
Dynamic Task Scheduling and
Binding for Many-Core Systems

through Stream Rewriting

Dissertation
zur

Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Informatik und Elektrotechnik
der Universität Rostock

vorgelegt von

Lars Middendorf, geb. am 21.09.1982 in Iserlohn
aus Rostock

Rostock, 03.12.2014

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2015-0080-6

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext

zef007
Schreibmaschinentext

Gutachter

 Prof. Dr.-Ing. habil. Christian Haubelt
Lehrstuhl "Eingebettete Systeme"
Institut für Angewandte Mikroelektronik und Datentechnik
Universität Rostock

 Prof. Dr.-Ing. habil. Heidrun Schumann
Lehrstuhl Computergraphik
Institut für Informatik
Universität Rostock

 Prof. Dr.-Ing. Michael Hübner
Lehrstuhl für Eingebettete Systeme der Informationstechnik
Fakultät für Elektrotechnik und Informationstechnik
Ruhr-Universität Bochum

Datum der Abgabe: 03.12.2014

Datum der Verteidigung: 05.03.2015

Acknowledgements
First of all, I would like to thank my supervisor Prof. Dr. Christian Haubelt for his guidance
during the years, the scientific assistance to write this thesis, and the chance to research on
a very individual topic. In addition, I thank my colleagues for interesting discussions and a
pleasant working environment. Finally, I would like to thank my family for supporting and
understanding me.

Contents
1 INTRODUCTION..1

1.1 STREAM REWRITING ...5
1.2 RELATED WORK ...7
1.3 CONTRIBUTIONS...13
1.4 PUBLICATIONS ...16

2 STREAM REWRITING ..18

2.1 STREAM REWRITING MACHINE ...18
2.2 PARALLEL REWRITING ...23
2.3 SCHEDULING ...31
2.4 STREAM COMPRESSION ...39
2.5 MEMORY ACCESS...42

3 SOURCE MODELS ...48

3.1 FUNCTIONAL PROGRAMS ...48
3.2 TASK GRAPHS ..51
3.3 C SOURCE CODE ..60

4 MULTI-CORE ARCHITECTURES ..65

4.1 INTRODUCTION ..65
4.2 SHARED MEMORY ARCHITECTURE ...67
4.3 STREAM REWRITING NETWORK...74
4.4 COMPARISON ..79
4.5 CONCLUSION ...82

5 GRAPHICS PROCESSING..83

5.1 INTRODUCTION ..83
5.2 RELATED WORK ...85
5.3 GENERIC GRAPHICS PIPELINE ..92
5.4 FUNCTIONAL PROCESSOR...96
5.5 SIMT SHADER CORE...103
5.6 GENERAL PURPOSE GRAPHICS PROCESSOR ..114

6 HIGH-LEVEL SYNTHESIS ..128

6.1 INTRODUCTION ..128
6.2 RELATED WORK ...129
6.3 IMPLEMENTATION ..130
6.4 RESULTS ...133

7 CONCLUSION..137

7.1 RESULTS ...137
7.2 FUTURE WORK ..138

8 REFERENCES ...141

1

1 Introduction
The scalability of modern computer architectures is mostly limited by stagnating clock rates
and increased energy consumption. Multi and many-core systems offer the ability to
overcome these issues by performing computations on several functional units in parallel.
Although a multi-core design usually consumes a larger area than an equivalent single-core
design, it can offer a similar computational power at lower clock frequencies and thus helps
to reduce thermal heat or power issues [1]. Thus, designing hardware and software
architectures consequently towards concurrency and parallelism are currently the most
effective and in the long term the best approach of accelerating an application [2].
The concept of multiple cores can be recognized in general purpose processors [3] and
graphics processing units [4], which are optimized for maximum performance, but also in
mobile and embedded systems to perform computationally intensive tasks in resource
constrained environments [5]. In particular, the integration of more functional units and
their interconnections already involves significant technical problems to be solved at the
hardware domain.
For instance, Figure 1 shows three example processors with a complexity ranging from 29K
to 7.1B transistors. Although each generation can take advantage of technological
improvements and shrunk structures, the simple duplication of arithmetic and logical
blocks leads to an unconstrained grow of the power usage [6]. Hence, it is often better to
spend the newly won capacity with optimized and therefore more specialized functionality,
which results in complex heterogeneous systems. As a result, the integration of different
processor types becomes possible but on the other hand, the utilization of these additional
resources turns out to be a significant and currently unsolved issue.
Due to its complexity, the task management is often moved to the software layer, which is
now responsible for the binding and scheduling of concurrent work items to processor
cores [7] and involves several different programming models (Section 1.2.1). When
developing embedded real-time systems, the focus usually lies on meeting hard deadlines
that require the completion of certain tasks within a given period of time. For these
applications, a static schedule is usually pre-computed at design time to ensure correctness
and predictability of the system.

Intel 8088, no cache,
29K transistors [6]

1979

Intel Nehalem, 8 cores,
2.3B transistors [6]

2010

NVidia GK110,
7.1B transistors [8]

2013
Figure 1. Photographs of various processors from the 8088 to modern GPUs.

2

Figure 2. Architecture of the Tesla GPU [9]. Figure 3. Streaming multiprocessor [9].

However, the creation of a static schedule can take a significant amount of time and is only
feasible if the expected workload is known at design time. Hence, the software
development for many-core architectures like the SCC processor with 48 cores [10], the 64-
core tile processor [11] or graphics processing units [9] becomes challenging in case of
dynamic parallelism. Especially for irregular workloads, the efficient communication
between cooperating tasks induces several question not yet solved in general [12], so that
the resulting schedule is usually not an exact solution [13].
Therefore, it seems remarkable that for the specific use case of graphics processing, many-
core architectures with thousands of shader processors have become common and the
performance of applications scales accordingly [14]. One reason can be found in the
architecture of GPUs, which is adapted for the parallel workloads of graphics processing.
For instance, the Tesla processor (Figure 2) contains a large array of streaming
multiprocessors, which are fed by specialized units for vertex, pixel and compute work. In
particular, each of these tasks, like the rasterization of a triangle, can be naturally
partitioned into a sufficient number of smaller work items for each processor. For example,
the hardware scheduler of the Tesla GPU creates a separate thread for each 2x2 quad of
pixels. In particular, there are up to 768 threads per multiprocessor, which help to hide the
latency of floating-point operations and memory request at moderate costs. On the other
hand, the communication between threads is limited and the system actually requires a
minimal workload for efficiency. Hence, this architecture is well-suited for data parallel
problems with extensive floating-point arithmetic, which apply the same type of
computation to a large number of input elements. However, in case of irregular data access
and control flow like sorting or a binary searching, a general purpose CPU can outperform a
GPU despite its several times higher theoretical arithmetic throughput [15].

3

Figure 4. How to map a complex application with dynamic parallelism to many-core architectures?

One reason is the usage of the SIMT (single-instruction multiple-threads) execution model
in GPUs, which evaluates the same instruction for a group of threads in parallel. In these
architectures shader cores (SP) consist only of an arithmetic unit and share common
functionality like the memory interface. Especially the instruction fetch and decode stages
are shared with other cores in the same multiprocessor (Figure 3).Thus, in the optimal case,
all cores of a multiprocessor are active and are working in parallel on the same instruction
but a data dependent branches can lead to different control paths, which cause
performance degradation (incoherent control flow). Hence, in order to take advantage of
current GPUs, a problem must fit into the data parallel execution model.
As a result, the dynamic binding and scheduling of applications with numerous tasks has
not been solved for many-core architecture in general (Figure 4). Instead, both general
purpose CPUs and graphics processors have their particular strengths, so that the question
arises how these contrary concepts can be combined. For this purpose, this thesis presents
a novel execution model, which deals with the problem of dynamic binding and scheduling
of irregular workload in a highly concurrent environment. Since several concepts from
general purpose CPUs and graphics processors are combined, the relation between these
architectures is compared in Figure 5.
On the left hand side, the single core CPU exclusively relies on instruction-level parallelism
but is also well-suited for irregular data access due to a cache hierarchy. A branch predictor
usually ensures that irregular control flow is handled efficiently and dynamic scheduling can
be implemented in software. When moving towards the right hand side of this chart,
parallelism, throughput, and performance increase but also the programming model
becomes more specialized. Thus, a multi-core CPU enables task and thread-level parallelism

Figure 5. Comparison of CPU and GPU architectures.

4

but a program must be first partitioned into concurrently running processes. Unlike
instruction-level parallelism, which can be automatically extracted using Tomasulo’s
Algorithm [16], the synchronization of separately running threads must be explicitly
specified by the programmer and often adds undesirable complexity to an application.
While general purpose processors have been evolved into multi-core CPUs and are moving
towards many-core architectures, graphics processors are already highly parallel and
become more flexible instead. Each major version of Direct3D [17] introduces new shader
types and adds more capabilities. For instance, the compute shader of Direct3D 11 [18]
enables general purpose computations and random memory access. However, the
application must be still adapted to the given programming model in order to take
advantage of the large-scale data parallelism. Obviously, there is a tradeoff between
generality and specialization for a particular problem, so that a GPU built from large general
purpose cores would consume unnecessary area and power. However, in this thesis, it is
questioned if there could possibly exists an intermediate class of parallel architectures,
which inhibits features from both CPUs and GPUs. For instance, it would be advantageous if
a hardware scheduler, able to handle millions of threads, could be combined with irregular
and general purpose computations. Due to the usage of a stream as the main computation
model, these architectures are characterized as stream rewriting machines (SRM). In a
summary, this thesis deals with the following three questions:

1. How can dynamic parallelism be modeled?
A fundamental question is the description of applications in such a way, that they are
scalable for many-core architectures. The basic task graph model contains a fixed
number of nodes and can therefore not describe dynamic parallelism. Otherwise, C
source code is a much more expressive representation but inherently sequential. Data
parallel loop programs contain explicit parallelism but usually cannot describe the
dynamic creation of individual tasks.

2. How can the dynamic scheduling and binding of irregular tasks be performed?
The proposed system should be able to handle a large number of unpredictable and
frequently varying tasks as well as their dynamic creation and completion. Also,
recursive tasks must be managed efficiently. As a result, the static binding of tasks to
computational resources and static scheduling are not feasible. In addition, the method
must be simple enough to be implemented in hardware.

3. How can the hardware architecture support dynamic scheduling and binding?
An important aspect is the architecture of many-core systems enforcing dynamic
parallelism. Should the architecture provide support for task management and how can
the interface between hardware and software be defined? Can the flexibility of a
software implementation be combined with the throughput of a hardware scheduler?

Before detailing the contributions of this thesis, the proposed execution model of stream
rewriting is presented in the next section.

5

Figure 6. Input models and target platforms of stream rewriting.

1.1 Stream Rewriting
This thesis proposes an alternative approach for managing dynamic parallelism at the
system level. The central innovation is a technique called stream rewriting, which acts as an
intermediate and platform independent representation of concurrent programs (Figure 6).
On the left hand side, several source models like imperative C code, functional programs
and task graphs as shown. A significant part of this thesis deals with the translation of these
models in a stream rewriting machine (SRM), which is the abstract model for stream
rewriting. For example, an SRM can be derived from an imperative C program, functional
languages as well as task graphs, which are often used to describe the dependencies in
parallel application. Hence, stream rewriting is an abstract model for concurrency, which
focuses especially on the aspect of dynamic parallelism and can describe both recursive
functions but also dynamic expandable task graphs.
On the right hand side, there are several target platforms for the implementation of a
concrete SRM. It can be either compiled into software running on general purpose
processors or generic many-core architectures. In addition, the SRM can be synthesized
into application-specific hardware modules.
An example design flow for stream rewriting is illustrated in Figure 7. At design time, the
given application is modeled as a static or dynamic task graph. This graph can be converted
into rewriting rules with the help of the decomposition tree which describes the topology
as a structure of sequential and parallel blocks. Eventually, the decomposition tree can be
translated into a functional program, which is then compiled into rewriting rules and
evaluated at runtime using the stream rewriting machine. A more detailed description of
this technique and a comparison of several implementations can be found in Section 3.

Figure 7. Design flow for stream rewriting.

6

A stream rewriting machine (SRM) basically consists of a token stream, a rewriting function,
and a set of rewriting rules shown in Figure 8. While the stream contains the state of the
system, the behavior and therefore the implementation of the program is described by the
rewriting rules . In this model, each rule detects a certain pattern in the stream and
replaces the corresponding part with the results of a computation. The stream is circulating
in the system, so that all rules are continuously checked and if appropriate, the associated
function is evaluated and the results are inserted into the stream.
Although a formal model of the rewriting process is specified in Section 2, a minimalistic
example is already presented in Figure 9. Here, the initial stream encodes the
equation 1 ⋅ 2 + 3 ⋅ 4 and consists of literal tokens in green and function tokens drawn in
blue. In particular, a rewriting function can execute if it is followed by a sufficient number
of arguments, so that their data dependencies have been resolved. In the first rewriting
step, only the multiplications are ready and can be evaluated since there are two literals
available. The addition has to wait until the step → to produce the final result 14.
Even in this small example, several important properties of stream rewriting can be studied.
First, it describes all scheduling decisions as find-and-replace operations. Since data
dependencies are encoded into the stream, they can be automatically resolved via pattern
matching. On the other hand, the rewriting of independent patterns like the two
multiplications can be performed in parallel because the corresponding sub-streams do not
overlap. The result of these two different data paths is synchronized on the stream via the
pattern matching of the + operator. As a consequence, the whole complexity of task
management can be reduced into find-and-replace operations on the stream.
In the following sections, a several related models for parallel programming are presented
and compared to stream rewriting.
Before dealing with the contribution of this thesis, related work is described first in the next
section.

Figure 8. Stream Rewriting Machine. Figure 9. Minimalistic example of stream rewriting.

* 1 2 * 3 4+

Function

Literal

execute execute

2 12+

execute

14

s0

s1

s2

7

1.2 Related Work
There already exist alternative solutions to the problem of managing concurrency in
dynamic systems. In this section, their particular strengths and drawbacks are described in
comparison to stream rewriting.

