is to
say finish every instruction in a single clock signal3. Therefore the GPU where
naturally suited for fine-graining. With the increasing demand for graphical
performance, the GPU cores have become more-and-more sophisticated up
to the point where they have become suited for General Purpose compu-
tation. As an advantage of the reduced instruction set if an algorithm is
implementable on a GPGPU unit it can have much higher performance. The
details of the GPGPU implementation can be found in chapter 3.4.

An inconvenience of the GPU architectures is, that it lacks many of the
important instructions for operating system execution. Context switches, pro-
tected instructions are not present in the GPU. Furthermore, while having
a huge cumulated processing power, each single core is slow compared to
even the older i3864 processors. This means, that every program would need
to be reimplemented for the GPU in order to use it as the main architec-
ture in computers. The capability to run legacy software is one of the vast
major strengths of the x86 architecture and the main reason of its ongoing
popularity5.

The natural extention of this idea is to design microprocessors, which con-
tain both x86-like and GPU-like processing cores. This design is referred
to as heterogenous processor architecture. The first mass produced heteroge-
nous architecture was the Cell Broadband Engine Architecture (CBEA). This
architecture encompasses Two PowerPC cores together with eight Synergic
Processing Elements (SPE). The PowerPC cores run the operating system,
while the SPEs accelerate numerical computations. At the time of the writing
of this thesis the CBEA is being phased out, but it is not without interest
for two reasons. Firstly because there are other upcoming heterogenous archi-
tectures6 and secondly because the cross-platform programming environment
is still an open question. As GPGPU does not support the full C or C++
languages, the new cross platform development language is of high scientific
interest. The details of the implementation on this architecture can be found
in chapter 3.4.3.

Another approach of parallel computation is to use a explicit instruction
level parallelism. It is usually implemented in a massively SIMD instruction
set. In a SIMD instruction the same mathematical or logical operation is

3 In the x86 architectures the modules are not synchronized, so an instruction can take for
example 2.3 clock signals
4 The i386 is the smallest subset of the x86 instruction set that is capable of running a
multitasking operating system.
5 Compared to different but fully featured architectures like SPARC, PowerPC, MIPS,
Itanium, etc.
6 The AMD fusion is a current candidate for heterogenous processing.
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performed on multiple data. In the classical implementation7 the vectors are
four float long.

a+ b⇔


a0 + b0

a1 + b1

a2 + b2

a3 + b3

(3.0.2)

In a more recent, massively parallel SIMD architecture8 the vectors can be
eight or sixteen float long. In each instruction the instruction is executed
on all elements of the vector. Naturally for the algorithm to benefit from
the SIMD instruction set each step has to be divisible in eight or sixteen
independent operations. Unfortunately we did not have a massively parallel
SIMD processor in disposition, but we have used the SIMD instruction set of
the x86 processors to accelerate the computation. This implementation could
be simply adapted on Itanium processors.

In this part we are going to detail efficient implementation of the maxflow
algorithm as well as the real-word performance of the implementations. In
the estimations and the subsequent measurements we will use two types of
images. A 2D image [640×400] and a 3D image [500×500×500] will be used for
benchmarking. All the source code used in this part is freely available under
the CeCILL license. All but the source code for the CBEA is published as a
part of the Pink Image Processing Library [29]. A short overview is presented
in appendix 5.

For an efficient performance boost, the implementation of any algorithm
has to be capable of dividing the computation to several isolated tasks. The
extent of isolation will be discussed in section 3.3.1.3. Also while most of
today’s algorithms still treat the memory as a single linear block of values, the
increasing size of the memory yields to higher latencies and lower proportional
memory bandwidth. The memory architectures of modern middle class SMP
computers will be discussed in section 3.3.1.1. For the benchmarking the
following architectures will be used:

pc4356c Is a middle class workstation HP xw9400. This workstation fea-
tures two Quad-Core AMD Opteron(tm) 2360 SE processors running at
2.5GHz. This system possesses two NUMA nodes.

blade13 Is an IBM HX5 blade server featuring four Intel(R) Xeon(R) L7555
octo-core processors clocked at 1.87GHz. This system possesses four
NUMA nodes.

tesla Is an NVidia Tesla C2050 GPGPU card. It features 448 CUDA cores
clocked at 3MHz and 3GB memory.

blade10 Is an IBM blade server featuring 2 Cell Broadband engines clocked
at 3.2GHz.

7 AMD’s 3DNow! from 1998 or Intel’s SSE from 1999
8 like Intel Itanium architecture
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With these systems we will be able to compare the maxflow algorithm
proportional to the hardware cost as well as some of the drawbacks of modern
x86-64 systems in implementing fine-grained parallel algorithms. The next
chapter will deal with the theoretical considerations.

3.1 Theoretical Considerations

Before the efficiency of an implementation can be judged it is necessary to
make some theoretical estimates of the computational power and memory
bandwidth needed. For these estimations, we will assume the following setup:
The simulation will be carried out on 4 byte floating point9 arrays. We will
test two images of size [640× 400] and [500× 500× 500]. The 3D image used
for the benchmarking can be seen on fig. 3.1. The number of iterations will
be set to 300010 and 3000011. For the theoretical needs of the algorithm, we
consider the memory bandwidth as the major barrier. We will demonstrate,
the implementation scales proportionally to the memory bandwidth.

As for the memory bandwidth, we need to consider every access to a pixel
of the image. A memory access can be cacheable or un-cacheable, depending
on the size of the array on which the algorithm has to operate. In practical
streaming algorithms, the memory bandwidth will be much lower than the
computation power of the processor.

3.1.1 The Dynamics of the Iterations

In the total performance of the maxflow segmentation it is also important to
consider the how the iteration time is distributed among individual iterations.
The naïve idea would be to think of a uniform distribution, that is to say every
iteration would take t0(I) time. This is not the case. In fact the iteration time
depend on the image I, the sources and sinks S. Somewhat less intuitively
the iteration time also depends on the field of the flow F . If we initialize
F ≡ 0, then F will be a function of the number of the iteration. The final
model can be represented as (3.1.1).

tn(I, S, F )⇔ tn(I, S, F (n)). (3.1.1)

We know from the profiling of the maxflow algorithm, that by far most of
the computation time is used while updating the constraint. We know that
the constraint is updated when the total flow exceeds the given constraint.

9 IEEE Standard for Floating-Point Arithmetic (IEEE 754)
10 3000 iterations are typically sufficient for practical segmentations
11 30 000 iterations are typically sufficient for convergence
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(a) (b)

(c) (d)

(e)

Fig. 3.1: The image used for benchmarking the 3D segmentation. On image
(a) we can see a 2D slice of the image. Image (b) shows the segmentation
superimposed on the 2D slice. Images (c) and (d) show the result of the
segmentation of the fibers. On image (e) we can see a 3D volume rendering
of the original 3D image. We can see, that it is very difficult to recognize the
objects without the segmentation.
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We also know from theory that the flow will equal the g constraint on the
optimal hyper-surface. In the beginning when the flow is zero no constraint
is enforced, so the iterations are naturally faster. Later on, when the hyper-
surface begins to formulate, the constraint has to be enforced on higher and
higher areas of the image, so the iteration time tn increases. The slowdown
can be measured, but whether the iteration time sequence tn is monotone or
quasi monotone in n is yet to be determined.

3.1.2 Memory Bandwidth

We are going to follow the maxflow algorithm detailed in section 2.4. For the
calculation we need an array for the P , d arrays for F and an array for the g
constraint. In a practical implementation, the limit conditions (the source
and the sink) have to be enforced as well. For the efficiency of comparisons,
the indicators of the source and the sink are also kept in a floating point array.
These arrays represent for a 2D image 5×N floats, and for a 3D image 6×
N floats where N is the number of voxels (3D). This is the pure memory
consumption. If an iterative streaming algorithm consists of N iterations,
each pixel of the image has to be accessed proportionally N times. If we
know the memory bandwidth of the system, the scale-up can be constrained
as

tp ≤ t1
m1

mp
(3.1.2)

where tp is the time needed for the algorithm using p threads, t1 is the time
on a single thread, mp is the memory bandwidth achievable on p threads
and m1 is the memory bandwidth achievable on a single thread. As each
pixel has to be processed in each part of the iteration, the data needed by an
iterations is:

• Updating the potential
The potential is updated from the flow arrays, however the limit condi-
tions are also enforced in this step. For this we need to access each value
of the potential, the flow and the srcsink array. This means, that for up-
dating the potential, we need to access 4×N floats for a 2D and 5×N
for a 3D image.
• Updating the flow

The flow is updated from the potential. This means, that 3×N floats for
a 2D image and 4 ×N for a 3D image, as the limit conditions need not
be updated.
• Updating the constraint
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2D image
iterations 1 3000 30000

flow 2.93 MiB 11.44 GiB 114.44 GiB
pot 3.9 MiB 8.58 GiB 85.83 GiB
cons 2.93 MiB 11.44 GiB 114.44 GiB
total 10.74 MiB 31.47 GiB 314.71 GiB

3D image
iterations 1 100 1000

flow 2.5 GiB 250 GiB 2.44 TiB
pot 2 GiB 200 GiB 1.95 TiB
cons 2.5 GiB 250 GiB 2.44 TiB
total 7 GiB 700 GiB 6.83 TiB

Fig. 3.2: Estimated memory bandwidth consumption of maxflow for stream-
ing

The constraint is updated on every arrow of the flow. The reference con-
straint g is used to decide weather the flow exceeds the limit, so we need
to access 3×N floats for a 2D image and 4×N floats for a 3D image.
In summary, we need (4+3+4)×N = 11×N floats for a 2D image and
(5+ 4+5)×N = 14×N floats for a 3D image. For our reference images
these are collected in table 3.2.

3.1.3 Synchronization

The maxflow algorithm consists of three major steps: 1. updating the po-
tential 2. updating the flow 3. enforcing the constraint on the flow. In each
three steps one has to use the neighbors of the point to update its value. This
means, that the flow cannot be updated before all the potential values are put
in place. This results in three synchronizations, barriers, for each iteration. If
a barrier is called, the thread must suspend its calculation until all threads
have finished with their calculation. In practice this has several ramifications,
which will be discussed in section 3.3.1.3.
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3.2 The Reference Implementation

The reference implementation will be the one from [30]. In that report we
have carried out a detailed analysis of the prefetching, and have discussed
out first intent to eliminate the branches from the implementation. In the
reference implementation, as well as in all the subsequent implementations,
we have added some constraint on the sink to eliminate special points in the
image.

We require in the implementation that all the border points belong to the
sink12 and border points are constrained to 0 in g. With this constraint all
the border points can be treated as internal points. From the point of view of
the memory representation, the image can be interpreted as a d dimensional
matrix. It is stocked as a linear, one dimensional array. Let the size of the
image I be d := [d0, d1, . . . , dd−1]. I is a linear array of size [0 · · ·∏ di]. Every
point is represented in the array as

p[p0, p1, . . . , pd−1] = I

[
p0 ·

∏
di
d0

+ p1 ·
∏
di

d0 · d1
+ · · ·+ pd−1

]
(3.2.1)

The advantage of this representation is that the calculation can be carried
out iteratively. If, for example we want to update the flow, then we need
the two end points of the potential p = P [i0], p+1 = P [i1], f = F [i2].
Here P and F represent the field of the potential and the flow. The update,
f = f − τ(p+1 − p) can be calculated for every point as F [i2 + q] = F [i2 +
q]−τ(P [i1+q]−P [i0+q]). Iterating q from 0 to

∏
di will update every point

in the flow. The only thing to consider is what happens to the border points
of the image. If I[q] is a border point, I[q + 1] is also a border point on the
other end in the consecutive line or the top of the next plane (see fig. 3.3.). In
this setup even if we calculate the pressure and the flow at the border points,
they will always be 0. This way there is no interference between the opposite
borders of the image.

The reference implementation collects the times of segmenting the refer-
ence images. The function is implemented as maxflow function from Pink [29].
The times are then collected and the values are compared with the optimized
versions.

3.3 Maxflow on x86-64 Architecture

The x86 is the most widespread computer architecture in the world today.
Its ongoing success is mainly due to its backward compatibility. Indeed the

12 in the implementation the sink can be any set of points that includes the points of the
border
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Fig. 3.3: The representation of the maxflow system in the memory. The fields
(images) are represented with linear arrays. In the conceptual model the flow
is shifted right and down with half pixel. The red dots represent the points
and the blue arrows represent the flow. The consecutive memory block of
F [q], representing a border flow of the image, is the first border flow of the
next line, named F [q + 1].

contemporary instruction set is a superset of the original i386 instruction set
introduced in 1985. The x86 is using a complex instruction set. This means
that the processor supports relatively many instructions. The instructions
can belong to different categories and one instruction can perform several
operations13. As the instructions can be of different type, the processor is
divided into different modules or instruction units. Also, as the instructions
can be complex, the processor is using instruction pipes. The internal imple-
mentation is using several optimization techniques, however in any case the
result of the computation is guaranteed to be that of the in-order execution.
This means that the result of the computation could have been obtained by
executing the instruction in the order of reception.