1.2.1 Programming Models
Several different programming models for parallelism are presented in this sub-section.

1.2.1.1 Data Parallelism
In addition to graphics processing,
modern GPUs can be also utilized to
accelerate general purpose and numeric
computations. Especially data parallel
problems can take advantage of hundreds
and thousands of processor cores, which
provide several TFLOPS of floating-point
performance [20]. For this purpose, compute APIs like CUDA or OpenCL [21] permit to
execute a kernel function on a parallel grid of threads (Figure 10). Each instance runs the
same program on a different location in the grid that can be determined by a set of pre-
defined variables. Hence, this model of computation is most useful for image processing or
numerical simulations, which apply the same function to every element of an array.
In addition, threads are organized in blocks, which run on the same processor and can
exchange data via shared memory. Actually, the kernel function is equivalent to the body of
a data parallel loop, while the iteration is managed by the hardware scheduler of the GPU.
Although two dimensional grids are most common, 1D and 3D domains are also possible.
For instance, the following example shows the definition a CUDA kernel function, which
adds the two one dimensional floating-point arrays and and stores the result in :

__global__ void Add(float *a, float *b, float *c)
{

uint id = blockIdx.x * blockDim.x + threadIDx.x;
c[id] = a[id] + b[id]

}

First, the global index of the current thread is calculated using the build-in
variables , and ℎ , which specify the coordinates of the
current block, its dimensions and the index of the current thread within the block. The
kernel is invoked from the C part of a CUDA program using the following syntax, which
specifies the number of blocks and number of threads per block to execute:

Add<<<blockCount,blockDim>>>(a, b, c)

Hence, the total number of executed threads equals to ⋅ .

Figure 10. CUDA model of computation [19].

[0,0] [1,0] [2,0] [3,0]

[0,1] [1,1] [2,1] [3,1]

[0,2] [1,2] [2,2] [3,2]

[0,3] [1,3] [2,3] [3,3]

threadIdx.x

th
re
ad
Id
x.
y

blockIdx.x

bl
oc
kI
dx
.y

8

The equivalent C code for this CUDA program is shown below and emulates this behavior
using two nested loops:

void Add(float *a, float *b, float *c)
{

for (int blockIdx = 0; blockIdx < blockCount; blockIdx++)
{

for (int threadIdx = 0; threadIdx < blockDim; threadIdx++)
{

int id = blockIdx * blockDim + threadIdx;
c[id] = a[id] + b[id];

}
}

}

For two- and three-dimensional kernels, the corresponding steps are performed
accordingly for the y and z coordinates. There also exist several domain-specific compute
APIs, like DirectCompute [22], which is integrated in Direct3D, or the C++ language
extension C++/AMP [23]. OpenMP [24] is an already established API for general purpose
processors, which utilizes pragmas to mark parallel loops. In addition, recent
implementations of OpenMP can also employ the graphics processor via CUDA [25].
All of these programming models offer a scalable solution for data parallel problems, which
can be described as nested loops, but dependencies between subsequent iterations usually
prevent a concurrent evaluation and are therefore not supported. Although it is possible in
certain cases, to remove these dependencies by transforming loop indices [26] [27], the
pure data parallel model is not suited to handle algorithms with dynamic workloads.
Otherwise, stream rewriting supports all types of data parallelism and can describe
especially the dynamic nesting of loops, a variable number of iterations as well as recursive
branch-and-bound algorithms. Further, this thesis proposes a technique, that handles loops
with a large number of iterations (Section 2.3.4), and introduce specialized writing rules for
data parallel loops (Section 2.4.1). As a result, stream rewriting is a true superset of these
existing techniques and also permits the irregular and heterogeneous problems described
in the next section.

1.2.1.2 Data Flow Networks
Data flow process networks offer an
abstract model of concurrency, which
reduces the complexity and development
time of parallel applications [29]. A
dataflow graph (DFG) consists of isolated
concurrently running processes, which are
also called actors and communicate only via dedicated point-to-point connections. There is
no central mechanism for synchronization required if local groups of actors are self-
scheduled, waiting for the required number of inputs to become available. In addition, large

Figure 11. Data flow model of a JPEG Decoder [28].

9

data-flow graphs can be composed hierarchically by wrapping sub-graphs into actors and
an abstract dataflow model can be re-targeted automatically for many different platforms.
For instance, the data flow model of the JPEG Decoder (Figure 11) contains several different
actors like the Huffman Decoder, the DC Decoder or the IDCT, which are connected via
queues and work in parallel.
Hence, an initial implementation of this DFG can be derived by mapping actors directly to
software threads or hardware modules [30] [31]. As an optimization, several connected
blocks can be merged into more coarse grained actors via clustering to reduce the
communication overhead and therefore improve latency and throughput [32].
For synchronous data-flow graphs [33], the rates of each actor are fixed and specified as
part of the model. Consequently, an optimal schedule and the maximum size of the
connecting buffers can be determined analytically [34]. However, not all problems can be
modelled with constant rates and a fully dynamic self-scheduling can be expensive when
implemented in software [35]. Thus, it becomes feasible to divide a graph into statically
scheduled and dynamic parts to improve the performance [36]. However, in case of
embedded systems, which are interacting with dynamically changing environments, often
an adaptive mapping [37] is required to account for frequently varying workloads [38].
Stream rewriting provides an alternative approach for the scheduling of complex
applications with different types of parallelism. Although its expressiveness is more limited
to series-parallel graphs [39] without feed-back loops, this technique allows for varying
data rates and also permits the recursive expansion of actors at runtime (Section 3.2.3).

1.2.1.3 StreamIt
The StreamIt programming language is based on Java and has been specially designed to
describe data flow networks. Comparable to a class in Java, the basic building block of
StreamIt is a filter module containing one input and one output channel.
More complex structures can be constructed by using special keywords to combine
multiple filters into pipelines, arbiters, and feedback loops. Since all StreamIt actors are
annotated with production and consumption rates, the compiler can generate an optimal
static schedule [40]. In addition, the filters without an internal state can be replicated
automatically, so that both data and pipeline parallelism are supported [41]. The abstract
high-level description of StreamIt makes it possible to transform and optimize the data flow
graph automatically for different target platforms [42].
StreamIt has been used as a high-level language for a hardware synthesis tool which is able
to automatically derive an efficient FPGA implementation [43] [44]. Similarly, stream
programs can be also translated into CUDA code that runs on the GPU [45]. In this case, the
graph is restructured according to the architectural characteristics of CUDA to exploit as
much data parallelism as possible. However, filters containing an internal state cannot be
translated, so that these parts of the program remain on the CPU.
StreamIt has also been used to model a flexible graphics pipeline on top of a reconfigurable
processor grid. Since the fixed data rates of the StreamIt filters are incompatible with the
varying amount of data produced in the graphics pipeline, the language has been extended
to support variable rates as well. For load balancing, actors are replicated and mapped

10

automatically to cores according to the expected workload but it is also possible to modify
the configuration at runtime.
As a central difference, Stream Rewriting supports arbitrary recursion and function
pointers, which cannot be described by StreamIt programs. Stream Rewriting also supports
dynamic data flow graphs and can adapt itself to varying workloads at runtime without an
external reconfiguration. On the other hand, StreamIt permits feed-back loops in the data
flow graph, which cannot be modelled using Stream Rewriting.

1.2.2 System Level Parallelism
When designing the software and hardware architecture of many-core systems, a central
problem is the scheduling and binding of task to processing units.

1.2.2.1 Task Graphs
At the system level, the parallelism of many-core processors is exploited using multiple
threads [46] [47], which communicate via shared memory or message passing. The
application is often represented as a task graph [48] [49] and then mapped onto the target
architecture [50]. The binding of tasks to processor cores can be either calculated as a
preprocessing step [51] or dynamically at runtime [7]. In case of heterogeneous systems,
the binding must consider several additional constraints regarding the capabilities of each
core [52]. The static approach for task mapping is presented in [53] and uses both
pipelining and data parallelism to maximize the utilization of processor cores in an MPSoC
(multi-processor system-on-chip). Similarly, a technique for dynamic task mapping on a
processor array has been presented in [54] but in contrast to stream rewriting, it requires a
central scheduler, which works well for a small number of processors but might create a
bottleneck in many-core systems.
While the static approach most certainly produces a better solution if all factors are known
at design time, this thesis puts the focus especially on the dynamic case to handle a varying
and large number of tasks with unpredictable work load at runtime. In fact, stream
rewriting transfers the concept of out-of-order execution to the system level, which is
implemented as score-boarding [55] or the Tomasulo algorithm for individual instructions
[16]. However, in contrast to the out-of-order execution of data flow graphs, no global
reservation station is required [56].

1.2.2.2 Invasive Computing
Invasive computing [57] has been developed for heterogeneous many-core systems and
eliminates the central scheduler of previous architectures [12] [58]. Instead, tasks are
encapsulated as relocatable work items called i-lets. They can be pushed between
neighboring cores for load-balancing and thus allow an application to dynamically invade a
grid of processors. Stream Rewriting pursues a similar goal at a higher level of abstraction
since it represents tasks as data tokens on a stream, which are decoupled from the
implementation. In addition, stream rewriting also offers a mechanism to synchronize tasks
via local pattern matching, while the invasive platform relies on atomic operations or
mutexes for this purpose.

11

1.2.2.3 Work Stealing
Contrary, work stealing uses the opposite approach of invasive computing by letting
processors explicitly fetch or steal tasks from their neighbors [59] [60]. An execution model,
based on work stealing, and an extension to the C programming language (Cilk) are
presented in [61] and [62] . Similar to the concept of this thesis, they can invoke functions
on a new thread via the spawn keyword to implement dynamic and also recursive task
graphs. For comparison, the stream rewriting machine (SRM) creates threads by generating
a sequence of control and data tokens. Though, work stealing requires shared memory for
synchronization, while stream rewriting is able to join threads using local pattern matching.
Hence, the main difference is the choice of the stream as a common data structure.

1.2.3 Hardware Architectures
Concurrency and parallelism can be exploited at different abstraction levels in different
ways. At the system level, the usage of multiple cores [63] permits to run several distinct
tasks simultaneously [64] but also the instruction-set can be designed to utilize explicit data
parallelism for SIMD and vector processing.

1.2.3.1 Many-Core Systems
In this work, several highly parallel hardware architectures are presented like the many-
core system with 128 RISC processors in Section 4 or the graphics processor in Section 5.
The Larrabee processor has been also designed as a more flexible GPU and it is based on up
to 48 x86-compatible cores. The instruction-set of the Larrabee has been extended with
vector arithmetic for floating-point calculations. Instead of dynamic scheduling, multiple
hardware threads utilize the execution units. The chip is essentially an array of general
purpose processors with cache coherence, virtual memory, and arbitrary data exchange via
a ring-bus. Related designs like the SCC architecture [10] and the tile processor [11] also
contain a grid of processor cores and unlike CUDA, they all support also heterogeneous
tasks. However, in contrast to the stream rewriting architectures, there is no hardware
support for pipeline parallelism and also the scheduling must be handled in software. As an
advantage, stream rewriting provides a solution for distributing tasks at the system-level,
which is simplistic enough to be implemented in hardware. In Section 4.3, the responsible
hardware component, the stream rewriting network (SRN), is described in more detail.

1.2.3.2 Data Flow Machines
In addition, stream rewriting shares some similarities with early data flow machines like the
systolic array and the Xputer [65]. They usually consist of a two dimensional array of
processing elements with limited control logic for arithmetic operations. Similarly, the
execution is also driven by data dependencies and therefore self-timed. The functionality of
each core is simple and consists of a single instruction that is applied to a large amount of
input data.
The PipeRench architecture [66] and its successor the queue machine [67] also process a
token stream in hardware, but unlike stream rewriting, they do not support control tokens
nor functions calls, so that their main use case is the acceleration of a basic block like the

12

inner body of a loop. Similarly, it is not possible to create new threads at runtime, limiting
their applicability to almost data parallel problems and arithmetic operations always work
on adjacent tokens so that usually, an expensive reordering is required.
In comparison, these architectures are well suited for data parallel problems but are less
useful for general data flow graphs. Contrary, stream rewriting embeds control information
into the stream and allows redefining the structure of data flow graph at runtime. As a
result, complex control flow like recursion and expandable shader nodes can be modelled
using the same rewriting technique based on pattern matching (Section 3.3).

1.2.3.3 Instruction Level Parallelism
The amount of instruction level parallelism (ILP) in a program is highly variable and usually
depends on the application. For example, algorithms from the fields of numerical
computations, image and graphics processing already contain a large degree of intrinsic
parallelism that can be directly utilized by the compiler. In particular, binding and
scheduling can be performed at design time to identify concurrent operations and data
dependencies [68] [69]. For instance, the instruction set of transport triggered architectures
[70] consists exclusively of parallel move instructions between functional units, registers
and memory. Similar, VLIW designs like [71] allow the compiler [72] to pack several
independent instructions into a bundle, which is then executed in parallel [73]. EPIC
architectures like the Itanium processor [74] extend this concept by reserving a special bit
in the opcode to chain an arbitrary number of concurrent instructions [75].
A more backward compatible approach is the usage of SIMD (single instruction multiple
data) extensions like SSE [76] or AVX [77], which introduce additional registers and opcodes
for parallel vector computations [78] [79] [80]. Also, classic vector processors [81]
distinguish between scalar and vector instructions but usually support much wide registers
than the SIMD extensions.
However, many of these techniques must be explicitly considered by the programmer or
depend extensively on the quality of static analysis in the compiler, which is usually limited
by dynamic control flow like loops and branches [82]. Stream rewriting also resolves data
dependencies dynamically at runtime, while the granularity of a rewriting rule spans from a
single instruction to entire functions.

13

Figure 12. Source models and target platforms for stream rewriting, which are presented in this thesis.