13 like (multiply and increment) or (conditional jump)



3.3 Maxflow on x86-64 Architecture 51

3.3.1 Parallelism on x86

Historically the x86 architecture has been a sequential architecture. Its mem-
ory and synchronization subsystem had been added only after its performance
increase started to rely on the multi-core paradigm. Even if the architecture
has been reimplemented several times since its first publication, as its in-
struction set remains similar, there are some properties which make an effi-
cient parallel implementations difficult. The parallel computations on x86 are
divided into threads. Threads are essentially fully featured processes which
share common memory. Also if the number of threads n equals the number of
physical cores on the system, the execution can be understood as n indepen-
dent processors executing n individual processes. If we want to synchronize
the processes, we have to use inter-process communication. The synchroniza-
tion penalty is discussed in section 3.3.1.3. The different cores also access
the memory with different speeds and latencies. The memory model will be
discussed in section 3.3.1.1.

3.3.1.1 Non-Uniform Memory Access

The CPU is connected with the memory through several busses. Each of
the busses can be considered as a communication channel between different
parts of the system14. The function of the bus can be modeled as follows.
The time of the system is divided by a periodical signal, the clock. The bus
can only change its state when a clock signal comes. Between the signals
the bus connects exactly two items in the system. The rest of the system is
de facto isolated. The two parts can be the processor and the memory, or
the processor and the hard-disk. On systems with more than one processor
die, the processors themselves communicate via busses. On a system with
several CPU dies the bus speed and hence the memory bandwidth is divided.
Imagining a computer with four CPU dies, the effective memory bandwidth
would be 1

4 of the bus speed. This would be very wasteful, and therefore many
systems possess a more complex memory architecture. As can be seen on
fig. 3.4, the memory is divided in different nodes and each node is connected
with a different CPU die. Therefore the CPU can access its directly connected
memory much faster than the memory of the neighbor nodes, for which it
would first had to have the processor of the other node to fetch the memory
and then transfer the information on the CPU interconnect bus. In the ideal
case the dies are fully connected to each other. This means that there is a
separate bus between each CPU die on the system. On bigger systems and on
possible future systems the dies will not necesserily be fully connected. The
distance between two CPUs is anticipated in the NUMA API. This means,
that there is a symmetric distance matrix which represents the distances

14 for example the CPU and the system memory
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between the CPUs. A parallel program therefore has to take into acount the
access times to different nodes. Ideally a program should allocate the memory
in its own node.

Fig. 3.4: This is a conceptual simplified schema of the Non-Uniform Mem-
ory Architecture. The memory modules are marked with green. The processor
cores are marked with red. Every module on the system is connected with the
FSB (Front Side Bus) marked in yellow; note that we assume that the proces-
sor is directly connected to the RAM modules, whereas in reality usually an
interface chip is used, often called the NorthBridge, which is not represented
here. Between any two clock signals the bus connects exactly two parts of the
system. The other parts are practically isolated. In the conceptual schema of
a non-NUMA system (b). As the processors can only be connected to a single
memory module at a time, the effective memory bandwidth is the bus speed
divided with the number of the memory modules. On a NUMA system (a)
the computer has the same theoretical processing power (number of CPUs
or cores), but it has two front side buses. The effective optimal theoretical
memory bandwidth is twice as much as the compared system, but if a core
fetches memory from a neighbor node, the processor of the neighbor node
will be kept busy during the transfer.

3.3.1.2 Measuring the Memory Bandwidth

The apparent memory bandwidth can be measured with a simple program.
We choose the array size M ; we create N floating threads, and each thread
allocates an array of size M

N . Then the arrays are copied front-and-back and
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the measured wall time15 is averaged. In the end, we divide the measured
time with the quantity of the copied data to get the memory bandwidth.

We have carried out the measurements repeatedly on arrays of different
size. The measurements are summarized on fig. 3.5. We can note several in-
teresting phenomenon in the memory access. The first is that the apparent
memory bandwidth is huge if the size of the array is small enough. As ex-
pected after a given array size, the memory bandwidth stagnates. This is
caused by the cache. The cache is a small amount of memory close to the
processor. It has a very fast bandwidth, but it is limited in its size. The cache
represents a data in the memory. If the data has not changed in the memory,
than the processor can read the data from the cache. For the small arrays,
which fit into the cores’ caches the apparent memory bandwidth is closer to
the caches’ speed. For this, the processor has to be aware that the data has
not changed.

The second observation is, that the memory speed increases linearly only
up until at most four threads after which it reaches a plateau. This is due to
the fact that the memory bandwidth is much lower than the processing power,
that is to say, the processor core would be able to process much more data
than the memories can feed them. We could say in streaming applications
the cores can be starving for data.
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Fig. 3.5: The simple memory bandwidth graph on pc4356c and blade13.

15 Wall time is the perceived time for the task from start to finish. It includes sleeps and
waits for the resources. One can imagine the wall time as the time that passes by on the
clock that is hanging on the wall in the room.
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The memory bandwidth can also vary upon the distribution of the memory
within the system. As we mentioned earlier, a core can access the memory on
its own node much faster than on the neighbor nodes. The NUMA bandwidth
can be measured a NUMA-conscious operating system. The current Linux
kernel supports NUMA. There are dedicated system calls, but the recom-
mended approach is to use the libnuma shared library. We will demonstrate
the effects of the memory hierarchy on the memory bandwidth. We use the
same function as above (which copiesM bytes front-and-back), then we have
created several threads and had them call the copy function with M

T bytes
each, where T is the number of threads. However, with the libnuma API we
perform the tests twice with different scheduling policies. In the first part of
the test we ask the scheduler to only schedule threads on cores belonging to
the same NUMA-node. In the second part we create T threads as well, each
thread to copies M

T bytes, but we divide the threads in N groups, where N is
the number of nodes on the system. This time we ask the scheduler to restrict
the threads of the group on the node of their specific groups.

In practice the cumulated memory bandwidth is the sum of that of the
nodes and can reach up to 6GiBps. The concrete bandwidth tests are col-
lected in chart 3.6. It is therefore desirable to place the data to the memory
node of the processor on which the calculation will run. We have developed
a class named pink::numa::poly_array_t which behaves like an array, but
distributes the array equally between the NUMA nodes on the system. There-
fore if the points of the iterations are distributed equally among the threads,
we can maximize the likelihood that a thread accesses the memory in its
own node. Also our class behaves like a conventional array, so if the memory
is displaced, typically on the borders of the chunk, the class will implicitly
return the correct reference.

From the memory speed we would expect, that smaller the image is, faster
the iterations runs. In practice however the memory speed is counter-balanced
by the side effect of synchronization, which we will discuss in the next section.

3.3.1.3 Synchronization

During the maxflow iteration the threads have to be synchronized after updat-
ing the potential, the flow and the constraint. This means, that the algorithm
is synchronized three times per iteration. In a typical segmentation of 3000
iterations, this means 3 · 3000 = 9000 synchronizations. These synchroniza-
tions are expensive by themselves. The reason is the complex instruction set
of the x86 architecture. Namely, the commands are executed in pipelines. We
can imagine the pipe as a queue, we insert the instructions in-order and we
receive the results of the instructions in-order. However, the pipe can contain
several instructions at once in various states of execution. When a thread
arrives to a barrier, it can no longer insert any command into the pipe, as
the data for those commands is not yet ready. Therefore the pipe becomes
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Fig. 3.6: The effects of the NUMA hierarchy on the apparent memory band-
width.

empty. When all the threads are finished with the execution, and the signal
arrives, that the thread can continue, the pipe needs to be filled again, this
means, that if pipe contains 10 instructions, it will be idle after the barrier
for 10 instruction times.

To demonstrate this, the code 3.1. is executed on the test computers with
increasing thread concurrency. The test times are collected in fig. 3.7. The test
results show, that even if the threads stay completely idle, the synchronization
consumes a lot of time. From these measurements we can do some estimations
concerning the performance of the maxflow. The estimations will be carried
out in the next section.

To demonstrate the neccesity of the synchronization, we carry out the
following experiment. In the normal iteration, we have to synchronize the
threads three times per iteration. We will omit some synchronization steps
and examine the result as well as the iteration time.
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Listing 3.1: Time needed for synchronization

template <class T0 , class T1>
void synchro ( T0 i t e r a t i o n s , T1 b a r r i e r )
{

for ( index_t q=0; q<i t e r a t i o n s ; q++)
{

ba r r i e r−>wait ( ) ;
}

}
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Fig. 3.7: Synchronization speed. A given number of threads is created and the
threads synchronize 90000 times simulating the fine-grained parallel maxflow
algorithm with 30000 iterations.
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3.3.1.4 The Overhead of the Synchronization

(a) (b)

(c) (d)

Fig. 3.8: The degradation rate of the segmentation without synchronization.
During the 30000 iterations we have performed 100% (a), 66% (b), 33% (c)
and none (d) of the synchronizations between the threads. Note that the
actual fields diverge, so we have cut of the extremal values (above 2 and
belov -1).

We can easily estimate the actual overhead of the synchronization of the
algorithm. As all the threads know the number of iterations, we can switch off
the barriers. This way the threads carry out the same amount of operations
and memory access, but the cache coherence and more generally the order
of the flow–potential–constraint update will no longer be guaranteed. The
performance in these cases can increased up to four times as we can see in
the fig. 3.9.

The degraded segmentation results are collected on fig. 3.8. We have not
made detailed considerations, but it is worth to note, that at least visually
the results are close enough to the precise results. It is also important to
note, that these artefacts cannot be reproduced with GPU-s. These results
indicate that the overhead can be eliminated on the hardware level, if the
architecture is designed with fine-grained parallelism in mind.
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Fig. 3.9: The synchronization penalty of maxflow.

3.3.1.5 Estimated Computation Time

In parallelization of maxflow there are two contradictory forces. If we have
small images, the synchronization will constitute a considerable overhead on
the computation time. On the other hand if the size of the image increases,
the cache will not be able to counterballance the slow memory, and so the
performance will be limited by the memory bandwidth. Nonetheless, we will
demonstrate in the next section, that the we can achieve performance increase
up to the increase in the memory bandwidth and the synchronization penalty.

Let us assume a memory bandwidth v and a single synchronization time t0
for a segmentation of n iterations. For the segmentation we need approxi-
mately M bytes of memory access as estimated in section 3.1.2. The time t
needed for the iteration would therefore be higher than

t ≥ M

v
+ nt0 (3.3.1)

that is to say the time needed to supply the memory to the processors plus
the time needed for the synchronization. If we substitute (3.3.1) into the mea-
sured values we get the comparative table 3.10. In the case of large enough
images we get estimated computation times, which are comparable with the
real measured computation times. This means that in the case of big im-
ages, the processors are indeed starving for data and that the computation
is approaching it’s limits. In the case of small images the apparent memory
bandwidth is much higher, so (3.3.1) is no longer a close estimation.
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estimated computation time measured

nbt 1 2 4 8 16 24 32 simdflow

2D
pc4356c 104.3s 47.11s 21.89s 17.58s 42.19s

blade13 88.22s 32.02s 17.57s 13.1s 10.42s 11.37s 43.92s 49.16s

3D
pc4356c 220.49s 206.93s 162.66s 244.47s

blade13 133.68s 121.64s 117.79s 117.09s 126.87s

Fig. 3.10: Estimated iteration time based on apparent memory bandwidth and
the synchronization penalty. If substitute the measured apparent memory
bandwidth and the synchronization time in (3.3.1), we get the estimated
computation time. Note that this is a lower estimate. We can compate these
times with the measured fastest segmentations using the simdflow function
from [29]. We can note that the fastest 3D segmentation is close to the lower
estimate (117.09s vs. 126.87s). Also the estimate is no longer sharp for small
images (10.42s vs. 49.16s). Note that estimated time increases as the number
of threads increase as it takes longer to synchronize many threads.

3.3.2 Streaming Algorithms on x86

Most of the contemporary x86 processors possess a SIMD16 module. This in-
struction set has been developed to assist the growing need of real-time gam-
ing experience and video transcoding [31]. As we will demonstrate it is also
useful for general streaming algorithms and more particularly for maxflow. It
operates on relatively short vectors of 128 bits. At each computational step
the SIMD module carries out the same operations on every part of the vector
which, generally, consists of four integer or four float values. As the SIMD
operation takes the same time as a general operation, it can speed up an
implementation up to four times compared to the floating point module. Un-
fortunately, this speedup is mostly theoretical, as the data has to be aligned
and set up in the floating point registers. In addition to the alignment the
SIMD module will still be bounded by the memory bandwidth. However, if
it’s possible, it is still important to vectorize an algorithm, as the processor
will be less busy and it can use the idle time to prefetch the data from the
memory or to maintain the coherence of the cache.