1.3 Contributions
This thesis proposes stream rewriting as a novel model of computation for the specification,
analysis, and implementation of parallel applications. The fundamental contribution is the
observation that this model permits to specify dynamic scheduling and binding as rewriting
rules to handle a large amount of irregular tasks without a central scheduler. The structure
of this thesis and its contributions are presented in Figure 12 and distinguishes between the
core model of stream rewriting, the source models, and the implementations.
Based on an abstract model, which is named the stream rewriting machine (SRM), the most
important challenges like parallel rewriting, scheduling, synchronization, and memory
access are discussed from a theoretical point of view in Section 2. In this section, the
following contributions are most significant:

 Stream rewriting is based on local operations
Rewriting operations modify locally constrained and non-overlapping intervals of the
stream and can be therefore performed on different regions in parallel. Also the
synchronization of concurrent threads is performed via local pattern matching on the
stream and does not require shared memory or atomic operations.

 Stream rewriting is driven by data dependencies
The execution order of tasks is defined implicitly by data dependencies, so that an
implementation can choose an optimal schedule at runtime.

 Concurrent threads are synchronized by dynamic binding
Access to shared resources is serialized by dynamically binding interfering tasks to the
same processor and permits complex atomic read-modify-write operations.

3.2) Task Graph

Source Model

3.1) Functional Programs

Code

3.3) C Source Code

2. Stream Rewriting
Machine

4.) Many-Core Systems

Platform Independent
Representation

Implementation

5.) Graphics Processing
 Series-Parallel Graphs
 Decomposition Tree
 Dynamic Task Graphs

 Translation of Control Flow
into a Functional Program

 Support for all Types of
Recursive Functions

 Functional Programs as an
Assembly Language for the
Stream Rewriting Machine

6.) Hardware Synthesis

 Parallel Rewriting
 Shared Memory Model
 Stream Rewriting Network
 FPGA Implementation

 Functional Processor
 SIMT Shader Core
 General Purpose Shaders
 FPGA Implementation

 HDL Generation from
Architectural Templates

 Experimental Results of
Prototype Compiler

 Parallel Rewriting
 Stream Scheduling
 Large Scale Expansion
 Stream Compression
 Local Environments
 Memory Access

 Stream Rewriting
Network

 FPGA Implementation

14

 Stack-based scheduling enables deep recursion
The stack-based scheduling automatically balances between a depth-first and a
breadth-first traversal of the call tree. This approach avoids an exponential growth of
tokens during recursive traversal but still maintains a large degree of concurrency.

 Local environments embed shared data into the stream
Local environments redefine the value of global variables for a restricted sub-stream
and therefore provide an efficient mechanism for the precise distribution of shared
data without side-effects.

Further, in this thesis three source models are analyzed and can be translated into rewriting
rules for the stream rewriting machine (Section 3):

1. Functional Language: In combination with a grammar and semantics, the stream
rewriting machine is actually a hardware interpreter for a minimalistic functional
language. Due to the absence of hidden side-effects, the purely functional model is
well-suited for modeling complex tasks with interdependences and concurrency.

2. Task Graphs: Since task graphs provide an efficient model of computation for
specification, analysis, and implementation of concurrent applications, also a novel
approach for scheduling the class of series-parallel task graphs is presented. For this
purpose, the topology of the graph and the state of the tasks are encoded as a stream
of tokens, which is iteratively rewritten at different positions in parallel. Hence, this
approach is most useful for compute-intensive applications with varying workload.

3. C Source Code: In addition to functional programs, also the translation of C-like
language into a stream rewriting machine is described. The presented compilation
technique enables the usage of stream rewriting as an intermediate format for the
high-level synthesis of hardware modules (Section 6).

In addition, the abstract concept of stream rewriting has been implemented and evaluated
on three different target platforms:

1. Many-Core System: The utilization of stream rewriting is evaluated for dynamic task
binding and scheduling in embedded many- and multi-core systems. In particular,
several different FPGA implementations with up to 128 general purpose cores have
been exploited. In this case, the rewriting is either performed entirely in software or as
a combination of software and custom hardware. In contrast to the classic scheduling
of periodic real-time tasks, stream rewriting is more appropriate for handling a large
number of dynamic work-items (Section 4).

15

2. Graphics Processor: Since graphics processing usually involves a huge number of
threads as well as data and pipeline parallelism, it represents an ideal test case for
stream rewriting. Despite the computational power of modern graphics processing
units (GPU), a main limitation of these architectures is often the lack of efficient on-chip
communication between different shader cores. In this context, stream rewriting
enables an efficient communication infrastructure for the creation of highly optimized
and application-specific rendering pipelines. As a result, three different architectures
could be evaluated using an FPGA. Especially for graphics processing, this thesis
presents the following contributions (Section 5):

 Application-Specific Rendering Pipelines
The proposed graphics processor supports an arbitrary amount of dynamic and
recursive shader stages as well as complex data flow and light-weight
synchronization within the rendering pipeline.

 Unified Model of Computation for Graphics
A graphics application must be usually split into two parts for GPU and CPU, which
are developed using separate languages and optimized according to different rules.
The CPU part is either executed sequentially or moderate multi-threaded, while the
GPU part of the program is adapted to the more restricted but highly parallel model
of the graphics processor. Although the graphics API connects these two totally
different environments, the binary decision between CPU and GPU leads to an
artificial break and introduces communication overhead. For this purpose, stream
rewriting offers a continuous transition between task, pipeline and data parallelism
as well as support for individual threads.

 Complete Prototype System
Most important, the concept of stream rewriting for graphics processing has been
evaluated as part of a complete test system consisting of several applications, an
OpenGL driver, a kernel mode driver, and the FPGA prototype connected via PCIe.
As a result, the measurements include all costs that would also occur for an ASIC, so
that the experiments provide valuable insights for future GPU architectures.

 OpenGL Extension for Stream Rewriting
This thesis proposes a novel OpenGL extension (EXT_stream_rewriting), which
integrates stream rewriting into the existing programming model and adds the
stream rewriting shader as a new general purpose shader stage.

 Advanced Rendering Techniques
Several advanced rendering techniques, like K-buffering, path-tracing and the
recursive generation of procedural geometry are implemented on the stream
rewriting processor but require significant effort to run efficiently on current GPUs.

16

3. Hardware Synthesis: By generating specialized hardware modules for a particular
stream rewriting machine, recursion and dynamic scheduling also become available for
high-level synthesis. The compiler is based on the concepts of Section 3.3 and translates
a C-program into rewriting rules, which are eventually used to derive a HDL
implementation. The tool chain is evaluated using several generic test cases and a more
complex ray-tracing example (Section 6).

The paper is concluded by a final review (Section 7) of the stream rewriting technique and a
summary of the achieved improvements. In addition, also a list of currently unsolved
problems in the concept and further technical limitations are presented in this section.

1.4 Publications
Many of the results presented in this thesis have been published previously. The following
list contains the most significant publications for stream rewriting and their relation to
individual sections of this paper:

 Hardware synthesis of recursive functions through partial stream rewriting [83]
This paper describes a high-level compiler that generates hardware for specialized
stream rewriting machines. In contrast to existing tools, the system supports all types
of direct and indirect function calls as well as recursion. The SRM in this paper
corresponds to the basic model and the results of the experiments are presented in
Section 4. Several smaller functions and a more complex ray-tracing example have been
synthesized and evaluated. The author of this paper has developed the main concept
and the implementation, which are analyzed in [83].

 Dynamic task mapping onto multi-core architectures through stream rewriting [84]
This paper takes the opposite direction and puts the focus on generality. Consequently,
stream rewriting has been implemented entirely in software on a many-core system
and the token stream is stored in shared memory. A comparison to [83] shows an
improved scalability and conceptually. The author of this thesis responsible for the
concept of mapping task graphs into rewriting rules (Section 3.1) and the experiments,
which presented in Section 4.2.

 A novel graphics processor architecture based on partial stream rewriting [85]
In this paper, the author of this thesis presents a graphics processor based on
functional programming, which utilizes the concept of stream rewriting for task
management (Section 3.1). In particular, this architecture introduces the stack-based
scheduling (Section 2.3.3), instancing and environments (Section 2.4). The author of this
thesis has developed both the concept and the implementation of this paper.

17

 A Programmable Graphics Processor based on Partial Stream Rewriting [86]
The graphics processor has been redesigned for improved performances. Similar to
existing GPUs, this version is based on SIMT cores and supports a wide data stream, the
parallel dispatch of data parallel threads and has been evaluated using a larger set of
test cases. In addition, this design establishes the correct ordering of write operations
by placing them on the stream (Section 5.4). The author of this thesis has developed
the concept, the hardware design of the graphics processor, the required software, and
is also responsible for the presented experiments.

 System Level Synthesis of Many-Core Architectures using Parallel Stream Rewriting
This paper extends the concept of stream rewriting for general purpose many-core
architectures with up to 128 processors on an FPGA prototype. In order to provide a
sufficient band-width, the hierarchical stream rewriting network employs parallel
decoding and dispatch of the token stream [87]. The author of this paper has developed
the main concept and the implementation.

The following list contains the relevant publications of the author:

[88] L. Middendorf und C. Haubelt, „ Scheduling of Recursive and Dynamic Data-Flow
Graphs using Stream Rewriting“ in Proceedings of Special Edition on Data-flow
Programming Models and Machines (MPP’14), Paris, France, October 2014.

[87] L. Middendorf und C. Haubelt, „System Level Synthesis of Many-Core Architectures
using Parallel Stream Rewriting“ in Proceedings of the 2014 Electronic System Level
Synthesis Conference (ESLsyn), , San Francisco, CA , 2014.

[89] Christian Haubelt, Florian Ludwig, Lars Middendorf, Christian Zebelein, „ Using
Stream Rewriting for Mapping and Scheduling Data Flow Graphs onto Many-Core
Architectures in Proceeding of the Asilomar Conference on Signals, Systems, and
Computers, Pacific Grove CA, USA, November 2013

[85] L. Middendorf und C. Haubelt, „A novel graphics processor architecture based on
partial stream rewriting,“ in Design and Architectures for Signal and Image
Processing (DASIP), 2013 Conference on, Cagliari, 2013.

[86] L. Middendorf und C. Haubelt, „A Programmable Graphics Processor based on
Partial Stream Rewriting,“ Computer Graphics Forum, Bd. 32, Nr. 7, pp. 325-334,
2013.

[84] L. Middendorf, C. Zebelein und C. Haubelt, „Dynamic Task Mapping onto Multi-Core
Architectures through Stream Rewriting,“ in Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS XIII), 2013 International
Conference on, Agios Konstantinos, 2013.

[83] L. Middendorf, C. Bobda und C. Haubelt, „Hardware synthesis of recursive functions
through partial stream rewriting,“ in Design Automation Conference (DAC), 2012
49th ACM/EDAC/IEEE, San Francisco, CA , 2012.

18

2 Stream Rewriting
Stream rewriting is a novel method for dynamic scheduling and binding. In this section, a
formal model of computation for stream rewriting (Section 2.1) is defined, which is called
the stream rewriting machine (SRM). Section 2.2 specifies the parallel rewriting of the
stream by partitioning (Section 2.2.3) and binding (Section 2.2.4) different segments to
concurrently working processing units. In particular, the stream scheduling (Section 2.3)
describes the selection of tokens, which are considered for rewriting at a particular instant.
Stream compression (Section 2.4) is proposed as a technique to reduce redundant
information in order to decrease the size of the stream. On top of the pure functional SRM,
the usage of memory access and side effects is specified in Section 2.5.

2.1 Stream Rewriting Machine
The stream rewriting machine (SRM) is an abstract model of computation.

2.1.1 Definitions
An SRM can be defined as:

Definition D1: A stream rewriting machine (SRM) is a 3-tupel (, ,) consisting of
the following elements (Figure 8, Page 6):

1. A stream of tokens, which stores the state of the system,
2. a set of functions representing the behavior of the system, and
3. a function : = () that maps a stream to a subsequent stream .

1. Stream: Formally, a stream ∈ Σ∗ is defined as a word from an alphabet Σ of tokens. In
case of a finite stream, the elements of : = 〈 , … , 〉 can be accessed as and the
length of the stream is denoted a | |: = . In addition, two streams : = 〈 , … , 〉 and
t: = 〈 , … , 〉 are concatenated via the associative operator +:+ : = 〈 , … , , , … , 〉 with | + |: = | | + | | (1)

Further, the empty stream : = 〈 〉 has the length | | = 0 and acts as a neutral element for
the concatenation, so that the triple (Σ∗, +,) specifies a monoid.

2. Functions: The program is given by a finite set of functions : = { , … , }, each of them
mapping input tokens to output tokens with : Σ → Σ .

3. Rewriting: The rewriting function : Σ∗ → Σ∗ maps the current state of the system
to a successor state by invoking executable tasks from and replacing at least one token in
the stream if possible. Hence, an infinite sequence of streams or system states is given by:: = () (2)

This iterative process has been already illustrated by Figure 8 on page 6. In fact, each
iteration in the SRM derives a new stream from the previous one .

19

If the stream does not change between two iterations, so that = , a fixed-point has
been reached and there will be no further modifications. Hence, the final result is defined
as the limiting value of : (): = lim→ (3)

2.1.2 Stream Operations
In this section, additional stream operations are defined, which will be required to specify
the behavior and several extensions of the basic SRM in the following sections.
Two streams : = 〈 , … , 〉 and : = 〈 , … , 〉 are identical if and only if they have the
same length and their tokens are equal:= ⟺ (| | = | |) ∧ (∀ ∈ [1, | |]: =) (4)

Similar to sets, there is a test if a token ∈ Σ is contained in a finite stream : = 〈 , … , 〉:∈ ⟺ ∃ ∈ [1,]: = (5)

Likewise, a sub-stream ′ ⊆ corresponds to a compact range in the stream :⊆ ⟺ ∃ , ∈ Σ∗: = + + (6)⊂ ⟺ (⊆) ∧ (≠)
For instance, a sub-stream [,] with 1 ≤ ≤ ≤ can be constructed by applying the
interval operator [] on a finite stream : = 〈 , … , 〉:[,]: = 〈 , … , 〉 ⊆ (7)

The result of multiple subsequent rewriting operations is recursively specified as follows:

(): = (()) if = 0else (8)

Hence, the set of stream derived from is specified as ∗.

∗: = (): ∈ ℕ (9)

For example, the maximum length of any stream and therefore an upper bound for the
required storage is given by sup ∈ ∗| ′| if existent. Based on ∗, the relation (Σ , ≼)
determines if a stream can be rewritten into :≼ ⇔ ∈ ∗ (10)

According to its definition, the relation is both reflexive and transitive and thus forms a pre-
order. For example, the final result is always more derived than the initial stream() ≼ if existent. However, (Σ , ≼) does not conform to a partial order since the
rewriting process might run in a cyclic fixed point according to the condition= () ∧ = () but ≠ . In this case, it follows that ≼ ′
and ≼ for two distinct elements ≠ , which is insufficient for a partial order.

20

However, a canonical equivalence relation (Σ , ≡) between streams can be defined as:

≡ ⇔ (≼) ∧ (≼) (11)

It follows immediately from the inherited definition of (Σ , ≡) that this relation is reflexive,
symmetric, and transitive. Therefore, two streams and ’ are equivalent if they are
identical or located on a cyclic fixed point, so that both can be derived from each other.
Thus, a strict order (Σ , ≺), comparing the equivalence classes of two streams, is given by:

≺ ⇔ (≼) ∧ (≢) (12)

As a consequence, the condition () ≺ hold true for each valid rewriting step,
which does not end in an infinite loop. In addition, the final stream () is the
infimum of all generated streams: () = inf≺ (∗) (13)

2.1.3 Stream Grammar
After the introduction of the basic data structures, the function is now specified in
more detail. For this purpose, a minimal alphabet Σ of tokens and a minimal language are
specified to describe the set of all valid streams. More complex stream rewriting machines
with application-specific extensions will be presented in subsequent sections. In particular
the stream ∈ ⊆ Σ∗ is a word from a language S with alphabet Σ: = {CALL} ∪ ℤ, which is
defined by the following grammar in Extended Backus-Naur Form:

Definition D2: stream: = { }expr: = const | callconst: = 〈literal value ∈ ℤ}: = { } 'CALL'
Hence, each token in the stream is either a special CALL symbol or a literal value from ℤ.
Likewise, each CALL expression represents the invocation of a function : Σ → Σ ∈F:={ , … , }, , ∈ ℕ , which is identified by the literal ∈ [1,] and an optional list of
arguments. The function is invoked if there are at least preceding arguments available
on the stream. As a result, the tokens for the invocation are replaced by the results of .

Definition D3: A sequence of tokens 〈… , , … , , , , … 〉 is called executable if the
token referring to : Σ → Σ is preceded by at least literal

values, so that , … , ∈ ℤ and 1 ≤ ≤ .

21

Figure 13. Expression () + () encoded using alternative stream formats.
Instead of the function identifier , the function symbols ‘ ’ and ‘ + ’ are used to improve readability.

As a result, the rewriting process replaces the pattern〈… , , … , , , , … 〉 ℎ , … , ∈ ℤ 1 ≤ ≤ (14)

by the following sub-stream:〈… , , … , , … 〉 ℎ , … , : = , … , (15)

Essentially, the stream stores a call tree in post-order format with its arguments placed in
front of the token. Alternatively, a preorder format can be defined by the specifying
the expression using the following grammar rule:: = 'CALL' i { } (16)

Although preorder and post-order formats are equivalent, each of them offers different
advantages. For example, the preorder format requires less effort for decoding since the
function and therefore also the number of expected arguments is known as soon as the
identifier is read. Important for the post-order format: Both the innermost and also the
first invocations are located in the beginning of the stream, which is most useful for the
stack-based scheduling (Section 2.3.3). Contrary, the preorder layout contains the
executable tasks at the end. In this thesis, both formats are utilized in different sections.
As a third alternative, an in-order storage format is also possible but would require
parentheses to associate arguments and CALL tokens. It is therefore not discussed further.
For comparison, the expression (1) + (2) is encoded using these three formats and
Figure 13 shows the resulting streams as well as the associated expression tree. Here, the
set of functions is given by : = { , +} but for the sake of clarity, the identifier , originally
defined as an integer ∈ {1,2}, is symbolically described by the name of the function.

22

Figure 14. Expression tree evaluated using stream rewriting.

2.1.4 Examples
A minimalistic example of stream rewriting, which uses the post-order grammar, is shown
in Figure 14. There are two functions defined by : = {∗, +} to implement integer
multiplication as well as addition. Initially, the first stream corresponds to the expression1 ⋅ 2 + 3 ⋅ 4 and the tree on the right. Indicated by the arrows, both multiplications are
ready to execute because each token and the identifier = 1 are preceded by two
literals. As a result, the corresponding parts of the stream are replaced by 1 ⋅ 2 = 2 and3 ⋅ 4 = 12 to produce the next iteration .
Most notably, both instances can be executed concurrently because they are working on
separate parts of the stream, which is important to process a large amount of tasks in
parallel. Also, data dependencies are handled automatically by the pattern matching.
Hence, the addition has to wait for the intermediate results of the two multiplication
stages, which becomes available in step . Afterwards, the addition can execute as well to
produce the final result in .
Instead of a single literal, a function can also generate a sub-stream of literal and
tokens to describe pending invocations. For example, a recursive function might be
dynamically expanded into a sub-tree of CALL expressions to perform its computation. This
method is called continuation-passing style [90], known from functional programming, and
maps natively to the execution model of stream rewriting. The example in Figure 15
calculates the forth Fibonacci number function via recursive stream rewriting. In
iteration , the initial call (3) is placed on the stream and matching patterns are
successive replaced until the final result 2 becomes ready in .

Figure 15. Rewriting of the Fibonacci function () = (−) + (−)

+

* *
+

*1 2 3 4 *

2

14

14

S0

S1

S2

12

rewrite

rewrite

Token Stream

CALL CALLCALL

+ CALL

1 2 3 4

Expression TreeF:={*,+}

23

In this example, the stream : = 〈2〉 consists of a single literal value and is therefore a
fixed-point, so that () = . In general, streams consisting exclusively of literal
values are cannot be rewritten further and thus correspond to final results.
An important observation is that the stream can both grow and shrink during the rewriting
process. Hence, the recursive expansion might lead to an exponential increase of the
stream size, which can be reduced by the stack-based scheduling (Section 2.3.2) into a
linear growth. However, not all programs terminate and some applications like
continuously running hardware systems might also never reach a fixed-point by design. In
this case, there exists no element with = , the sequence does not converge, and
therefore the limiting value does not exist. Otherwise, the final stream usually contains the
result of the computation.

2.2 Parallel Rewriting
Based on the abstract model of stream rewriting,
the advantages and problems of a parallel
rewriting algorithm are analyzed. The SRM has
been extended into a parallel stream rewriting
machine, shown in Figure 16. Instead of a single
block, it contains multiple parallel rewriting units,
which communicate via the stream rewriting
network (SRN). In particular, the SRN introduces
the concept of partitioning the stream into segments (Section 2.2.3), which might be
evaluated concurrently. Further, the SRN is responsible for assigning these fragments to
rewriting units, which is called binding (Section 2.2.4). Before these terms are defined in
detail, several conceptual issues with parallel stream rewriting are discussed in Sections
2.2.1 and 2.2.2.

2.2.1 Concurrency of Stream Rewriting
Stream rewriting is well-suited for a parallel implementation due to the following
properties, which are derived from the formal specification (Definition D1 on page 18).

1.) No explicit execution order.
The execution order of rewriting rules is defined implicitly by data dependencies, so that
multiple rules without interdependencies can be evaluated in parallel. Thus, an
implementation can choose an optimal schedule at runtime in order to maximize utilization
of available processing units.

2.) Executable rewriting patterns do not overlap.
According to the stream grammar, the intervals of executable rules are disjoined, which can
be shown as follows. Assume that : = 〈 , … , 〉 and : = 〈 , … , 〉 are two overlapping
sub-streams, so that = 〈… , , … , , … , , … , , … 〉 with < < < . If both and
are executable, it immediately follows from (Definition D3 on page 20) that, … , , , … , ∈ ℤ and , = . For this condition to become true, must

Figure 16. Parallel Stream Rewriting Machine

24

be a token within the interval 〈 , … , 〉 of literals, so that cannot be
executable, which leads to a contradiction. As a consequence, the pattern matching can be
performed in parallel on disjoined sub-streams without synchronization. Hence, if a
rewriting pattern is found in one sub-stream, there will be no other executable pattern in
the same range.

Figure 17. Executable tasks never overlap on the stream.

3.) Modifications of the stream are local and disjoined.
According to the definition of the rewriting operation, the input pattern is replaced by the
outputs of the associated function but the rest of the stream remains unmodified. Hence,
the execution of a rewriting rule affects only the corresponding input tokens. However,
since the input intervals of executable rules are disjoined, two concurrent rewriting rules
never modify the same part of the stream in parallel. As a consequence, the rewriting
process can be partitioned on multiple cores, while the pattern detection, the evaluation,
and the generation of output tokens can be performed atomically without synchronization.
Figure 17 illustrates the parallel rewriting of two executable rules marked in blue and
green. Only the first case is possible according to the specification. Neither input nor output
segments can overlap and in addition, also the relative order of rewritten fragments must
be ensured.

4.) Relaxed pattern matching is acceptable.
The function requires that at least one matching rule is replaced to guarantee
monotonicity of the sequence (). Hence, implementations with limited computing
resources are free to choose an optimal but non-empty sub-set of rules that are actually
executed per iteration. The stack-based scheduling (Section 2.3.2) evaluates only rules,
which are located within the first tokens of the stream, in order to reduce the total
memory requirement. In particular, implementations can stop the pattern matching at any
time if their computational resources are fully utilized and invoking more tasks provides
little benefit.

5.) The stream can be partitioned without exact knowledge of its contents.
Based on the relaxed pattern matching, the stream can be partitioned into arbitrary
segments for parallel rewriting on multiple cores. Obviously, CALL expressions will be
probably split at the border of the segments, but their rewriting can be postponed until
there are no other executable tasks available. Hence, a scheduling algorithm can be
implemented without accessing the token stream, which might be especially useful for
architectures with distributed or non-uniform memory architectures.

25

2.2.2 Implementation Challenges
In additions to the benefits of the parallel stream rewriting, a concurrent implementation
has to deal with the following problems:

1.) Partitioning of the stream
While the stream can be split at any position without affecting correctness of the final
result, not every scheme might lead to an efficient load-balancing. In particular, a coarse-
grained partitioning into large blocks reduces the costs of stream management and
synchronization since each core can work independently for a longer time. However, a fine-
grained splitting of the stream into individual tasks leads to a better load-balancing at the
expense of higher communication costs. Several approaches for stream partitioning are
compared in Section 2.2.3.

2.) Stream Distribution and Scalability
Especially for many-core systems, the distribution of tokens to the processing units
represents a possible performance bottleneck because the stream is specified as a central
storage with global read and writes access from all cores. In particular, it has to be ensured
that the synchronization costs are kept low and the bandwidth is sufficient high enough to
keep all cores utilized. While an initial implementation might place the stream into a
globally shared memory, alternative hardware architectures for stream management and
distributed storage of the stream should be also considered.

3.) Efficient reassembly of rewritten fragments
Although both pattern matching and the rewriting of sub-streams can be performed in
parallel, the resulting fragments must be eventually reassembled into a single token stream
to produce either an intermediate result or the final limiting value of the stream. However,
the size of these fragments is unpredictable because it depends on the rewriting process
itself. Figure 18 shows the rewriting of the three fragments , , into ,
and . In case of , the result has the same length and can be stored at the
original position. Contrary, fragment shrinks and fragment is expanded, so that both
do not fit into the original stream.
As a result, the storage format of the stream optimally supports fast insertion and removal
of tokens at arbitrary positions to allow an in-place rewriting of the stream. Otherwise,
parts of the stream must be copied to fill gaps or to provide additional space. As an
alternative solution, the size of the rewritten fragments can be also estimated or
constrained. Different approaches for stream management are discussed in Section 2.2.3.

Figure 18. Reassembly of rewritten fragments

26

2.2.3 Partitioning
In order to perform a parallel rewriting of a stream , it must be first partitioned into sub-
streams , … , , which can be evaluated concurrently. Due to the pattern matching, the
stream can be subdivided almost arbitrary into non-overlapping intervals. In particular, the
partitioning can be performed without looking at the content of the stream. However, not
all fragmentations are efficient and feasible. In the worst case, no segment contains an
executable CALL expression (Definition D3 on page 20). In contrast to the concept of
binding in the next section, no assumption concerning the number and usage of rewriting
units are made at this point. Thus, a generic algorithm for the parallel rewriting of a stream

consists of the following three steps, which are also illustrated in Figure 19:

1. Split the given stream into segments.

First, the stream is partitioned into sub-streams , … , with : = ∑ . The number
and size of these segments depends on the exact implementation and multiple different
approaches are compared in the next sections. For instance, a system with processing
units would most likely split the stream into at least ≥ parts to ensure complete
utilization. Formally, this process is described by a function

: Σ∗ × ℕ → ℕ, (17)

which attaches a segment number to each token of the stream : = 〈 , . . 〉. Hence, each
segment can be described as the sub-stream of tokens which are tagged with number .

: = 〈 〉 if (,) =〈〉 else| | (18)

Figure 19. Partitioning and parallel rewriting of the stream.

27

Formally, the assignment for a given stream is specified as (): = (,). For
instance, in the example, the stream is partitioned into two segments and :

: = 〈1,2, , 3,4, 〉: = {(1,1), (2,1), (3,1), (4,2), (5,2), (6,2)}: = 〈1,2, 〉, : = 〈3,4, 〉
In addition, the function must be monotonic, so that:

∀ , ∈ ℕ: ≤ ⇒ () ≤ () (19)

As a result, each non-empty segment starts at the token with index: = { : () = } and ends at the token with index : = { : () = }.
Due to the monotonicity of , each segment corresponds to a compact interval of
the sub-stream : = 〈 , … , 〉. Hence, two neighboring tokens and in a sub-

stream with : = 〈… , , , … 〉, are also adjacent in . As a result, an executable CALL
pattern in the sub-stream is also a valid CALL pattern in and can be therefore
rewritten. Important to note, the opposite argument is not true.
Figure 20 shows the tradeoffs of several partitioning schemes. In the case (a), the entire
stream is assigned to a single segment. The uniform segmentation (b) does not require
access to the stream but might cut matching CALL expressions. Contrary, the more precise
heuristic in (c) starts new segment only after a potentially matched rewriting rule.