In the maxflow algorithm we carry out the same operation on every pixel.
This makes the maxflow a good candidate for streaming. We can put 4 float
values in a SIMD vector. Therefore, we first normalize the size of the image,
so each of its dimensions would be divisible by four. In theory it would be suf-
ficient to convert ensure that the x dimension divisible, but we can eliminate
every side condition that could pose a special case, and the resizing has little

16 Single-Instruction Multiple-Data
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data overhead. The SIMD instruction set also possess floating point condi-
tions. With instructions _mm_cmpn**_ps we can compare two SIMD vectors
of four floats and the results of the appropriate comparisons will be stored
in a vector of floats. The values can be set to 0 and 1. Moreover sse4.2 im-
plements an instruction _mm_blendv_ps which assigns one of its operands
according to a conditional map.

The detailed discussion of how to streamline the maxflow algorithms is
given in section 3.4.2. In this section we are going to discuss the treatment of
special cases which are implied by vector processing. All the sizes of the image
are divisible by four. This means that all but one of the neighbor pixels are
four-divisible-distance away from each other. In the memory representation
defined in chapter 3.2. The only difference is, that in SIMD we have an array
of SIMD vectors17 instead of a single floating point value. A given point in
the image can be found as

I[n] = I [[p0, . . . , pd−1]] = I

p0 + p1 ·
∏
dq

d−1∏
q=1

dq

+ · · ·+ pd−1 ·
∏
dq

d−1∏
q=d−1

dq


(3.3.2)

= I

pi ·
∏
dq

d−1∏
q=i

dq

 (3.3.3)

in (3.3.2) the double brackets represent the native coordinate access, where
the simple bracket represent the linear memory access18. In (3.3.3) the i
is summation index. As the points are paired by 4 the point I[n] will be
represented as SI[n div 4].f [n mod 4] here SI is an array of SIMD vectors.

A neighbor point can be found as

I[[p0, . . . , pi + 1, . . . , pd]] = I

n+

∏
dq

d−1∏
q=i

dq

 (3.3.4)

D =
∏
dq

d−1∏
q=i

dq

is divisible by 4 for i > 0 as d0 is present in all but the first

difference. The neighbor of a point in the SIMD vector will be SI[n div 4 +
D
4 ].f [n mod 4]. In the previous expression D

4 is an integer value, as D is
divisible by 4 and n mod 4 is unchanged. This means that expressions of

17 four floats
18 note: the both accesses are implemented in Pink
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type f = f−τ · (p+1−p) can be calculated directly on SIMD vectors without
any shift or shuffle.

In the x direction this equality does not apply. The neighbor point of p in
direction x can be in the same vector as p. In the x direction, therefore we
have to shift the values to get the proper vectors. This shuffle becomes less
and less significant with the dimension increase, as in 3D the only one third
of the operations are shifted, and in 4D only 20%. After the vectors have
been properly loaded the necessary operations can be carried out in order as
in section 3.4.2. It is important to note, that no new branches are introduced
as direction x can be updated with a different function. Also because of the
size normalization no special cases were introduced during the vectorization.
The same implementation would also be reusable with minor modifications
for longer vectors as for example the Itanium architecture.

3.3.3 The Benefit of the Cache in Accelerating the
Performance

Historically memory throughput has increased much less in proportion than
the theoretical performance of the processors [32]. This is true for every archi-
tecture, x86 is not specific. In the current memory and processor design, the
frequency represents a major constraint to the performance [33]. Further-
more due to architectural details random memory access latency increases
with the memory size. To avoid this, processors incorporate a local fast and
small memory, the cache. This memory is closer to the processor than the
RAM, and is significantly smaller, causing be much faster and to have much
lower latency than the RAM.

A segment of the memory is loaded into the cache of the processor at
each memory read. This segment stays in the cache and the system will be
conscious of its existence and the place in the RAM through cache coher-
ence. If the processor only accesses the memory which is in the cache, then
the memory read can be omitted, considerably augmenting the performance.
The cache coherence is automatic and implemented in a proprietary mod-
ule in the computer, so its functioning cannot be accurately predicted, but
its functioning was demonstrated with a simple experiment measuring the
apparent memory bandwidth in section 3.3.1.2.

In our research, we have found that the maxflow algorithm gives the best
performance, if the image is statically distributed between the processor cores.
This way if the image is small enough to fit in the cumulated cache of the
processor cores, the memory can be kept isolated except for the parts which
need to be synchronized. The effects of avoiding the synchronization will be
discussed in section 3.3.1.4. In the SIMD version of the maxflow algorithm
the given amount of hardware threads is created in the beginning of the
iteration. These threads are then distributed equally on the memory nodes
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and are then tied to a specific core on they appropriate nodes. This way a
double benefit is attained. Firstly each thread will work on the same part of
the image (potential and flow), so we maximize the likelihood that the image
will still be in the core’s cache. Also if the memory is not in the cache and it
has to be fetched, the memory will be distributed equally between the nodes,
so the RAM throughput can also be maximized. Eventually as the size of
the image grows, the computer will have to rely on the RAM bandwidth, but
even in this case the bandwidth will optimal compared to the given computer.

Also because a heavy use of the SIMD instructions will lower the load on
the CPU cores, the processor will have time to prefetch the memory needed
for the next calculation.
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Fig. 3.11: Relative performances of the maxflow implementations in 2D.

3.3.4 Benchmarks

The performance have been measured and compared to the reference imple-
mentation. The results can be found for 2D images on fig 3.12 and for 3D
images on 3.11. In the case of 3D images the performance improvement is
greater and we also know that we approach the physical limits of the given
systems. In the case of 2D images the relative improvement is lower as the
cache already accelerates the segmentation even on a single thread.

3.4 Maxflow in the OpenCL Framework

From the developer’s point-of-view GPGPUs represent a choice, which ren-
ders the developer considerably dependent on the hardware vendor. The in-
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Fig. 3.12: Relative performances of the maxflow implementations in 3D.

struction set of the contemporary GPU is highly proprietary and different
across vendors. Indeed there are no low level API’s or instruction sets that
are shared among vendors. This setup has several drawbacks. Firstly any
software development will be forever dependent on the GPU vendor. As ven-
dors have a vested interest in maintaining a continuous hardware supply and
driver support, any strategic change of direction for them could turn into
a loss of investment for developers. Secondly the developed software has to
be anticipated in some sense by the vendor. Indeed, some APIs19 are highly
specialized and are difficult to use for general programming.

To address the question of durability and compatibility The Kronos Group
maintains the OpenCL API standard. It is a general purpose programming
API and framework optimized for GPU architectures. It allows general pro-
gramming on the somewhat specialized SPEs20 using a reduced feature (in-
struction) set.

This standard is useful in two ways. Firstly if adopted by the majority
of the vendors, then it can provide a common framework for GPGPU soft-
ware development. Secondly as it is a subset of the C language, it can be
easily ported to any platform (multi-core x86 or CBEA21). This way, even if
eventually OpenCL will ceased to be supported by some hardware vendors it
could be ported to other architectures22.

The OpenCL framework is designed to program massive multicore hard-
ware. The programs are divided into fibers. The fibers have some key differ-
ences compared to traditional threads. Fibers run kernels instead of processes
and the order of the kernel execution is undefined. This means that the sys-
tem does not guarantee the order of the operations. The onus is therefore in
the implementation to create kernels which can be executed independently.

19 Like OpenGL or Physix
20 Synergic Processing Elements
21 Cell Broadband Engine Architecture
22 even if it may not necessarily provide optimal performance on every platform



64 3 Implementing Continuous Maximum Flows

Listing 3.2: An example loop in C++

for ( index_t q = 0 ; q < s i z e ; q++ )
{

c [ q ] = a [ q ] + b [ q ] ;
}

The kernels are restricted to a substantially reduced feature set compared to
the threads. In most cases, however, the fiber execution is self-synchronized.
This means, that if two cores start to execute two kernels on the same clock
signal, then the kernels will finish the execution on the same clock signal23
This phenomenon is not guaranteed by OpenCL, but it is a common property
of the GPU architecture. The corollary of this is that while the synchroniza-
tion represents considerable trouble and overhead on x86, it is a virtually
non-existing problem on GPUs.

The OpenCL framework consists of two major parts. The kernels can be
programmed in a reduced C-like language, while the rest of the API man-
ages the kernel compilation, execution and the memory transfer between the
device and the computer. All the SPEs access the same global memory. The
calculation is divided into tasks, where the tasks are either executed in order
or out of order. In practice the in-order execution for the maxflow algorithm
has little overhead.

OpenCL works as follows. The developer creates the so called kernels. Each
kernel is de facto the statement scope of a C/C++ like for loop of one counter
variable. For example the loop 3.2. could be translated into the kernel 3.3.

The kernels are then called as tasks with the limits specified. The task’s
execution is the divided into chunks by the API and the statements are
executed on the SPs. The counter value is loaded as a quasi-parameter. There
is no guarantee of the order within the loop, so the statement scope must be
independent. The execution can be synchronized only between the tasks.

The OpenCL kernel performs best in the case when all the kernels exe-
cute the same binary path. There are therefore two major challenges in the
OpenCL implementation: 1. creating independent kernels 2. eliminating the
branches from the execution . In the next section we will discuss the necessary
adjustments of the maxflow algorithm for the OpenCL kernels.

23 That is assuming that the two kernels have the same branching during the execution.
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Listing 3.3: A simple kernel in OpenCL

__kernel void f o r l o op (
__global f loat ∗ a ,
__global f loat ∗ b ,
__global f loat ∗ c ,
__const int l ength )

{
s i ze_t id = get_global_id ( 0 ) ;
i f ( id >= length ) return ;
c [ id ] = a [ id ] + b [ id ] ;

}

3.4.1 Maxflow on GPGPU

The GPU24 is still an emerging architecture as of 2011. Consumer level dedi-
cated graphic processors emerged in the 1990-s. At that time, the algorithms
used for visualization and 3D rendering, particularly raster graphics, have
been significantly different from common x86 software algorithms. As de-
mand for improved graphical output increased, the x86 architecture proved
increasingly poorly adapted for visualisation. The x86 architecture has there-
fore been amended with SIMD instructions to better accommodate the vector
calculation typically abundant in 3D raster visualization. Eventually the x86
architecture has been outperformed by dedicated GPUs. As the sophistica-
tion of graphic procedures improved, GPUs became increasingly flexible and
powerful, and by the early 2000s even general-purpose calculations became
possible.

One of the advantages of the fiber approach is, that the kernels can be
partitioned along the memory. Indeed, the GPUs have a very fast, uniform
and almost linear scaling of the memory access. This means, that unlike in
the x86 architectures, the memory bandwidth remains constant and high even
if the memory is fully allocated. This property is demonstrated on fig. 3.13.
We can see, that if we double the number of the pixels in the image the
computation time doubles as well. The linear increase continues up until
the size of the available memory on the card. This will also improve the
proportional performance increase between the 2D and 3D images compared
to the x86 architecture.

The main deficiency of the SPA25 from the point of view of the maxflow
is, that it does not support branches. On the NVidia Fermi architecture for

24 Graphical Processing Unit
25 streaming processor architecture
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Fig. 3.13: Tesla segmentation of the fibers. 3000 iterations and diminishing
image size.

example, for each 16 streaming processors there is one APU26. If, for example,
an if statement is present in the code, then the SPEs have to reschedule the
work to the APU. They re-assume they work only after the binary branch
has ended. The main challenge therefore is to implement algorithms without
branches, only using conditional operator27 where possible instead.

The conditional operator is a mathematical branchless operator which at-
tributes values according to logical operators. The classical if (cond) state-
ment is implemented by the compiler as a jump in the object code. If the
statement is true, an appropriate object code has to be loaded into the pro-
cessor (SPE). The condition can be interpreted as a function which returns 1
if the statement is true and 0 if it isn’t. An example is the comparison lt(a, b)
and notlt(a, b) are conditional functions. From these functions, the condi-
tional operator can be implemented as:

(a < b)?v1 : v2 ⇔ lt(a, b) · v1 + notlt(a, b) · v2 (3.4.1)

26 Advanced Processing Unit
27 conditional operator or inline if (iif)
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The key difference is, that in this case each SPE can execute the same binary
code regardless of the result of the comparison.

3.4.2 Eliminating the Branches From Maxflow

As we saw in section 3.4. for an efficient implementation of the maxflow
algorithm in OpenCL we need to eliminate the program branches from the
algorithm. In this section we will discuss step by step the reformulation of
the algorithm to this end.

Potential For the seek of memory bandwidth optimization, the update of
the potential is merged with the updating of the boundary conditions.
The first kernel of the flow looks as follows

1. if p is in the source then set p=1
2. if p is in the sink then set p=0
3. in each direction p = p− τ · (fo − fi)
The source points and the sink points are kept in a float array SS, which
is set to -1 over the sink points, 1 over the source points and 0 everywhere
else. This way the first two steps of updating the flow can be replaced by
conditional operators:

p =(|SS| > 0)?0 : p (3.4.2)
p =(SS > 0)?1 : p (3.4.3)

whereas the third step is a simple floating point operation.
Flow The kernel for the flow is a conditionless update. It only states

f = f − τ · (p+1 − p) (3.4.4)

Constraint The kernel for the constraint is divided in several steps:

1. We create a vector F with the highest outward flow. The highest
flow is the comparison between the inward and outward flows in each
direction. The value can be determined in each direction with a con-
ditional operator as:

Fi = (−fin > fout)?− fin : fout (3.4.5)

2. Calculate the absolute value of the outward flow. As the highest out-
ward flow can be negative, we need to eliminate the values which are
inferior to 0. We have managed that as follows

v = (F0 > 0) · F 2
0 + (F1 > 0) · F 2

1 + · · ·+ (Fd−1 > 0) · F 2
d−1 (3.4.6)
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As the condition function returns 0 if the condition is false, the
squares of negative values will be eliminated.