2. Parallel Rewriting

In a second step, each segment is rewritten individually into :

: = (20)

3. Reassembly of the stream fragments
Hence, the parallel rewriting function can be specified as:

() ∶= ∑ () (21)

a) Single Segment b) Uniform Segmentation (k=2) c) CALL Heuristic

(,): = 1 (,): = (− 1)| | + 1 (,)= (, -1) + 1 if (=)(, -1) else
Figure 20. Different partition schemes

28

Obviously, for > 1, it has to be considered that () is in general not equivalent
to () because CALL expressions might be split at the border between two
segments. As a result, the complete pattern is not located in any segment and cannot be
rewritten. For example, the stream : = {0, }, which contains a call to function , is
uniformly partitioned into : = 〈0〉 , : = 〈 〉 , which leads to the incorrect fixed-point
with () = () + () = . Hence, in order to avoid these false
fixed-points, the stream has to be rewritten at once. As a result, the definition of
is extended into the general parallel rewriting function:

(): = () if () ≠() else (22)

2.2.4 Binding
While the partitioning defines the splitting of the stream into segments, which might be
evaluated concurrently, the term binding describes the assignment of work-items to
computational resources in a multi-core system. For stream rewriting, the smallest unit of
work is a segment , which is assigned to a rewriting unit of the PSRM (Figure 16, page 23).
In particular, the function assigns a segment of the partitioned stream to a
rewriting unit :

: Σ∗ × ℕ → ℕ(,) ↦ (23)

When assuming a system with rewriting units, the rewriting of a sub-stream on a
particular rewriting unit ∈ [1,] is denoted by the indexed function : Σ∗ → Σ∗.
Hence, the parallel rewriting function of Section 2.2.3 can be refined into:

() ∶= ∑ ()() (24)

Similar to the partitioning schemes, several different binding strategies can be defined.
For instance, the minimalistic binding (,) = 1, computes all segments on the same
core regardless of the partitioning. A round-robin mechanism, which utilizes all rewriting
units, can be specified as: (,) = (mod) + 1. Also, a random binding like(,) = ([1,]) might be possible.
If all rewriting units support the same compute capabilities, there are no further constraints
for binding a sub-stream . However, for heterogeneous systems with limited resources
and custom hardware blocks, a specialization of rewrite units is reasonable. For this
purpose, the function (,) indicates if the rewriting unit is able to evaluate :

(,): ℕ × ℕ → {0,1}(,) ↦ 1 if rewriting unit i supports function0 else (25)

29

The definition of this function depends on the capabilities of an actual implementation. In
addition, the function : Σ∗ × ℕ → {0,1} is specified to examine if a stream: = 〈 , … , 〉 might contain a call to a particular function :

(,): = 〈 , 〉 ⊆ (26)

By comparing the results of and , it can be asserted if a given
rewriting unit is able to evaluate a segment of the stream. Hence, the binding in a
heterogeneous system must satisfy the following constraint:

((,) =) ⇒ ∀ ∈ [1, | |]: , ≤ (,) (27)

Here, each function from the set : = { , … , | |} of the SRM, which is required by the
sub-stream , must be also supported by the selected rewriting unit .
2.2.5 Stream Rewriting Network (SRN)
The stream rewriting network (SRN), which connects the rewriting units and the token
stream (Figure 16, page 23), is defined as a tuple of the split (Equation (17)) and binding
(Equation (23)) functions:

Definition D4: A stream rewriting network (SRM) is a tuple consisting of a split and a
binding function: : = (,): Σ∗ × ℕ → ℕ: Σ∗ × ℕ → ℕ
The split function must satisfy the following monotonic constraint:∀ , ∈ ℕ: ≤ ⇒ (,) ≤ (,)

Three examples for stream rewriting machines are presented in Figure 21, which are based
on different variants for and from Section 2.2.3 and Section 2.2.4. The abstract
network component of (Figure 16, page 23) is now replaced by a concrete topology.
The ring architecture (Figure 21a) with : = (,) concatenates rewriting
units in a chain and the results of the first rewriting operation are passed to subsequent
cores. Hence, each element of the recursive sequence () is partitioned into a single
segment that is assigned to a different core.
The example contains two rewriting units (= 2), so that the initial stream is evaluated
on rewritten on unit 1, stream is rewritten on unit 2 and the third iteration is again
bound to unit 1. For a concrete implementation and reasonable large streams, it can be
assumed that both rewriting units are working in parallel for most of the time. An
advantage of the ring topology is its simplicity since the network merely consists of queues
between the rewriting units.

30

a) Ring Architecture (p=2) b) Shared Memory (p=2) c) Parallel Distribution (p=2)

(,) = 1 (,): = (− 1)| | + 1 (,)= (, -1) + 1 if (=)(, -1) else(,) = () + 1 (,) = (,) = () + 1: = (,) : = (,) : = (,)
Figure 21. Different types of stream rewriting networks

The scalability of the ring network has been evaluated for the hardware synthesis of
recursive functions (Section 6) and for many-core systems (Section 4). Since the throughput
of this chain depends on the slowest rewriting unit, a worst case can occur if the size of
stream varies greatly between subsequent iterations. Since each rewriting step from s tos

is performed entirely by a single core, there is one rewriting unit, which is responsible
for the most expensive iteration. If the computation time between iterations of the
stream varies frequently, some rewriting units are always over- or underutilized.
The stream rewriting network (Figure 21b) is based on shard memory and divides
the stream into as many parts as there are rewriting units. In this example, the stream is
partitioned into two segments and bound to two rewriting units (= 2). For , the
network is a crucial part and must be able to handle multiple requests from separate
rewriting units in parallel. In addition, the memory of the token stream should provide
sufficient bandwidth to keep the cores utilized. Even without considering a concreate
implementation, the shared memory SRM most certainly requires more hardware
resources than the ring but it performs a parallel rewriting and distributes each step→ equally to all rewriting units.
The third architecture (Figure 21c) contains specialized router components, which
switch to another rewriting unit after a CALL token has been detected. As a difference, the
routers access the stream although no complete pattern matching is required. In particular,
the heuristic can be also performed in parallel on a group of tokens (Section 4.3.5) and
provides a more fined-grained load-balancing. As a result, the recombination of stream
fragments represents a potential bottleneck.
All three designs have been implemented and a throughout comparison of scalability,
performance, and resource usage can be found in Section 4.4.

31

2.3 Scheduling
The scheduling of the stream rewriting process can be distinguished into the two phases.
The first one is called the global scheduling and takes place before the pattern matching,
while the local scheduling is responsible for selecting executable expressions. Similar
to the partitioning, the global scheduling is based on parameters like the size of stream and
does not require access to the tokens, while the local scheduling actually has to look into
the stream. In this section, both concepts are described according to the post-order format
of the stream grammar but can be adapted to the preorder format as well.

2.3.1 Local Scheduling
The selection of an executable CALL expression (Definition D3 on page 20) from the token
stream is called local scheduling. Data dependencies of concurrent threads are resolved by
iteratively applying find-and-replace operations and all modifications of the stream are
local. No assumptions concerning the rewriting order on the stream are made and there is
no guarantee that a specific CALL pattern is evaluated as soon as possible. In contrast to a
find-and-replace algorithm, it is not a mistake to ignore some executable expressions.
Hence, it is valid to check only a part of the stream and the rewriting can be performed
independently or selectively on different sections. Both aspects support the scalability of a
hardware implementation since they allow to split the stream and to distribute work items
to different rewriting units. In a summary, the advantages of the local scheduling via
pattern matching can be described as follows:

 Automatic scheduling driven by data dependencies
The execution of a CALL expression can start as soon as there are a sufficient number
of preceding literal tokens, which correspond to intermediate results of already
completed functions.

 Light-weight creation and completion of threads
New tasks are created by emitting the corresponding CALL expressions and do not
require interaction with a global scheduler. For implementations, which distinguish the
two token types with a single bit, no additional costs are involved.

 Synchronization using local operations
Parallel branches of a call tree can be evaluated in parallel and synchronized via pattern
matching as shown for (1) and (2) of the Fibonacci function in Figure 15 on page 22.
Most important, the recombination is a local operation on the stream and always
affects a compact range of tokens. As a consequence, the synchronization of threads
does not require access to a global memory nor atomic operations.

Although not all applications can benefit from the dynamic scheduling via stream rewriting
because their use case requires the predictability of a static schedule, many algorithms
from the field of computer graphics fit perfectly into this model of computation (Section 5).

32

Figure 22. Exponential growth due to recursive expansion Figure 23. SRM with stack-based scheduling

2.3.2 Global Scheduling
Due to the recursive expansion, the stream can grow exponentially as shown in Figure 22.
While a large stream potentially contains a huge number of matching rules, which might be
evaluated in parallel, its storage requirements can quickly exceed the available memory.
Hence, the size of the stream is a trade-off between concurrency and storage capabilities.
However, for a particular implementation, it can be assumed that there is a minimum
stream size , which must be reached to achieve full utilization of all processing cores but
above this threshold, little performance benefits are expected.
In this context, the concept of global stream scheduling describes, which parts of a stream
are considered for rewriting in a particular iteration. For this purpose, the functionℎ : S → S (28)

selects a sub-stream, invokes on the fragment, and re-assembles the results. For
instance, the scanning of the whole stream is described by ℎ (s): = (s) and
corresponds to a breadth-first search of the call tree. Hence, for a function, which performs
two recursive calls up to a depth of , the maximum stream size is bounded by 2 .
Contrary, a depth-first traversal would limit its length to () but could rewrite at most
only one executable rule per iteration.
As a tradeoff between memory consumption and performance, a mixture of depth-first and
breadth-first traversal expands only executable CALL tokens within in the first tokens of
the stream. Hence, for a stream : = 〈 , … , 〉, the scheduling is specified as:

ℎ : = 〈 , … , 〉 + 〈 , … , 〉 if >(, … ,) else (29)

According to the stream grammar (Definition D2 on page 20), this approach first checks the
innermost invocations at the beginning of the stream, which are most likely to be ready. For
a hardware or software implementation, the inactive remainder can be pushed onto a stack
and does not need to be touched in each iteration. As a result, the execution time of an
iteration is independent from the total size of the stream and thus also from the
total number of managed threads. The data flow model of modified stack-based SRM
(Figure 23) contains a switch after the rewriting unit, which redirects the stream to the
stack if the limit of tokens has been reached. In case of a short stream, tokens are fetched
from the stack and appended to the end of the stream accordingly. As a result, the stack
works as a buffer for large streams keeps the size of the active part always below or equal
to the optimal size of tokens.

33

Figure 24. The recursive expansion can produce an arbitrary number (n) of literal tokens.

Similar to the partitioning, too small values for might cause the SRM to run into a false
fixed point. For instance, the stream 〈1,2,3,1, 〉 describes the invocation of using the
three parameters 〈1,2,3〉. Therefore, in case of < 5, the SRM never considers the entireCALL expression for rewriting. In addition, the recursive nesting of invocations can produce
an arbitrary number of literal tokens at the beginning of the stream. For instance, the
following function is called recursively and produces a prefix of literals (Figure 24):(): = 〈 , +1,1, , 〉〈 〉 if <else (30)

Hence, even well-formed functions can produce intermediate streams with an unbounded
amount of literal tokens in the beginning. As a result, there exists no fixed ∈ ℕ, which is
sufficient for all stream rewriting machines. Consequently, further constraints have to be
defined in order to guarantee the correctness of the stack-based scheduling. For this
purpose, the following parameters are derived from the set of function .

1. Let : = max ∈ be the maximum number of arguments of all functions . The
maximum exists since the set of functions : = { , … , } is finite and ∈ ℕ .

2. Let be the maximum recursion depth of any function in stream

According to the grammar (Definition D2 on page 20), also shown below, each invocation is
constructed by a sequence of at most arguments, the identifier and the token:stream: = { }expr: = const|callconst: = 〈literal value ∈ ℤ}: = { } 'CALL'
Hence, a run of literals has a maximum length of ⋅ + 1 tokens including the identifier .
By choosing > ⋅ + 2, it can be guaranteed that the prefix 〈 , … 〉 of stream: = 〈 , … , , … 〉 contains at least one token. Therefore, there exists also a first

token with : = { : = } in the stream, which is only preceded by
literals, so that the stream has the following format:: = 〈 , … ,∈ℤ , , , … , , … 〉 (31)

As a result, the first is preceded by − 2 literals and the identifier . It becomes
executable and can be rewritten if there are at least arguments. In case of − 2 < ,
the stream is malformed since the requested number of arguments can be never produced
from the literals , … , . Thus, for a well-formed stream, there is always at least one
executable CALL within the first ⋅ + 2 tokens. Also important, the assumptions made in
this section require that literal results are removed from the stream as soon as possible.

34

Figure 25. Finite state machine controlling the stack. Figure 26. Saving and restoring tokens.

2.3.3 Stack Management for Global Scheduling
Formally, the behavior of the stack can be described as a finite state machine presented in
Figure 25 with the four states INIT, PUSH, REVERSE, POP, which are specified as follows:

 State: INIT
Initially, tokens are passed through (copyToken) and increment a counter (count). If the
optimal size of tokens has been reached, indicated by ≥ , the stack switches
into the PUSH state to store the remainder of the stream on the stack. Contrary, if the
end of the stream is reached (isEnd) without the threshold being surpassed
yet (<), the stack switches into the POP state to fill up the stream.

 State: PUSH
In this state, the remainder of the stream is stored in memory (storeToken). Since the
tokens are written sequentially in FIFO order, the newly appended segment must be
reversed (Figure 26), so that the state machine goes into the REVERSE state, when the
end of the stream has been detected.

 State: REVERSE
After the remainder of the stream has been stored on the stack, the REVERSE state
swaps pairs of tokens in-place (swapTokens) before returning to the INIT state. For this
purpose, the two pointers and are initialized to the beginning and the end of the
newly appended section. Here, () denotes the topmost element of the stack. In
each step, the associated tokens are exchanged and the pointers are moved towards
each other. This reversal is necessary since the recently pushed token is currently at the
top of stack but should be fetched last. The layout of the stack in this state is also
illustrated in steps (2) and (5) of Figure 26.

 State: POP
The previously stored tokens are appended to the end of the stream (loadToken) until
the optimal size is reached or the stack becomes empty. Eventually, the stack returns to
the initial state to process the next iteration.

35

Figure 26 illustrates the process of loading and storing of tokens by showing the contents of
both the stack and the stream for three iterations. Here, the threshold is set to = 2
tokens. As a consequence, the last two of the four tokens in are pushed onto the stack
(1) and will be reversed (2). In this example, the blue token 1 is expanded into 1a, 1b, and
1c from to . (3). Again, the last two tokens (1b; 1c) are stored (4) on the stack and are
also reversed (5). Eventually, in , the stream shrinks (6) and the available position is filled-
up with token 1b from the stack (7). As a result of the swap, the next token to be fetched is
located at the top of the stack. Also, the stored tokens are not touched again until there is
enough space available on the stream.
A short example of this scheduling technique for a recursive call tree is shown in Figure 27.
Here, the color of each token shows the branch and the number displays its depth. In this
example, the threshold is chosen as = 4, so that the stream is expanded quickly until
when the workload is sufficient to fully utilize the system. From this point, only the first 4
tokens, which correspond to the inner tasks, are rewritten. Eventually, the stream shrinks
again, the postponed tokens are fetched from the stack and move back into the active part.
In general, the memory requirements of this technique can be analyzed as follows:
If the call tree has a maximum depth of and performs two recursive invocations per node,
a breadth-first approach would expand all executable CALL expressions, which leads to a
memory requirement of (2) and () iterations (Table 1). Contrary, a depth-first
traversal expands only the first CALL per iteration and therefore requires (2) iterations
with a maximum stream size of (). The stack-based scheduling represents a tradeoff
between these two approaches:
As long as the system is underutilized with | | < , all executable tasks are expanded to
reach the optimal operating point. If there exists an iteration with | | ≥ , this approach
is equivalent to parallel depth-first traversals with a maximum depth of . Thus, the
memory requirement is bounded by () and the number of iterations can be
approximated by 2 / . Hence, in comparison to a breadth-first traversal, there are
more but smaller iterations, so that the total number of executed tasks remains the same.

Figure 27. Combination of breadth-first and depth-first evaluation

36

Figure 28. Stack and stream size per iteration for computing the recursive sum from 0 to 100.

For example, a typical branch-and-bound algorithm recursively subdivides a given problem
into smaller tasks, which can be solved individually and later recombined. This class of
algorithms is in particular well-suited for stream rewriting because it allows evaluating
individual tasks in parallel. A generic example for such an algorithm is the recursive
function (,), which accumulates the interval [,]:

(,) = , +2 + +2 + 1, if >else (32)

Each invocation of creates two additional instances of this function, so that the
number of tokens is roughly doubled per iteration (Figure 27). As a result, the total memory
requirement of (,) can approximated as (−). For comparison, Figure 28
shows the size of the stack (blue) and the token stream (red), when using the proposed
scheduling algorithm with = 256. In fact, the length of the stream increases
exponentially until the target size of 256 tokens has been reached. Then, the remainder is
stored on the stack and the number of tokens grows linearly per iteration. In particular, the
length of the active stream remains constant while the stack compensates the varying
amount of tokens. At the end of the computation, both the stack and the stream shrink
until all tokens are processed.
As a result, the global scheduling algorithm utilizes the stack to reduce the exponential
expansion into a linear growth. Important for a possible hardware implementation, the
scheduling decision can be made by a relatively simple state machine (Figure 24, Page 33)

Table 1. Comparison of binary tree traversal algorithms.

Depth-First Breadth-First Parallel Stack
Tasks (2) (2) (2)
Memory () (2) ()
Iterations (2) () (2 /)

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80iteration

stack size

active tokens

37

2.3.4 Large Scale Expansion
For many-core systems with more than hundred processor cores, an adequate number of
work items or tasks are necessary to fully utilize the available computing resources. Often,
it is also more efficient to generate tasks dynamically within the processor instead of
loading a large stream from external memory. Hence, a mechanism must be provided,
which is able to quickly expand function calls at runtime. In the traditional data-parallel
model of OpenCL and CUDA, a kernel function is invoked times in parallel on a 1D, 2D or
3D grid. For the 1D case, this behavior can be replicated using the following rewriting rule
that invokes the kernel function on the interval [,]:(, ,): = 〈 , , , + 1, , , … , − 1, , , , , 〉 (33)

However, for large values of : = − + 1, this approach is not suitable since it schedules
the entire expansion onto a single core. For example, if is set to 1,000,000, this particular
core will produce 3,000,000 tokens during the execution of . Since the evaluation of a
rewriting rule is atomic and cannot be interrupted by design, most of the remaining cores
will be blocked until all 3,000,000 tokens are written to the stream. While multiple rules
can be evaluated in parallel, the resulting sub-streams must be reassembled in the correct
order. For this purpose, both hardware and software implementations usually require
reorder buffers as a temporary storage. If the capacity of these buffers is exceeded, the
evaluation of multiple instances is serialized and therefore reduces the throughput.
For graphics hardware, there exist similar constraints that limit the number of outputs per
shader instance. For example, the geometry shader of Direct3D can generate up to 1024
floating-point values per invocation and is therefore not suitable for large-scale data
amplification. In addition, its performance significantly decreases for larger number of
outputs, which has shown by [91] and [92]. More important, the stream would also grow
excessively because all 1,000,000 instances are generated at the same time and thus
render the scheduling approach of Section 2.3.2 almost useless.
Actually, the parallel rewriting of a token stream faces exactly the same problem because
each CALL expression can produce a variable number of outputs. However, it is possible to
perform the expansion recursively, so that the number of outputs per instance remains
below the critical threshold and takes advantage of the stack-based scheduling. Similar to
the recursion sum, the following branch-and-bound algorithm subdivides the interval [,]
until the maximum block size of has been reached:

(, ,) = , +2 , + +2 + 1, , if − >〈 , , , + 1, , , … , − 1, , , , , 〉 else (34)

38

Figure 29. Recursive expansion of 1024 instances.

For example, the recursive expansion of the interval [0,1023] using this technique is
illustrated in Figure 29. Due to the stack-based scheduling, the active part of the stream is
sub-divided once per iteration, while the remaining part on the stack is left unmodified.
Initially, the top-level call is evaluated on a single core, but starting from the second
iteration, the expansion could potentially run on two cores in parallel. As a result, recursion
is not only supported by stream rewriting but rather essential to ensure optimal task
distribution and also to reduce the maximum size of the stream.
As an alternative, there is also a mechanism for instancing (Section 2.4), which offers a
compact encoding for data parallel tasks. However, in contrast to the recursive expansion,
it relies requires a separate grammar rule and therefore does not work on the basic SRM.
On the other hand, the explicit instancing provides more information to the SRM and can
be therefore also better optimized. For example, the graphics processor (Section 5.4)
expression takes the size of a two-dimensional region and a hardware scheduler then
distributes the entire set of tasks uniformly to the processor cores.

2.3.5 Open Systems
The initial stream might be used to describe the input of a continuously running device
like an embedded system or a graphics processor. In this case, there probably exists no
upper bound for the number of tokens in , so that the total length of the stream is either
unknown or infinite. Hence, a scheduling algorithm, which requires random access to the
stream, is not adequate in such a scenario since only a small part of the stream is accessible
at any time. Instead, the system should incrementally rewrite and combine incoming
tokens. For this purpose, the model of the SRM is updated according to Figure 30 and
contains the novel entry and exit points. In particular, the entry point appends tokens to
the stream, while results are extracted at the exit point. In particular, results can be either
literal values or more specified specialized tokens described in Section 2.5.1.

Figure 30. SRM with entry and exit for processing infinite streams.

0 CALL1023

10235120 CALL511

active stack

f

f f CALL

5112560 CALL255 f f CALL 1023768CALL767 f f CALL

2551280 CALL127 f f CALL

512

511384CALL383 f f CALL256 1023768CALL767 f f CALL512

39

As a fundamental insight and similar to the stack-based scheduling, it is actually sufficient to
rewrite a finite sub-stream of a potential infinite large stream. Hence, the stream ∈ is
partitioned into a finite front part and a possible infinite remainder :

: = + ℎ | | < (35)

The first part has a maximum length of tokens and can be passed to the rewriting
function, while the remainder is left unmodified:

(): = () + (36)

The entry point of the modified SRM (Figure 30) switches between the input stream and
the already circulating tokens in the ring. In particular, it appends incoming tokens to the
end of the current stream, as long as it is shorter than tokens, so that in combination with
the stack, the active part of the stream is always kept below this threshold. In Section 2.3.2,
it has been shown that a lower bound for can be constructed based on the maximum
number of arguments and the recursion depth of all rewriting rules. As a result, the
rewriting of the infinite stream can be reduced to a finite prefix of tokens.
Each optimized hardware or software implementation already defines some limits for these
parameters based on the size of internal queues and local storages, so that these additional
requirements impose moderate costs. For instance, to handle functions with up to 255
arguments and 32 levels of recursion, the system must be able to store a stream of ≈8192
tokens, which can be packed into 32Kb for a 32-bit SRM.

2.4 Stream Compression
Although the SRM can work on streams of arbitrary lengths, the storage requirements and
computation time of a particular implementation should roughly correspond with the
number of processed tokens. For instance, a smaller stream generally causes less stack
operations, which usually access the slow external memory. Similarly, the performance of
the abstract SRM architectures shown in Figure 21 on page 30 depends on the stream
processing bandwidth. Also, for computational less expensive tasks with a large number of
arguments, the pattern matching can become a bottleneck of the architecture. As an
optimization, two mechanisms are proposed, which reduce the size of stream by removing
redundant data:

1. The concept of instancing improves the throughput of data parallel tasks, which are
called several times using almost the same set of arguments.

2. Hierarchical environments define a set of shared variables for a branch of the call-tree
and can contain different types of tasks.

Both approaches move shared data, which would have been passed as arguments, into a
central location and therefore reduce the number of temporary data on the stream.

40

2.4.1 Instancing
The basic model of stream rewriting already supports data parallelism though recursion.
For example, the technique for large scale expansion (Section 2.3.4) utilizes the stack to
iterate over huge data sets in parallel. However, all invocations must be still written to the
stream and thus require bandwidth and computation time. Hence, especially for the
medium sized leaves of a recursive expansion, it would be advantageous if a data parallel
task could be written once and distributed to a given amount of rewriting cores.
In the context of graphics processing, the term instancing usually describes the explicit
repetition of a task and is often handled by specialized hardware for performance reasons.
In particular, instancing can be used to draw a large number of similar objects with minimal
CPU usage [17]. For stream rewriting, the basic grammar is extended by the following rule:

Definition D5: The evaluation of a CALL expression on the interval [0,) ∈ ℤ is specified
by the instantiation rule:_ : = { } 'CALL_INST'

As a result, the function is invoked times for each element of the interval [0,) ∈ ℤ
and the index of the current iteration is appended to the call. Formally, the instance
expression is expanded into a sequence of calls as shown in the following rewriting pattern:〈 , … ,∈ℤ , , , _ 〉 → 〈 , … , , 0, ,: , … , , … , , − 1, ,: 〉 (37)

For example, the streams and in Figure 31 are equivalent but requires only a
fraction of the memory. Similar to the CALL expressions, the instantiation rule requires all
arguments , … , , to be literal values but the exact instant of the unfolding is
implementation-specific. As a result, the SRM can optimize the processing depending on
the current size of the stream and in combination with the global scheduling. Hence, the
instance expression is formally equivalent to a sequence of calls but allows for additional
optimizations at runtime. Therefore, the SRM may switch to a recursive or partial expansion
if the length of the stream has already reached the threshold for global scheduling.
Likewise, an implementation may dispatch the task to several rewriting units in parallel
without storing all instances in memory. Thus, _ expressions are comparable to
vector instructions and signal explicit data parallelism to the underlying hardware.
Instance expressions can be also nested in order to iterate over multiple dimensions or
hierarchical grids. In combination with regular calls, the expansion can be also performed
conditionally to skip large groups of instances and therefore accelerate recursive branch-
and-bound algorithms.

Figure 31. Instancing can significantly reduce the stream size for data parallel problems.

41

A more general alternative to the instanced calls is the FOR/END block, which replicates
the enclosed sub-stream regardless of the contained tokens (Figure 32):

Definition D6: FOR loops are described as a block of FOR/END tokens and take three
literals to specify start, end, and step size of the loop counter:∶= ′FOR' { } 'END'
INDEX tokens within the loop are replaced by the counter of the loop at
the given depth. A depth of zero refers to the innermost loop.∶= ′INDEX' ℎ

At runtime, the inner sub-stream is replicated according to the given range and containedINDEX tokens are replaced by the current iteration number. In addition, loops can be also
nested to iterate over multi-dimensional grids. For this purpose, the INDEX token also
specifies a relative depth to identify the correct loop. The example shown in Figure 32
iterates from 0 to 8 with a step size of 2, so that the SRM produces the four iterations with
index values 0, 2, 4, and 6.

Figure 33. Triangle parameters are replicated. Figure 34. Stream compression using environment.