3. If the flow is higher than the constraint then we proportionally lower
the flow value in each direction. To avoid the branch, create a pro-
portion multiplier, which we set to 1 if the flow is smaller than the
constraint and the proper quotient if the flow depasses. The quotient
is g√

v
. The condition is v > g2. The two statements combined give us

q = (v > g2)?1 :
g√
v

(3.4.7)

• Finally if the directional flow is greater than the corrected outward ve-
locity, than the flow is updated to the corrected velocity. This can also
be corrected as

fin = (fin < −F0)?fin : −F0 (3.4.8)

fout = (F0 < fout)?F0 : fout (3.4.9)

As we can see all the steps are transformable into stream operations, and
so the kernel can be optimally compiled by OpenCL. The corresponding
source code can be found in Pink under the function named clflow. In the
following chapter we are going to extend the OpenCL implementation to
other architectures.

3.4.3 The Cell Broadband Engine Architecture

The CBEA is one of the first truly heterogenous architectures in mass pro-
duction. The chip consists of two IBM Power Processing cores (PPE) and 8
Synergic Processing Elements (SPE). The architectural construction of the
PPE resembles the classical CPUs (x86, arm), while the SPE resemble the
GPUs (GeForce, Radeon). One of the interesting aspects from the point of
view of OpenCL is that IBM’s OpenCL implementation treats the CELL pro-
cessor as two devices. One for the PPEs and one for the SPEs. These have
different performances for the same kernels, so the work has to be manually
separated between these devices. This sharing does not involve copy between
the devices as both PPEs and SPEs share the same memory.

The kernels developed for the chapter 3.4.1 are also usable on the CBEA.
The limits of the iterations are distributed between the two devices. In the
beginning each task is divided equally among the devices. After each task,
the time usage is measured, and the work is redistributed among the devices
using binary convergence. In our tests the optimal work ratio was 0.37 for the
PPEs and 0.63 for the SPEs. As the PPEs are fully featured architectures,
they are capable of executing a multi-tasking operating system. We can there-
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fore compare the maxflow function of Pink with a slightly modified clflow
function28. The standard maxflow function on the CBEA runs 2.56× slower
than the clflow function. This is important because the clflow function
is only a minor modification compared to the mainstream version. This ex-
periment demonstrates that the OpenCL implementation can function on
heterogenous or even complex multi-core architectures with considerable effi-
ciency. Furthermore the clflow function on the CBEA slightly outperforms
the reference implementation, whereas its design is at least five years older
than the reference x86 systems.

3.5 Benchmarks

The implementations have been compared on four computers of three differ-
ent architectures. The results are collected on fig. 3.14. We can see that the
parallel version of the x86 implementation is an order of magnitude faster
than the reference implementation, whereas the performance of the same al-
gorithm can increase by two orders of magnitude on a GPGPU architecture.
Both are compared with a highly optimized sequential version.
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Fig. 3.14: Relative performances of computers using the maxflow algorithm
on different architectures.

It is also important to note the relative performances compared to the
price of the equipment. If we want to compare the segmentation time with
the prices of the equipments, let t be the time of the segmentation on a given
hardware and let p be the price of that hardware. Than the value effp can be
defined as (3.5.1).

effp := tp (3.5.1)

28 The modified clflow is not part of the mainstream Pink, but it is included in the
repository of the thesis.
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effp indicates an absolute value of the PPP29 unit of the hardware. The value
is in linear rate with the performance and the segmentation time. This means,
that longer the segmentation time or higher the price a higher value of effp.
We are going to evaluate the effp for each machine. The smallest value is
set to one and only the relative differences are presented. It can be seen on
fig. 3.15, that there is an even more radical differences for this quotient. A
GPGPU can be up to 500-600 times more economical than the x86 hardware.
It is therefore important to investigate which algorithms are implementable
efficiently on this hardware.

pc4356c blade13 Tesla C2050 GeForce GTX 470
Computer

0

100

200

300

400

500

600

700

R
el

at
iv

e
pe

rfo
rm

an
ce

1.94 1.0

69.01

414.04

1.0 1.16

101.16

606.972D image: [640× 400]]
3D image: [500× 500× 500]

Fig. 3.15: Relative performance according to the price of the equipment.
The ratio is estimated according to the hardware’s best performance and its
approximative price when purchased as new. The smallest effp is set to one.

3.6 Summary

In this chapter we went through the implementation of the continuous max-
imum flow algorithm. We have seen that there is an ongoing change in the
processor architecture design paradigm, namely the increasing number of pro-
cessor cores. As the parallelization has to be done manually and by algorithm
we have isolated the major properties of the continuous maximum flow algo-
rithm. We have reviewed the most common architectures: 1. x86 2. GPGPU
3. CBEA .

By estimating the necessary memory bandwidth and synchronization time
we have proposed a model for the estimate of the algorithm’s best possible
performance on x86. After proposing measurements for the memory band-
width and the synchronization time, we could demonstrate that our model
was accurate for 3D images.

29 Performance Per Price
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We reformulated the algorithm by eliminating the branches, thus making
and efficient implementation possible on the GPGPU. We have developed
such implementation using the OpenCL framework.

After the comparison of all the available architectures we have concluded
that the GPGPU architecture is the most suited for the continuous maximum
flow algorithm, with the performance increase up to two orders of magnitude.
That is unless we reach the memory limitations of the architecture, typically
in the order of gigabyte images.

With the consideration of the CBEA we could demonstrate that the
OpenCL implementation used on the GPGPU will remain reusable on het-
erogenous architectures.

In the end of the chapter we have provided detailed benchmarks on all
the architectures. In the next chapter we look into the applications of the
continuous maximum flow algorithm.





Chapter 4
Applications of the Maximum Flow
Algorithm

One of the main advantages of the maxflow segmentation method is, that it
is directly applicable to 3D images or more. With the modern means of image
acquisition the quantity and availability of image has increased sharply. Also
with the modern equipment and methods such as electron tomography, mag-
netic resonance imaging, tomography and synchrotrons, the size of acquired
images increases as well. Efficient algorithm implementation is essential to
carry out segmentations in a timely manner.

We have managed to apply the maxflow algorithm on several different
image processing problems. The segmentation techniques that we have de-
veloped were used in silicate bead segmentation, liposomic membrane seg-
mentation as well as medical image segmentation of the cardiac left ventrice.

A typical segmentation consists of several steps. The usual schema is a se-
quence of pre-processing–segmentation–post-processing. During the prepro-
cessing we apply operators from mathematical morphology, or topology. Mor-
phology is particularly useful for extracting the sources, which can then be
used for accurate border detection. To facilitate creation of image processing
flow we have developed an image processing framework [29]. All the described
techniques are scriptable in the framework, and all the software used for the
segmentation is publicly available.

The detailed description of the segmentation, the image types and the
acquisition can be found in the appended article in section 4. and also in [34].
Some details of the framework is presented in section 5.
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Abstract

In recent years, tomographic 3D reconstruction approaches using Electrons
rather than X-Rays have become popular. Such images produced with a
Transmission Electron Microscope (TEM) make it possible to image nanometer–
scale materials in 3D. However, they are also noisy, limited in contrast, and
most often have a very poor resolution along the axis of the electron beam.
The analysis of images stemming from such modalities, whether fully or semi
automated, is therefore more complicated. In particular, segmentation of ob-
jects is difficult. In this article, we propose to use the continuous maximum
flow segmentation method based on a globally optimal minimal surface model.
The use of this fully automated segmentation and filtering procedure is illus-
trated on two different nano-particle samples and provide comparisons with
other classical segmentation methods. The main objectives are the measure-
ment of the attraction rate of polystyrene beads to silica nano-particle (for
the first sample) and interaction of silica nano-particles with large unilamellar
liposomes (for the second sample). We also illustrate how precise measure-
ments such as contact angles can be performed.

Keywords: electron tomography; image analysis; continuous optimization;
Hough circles; transmission electron microscopy.

4.2 Introduction

In this paper, we study the application of image analysis to nano-tomography
images and we present an image segmentation technique for this purpose. Im-
age segmentation is the task of decomposing an image into a set of disjoint
components that are each semantically consistent within themselves (e.g.
finding the red blood cells in histology samples, or people in a photograph).
It is an essential task for further image-based studies since it enables mea-
surements to be made on objects, which otherwise would be indistinguishable
collections of pixels. Segmentation is one of the fundamental tasks of com-
puter vision, and there exist no generic method to achieve it. In the rest of
the paper, we will perform segmentation by finding good-quality contours
(in 2D) or surfaces (in 3D) around objects of interests.

Here, we focus on the automated segmentation and interaction measure-
ments of nano-particles in electron tomography. While there exists a number
of papers that have already applied image analysis to nano-particle stud-
ies [35, 36], segmentation of such particles can be especially difficult, for
reasons outlined below.
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Motivation

Nanometer-scale particles possess singular physical and chemical properties
due to their dimensions, which have motivated a rapidly growing interest
in recent years [37, 38]. These new-found properties have led to the novel
applications of these nanomaterials to many areas, such as catalysts, semi-
conductors, sensors, drug carriers, and personal care products [39, 40, 41].

Fig. 4.1: A tomogram slice on the polystyrene beads nucleated around a silica one.

Commercial products including engineered nano-materials in their make-
up are expected to become more frequent in the near future. As a conse-
quence, both consumer and professional exposures to these materials are
likely to increase in proportion to their use in the society. However, these
nanomaterials can be potentially harmful to human and environment due
to the large percentage of atoms lying on their surface and unusually high
reactivity [42].

It is therefore important to study nano-materials both at the chemical
and physical level. For this, Transmission Electron Microscopy (TEM) is the
method of choice for nano-particle samples [43]. However, while standard
TEM can provide sufficient two-dimensional resolution, it has insufficient
depth sensitivity to detect internal three-dimensional structure. The main
limitation is that it is a 2D projection of a 3D object. The technique does
detect internal 3D structures, but as a 2D projection. To palliate this prob-
lem, electron tomography, initially proposed by W. Hoppe in the 1970’s [44],
has become increasingly popular [45] in order to obtain 3D views of nano-
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scale materials. Electron tomography works broadly on the same principles
as X-ray tomography, but uses electrons instead. Also, instead of a dedicated
instrument, standard TEM equipment with relatively minor add-on can be
used to acquire the data.

Fig. 4.2: A tomogram slice of silica nano particles with large unilamellar liposomes.

The sample under study is placed in an automated stage control, which
tilts at regularly spaced angles and the microscope digitally acquires a pro-
jected image. Tomography software is then used to perform a 3D reconstruc-
tion from these projections. Due to limitations in the achievable tilt angle,
the resolution of the images that are obtained is usually very poor along
the electron beam axis, and can also be noisy and feature low contrast. We
recommend [46] for further reading.

In this work, we are interested in assessing two different nano-article inter-
action studies with image analysis techniques. For the first one, the objective
is to get an insight into the surface contact of polystyrene beads with sil-
ica nano-particles extracted from tomographic reconstructions. One slice of a
sample can be seen in Fig. 4.1 2. The interest of the segmentation lies in the
measurement of the attraction rate of the beads to the nano-particle. The
attraction is measured by the contact angle.

For the other sample, we focus on interaction of silica nano-particles with
large unilamellar liposomes (see Fig. 4.2 for an image slice example) 3.

2 The material and the problem is described in more detail in [47].
3 More details on the material for this application can be found in [43].
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Automated Image Analysis

Once the image is obtained, the next step is often to analyze the content
through for instance particle counting, size measurements, composition and
interaction studies. While a manual analysis of nano-tomography data is of
course possible [48], it is often not desirable. One reason is that the data is
inherently 3D, which is difficult to represent on paper or on computer screen,
and difficult to interact with. Although 3D viewing software packages have
made enormous progress, interactive segmentation (i.e. finding the contour or
the enclosing surface) of objects can still take months. Typically, practitioners
endeavor to detour objects in 2D interactively slice by slice, or they try to set
a global threshold in order to find a suitable grey-level iso-surface. Specifying
surface elements manually is generally infeasible. Specifying contours slice-
by-slice is technically possible when contours are easily visible, but even then
can lead to inconsistent topology [49]. It is also very difficult when contour
information is not reliable, as is the case in nano-tomography. When noise
is present in high levels, finding a suitable iso-surface by thresholding can
prove challenging and time-consuming. There is also a potential for human
error due to fatigue, perception bias and operator variations. These effects
have been well-documented in 2D studies and also in 3D in the context of
medical imaging, which is similar in many respects [50] Therefore, there is a
need for methods that are able to find the contour of objects reliably, even
in the presence of high levels of noise.