2.4.2 Environments
The second technique for stream compression deals with the automatic management of
shared data in a highly concurrent environment. Since stream rewriting supports recursive
tasks, shared data can also occur at different levels of the hierarchy.
For example, the rendering of a scene usually starts with one or multiple draw calls, which
are successive expanded into triangles and finally rasterized into pixels. Often, each level of
this hierarchy requires access to certain parameters of its predecessor steps. Hence, shared
data must be replicated and passed as arguments to a large number of subsequent CALL
expressions. For instance, the computations of a pixel are based on the coordinates of a
triangle or the result of a triangle-setup as shown in Figure 33. In this example, the triangle
data must be replicated for each pixel and therefore introduces a significant overhead.

TRIANGLECBA

CALLPIXELCBA00

CALLPIXELCBA10

CALLPIXELCBA20

Pixel Triangle

Draw Triangle (A,B,C)

Redundant

CALL

A, B, C are valid for this sub-stream.
LETCBA

CALLPIXEL00 CALLPIXEL10 CALLPIXEL20

END

The triangle is specified once
and takes three parameters.

3

End of environment block.

Figure 32. Expansion of a FOR/END block with min=0, max=8 and step=2.

42

For this purpose, local environments allow specifying a set of shared parameters , … ,
only once for a sub-stream enclosed into a pair of / tokens:

Definition D7: An environment block guarantees that the shared parameters , … ,
are initialized during the evaluation of the inner expression .∶= , … , , , ′ ' { } 'END'

Since the results of an environment might be passed as an argument to another CALL,
literals at the end of a block are extracted by exchanging them with the END token:〈 ∈ ℤ, 〉 → 〈 , ∈ ℤ〉 (38)

Finally, empty environments are removed from the stream using the rule:〈 , 〉 → 〈〉 (39)

Environment blocks offer an efficient mechanism for the distribution of shared read-only
data and support automatic memory management. Neither current graphics nor compute
APIs provide a comparable functionality: For instance, CUDA and OpenCL support data-
exchange between threads via shared memory, but it must be managed manually and relies
on explicit synchronization. On the other hand, the aggregation of shared parameters
hinders the parallel distribution of the token stream (Section 2.2.3) because the SRM has to
read every environment before the contained CALL expressions can be evaluated.

2.5 Memory Access
Several applications like graphics processing require both read and write access to large
datasets that cannot be stored on the stream due to its size. In addition, random memory
access is necessary for some operations but does not fit well into the concept of stream
rewriting, which focusses on locality instead. Since shared memory cannot be avoided
completely, this section introduces a safe and predictable model for the integration of side-
effects into the rewriting process.
According to the formal specification, the functions ∈ are pure, so that the final result
of the stream does not depend on the evaluation order. Actually, the scheduling of
rewriting rules is based on the partial order defined by their data dependencies. However, a
rewriting function is allowed to read or even modify a shared memory, the partial

Figure 35. SRM with shared memory Figure 36. Different types of conflicts on the stream.

atomic increment

f CALL

0 CALL0

0 INC CALL

CALL???

write-after-write conflict

a)

b)

c)

PIXEL 1 CALL0 PIXEL 0 CALL0 PIXEL

unknown dependencies

4 INC CALL 0 INC CALL 4 INC CALL

43

ordering may be not sufficient to avoid conflicts. Hence, the extension of the SRM model
with shared memory access (Figure 35) effectively introduces global data dependencies
that are not encoded into the stream and therefore invisible to the scheduler.
Some potential conflicts are illustrated in Figure 36. For example, writes to the same
address or pixel must be performed in order (Figure 36 a) and the execution of atomic
increments (Figure 36 b) should not overlap. The worst case is shown in Figure 36 c) and
here, the dependencies of are unknown because the corresponding tokens have not been
expanded yet. In general, the following options are available for handling memory access:

 Unordered Access
In the most simplistic case, the order of memory operation is either not relevant or can
be ensured by inserting artificial data dependencies into the CALL expressions. This
approach has been proposed for the high-level synthesis of recursive functions and the
general purpose architecture based on shared memory (Section 4.2). If the SRM is
based on shared memory anyway, this model does not require additional rules or
hardware components. As an example, the mandelbrot and raytracing test cases
(Section 4.3.6) write each pixel of the screen only once.

 Platform-dependent Synchronization
Although, the SRM does not account for memory request, each rewriting function can
still use the synchronization capabilities of the underlying implementation like atomic
operations or semaphores. In this case, the memory model of the basic SRM would be
comparable to CUDA or OpenGL, which provide synchronization primitives for shared
memory access but also require the manual synchronization of threads.

 Shared Environments
Alternatively, if shared data is written only once and read by multiple subsequent
functions, the shared storage can be modeled using environments (Section 2.4.2). As an
advantage, no external memory is required since all data is kept on the stream and will
be automatically garbage collected. Hence, this technique is most useful for exchanging
temporary data between cooperating threads but unfeasible for global results because
environments do not persist on the stream.

While the existing capabilities of the SRM provide a reasonable compromise for some
applications, they are not sufficient to handle a large number of random memory requests
and read-modify-write operations, which are commonly used in graphics processing. Hence,
in the next two sections, the synchronization of writes (Section 2.5.1) and the atomic
execution of rewriting functions (Section 2.5.2) are specified.

44

2.5.1 Write Ordering
If an application is performing ordered write operations, the final stream can be interpreted
as a sequence of address and data tuples that are intended to be stored in memory. The
final result of the rewriting process is specified as the limiting value of the sequence:(): = lim→: = () (40)

By definition, the limiting value consists of tokens, which cannot be rewritten further and
therefore remain on the stream. Since all rewriting operations maintain the relative
alignment of the stream, the results are automatically ordered. Hence, the stream() offers the possibility to return an output stream of literal values. For simple
functions like Fibonacci (Section 2.1.4), which compute a scalar value, the output stream
also contains a single literal (Figure 15, Page 22):(〈3, , 〉) = 〈2〉 (41)

When evaluating multiple different functions in parallel, the results are concatenated:(〈3, , , 4, , 〉) = 〈2,3〉 (42)
Since the results correspond to CALL expressions of the initial stream, this technique is in
particular useful for rendering algorithms that construct an image in multiple steps and
thus are expected to maintain the original draw order. This method is applied in Section
2.5.1 and has been evaluated as part of the stream rewriting network in Section 4.3.3 as
well as for graphics processing in Section 5. Especially for the post-order encoding, the
pattern matching has to look-ahead a large number of tokens to determine if a literal value
is left on the stream or can be possible applied as an argument to a subsequent CALL. Thus,
the basic stream grammar is extended with a special OUT token, which definitively marks
the preceding tokens as final:

Definition D8: The output token is never rewritten and marks the inner expression
as final result: : = 'OUT'

The graphics processor in Section 5.4 utilizes a more specialized version of this generic
mechanism and supports a PIXEL token, which additional contains coordinates, color and
depth values. Instead of (,) tuples, the output stream can be also compressed
using a run-length encoding to save bandwidth (Section 4.3.3).
This technique enables ordered writes at moderate costs and fits into the functional model
of stream rewriting. In addition to literal results and further invocations (CALL), a rewriting
function can also return a sequence of memory writes. However, a significant disadvantage
of this method is that even non-conflicting write operations are serialized and kept on the
stream. Hence, in the following section, a more fine grained approach for synchronizing
both read and write operations is presented.

45

Figure 37. Execution orders used for synchronization. Figure 38. SRM with distributed shared memories.

2.5.2 Synchronization
In general, the SRM has to support the synchronization of arbitrary read or write
operations, random memory access and atomic operations. High-performance applications
like graphics processing usually require a significant bandwidth of random and irregular
read-modify-write operations into external memory. For instance, the rendering of a single
pixel might generate at least four memory reads for each bi-linear texture fetch as well as
two atomic read-modify-write operations of the depth and color buffers. While texture
fetches are mostly unordered reads, the framebuffer usually requires atomic and in case of
blending also ordered access.
More generally, memory conflicts are side effects and cannot be determined from the
stream at this point because calls encode only local data transfers. As a consequence, the
grammar of the stream is extended again to explicit provide information of global
dependencies. Formally, let and describe two instances of a function, (),() the starting times of their execution, and (), () their end times. In
addition, the functions () and () specify the memory locations, which are
accessed during the execution of and . In particular, the execution of a rewriting
function is ordered according to the following three categories (Figure 37):

 Default: The rewriting function can execute without any restrictions. It can perform
arbitrary memory operations and emit all types of CALL expressions. Hence, any
execution times, which satisfy the following condition, are allowed:() ≤ () ∧ () ≤ () (43)

 Atomic: The execution of the rewriting functions and may not overlap with other
instances bound to the same address. It can emit all types of tokens and CALL
expressions but the following constraint must be considered:() = () ⇒ [(), ()] ∩ [(), ()] = ∅ (44)

CALLA B CALL0 0

B

A

B

A

B

A

end(A) < start(B) start(A) > end(B) start(A) < start(B)
start(B) < end(A)

Default

Atomic

Stream

Execution
Order

Ordered

46

 Ordered: All functions of the same address are evaluated in the order they appear on
the completely expanded stream. Hence, for a stream : = + + where any
derived stream ∈ ∗ might contain , the execution intervals must be disjoined and
strictly ordered. In addition, an ordered function cannot emit further calls.∃ ′ ∈ ∗: ∈ ⇒ () ≤ () < () ≤ () (45)

The extended SRM is illustrated in Figure 38 and contains the following two additions: First,
the address space of the shared memory is partitioned and each rewriting unit has
exclusive access to its own block. Hence, in this example, there are four rewriting units, four
blocks of memory and consequently, the address space must be divided into four segments.
An actual implementation might also combine the four memory blocks into a single
external memory as long as the responsibility of a certain rewriting unit for a specific
address range is preserved.
The second addition are the router components, which have been already shown for the
parallel distribution of the stream in the generic SRM (Figure 21c, Page 30) and are
responsible for assigning executable rewriting functions to rewriting cores. Here, the
routers are performing the binding according to the memory location a rewriting function is
potentially accessing. For instance, all instances, which might require a synchronized access
to the address range of memory block 1, are passed to rewriting unit 1. In order to describe
the new semantics, the grammar of the stream is extended with the following rules for
atomic and ordered CALL expressions, which explicitly state the utilized address:

Definition D9: Atomic and ordered calls are specified by the rules:_ : = { } 'ATOMIC' 'CALL'_ : = { } 'ORDERED' 'CALL'
Hence, for ordinary CALL expressions, a rewriting function can be bound to any core but
atomic functions must be executed on the rewriting unit containing the specified address.
Ordered functions additionally have to check if there are any preceding and not yet
executed invocations on the stream. Since the address is threatened as an opaque handle
by the scheduler, it may point to an actual memory location but can also refer to a memory
range, a pixel column or another shared resource.
The most restrictive category is the ordered execution since it guarantees that all preceding
instances on the stream with the same address have been completed with() < (). In the worst case, a rewriting function consequently has to wait until
all previous defaults calls are expanded and the entire set of dependencies has been
resolved, which is similar to the mechanism of the R-Buffer [93]. However, due to the
recursive expansion of the stream, memory dependencies might be unknown (Figure 36c)
for some sub-stream and thus, all subsequent ordered functions must be blocked
completely. As a result, the strict execution order represents the most expensive category
of synchronization. Though, according to the global scheduling algorithm (Section 2.3.2),

47

which prefers the beginning of the stream, the waiting instances might be pushed on the
stack. As an optimization, a function without an explicit memory address can be also
declared as constant to indicate that it will not introduce memory conflicts.

Definition D10: A constant function does not perform memory writes and invokes only
constant functions. _ : = { } 'CONST' 'CALL'

Since a constant call guarantees that it will never expand into a non-constant invocation, it
does not interfere with atomic and ordered operations. For high-level languages, the
constant annotation might be either specified as part of the signature like in C/C++ or
determined automatically by the compiler as part of the global optimization step.

2.5.3 Discussion
The concept for memory synchronization generalizes the approach of Pomegrate [94],
which contains several reordering networks to reorder to temporary results between
subsequent pipeline stages. Otherwise, there also exist alternative techniques to ensure
deterministic memory access in a concurrent environment:
For general purpose CPUs in multi-core systems, atomic operations are usually
implemented by locking the memory bus or as a combination of load-linked and store-
conditional instructions in the MIPS processor [95]. However, these fine-grained techniques
does not provide the required scalability for many-core architectures since there is a large
number of pending requests hiding the latency of the external memory.
GPUs usually contain dedicated raster output stages (ROP) for blending and atomic
operations [9]. Since the SRM is designed towards a more flexible software-centric
approach, specialized hardware components are omitted. As an alternative, atomic
operations can be also supported directly by the memory subsystem but usually a large L2
cache is required to hide the latency of external memory like in the Fermi design [96].
The dynamic binding of the SRM ensures the atomic execution of an entire rewriting
function and therefore supports all combinations of atomic operations for both integer and
floating-point data types. Most important, it also avoids the need for globally locking
certain memory locations. However, as a disadvantage, the throughput of both arithmetic
and memory operation is coupled more tightly, so that the distribution of the memory
addresses can impact the load balancing negatively. For instance, if the majority of memory
requests targets an address in block zero, also the arithmetic part of these functions is
evaluated by rewriting unit zero (Figure 38, Page 45). However, such a worst case can be
prevented by interleaving addresses between blocks and possible splitting functions into
arithmetic and memory sections, which are then routed independently.

48

3 Source Models
After specifying the basic concept of the stream rewriting
machine, three source models are presented in this section.
At the lowest level of abstract, a functional language directly
corresponds to the execution model of the stream rewriting
machine (Figure 39). In addition, task graphs and also
imperative C source code can be layered on top of this
functional model.

3.1 Functional Programs
In this section, a functional language for stream rewriting is proposed, which can be seen as
an assembly language for the SRM and is based on the concept of paper [85].