On the other hand, while human operators find it typically difficult to
detour objects in 2D or 3D, they are usually able to identify objects reliably
and so are able to guide segmentation through interaction. It is therefore im-
portant to provide a segmentation method which allows operators to interact
easily with the results obtained [51].

The Need for a Specific Segmentation Method

Often sufficiently precise contours are necessary for accurate segmentation
of image data. For this, we need the following conditions to be satisfied by
a segmentation method: 1) have objective optimization criteria; 2) feature
few arbitrary parameters; 3) be little sensitive to noise; 4) be able to op-
tionally interpolate missing data due to the missing wedge effect; 5) allow
interactivity; and 6) feature as few inherent artifacts as possible.

Since the late 1980s, optimization methods have been used to address a
wide variety of problems in computer vision, including segmentation. Early
optimization approaches were formulated in terms of active contours and sur-
faces [52] and then later level sets [53]. These formulations were used to opti-
mize energies of varied sophistication (e.g., using regional, texture, motion or
contour terms [54]) but generally converged to a local minimum, generating
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results that were sensitive to initial conditions and noise levels. Consequently,
more recent focus has been on energy formulations (and optimization algo-
rithms) for which a global optimum can be found.

The max-flow/min-cut problem on a graph is a classical problem in graph
theory, for which the earliest solution algorithm goes back to Ford and Fulk-
erson [55]. Initial methods for global optimization of the boundary length of
a region formulated the energy on a graph and relied on max-flow/min-cut
methods for solution [56, 57]. It was soon realized that these methods intro-
duced a so-called grid bias (also called metrication error) for which various
solutions were proposed. One solution involved the use of a highly connected
lattice with a specialty edge weighting [58], but the large number of graph
edges required to implement this solution could cause memory concerns when
implemented for large 2D or 3D images.

To avoid the gridding bias without increasing memory usage, one trend in
recent years has been to pursue spatially continuous formulations of the seg-
mentation problem [25, 10, 59]. Historically, a continuous max-flow (and dual
min-cut problem) was formulated by Strang [15]. Strang’s continuous formu-
lation provided an example of a continuization (as opposed to discretization)
of a classically discrete problem, but was not associated to any algorithm.
Work by Appleton and Talbot [10] provided the first PDE-based4 algorithm
to find Strang’s continuous max-flows and therefore optimal min-cuts.

This method, named in the remainder Continuous Maximum Flows (CMF)
is essentially a convex reformulation of the classical Geodesic Active Contour
(GAC) framework [60], which is widely used in 3D image segmentation. Being
convex means, that the PDE can be solved by the broken-line algorithm and
it provides a globally optimal solution with no metrication artifact. It is not a
limitation on the form of the object which can be non-convex or non smooth.
In addition, the method is efficient in 3D, and is therefore a good candidate
for our purpose.

In the present work, we are applying the CMF method and both pre-,
and post-processing image analysis methods to two different nano-material
problems.

4.3 Electron Nano-Tomography

Electron nano-tomography originally proposed in the 1970s that uses a Trans-
mission Electron Microscope (TEM) as an illuminating source for 3D object
tomography, but has lately become more popular due to the increased avail-
ability of effective reconstruction software.

4 PDE–Partial Differential Equation, are a type of differential equation, i.e., a relation in-
volving an unknown function of several independent variables and their partial derivatives.
Partial differential equations are used to formulate, and thus aid the solution of, problems
involving functions of several variables.
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Principles

While more standard tomography techniques use X-Rays as source, nano-
tomography uses electrons instead. The main benefit of using electrons is
the significant increase in resolution compared to X-Rays. As electrons in
TEM behave in some ways as waves with a very high frequency, they allow
for nanometer scale resolution, while X-Ray sources are typically limited to
about micrometer scales resolution.

e-

e-

A

B
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D
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G

Fig. 4.3: Simplified schematics of a transmission electron microscope for nano-
tomography. A: electron source, B: Sample, C: Tiltable stage, D: Condenser magnetic
lens, E: Diffraction lens, F: Projection lens, G: Sensor, .

The general principles of electron nano-tomography (ET) are broadly sim-
ilar to standard X-ray tomography [61], in the sense that projection images
around the volume of interest are used, and the reconstruction of a 3D image
of this volume is effected through the use of inverse tomography algorithms
(for instance filtered back-projections, iterative methods, etc). Electrons tra-
verse the material to be imaged, and are either left untouched, absorbed,
diffracted or deflected as a result. The projection of the intensities as recorded
by the TEM’s imaging device is, under suitable conditions, comparable to an
attenuation image, although many artifacts are typically present.

The sample, rather than the device, is rotated along one (or sometimes
two axes), and projection images are recorded at regular angles. See Fig. 4.3
for simplified schematics. Similarly with CT scan, the angle(s) of tilt can be
automatically associated with all recorded projection.
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Features and Limitations of the Technique

One feature of TEM is that since electrons are negatively charged fermions,
they readily interact with matter and are easily scattered by positively
charged atom nuclei. As a result, unlike X-Rays, electrons cannot penetrate
much into matter, and are affected by sample chemical contents: heavy atoms
deviate electrons more than lighter ones. As a result, this so-called chemical
(or Z-number) contrast is present in addition to absorption contrast. This
effect can be used productively in Z-number contrast tomography [46]. The
loss of energy in exiting electrons resulting from this interaction can also be
used to derive chemical content in other modalities such as EFTEM [62].

However, due to this interaction with matter, preparation for TEM imag-
ing implies thinning the sample under study as much as possible, so as to
make it mostly transparent to electrons, using physical processes such as ion
mills for instance. For some materials and high resolution needs, the final
sample may be only a few hundreds of nanometer thick at its thinnest point.
Because the final sample is then extremely fragile, it is currently impossible
to obtain such thinness over a large area, and much less in such a way that
the final sample is thin in two directions at once (like a thread or a needle).
In other words, the final sample is most often like a thin layer in a relatively
deep well, as illustrated in Fig. 4.4. In these planar objects the effective thick-
ness T corresponds to their height H divided by the cosine of the tilt angle α.
Therefore when α→ 90, H > 0; T = H

cos(α) →∞. Even in naturally flat, thin
samples, such as nanoparticles dispersed on a carbon grid, the grid holding
the sample induces shadowing at high angles.

Fig. 4.4: As the sample is thin in one direction only, it is usually not practical to rotate
it fully around the electron beam. The maximum tilt angle is around 70◦ or so.

As a direct consequence, the sample cannot be illuminated in all directions
around it, unlike a patient in a CT scanner. This means that the electron
beam cannot illuminate the sample in directions that are too far away from
the normal to the thin layer. Finally, in a typical ET scanner the specimen
holder sits inside the objective lens pole piece so there is very limited space
for tilting, even if the sample would be string-like. Typically, illumination



4.3 Electron Nano-Tomography 83

much beyond 70◦ from the normal is difficult or impossible, and a complete
set of projections cannot be obtained, from which to derive a complete tomo-
graphic reconstruction. To ameliorate the situation somewhat; tilt sequences
can be recorded along several angles by rotating the grid on the horizontal
plane. However in fine there is most often a so-called “missing wedge” in the
projection space.

In practice, this translates into 3D images that exhibit noise and weak or
elongated edges in the direction of the normal to the surface of the sample (i.e.
the direction of the beam when the sample is untitled), but relatively strong
features in the perpendicular directions to this normal. Fig. 4.5 shows some
of these effects. This is an image of a polystyrene ball. Along the “equator”
of the ball, edges are strong, but at the “poles”, edges are weak.

Fig. 4.5: This image represents some artifacts of the missing wedge effect commonly
observed in electron nano-tomography. Because it is not possible to rotate the sample fully
around the beam, edges perpendicular to the main beam direction are weak and elongated
due to missing wedge effect, and the image is very noisy.
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Image Analysis Challenges

Segmentation of nano-tomography images is difficult because of these char-
acteristics, as we illustrate on Fig. 4.6. In particular, because of the missing
wedge and strong noise, thresholding is unreliable (see Fig. 4.6(a)). For the
same reasons, watershed [63, 64] is prone to leaking (see Fig. 4.6(b)). More
recent methods, such as graph cuts [56, 65] are more successful but due to
their anisotropic formulation, they tend to find edges that are aligned with
the principal directions of the image sampling grid (see Fig. 4.6(c)), leading
to clipped results. Here, the need for a segmentation solution which is little
sensitive to noise, globally optimal and isotropic is essential. In the following
section, we describe an improved solution.

(a) (b)

(c) (d)

Fig. 4.6: Application of various 3D segmentation methods on nano-tomography images.
(a) Optimal threshold ; (b) Watershed ; (c) Graph cuts ; (d) Continuous maximum flows.
Only this last method provides a good result in our case.
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4.4 Continuous Maximum Flows and Minimal Surfaces

In this section, we describe the continuous maximum flows model used for the
segmentation of particles of nano-tomography images. We assume sufficient
regularity for all functionals whose practice is usually met in physical systems.

As a fundamental idea, let g be a function on Ω ⊂ C(Rn) that defines a
local metric cost, i.e. the value of g at point x is the cost of traversing point x.
We will assume that g is scalar and provides values in R, and we will call this
function our cost function. Furthermore, let S (source) and P (sink) be two
disjoint subsets of Ω. Let all closed simple hyper-surfaces5 s with finite area
(not necessarily connected) be those that do contain the source and do not
contain the sink. In some sense, we can define the source of the segmentation
as a marker for the interior of the object to be segmented, and the sink as a
marker for its exterior.
Then we can define the following functional:

E(s) =

∮
s

gds, (4.4.1)

called the total weight or total cost of s. As E(s) ≤ area(s)·max(g) is finite for
bounded g. Furthermore, there exists at least one hyper-surfaceM exhibiting
minimum weight [15]. In a discrete domain this minimum surface can be
computed using the Ford and Fulkerson maximum flow graph algorithm [66],
which was improved in the digital image context by [65].

In the continuous domain, M can be computed directly for every cost
function g and sets P , T using for example active contours or surfaces meth-
ods [67], or level-sets methods [68, 69]. However, these methods compute
surfaces iteratively via gradient descent schemes, and thus the solution is
only locally optimal. Hence, the solution depends on initialization and noise
levels. On the other hand, the algorithm presented by [10] provides a glob-
ally optimal solution to this problem. The solution is obtained in form of a
smooth quasi-binary function6 monotonically decreasing from source to sink.
The iso-surfaces of this function will represent the minimum surface. As with
the continuous nature of the algorithm, in some cases, it provides a sub-pixel
accurate positioning of the minimal surface.

The differential geometric approach, that is to say, segmentation by opti-
mization (Eq.4.4.1) is advantageous in cases where only parts of the contour
are known. These are parts of the image where g is close to a constant. In

5 A simple hyper-surface is a curve in 2D or a surface in 3D that does not intersect itself.
6 One for which most values are either 0 or 1.
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this case, this approach interpolates the known area with patches of minimum
surfaces (in the geometric sense).

P

S

Fig. 4.7: We assume that our image is constant 1 everywhere except on the black curve,
where its value ε is small. Now if we consider the integral on the black curve, than this
integral will also be small. We specify pointwise source and sink S and P respectively. We
would like to find the optimum curve, however as we take curves towards the source (the
red curves), the integral tends to zero. A small curve around the source (blue) will have
smaller integral than the black curve.

The solution with the maximum flows method depends on choices of: 1) a
relevant cost-function g to our problem; 2) sources and 3) sinks. Examples
of synthetic objects together with its robustness against noise can be found
on Fig. 4.21. Here we consider the three basic shapes: Circle interpolation,
convex and concave objects. In Fig. 4.21 (j)-(m) we use absolute-gaussian
noise [70] generated by a quantum-random source [71] at rising levels. We
can see, that the segmentation remains coherent even in relatively high noise
situations.

4.4.1 The Choice of the Image Function

one that has the optimal integral) around the source of an object. However,
on point-wise sources E(s) =

∮
s

dG =
∮
s

gdx ≤ surf(s) ·max
s
g → 0 if we take

smaller and smaller surfaces around S. So, that if we take a small surface
around S, it will have small cost, but not on the contour of the object, like
in Fig. 4.7. This can be overcome in two ways. The first possibility is that
impose S to have some minimum length or surface. The boundary ∂S will
then have non-zero cost, so that we can find the contours if they are smaller
than the cost of the boundary. The second possibility is to modify our cost
function with a particular weighting. For example, in a constant image L,
lets define g as:

gI(P ) :=
1

d(P, S) · (1 + dL)
(4.4.2)
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Here, d(P, S) denotes the distance of P and S.
Now let us look at the circles with ray r around the point-wise S:

∮
|x|=r

gI(x) dx =

2π∮
0

r

d
([

r sin(t)
r cos(t)

]
, S

)
︸ ︷︷ ︸

r

· (1 + dL)

dt =

2π∮
0

dt

1 + dL
(4.4.3)

If L is constant then Eq.4.4.3 gives 2π for all the circles around S. It can also
be proven that these circles are the minimum cost curves of this measure. If
dI is different from 0 at some point A (For example there is one point in I),
then the "cheapest" curve will be the circle that contains A.

The following, complementary way to look at the problem is also true:
if an image I is constant between the parts of the contour, then on these
parts the solution will be interpolated with a circle. This approach is used in
section 4.5.2.

We can extend this idea and define any set of curves D which do not inter-
sect. It can be proven that there exists a weighting W , where the minimum
cost curves are those of D.

This approach will tend to put the surface near the high frequency places
before the curves of D. So it has a limited usage if the noise is at the level
of the contours, like in Section 4.5.2, Fig. 4.9. Also there are cases where the
set of curves is more difficult to define, like in section 4.5.3, Fig. 4.8.

The remaining challenges are how to choose sources and sinks. In the next
few sections we present the ways we have solved this in the cases of weak
gradient or/and high noise.

4.4.1.1 Calculation of the Cost Function

A relatively easy way to attract a minimal surface near object contours is to
consider the following cost function, given by g = 1

1+‖∇I‖ . This cost function
is high in relatively constant parts of the image, but drops to zero near edges,
which are areas of high gradient. However, in regions where g is near-constant
(in our images, this will occur near the extremities of objects under study that
are along the electron beam, i.e. near the “poles” of objects), the minimum
surface is a portion of plane. This means that the minimum surfaces will be
attracted by the global noise.
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Fig. 4.8: Nanoparticle entering into the cell. The membrane has been cut in half for better
visibility.

In this case the key observation is that the reconstruction-created noise shows
parallelism with the axes. The result of this initial segmentation is close
to a truncated sphere. To correct this defect, we used a modified g. More
precisely, we used separable spline-interpolated gradient (available in [72]) in
direction from the source to the point and the sphere weighting introduced
in Section 4.4.1.

The formal definition follows: For a one-dimensional vector x, its continu-
ous spline interpolation is denoted with fx. For a 3D image I, the three axial
vectors that contain the point P are denoted with xP , yP and zP , respec-

tively. The gradient of the image I in point P is defined by dIP =

∂fxP

∂fyP

∂fzP

.

To calculate the directional gradient in point P we use the direction vector
c := CP. The final cost function used in this case is

g(P ) =
1

d2(P, S)︸ ︷︷ ︸
∗

· (1 + c · dI︸ ︷︷ ︸
**

)
(4.4.4)
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Here, (**) is the gradient in direction of c and (*) is the square of the
distance from the source. The square exponent is needed because the area of
the minimum surface is proportional to the square of the radius of the object.
This cost function filters the artifacts in the direction z and the closer we are
to the direction, the more we ignore the noise. An example of an image of
a polystyrene ball segmented by the CMF method is shown in Fig. 4.9(a).
Fig. 4.9(b) shows the ball segmented without the cost function weighting. We
can observe an incorrect reconstruction due to weak gradient in this area of
the image. In Fig. 4.9(c), 4.9(d) a better segmentation results are shown. It
was achieved using the 1

r weighting described above.

(a) (b) (c)

(d)

Fig. 4.9: Slice of a segmented ball with the maximum flows method. (a) Original data.
(b) Unweighted cost function segmentation result in green (in blue - marker). (c) Weighted
cost function result (same color coding as in (b)). (d) 3D segmentation result.

4.4.1.2 Curvature Estimation

Curvature estimations were provided in some key areas of the image, for in-
stance near points of contact between nanoparticles and liposomes as well as
in the case of the membrane of the liposome. In the presence of a reliable
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surface segmentation and in the continuous domain, the local curvature is
well-defined mathematically and can be estimated using local second deriva-
tives. Curvature estimation is also possible from implicit surface representa-
tions [73]. However, in our case we found that the precision of these methods
was not good enough due to discretization and noise. A scale must be cho-
sen at which to estimate the curvature and appropriate smoothing must be
applied with some caution, in particular in order to preserve topology.

Instead, we developed semi-local representations of curvature appropriate
to our problem, in particular given our priority regarding topology preserva-
tion. We started from the medial axis representation of our segmented result
S [74] and found the extremities of this representation. The medial axis is
the locus of the centers of maximal disks (2D) or balls (3D) included in S.
Maximal balls are such that no ball can strictly contain them and still be
included in S. Their center lie at local centers of symmetry for S, and they
touch (and are in fact tangent to) the border of S on at least two distinct
points. The superset of the medial axis that is connected and topologically
equivalent to S is called the skeleton of S, and there exists efficient algorithms
for computing the medial axis and the skeleton in 3D, see for instance [75, 76].
Skeleton extremities can be detected using local configurations (e.g. points
with a pre-determined number of connected neighbors).

4.4.2 Source and Sink Determination

One of the keys to maximum flow segmentation is the choice of the source.
In the model we assume three things: the source is inside the object, the sink
is outside of it and we segment only one object at a time. While there exists
situations where the choice of the source can be arbitrary placed within the
object, in many cases, however, the segmentation can be improved with a
good choice of source. While segmenting more objects at a time is theoreti-
cally possible, the topology of the final object is not guaranteed. There exist
examples where more isolated sources still lead to a single object after the
segmentation.

In our case, due to the missing wedge effect, a more precise choice of source
and sink can considerably improve the segmentation results. In Section 4.5.2
we have used a preprocessing technique to determine the "centres" of the
objects. From these carefully chosen sources we could apply a position-based
noise filtering on the cost function g which led to our final segmentation.

In general, sinks are made of 3D bounding boxes around known objects of
interest and do not present a strong challenge. In other cases, they might be
derived from previous segmentations.
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4.4.3 Calculation of the Optimal Surface

The continuous maximum flow system is described by the following system
of equations:

∂P

∂τ
= −d · F (4.4.5)

∂F
∂τ

= −dP (4.4.6)

|F| ≤ g (4.4.7)

Here P represents a scalar (pressure-like) field and F a flow vector field (a
speed-like field). P is forced to 1 on the source and 0 on the sink. The equation
can be solved numerically (by simulation). Assuming convergence for a given
g, the steady-state solution is:

d · F = 0 (4.4.8)

dP = 0 if |F| < g (4.4.9)

dP = −λF if |F| = g (4.4.10)

The Eq. 4.4.8 simply restates the conservation of the flow. Eq. 4.4.9 applies if
the flow has stabilized during the evolution without the constraint (Eq. 4.4.7).
At stability, direction or magnitude of the flow vector field cannot change.
From Eq. 4.4.6, 4.4.7 we can deduce that dP ·F ≤ 0, which means that P is
a monotonically decreasing function along the flow lines. If F is dense, as it
is divergence-free, these flow lines can only initiate in the source and end at
the sink.

Now, we define set A = {x|P (x) > p} with 0 < p < 1. On the iso-
surface Y := ∂A the dP 6= 0 by construction, which means, that in these
points (Eq. 4.4.7) applies thus:∫

A

d · FY =

∮
Y

NY · FdY =

∮
Y

gdY =

∮
Y

dG (4.4.11)

This implies, that every iso-surface of P is a minimal surface. If there is only
one minimum, this also means that the P field can be 0 ≤ P ≤ 1 only on a
zero measure set.

Computation of minimal surfaces by this flow simulation is reasonably
fast. For instance, in the case of section 4.5.2, steady-state convergence of
a 116x116x116 pixel image is reached in 2000 iterations in 80 seconds on a
dual-core AMD 2.5GHz Opteron CPU. Memory consumption is in the order
of 4 times the initial image size in single-precision floating point format.
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4.5 Segmentation and Interaction Analysis of
Nano-Particles

4.5.1 Image acquisition

The volume images are reconstructed from a series of projected 2D im-
ages. The object is turned around its axe and full 2D attenuation pattern
is recorded at each angle. In this application, a 5 µl sample was deposited
onto a holey carbon coated copper grid, while the excess was blotted with
a filter paper. The grid was plunged into liquid ethane, cooled with liquid
nitrogen (Leica EM CPC). Specimens were maintained at a temperature of
approximately -170 ◦C, using a cryo holder (Gatan). For the acquisition, the
images were observed with a FEI Tecnai F20 electron microscope operat-
ing at 200 kV and at a nominal magnification of 50 000× under low-dose
conditions. Images were recorded with a 2000×2000 slow scan CCD camera
(Gatan). For cryo-electron tomography, tilt-series were collected automati-
cally on both FEI Tecnai F20 and Tecnai G2 Polara from −60◦ to +60◦

with 2◦ angular increment using the FEI tomography software. Images were
recorded on CCD camera at a defocus level between -8 µm and -4 µm. The
pixel size at the specimen level varied between 0.5 nm and 0.36 nm. The
sample was injected with high intensity particles before the recording, so the
exact position of the carbon grid could been determined. For image process-
ing, colloidal gold particles were used as fiducial markers. The 2D projection
images were then binned by a factor of two and aligned with the IMOD
software [77]. Finally the tomographic reconstructions were calculated by
weighted back-projection using Priism/IVE package [78].

Fiducial markers used for image alignment can be seen as white spots in
Fig. 4.22. However, as the carbon grid can only be turned around within
about 120 degrees (due to the thickness of the grid), there are some parts
of the object which are not present in the volume image. The result of the
microscopy are three-dimensional images, however the signal-to-noise ratio
becomes very low near object’s poles due to missing wedge effect. An example
can be observed in Fig. 4.5.

In this situation, it is desirable to present both the reliable segmentation,
i.e. the part of the contour that was detected based on strong edge informa-
tion, and the interpolated ones. In the following, we are detailing the filtering
and the segmentation procedure with the described algorithm of the maxi-
mum flows and its optimization applied for two types of samples.



4.5 Segmentation and Interaction Analysis of Nano-Particles 93

(a)

(b)

(c)

Fig. 4.10: The pre-processing steps: (a) Median filter. (b) First derivatives. (c) Morpho-
logical opening and closing results.

4.5.2 Polystyrene Beads Nucleated Around Silica
Nanoparticles

The material consists of polystyrene nodules and silica bead embedded in
a substrate. These roughly spherical objects of size range 100-300 nm are
nucleated around an existing silica bead. One slice of a sample can be seen
in Fig. 4.1. The work by [47] details all materials and methods.
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The aim is to get an insight into the surface contact of polystyrene beads
with silica nano-particles extracted from tomographic reconstructions. For
this, the particles are automatically segmented and then their contact angles
are also automatically measured.

In order to prove the usefulness of the max-flow method, we compare its
performance to other widely used segmentation algorithms: simple thresh-
old, watershed algorithm and the combinatorial graph cuts (that is the Ford-
Fulkerson maximum flow algorithm). In the test images, we first applied a
median filter, then we segmented the same filtered image by all the compari-
son algorithms and CMF. The final segmentation results are superimposed on
the original image. This example shows the side-effects of these segmentation
algorithms.

The Ford-Fulkerson, graph-cut and watershed may perform similarly
on 2D images, whereas they have radically different performances when the
problem becomes 3D on this data. The results of these four different methods
can be seen in Fig. 4.6. In this case, the simple threshold of the image cannot
produce any usable propositions Fig. 4.6 (d). We can see that the Ford-
Fulkerson algorithm will converge on flat limiting planes instead of spherical
ones and that watershed cannot find the limits of the objects at all, making
thus the object reach the borders of the image. Considering these examples,
the continuous maxflow algorithm equipped with the specialized gradient
described earlier can be a good alternative over these methods. It can in-
terpolate the missing (or weak) parts of the gradient with a simple form; in
this case close to a sphere, but concave objects would also be possible. More
complex objects, like facets of a crystal have not yet been tried, but would
be an interesting problem to look at.

In order to segment the image with the maximum flows method from
section 4.4, it is desirable to filter out the noise. As well, we need to specify
a source and a sink.

As a preprocessing step, in order to reduce the noise in the original data
(see Fig. 4.1) we used several filtering steps. 3D median filter was used in order
to reduce speckle and salt-and-pepper noise. 2D edge extraction with the
first derivative on a large scale in order to smooth out the noise. Afterwards,
a 3D connectivity filter was used in order to eliminate smaller connected
areas after thresholding [79]. A series of morphological openings and closings
were useful in reconnecting and reconstructing the 2D circles. These filtering
results can be observed in Fig. 4.10 .

Due to the missing wedge effect, on some slices, insufficiently reconstructed
bead poles appear very dim, while well-reconstructed bead slices near the
equator appear well separated from the background as in Fig. 4.5.

For this sample, in order to compensate for this drawback, we have used
a preprocessing technique to determine the centres of the particles as closely
as possible. The complete bead surface is interpolated by segmentation of
its circles from the fully reconstructed (horizontal) image slices. The bead
surfaces are used as sources for the maximum flow method segmentation.
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In order to detect circles from 2D slices of the image volume, the Hough
circle transform was used. The original Hough transform [80] and its deriva-
tives have been largely applied and recognized as a robust technique [81] even
in the presence of heavy noise. The circle Hough method did indeed succeed
in localizing circle centres and radii even from incomplete initial circles (see
Fig. 4.11).

Fig. 4.11: A pre-processed image slice together with the Hough circle transform result.

Once the centres have been determined, these centres were used as sink for
the maximum flow method. We have considered one bead at a time. In this
case the extent of the beads is predictable. To facilitate our task without the
loss of generality we could assume that a bead is fully contained within 0.7R
to 1.2R, where R is the estimated radius of the bead7. For the segmentation
of each bead, as a source marker, a sphere with radius 0.7R centered in C
was used. The complement of a sphere with radius 1.2R centered in C was
used as the sink marker. This step accelerated the speed of the segmentation
as the region excluded was omitted during the segmentation.

Due to the gradient’s high sensitivity to noise, we used the gradient of a
cubic spline [72] with some improvements: First the gradient is calculated

7 the estimated radius is a byproduct of the Hough transform
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on each line in each direction with an approximating spline. A spline is a
function defined in our case on a line. At each integer point the value of the
spline is the same as the image intensity and its derivatives up to degree 3
can be computed analytically.

Here the key observation was, that the noise is roughly parallel to the
axes. We could therefore filter the noise from the gradient by calculating a
directional gradient from the centre. This is done as follows: for a point
A to which we would like to know the value of the directional gradient, we
consider the ray8 OA, where O is the centre of the bead. At point A we
calculate the sum of the scalar products of the gradients in each direction
gd = OA · gx + OA · gy + OA · gz. The higher degree is used to avoid local
fluctuations caused by the noise. Finally, the segmentation was performed
using the continuous maximum flows method and the results can be observed
in Fig. 4.12.

4.5.2.1 Contact Angle Measurement

The interest of the segmentation lies in the measurement of the attraction
rate of the beads to the nanoparticle. The attraction is measured by the
contact angle.

Fig. 4.12: Polystyrene and silica beads embedded in a substrate. The coloration is arbi-
trary.

8 half-line
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The common way of the angle calculation is Axisymmetric Drop Shape
Analysis [82]. In this method a model of the bead is fitted to the image while
minimizing the quadratic difference from the image. This way accurate angle
measurements can be performed.

However, this method supposes that the physical model of the bead is
known and precise. In our case, we do not make any assumptions about the
physical properties of the material, so we perform direct angle measurements.
In our case, the image plane is projected to the x y plane using an angle-
preserving conformal map. Secondly, we find the contact point, and finally,
we interpolate the contact arcs with a circle calculating the angle between
the upper and lower interpolating circles.

Projection of the image

We consider the two center points of the beads A and B. We want to con-
sider the planes containing the line AB. For the rotation, we use x as the
reference vector and AB × x as the third vector of the base. The basis
B

1
=
[
x,x×AB,AB

]
will be our reference basis.

As we want to calculate the angle for every possible cut, we rotate the
basis B1 around the axis AB. For this, we project the basis into the origin
(O) and then we apply the rotation transformation. Formally:

R =


cosα − sinα 0 0
sinα cosα 0 0
0 0 1 0
0 0 0 1


will be the rotation transformation and

O =


1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 1


will represent the origin basis. T = R ·O−1 will project the reference basis
to the origo, with z matching AB. From this B

2
=
(
T−1 ·R ·T

)
· B

1
will

represent the projection basis which is the reference basis B
1
rotated with

angle α. For the angle measurement, we want to project the axe AB to the
axe y, so we swap the third and the second column of B

2
. We will mark this

with B’
2
. In the last step we calculate the projection matrix

PR = B’
2
·O−1
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The PR matrix will project the points of the x y plane to the plane around
the axe AB. From this we calculate the actual intensity by nearest neighbour
interpolation.

Isolation and interpolation of the contact arcs

As shown in Fig. 4.13, we can now conformingly map the cutting planes to
2D images. The neck found by a simple pass on the image looking for the
closest point to the axis.

For the angle interpolation, we consider the radius r from the bottle neck
point and we separate the upper and the lower arcs. The circles, which min-
imize the square error will represent the interpolation of the derivatives of
the images.

(a) (b) (c)

(d)

Fig. 4.13: Contact angle measurement. The segmented object (a), the estimated angle (b),
the angle superimposed to the object (c) and the cut plane in the 3D image (d)
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Finding the best fitting circle

For the best circle fit we use a modified version of the ellipse fitting algorithm
from [83]. The description of the algorithm follows:

Let’s assume, that our circle is defined by the equation:

a
(
x2 + y2

)
+ bx+ cy + d = 0, (4.5.1)

where a = {a, b, c, d}T and x =
{
x2 + y2, x, y, 1

}T .
To find the fitting circle, we minimize the algebraic distance:

dist(a) =
N∑
i=1

(
aT · x

)2
(4.5.2)

If we reformulate Eq. 4.5.1 to the conventional form:(
x+

b

2a

)2

+
(
y +

c

2a

)2
+

(
d− b2

4a2
− c2

4a2

)
= 0, (4.5.3)

from Eq. 4.5.3 we can see that the condition for Eq.4.5.1 being a circle is:

d− b2

4a2
− c2

4a2
< 0 (4.5.4)

0 < 4a2d− b2 − c2 (4.5.5)

As the circle equation is overdetermined (namely the a constant), we can
impose Eq. 4.5.4 as constraint 4a2d− b2 − c2 = 1. With these considerations
we can reformulate the problem as a Lagrange minimization:

min
a
||D · a||2 s.t. aT ·C · a = 1 (4.5.6)

Here, D denotes the design matrix of size N × 4:

D =


x21 + y21 x1 y1 1
x22 + y22 x2 y2 1

...
...

...
...

x2n + y2n xn yn 1


and C denotes the constraint matrix:

C =


0 0 −2 0
0 1 0 0
−2 0 1 0
0 0 0 0
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Following the argumentation of [83], the Lagrange system can be rewritten
as

S · a = λC · a (4.5.7)

aT ·C · a = 1 (4.5.8)

where S is the scatter matrix, S = DT ·D. This system is readily solved by
considering the generalized eigenvectors of (4.5.7). If (λi,ui) solves (4.5.7),
then so does (λi, µui). Giving

µi =

√
1

uTi ·C · ui
=

√
1

uTi · S · ui
(4.5.9)

and setting ai = µiui solves Eq.4.5.8.
The solution of the eigensystem Eq. 4.5.7 gives four results. These four

results are all local minima of the equation, so selecting the vector which
minimizes Eq. 4.5.2 yields be the optimal vector.

Fig. 4.14: Contact angle measurement of two artificial spheres C1 and C2. In this image,
the desired angle is α at the contact point P1. r1 and r2 represent the radiuses of the
beads and dO1,O2

represents the distance of the centers of the beads. As in this example
we model the beads by spheres, the volumic (mass) and the geometric centers coincide.
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Verification of the method

We will demonstrate the correctness of the algorithm by statistical measure-
ments. We model the beads by two spheres which intersect each other. The
contact angle will be the angle measured at the contact ring. This angle can
be calculated from geometrical considerations as seen in Fig. 4.14. We can
see that angle α is the complementer angle of β, whereas β can be calculated
from the area of the triangle O1O2PI :

S =
1

2
r1r2 sinβ (4.5.10)

S =
1

4

√(
r21 + r22 + d2O1,O2

)2
− 2

(
r41 + r42 + d4O1,O2

)
(4.5.11)

Here, Eq. 4.5.10 is the SAS9 theorem, while Eq. 4.5.11 denotes Heron’s for-
mula. Final formula:

α = π − asin


√(

r21 + r22 + d2O1,O2

)2
− 2

(
r41 + r42 + d4O1,O2

)
2r1r2

 (4.5.12)

gives us the reference angle. In the test we generate two randomly posed
intersecting spheres and follow the procedure described above. The measured
angles are then averaged and compared with the artificial angle estimation.

Results

During the tests we have measured more than 600 pairs of random circles
and measured a mean absolute difference of 3.3% compared to the artificial
estimations. An example of the interpolated image can be seen in Fig. 4.15.

9 side-angle-side
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Fig. 4.15: Circe fitting on two arcs

The contact angle provides an important information concerning the rate
of attraction of the particles. While the contact angle can be measured by
hand, the automated measurement can provide more consistent and objective
information about the chemical forces inside the substrate. An example of
the superposed angles can be seen on Fig. 4.13. In this image, the angle is
calculated at several different angles. From these we calculate the average
angle. Higher angles correspond to higher attraction forces.

4.5.3 Nanoparticle Transport Across Phospholipid
Membrane

For this application, we focus on the interaction of silica nano-particles with
large unilamellar liposomes (see Fig. 4.2 for an image slice example).

While many past studies focused on measuring the end-point nanomate-
rials and the distribution of their particles, relatively few studies have been
dedicated to the understanding of molecular interactions between nanoma-
terials and cell membrane, which may provide the necessary information to
understand how nanomaterials bind and enter cells [84].

Nano-particle transport across cell membrane is important in the devel-
opment of drug delivery systems, as well as in the question of nano-particle
poisoning. We know that hydrophilic nano-particles interact with the lipid
membranes. However, if they succeed to enter into the cell and to which ex-
tent, we do not know. Several models have been proposed based from the
membrane curvature to even the complete form of the particle.

It was generally believed, that the particles did not enter into mammalian
cell by endocytosis10. As evidence [85] and [86] argumented with the entry of
ultra fine particles into the red blood cells and cyt-D blocked macrophages11.
Both of these cells are known for their lack of endocytotic capabilities. How-
ever, [84] revealed12 that in some cases the molecules did not pass through
the membranes as expected. This suggests that the nano-particle transport
requires an interaction with the membrane. Unlike the nano-particles larger
than 30 nm, these 20 nm particles could not “break into” the membrane.

10 Endocytosis is a process where cells absorb material (such as nanoparticles) from the
outside by engulfing (wrapping around) it with their cell membrane.
11 White blood cells that absorb material foreign to the body (bacteria, etc).
12 In a study made with gold molecules and a liposomes that mimics the biological mem-
brane.
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Fig. 4.16: The inner yellow object is the source that have been generated by segmenting
the 2D slices with good visibility.

The results of the study (to which this paper has partially contributed)
provided in [43], indicate that silica particles, which are bigger than 30 nm
can enter into the liposomes composed of phosphocholine lipid, while smaller
particles cannot. This is due to the favorable balance between the adhesion
strength and membrane curvature. Smaller particles will not be able to enter
because of the less favorable balance.

In this segmentation in addition to the above presented techniques, we
used a special method for determining the source. Because of the asymmetric
shape of the object, a simple constraint bias was not sufficient. We have
extracted instead several 2D slices from the image, which we have segmented
with the same method, then we have created a complex 3D source from the
result. The created source is presented in Fig. 4.16.

Our segmentation results are summarized in Figures 4.8, 4.17, and 4.19.
These show a slice of the input image together with the borders of the seg-
mented objects superimposed in white. We used this evidence to visually
check the correctness of the segmentation and the estimation of curvature,
which we measured in places of interest (Fig. 4.20 and Fig. 4.18).
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Fig. 4.17: Nanoparticle penetrated into the cell. The inner membrane wraps around the
particle.

4.6 Discussion and Conclusion

In this article, we have demonstrated the usefulness of the continuous maxi-
mum flow framework for the segmentation of electron nano-tomography im-
ages. Despite the presence of noise, lack of contrast and low resolution of
images, the method was extended to provide for the interpolation of missing
parts of data as well as to cope for the structural noise. Its algorithmic design
allows high level of parallelization which makes it suitable for high resolution
images. Moreover, a free implementation exists [?], which makes it suitable
for research and a useful option for inclusion into other image processing
frameworks.

The method performs reasonably fast in all the above applications.
The method was further improved by adding shape constraints, optimizing

its performance for the shape-corrupted objects due to the missing wedge
effect inherent to the image modality.

The filtering and the segmentation procedure with the maximal flows al-
gorithm and its optimization were applied for two types of nano-material
samples.
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In the first example, the aim was to find the size of some polystyrene
beads and location with respect to a silica bead. The presented method was
compared with other classical segmentation methods: thresholding, watershed
and graph-cut, and shown to present significantly better performance.

Moreover, we have presented an automatic contact angle measurement
algorithm and its statistical evaluation on simulated data. Such automated
measurement can provide more consistent and objective information about
the chemical forces inside the substrate.

(a) (b) (c)

(d)

Fig. 4.18: The estimated curvatures.

In the second image sample, the max-flow technique was shown to be use-
ful in understanding of molecular interactions between nano-materials and
cell membrane, which may provide the necessary information in the under-
standing of binding and entering of silica nano-particles and large unilamellar
liposomes.
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4.7 Future Work and Objects of Different Shape

As future work, the presented methods will be tested on larger data sets and
validated by specialists. In the case of high volume datasets, or many images
to segment, the algorithm is implementable on GPU architecture.

Fig. 4.19: Interaction of the lipidic membrane with the nanoparticle. The red pieces are
the gold markers that were used for the reconstruction.

A GPU implementation would improve the segmentation speed by an order
of magnitude.

In the current state of the algorithm, as demonstrated, results are good
on spherical or elliptical objects both in 2D and in 3D. These types of ob-
jects were indeed those which we have been working on. In the case of long
fiber-like, tube-like13 or generally more complex objects, the complete re-
construction might of course be more difficult, as in such problems shape
constraints can be difficult to express. There is, however, no theoretical diffi-
culty in applying the method on any type of objects. Furthermore, we would
be interested in looking at other problems as well, should we be presented
with them.
13 like nanotubes
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Fig. 4.20: Curvature estimation. R1 is the radius of the inner maximal ball, R1 the radius
of the external maximal ball and R3 the radius to the nano-particle. Depending on the
configuration either R2 or R3 yield a robust curvature estimation.

Concerning the improvement of the algorithm, the basic tools have been
collected for extending the algorithm to optimize the flow according to an
arbitrary convex-set-function. In this work, mostly spherical constraints were
imposed. Instead of |F| ≤ g we could simply enforce F(x) ∈ Γ (x) where Γ (x)
is a convex set defined in each point. This would make it possible to optimize
the flow for more complex family of curves.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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(j) (k) (l) (m)

Fig. 4.21: Examples of continuous maximum flow segmentation. The sources are marked
in red. The sinks are the border of the images. In the image (a), the constraint-field is
affected with a circular bias, whereas the images (b) and (c) are not altered. We can see,
that the segmentation succeeds even on incomplete or concave objects. Images (d), (e) and
(f) represent the partially converged pressure fields, while images (g), (h) and (i) are the
final segmentations. Images (j)-(m) show the CMF’s resistance against noise. Noise levels
are σ = 8 (j), σ = 16 (k), σ = 32 and (l) σ = 64 (m) on a 256 grey-level image. Note, that
images have not been prefiltered before segmentation.
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Fiducial Markers

Nanoparticles

Lipidic Membrane

(a)

(b) (c)

(d) (e)

Fig. 4.22: Summary of segmentation procedure results: segmentation accuracy of nanopar-
ticle. Results superimposed in white over the original image data. Slice (a) is that of the
best original image quality. (b)-(c) and (d)-(e) are plane cuts in the perpendicular direction
of (a). Here the week parts of the image were interpolated with the CMF algorithm.
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4.8 Conclusions and Future Work

During this thesis we have presented our work which have been carried out
in the field of image segmentation by continuous optimization. In particu-
lar we have analyzed in detail the continuous maximum flow algorithm. The
continuous maximum flow algorithm is a segmentation algorithm based on
minimum surfaces. It provides the segmentation in form of image partitions,
where each partition is wrapped around by a minimum surface. While mainly
used for image segmentation, the algorithm can also be used for image de-
noising.

We have analyzed in detail the implementation of the algorithm with a
detailed review of the current available architectures. We have adapted the
algorithm to run in parallel on many architectures and reformulated the up-
date scheme to optimize it on some embedded GPGPU architectures.

From the application point of view, we have work on segmentation of sev-
eral nanotomographic images of materials, nanoparticles and, lipidic mem-
branes as well as some applications in medical images. During the work we
have proposed new preprocessing methods, measure calculations as well as
new source and sink determinations.

From the developer point of view we have included our work in an image
processing frameworks, which is cross platform, actively developed and which
provides a fertile ground on which new image processing applications can
grow in the future.
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Chapter 5
The Pink Image Processing Library

Pink is an image processing and image analysis library developed at ESIEE
Engineering for research and teaching purposes. It is build upon Boost Python
and the Python Imaging Library, and uses plug-ins that use python-vtk,
numpy and matplotlib. While the core foundation has been in development
for over a decade, its Python front-end is recent work.

Most existing image processing libraries concentrate on pixel-based opera-
tors and linear filtering methods like convolutions, FIR and IIR filters, diffu-
sion and so on. Pink complements these with implementations of over 200 al-
gorithms for image segmentation and non-linear filtering. Whereas most op-
erators come from mathematical morphology, discrete geometry and discrete
topology, operators from other fields are implemented as well.

The Pink dedicated front end is exposed using Boost Python. The li-
brary is designed to behave natively in Python, with the functional pro-
gramming paradigm. Operators are functions and the images are returned
after the operation as results. This way complex image processing pipelines
and algorithms can be easily scripted in Python. This enables an easy plu-
gin creation or development of solutions for particular applications (pre-
processing—segmentation—post-processing).

The Python front-end makes it suitable to use Pink together with other
packages like SAGE, PyLab or Tkinter. This makes it possible to develop
image segmentation and processing methods that are using graphical inter-
faces for parametrization. The operators can be demonstrated using Python’s
facilities in an interactive manner. This functionality is particularly useful as
a learning tool.

All the operators feature research-level, scientific journal-described algo-
rithms with 3D extension where possible. Notable operators include skele-
tonization and topological thinning, mathematical morphology, watershed,
maximum flow, total variation filtering, and more.

From the technical point of view, the images in Pink are exposed in Python
as objects. The operators are functions, with images as first parameters. As
result, they return a processed image. Pixels, if necessary, can be accessed

113
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with intuitive operators. This means that simple algorithms for experimenting
can be implemented directly in Python with speed as the only constraint.

By design new C/C++ operators can be exposed using only a few lines of
C++ code, completely omitting third party languages. Indeed, the complete
library is implemented using C/C++ and Python. It has been ported to most
of the popular Linux distributions and it also runs on OSX and Microsoft
Windows.

The software is open-source and freely available at http://pinkhq.com.
It is currently soliciting new users and developers.

http://pinkhq.com
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59. M. Nikolova, S. Esedoḡlu, and T. F. Chan, “Algorithms for finding global minimizers of
image segmentation and denoising models,” SIAM JAM, vol. 66, no. 5, pp. 1632–1648,
2006.

60. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” International Jour-
nal on Computer Vision, vol. 22, no. 1, pp. 61–79, 1997.

61. A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging. IEEE
Press, 1999.

62. G. Möebus and B. Inkson, “Novel nanoscale tomography modes in materials science,”
Microscopy and Microanalysis, vol. 9, no. Suppl. 02, pp. 176–177, 2003.

63. S. Beucher and C. Lantuéjoul, “Use of watersheds in contour detection,” in Int. Work-
shop on Image Processing, (Rennes, France), CCETT/IRISA, Sept. 1979.

64. F. Meyer and S. Beucher, “Morphological segmentation,” Journal of Visual Commu-
nication and Image Representation, vol. 1, pp. 21–46, Sept. 1990.

65. Y. Boykov and V. Kolmogorov, “Computing geodesics and minimal surfaces via graph
cuts,” in International Conference on Computer Vision, (Nice, France), pp. 26–33,
October 2003.

66. J. L. R. Ford and D. R. Fulkerson, Flows in Networks. Princeton, NJ: Princeton
University Press, 1962.

67. M. Kass, A. Witkin, and D. Terzopoulos, “Snakes: active contour models,” Interna-
tional Journal of Computer Vision, vol. 1, pp. 321–331, 1988.

68. J. Sethian, Level set methods and fast marching methods. Cambridge University Press,
1999. ISBN 0-521-64204-3.



118 5 The Pink Image Processing Library

69. V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” International Jour-
nal on Computer Vision, vol. 22, no. 1, pp. 61–79, 1997.

70. A. J. Kinderman and J. F. Monahan, “Computer generation of random variables us-
ing the ratio of uniform deviates,” ACM Trans. Math. Softw., vol. 3, pp. 257–260,
September 1977.

71. R. Stevanovic, G. Topic, K. Skala, M. Stipcevic, and B. Rogina, “Quantum random
bit generator service for monte carlo and other stochastic simulations,” in Large-Scale
Scientific Computing (I. Lirkov, S. Margenov, and J. Wasniewski, eds.), vol. 4818 of
Lecture Notes in Computer Science, pp. 508–515, Springer Berlin / Heidelberg, 2008.
10.1007/978-3-540-78827-0_58.

72. F. S. Foundation, “The gnu scientific library (gsl),” 2010.
73. R. Goldman, “Curvature formulas for implicit curves and surfaces,” Comput. Aided

Geom. Des., vol. 22, no. 7, pp. 632–658, 2005.
74. H. Blum, “An associative machine for dealing with the visual field and some of its

biological implications,” in Biological Prototypes and synthetic systems, vol. 1, pp. 244–
260, 2nd Annual Bionics Symposium, Cornell Univ., E. E. Bernard and M. R. Kare
eds., Plenum Press, New-York, 1961.

75. S. Lobregt, P. Verbeek, and F. Groen, “Three-dimensional skeletonization: Principle
and algorithm,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 2, pp. 75–77, Jan. 1980.

76. R. Zrour and M. Couprie, “Discrete bisector function and euclidean skeleton,” in Dis-
crete Geometry for Computer Imagery: 12th International Conference, DGCI 2005
(E. Andres and P. Damiand G., Lienhardt, eds.), vol. 3429 of LNCS, (Poitiers, France),
pp. 216–227, Springer, April 2005.

77. D. N. Mastronarde, “Dual-axis tomography: An approach with alignment methods
that preserve resolution,” Journal of Structural Biology, vol. 120, no. 3, pp. 343 – 352,
1997.

78. H. Chen, D. D. Hughes, T.-A. Chan, J. W. Sedat, and D. A. Agard, “Ive (image
visualization environment): A software platform for all three-dimensional microscopy
applications,” Journal of Structural Biology, vol. 116, no. 1, pp. 56 – 60, 1996.

79. E. Breen and R. Jones, “Attribute openings, thinnings and granulometries,” Computer
Vision, Graphics and Image Processing, vol. 64, no. 3, pp. 377–389, 1996.

80. P. Hough, “Methods and means for recognizing complex patterns.” US Patent 3069654,
1962.

81. J. Illingworth and J. Kittler, “A survey of the hough transform,” Comput. Vision
Graph. Image Process., vol. 44, no. 1, pp. 87–116, 1988. Important reference.

82. P. Cheng, D. Li, L. Boruvka, Y. Rotenberg, and A. Neumann, “Automation of ax-
isymmetric drop shape analysis for measurements of interfacial tensions and contact
angles,” Colloids and Surfaces, vol. 43, no. 2, pp. 151 – 167, 1990. Selected Papers
from a Symposium on Recent Progress in Interfacial Tensiometry, held at the Third
Chemical Congress of North America.

83. A. Fitzgibbon, M. Pilu, and R. B. Fisher, “Direct least square fitting of ellipses,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, pp. 476–
480, 1999.

84. S. Banerji and M. Hayes, “Examination of nonendocytotic bulk transport of nano-
particles across phospholipid membranes,” Langmuir, vol. 23, no. 6, pp. 3305–3313,
2007.

85. M. Geiser, B. Rothen-Rutishauser, N. Kapp, S. Schürch, W. Kreyling, H. Schulz,
M. Semmler, V. Im Hof, J. Heyder, Gehr, and P. Environ, “Ultrafine particles cross
cellular membranes by non-phagocytic mechanisms in lungs and in cultured cells,”
Environ Health Perspect., no. 113, pp. 1555–1560, 2005.

86. B. M. Rothen-Rutishauser, S. Schurch, B. Haenni, N. Kapp, and P. Gehr, “Interac-
tion of fine particles and nanoparticles with red blood cells visualized with advanced
microscopic techniques,” Environ. Sci. Technol, vol. 40, no. 14, pp. 4353–4359, 2006.


	Journal publications by the author
	Publications
	Conference publications by the author


	Part I Contemporary Image Segmentation
	Image Segmentation Problems
	Minimum Surfaces

	Maximum Flows
	Maximum Flows in the Discrete Domain
	The Minimum Cut and Maximum Flow in the Continuous Domain
	The Algorithm for Finding the Optimum Flow
	Discrete vs. Continuous Approach
	Total Variation in Convex Analysis and the Maxflow Algorithm
	Summary


	Part II Continuous Maximum Flows: Implementation and Applications
	Implementing Continuous Maximum Flows
	Theoretical Considerations
	The Dynamics of the Iterations
	Memory Bandwidth
	Synchronization

	The Reference Implementation
	Maxflow on x86-64 Architecture
	Parallelism on x86
	Non-Uniform Memory Access
	Measuring the Memory Bandwidth
	Synchronization
	The Overhead of the Synchronization
	Estimated Computation Time

	Streaming Algorithms on x86
	The Benefit of the Cache in Accelerating the Performance
	Benchmarks

	Maxflow in the OpenCL Framework
	Maxflow on GPGPU
	Eliminating the Branches From Maxflow
	The Cell Broadband Engine Architecture

	Benchmarks
	Summary

	Applications of the Maximum Flow Algorithm
	Nano-Particle Interaction Analysis
	Introduction 
	Electron Nano-Tomography
	Continuous Maximum Flows and Minimal Surfaces
	The Choice of the Image Function
	Calculation of the Cost Function
	Curvature Estimation

	Source and Sink Determination
	Calculation of the Optimal Surface

	Segmentation and Interaction Analysis of Nano-Particles
	Image acquisition
	Polystyrene Beads Nucleated Around Silica Nanoparticles
	Contact Angle Measurement

	Nanoparticle Transport Across Phospholipid Membrane

	Discussion and Conclusion
	Future Work and Objects of Different Shape
	Conclusions and Future Work


	Appendix
	The Pink Image Processing Library
	References

	References