3.1.1 Introduction
Actually, the basic execution model of stream rewriting already defines a minimalistic
functional program : = { , … , } with a grammar consisting of nested CALL expressions.
Similarly to existing languages like ML [97] or Haskell [98], imperative constructs like loops
and branches can be emulated using recursion. For example, the high-level compiler for
hardware synthesis (Section 3.3) generates a set of rewriting rules from a C program by
transforming basic blocks into separate functions and passing active variables as
arguments. Also important in the context of functional programming, the rewriting of aCALL expression is strict because it requires all arguments to be evaluated before a
function is entered. Contrary, lazy languages like Haskell compute arguments on demand.
In the execution model of stream rewriting, the strict evaluation order is the only
guarantee, which is given regarding the execution time of a function. Beside random
memory access (Section 2.5), rewriting rules are mathematically pure, free of side-effects
and therefore well-suited to model concurrent computations. As a result, this model
exposes mostly the same properties and constraints as a strict functional programming
language. Hence, programming the SRM in a functional style fits well to the underlying
concepts of iterative rewriting.

3.1.2 Related Work
The evaluation of functional programs using rewriting of sequences has been already
shown for the language JOY [99]. However, since their tokens can contain arbitrary values
including lists, this approach is not directly suitable for a hardware implementation. In
addition, the work of [100] describes the relation between term rewriting systems and
functional languages. Especially for multi-core systems, a stateless functional model can
remove the need for atomic operations and memory coherency, which has been evaluated
in [101] using a minimalistic C++ based λ-calculus.
Likewise, the natural parallelism of term rewriting and the support for multiple types of
concurrency has been emphasized by [102]. In fact, the authors also propose a partitioned
term rewriting to automatically utilize multiple processors. The central difference to the
SRM is the storage of the rewriting expression. In their system, there is a fixed set of

Figure 39. Source Models

49

random accessible cells, which store intermediate results and dependencies. Likewise,
there is also a bit to distinguish between reduced and complex terms, which roughly
correspond to the literal and CALL expressions. However, the SRM stores expressions as a
stream and dependencies are given through relative positioning using a grammar. As an
advantage, the storage for terms does not need to be allocated explicitly but instead, any
expression can be dynamically inserted into the stream.
The Reduceron [103] processor and its successor the PilGRIM [104] architecture also
execute functional programs, which are based on minimal subset of Haskell, directly in
hardware. Concurrency is exploited by reducing several independent expressions in
parallel, so that a function can be possible evaluated in a single cycle, which basically
corresponds to the instruction-level parallelism (ILP) also found in general purpose
processors. Since the Reduceron processor is not pipelined, it is unclear how efficient
floating-point operations might be executed on this architecture. Both systems employ a
garbage-collected heap to store active nodes and therefore require random memory
access. Contrary, stream rewriting is based on local pattern matching. Shared data is
embedded into the stream using / environments (Section 2.4.2) and also
automatically garbage-collected.

3.1.3 Language Definition
Similar to assembly code, the functional language is minimalistic representation of the
lowest abstraction and intended as compile target. A function definition consists of a name,
a parameter list and the body, containing calls to other functions or build-in operators. The
following example defines a function that returns the sum of both arguments and :

func f(x,y) = add_i32(x,y);

It is also possible to declare a constant variable the global scope using the const keyword:

const PI = 3.14159265359;

Within a function, immutable local variables are supported to store temporary values:

var temp = 1;

There is also an if/else operator to select between two alternative values, used in the
following example to return the minimum of and (clt_i32 = compare less than):

func min(x,y) = if (clt_i32(x,y)) x else y;

In addition, tuples are created using the following syntax:

var tupel = (1,2,3);

50

Data parallelism is modeled using the FOR expression (Section 2.4.1), which takes a loop
variable, a range and a step size. In the following example, the loop is dynamically
expanded into 256 writes of zero with a stride of 4 byte:

for (addr, 0, 1024, 4)
{

write(addr, 0);
}

The LET statement (Section 2.4.2) evaluates the inner expression under the assumption of
the given assignment and redefines a constant for a particular scope. Thus, the function
and ℎ are evaluated to (1) = 2 and ℎ(1) = 3 in the following example:

const c = 1;
func f(x) = add_i32(x, c);
func g(x) = let (c = 1) f(x) // g(1) = 2
func h(x) = let (c = 2) f(x) // h(1) = 3

The following example shows a part of a more complex ray-tracer (Section 5.4), which
calculates the intersection between a ray () ≔ + ⋅ and a fixed ground plane. It
returns an intersection tuple containing a function , which describes the color of the
material, the position on the ray , the geometry normal, and further parameters . If the
plane is not hit, a reference to the background is returned instead.

func intersection(f, t, n[3], c[3]) = { f, t, n, c };
func background(v[3],n[3],c[3]) = 0; // background is always black
func plane_color(v[3],n[3], c[3]) = { ... compute color of plane ... }

func intersect_plane(s[3], r[3]) =
{

var t = neg_f32(div_f32(add_f32(s[1], -16.0), r[1]));

if (cgt_f32(t, 0.0))
{

intersection(plane_color, t, {0.0, -4.0, 0.0}, {1.0, 1.0, 1.0});
}
else
{

intersection(background, 100000.0, {0.0, 0.0, 0.0}, {1.0, 1.0, 1.0});
}

};

3.1.4 Discussion
The functional language describes the basic elements of the stream grammar (Section 2) in
a textual form. It can be either used for the low-level programming of a stream rewriting
machine, which is evaluated in Section 5.4 for graphics processing, or as an intermediate
representation for more high-level compilers.

51

3.2 Task Graphs
Task graphs provide an efficient model of computation for specification, analysis and
implementation of concurrent applications. This section deals with the mapping of series-
parallel task graphs into rewriting rules by describing both the topology and the state as a
stream of tokens. As a result, nodes can be replicated on demand and also the recursive
instantiation of sub-graphs is supported. Hence, the presented approach is most useful for
compute-intensive applications that must adapt to frequently varying and unpredictable
workload at runtime. This section is based on the papers [84] and [87].

3.2.1 Introduction
Due to physical restrictions and power
consumption, concurrency and
parallelism are currently the most
effective and in the long term the best
way of accelerating a program. In this
context, task graphs offer an abstract
model of computation which reduces
the complexity and development time
of parallel applications. Instead of
designing explicitly for a specific multi-
core architecture or hardware platform,
an abstract task graph [49] retains its
concurrency and can be retargeted
automatically for different environments [50] [105] [106].
A task graph is a directed acyclic graph (DAG) that contains the tasks as nodes and their
dependencies as edges. An edge between two nodes specifies that the task associated with
the first node must be completed before the second one can be started. Hence, the edges
define a partial execution order, so that independent tasks may be evaluated in parallel on
different processing units. A central challenge is to provide a mapping between tasks and
processing units for each time-step that is optimal in terms of resource usage and correct
with respect to the dependency relation. In addition, there are often also several other
constraints on communication costs and execution time to fulfill.
In general, there are offline scheduling algorithms [107] [51], which calculate a static
schedule during a preprocessing step [108], and online algorithms that generate the
schedule dynamically at runtime [7]. Both types have their advantages and drawbacks for a
certain kind of application. A static schedule usually requires less computationally overhead
at runtime and leads to a more predicable behavior, which might be important for
embedded systems with hard real-time requirements. On the other hand, an online
scheduling algorithm can react to varying workloads at runtime while an inappropriate
static schedule may either waste resources or processing time.

Figure 40. Stream rewriting of a task graph

52

This thesis presents a method for online scheduling of series-parallel (SP) task graphs [39],
using the execution model shown in Figure 40. Contrary to arbitrary task graphs, an SP
graph has a regular structure and consists of nested fork-join constructs [109]. Most
important for stream rewriting, an SP graph can be decomposed into a tree of parallel and
sequential computations [110]. The resulting decomposition tree (DT) is an isomorphic
representation of the SP task graph but, unlike the original graph, it can be stored uniquely
in preorder or post-order form. Hence, the decomposition tree can be used to serialize the
graph into a stream of parallel and sequential tasks, which is not possible for graphs with
arbitrary topologies, so that this restriction to series-parallel graphs is a reasonable trade-
off. In addition, a SP compatible sub-graph corresponds to a compact sub-range of the
stream. Thus, it is possible to expand the graph dynamically by inserting the corresponding
tokens. Hence, the creation of new tasks is lightweight and does not required explicit book-
keeping. This capability is especially valuable for algorithms with dynamically generated
workloads like nested data-parallelism and recursive branch-and-bound techniques.

3.2.2 Related Work
There already exist several different solutions for online scheduling of dynamic task graphs:
A conditional task graph [111] has a static topology but individual edges can be enabled or
disabled at runtime by the use of predicates. The system in [112] generates separate
schedules for each alternative path, which are eventually merged. It combines advantages
from static and dynamic scheduling by mapping mutual exclusive tasks on the same
processing unit for improved resource sharing and reduced latency. Though, stream
rewriting provides a similar functionality by creating sub-graphs at runtime.
The parametric task graph [113] [114] is different concept but pursues similar goals. Large
task graphs are stored in symbolic form and expanded at runtime in order to save memory
and reduce scheduling time. Stream rewriting supports the parametric expansion of the
task graphs but do use local pattern matching instead of a central scheduler. By streaming
tasks into external memory, it is also possible to handle a large amount of instances, even
when not using a symbolic form.
A series-parallel (SP) task graph is constructed recursively using serial and parallel
composition, which corresponds to the fork-join execution model at the application-level.
The restriction to the subset of series-parallel graphs allows optimizing response time and
throughput of a schedule in polynomial time [115]. For stream rewriting, SP graphs have
been chosen because they can be represented as a token stream and modified using
rewriting rules to enable online scheduling of dynamic SP task graphs.
The stream rewriting machine is a subset and shares some similarities with a process
algebra, a different modelling technique for parallel behavior [116]. However, the SRM
trades the support of general tasks graphs and global events for the ability distribute the
execution arbitrary on many-cores architectures.

53

Although working on synchronous data-flow graphs (SDF), the out-of-order execution
approach in [56] also deals with the problem of mapping tasks on a multi-core system.
Though, the concept of a central buffer station for data-exchange with explicit thread
management is quite different from scheduling via streaming and pattern matching.
Also related, the execution model of the queue machine evaluates an acyclic data flow
graph by iteratively modifying a circulating stream [67]. But unlike the SRM, which embeds
control information into the stream, their concept is based on data tokens. As a result, the
queue machine does neither support dynamic flow control nor recursions.
In addition, there are approaches which try to reduce the amount of dynamic scheduling by
using static analysis [117]. By looking into the implementation of a task, production and
consumption rates can be often determined, so that it can be considered synchronously. As
a result, at least these parts can be scheduled using quasi-static scheduling. Another
approach, which tries to decrease dynamic data-flow, is the introduction of separate
modes, which define synchronous data rates for each actor. While modes can be switched
dynamically, each mode has its own static schedule [118].

3.2.3 Series Parallel Graphs
The initial model of the application is a task graph : = (,) with vertices : = { , … , }
and edges ⊆ × . In addition, the weights : → ℕ for each edge : = (,) ∈
describe the number of parameters transmitted from a predecessor task to its
successor . In consistence with the abstract definition of stream rewriting (Section 2.1),
each task of this graph will be associated with a function : ℤ → ℤ that maps
inputs to output values. Since each node is associated with the function , the sum of
incoming and outgoing edge weights must match and :

(,)(,)∈ = and (,) =(,)∈ (46)

Since the focus has been put on the class of series-parallel (SP) task graphs [109] with a
regular structure of nested fork-join constructs, the graph can be uniquely serialized into a
stream. Most important, a sub-graph always corresponds to a compact sub-stream, so that
all rewriting rules are local operations working on a limited number of tokens. Formally, an
SP graph : = (, , ,) with tasks , edges , inputs and outputs can be constructed
recursively by the rules shown in Figure 41:

Figure 41. Rules for recursive construction of serial-parallel task graphs.

54

1.) The SP graph of a single task is specified as:(): = ({ }, ∅, { }, { }) (47)

2.) Two SP graphs and are sequentially composed by inserting edges from to :

(,): = (∪ , ∪ ∪ (×), ,)
with : = (, , ,) and : = (, , ,) (48)

3.) Similarly, parallel composition is defined by the union:(,): = (∪ , ∪ , ∪ , ∪) (42)

The conditions ∩ ≠ ∅ and ∩ ≠ ∅ are explicitly allowed but the constraints∩ = ∅ and ∩ = ∅ must be true. If both inputs share a common task ∈ ∩ ,
it is used as a synchronization point. Similar, there might be also one or multiple shared
output nodes ∈ ∩ .
Due to this construction, each SP graph can be described as a tree of leaf tasks, parallel, and
sequential computations denoted by , , and expressions. It is called the
decomposition tree (DT) of a series-parallel graph and retains the original the
dependencies between tasks. For example, Figure 42 shows an SP graph and the
corresponding decomposition tree, which specified by the term(((), ()), par((),seq((), ()))).
For a given SP graph, the decomposition tree can be derived in (log) using the parallel
algorithm described in [109]. However, the decomposition is not unique, so that multiple
equivalent decomposition trees might correspond to a single SP graph. For example, the
sequence , , , of tasks, shown in left Figure 43, can be described by the following
decomposition trees:

: = ((((), ()), ()), ()): = (((), ()), ((), ())): = ((), ((), ((), ())))

Figure 42. Task graph and decomposition tree (DT). Figure 43. Three equivalent DTs of the same graph.

55

The choice of a particular tree is implementation dependent but in general, the DT can be
characterized according to its depth and the number of temporary nodes, which are
required during the rewriting process. In particular, the depth of the DT represents the
minimum number of iterations until a fixed-point can be reached and the number of
temporary nodes corresponds to the length of the intermediate stream. As a result, there is
a tradeoff between the execution time, measured in iterations, and the storage
requirements. In general, a fewer number of temporary nodes leads to a smaller stream
and a more shallow tree reaches the fixed-point in less iterations.
In this example, requires the expansion of the whole tree before the leaf can be
rewritten. Hence, the three sequential nodes are first expanded and then successively
reduced while the results of , … become available. Hence, the stream must provide
enough capacity to store all four tasks , … , which is shown in the following sequence:

: = 〈 , 〉: = 〈 , , , 〉: = 〈 , , , , , 〉: = 〈 , , , , , , , 〉: = 〈… , , , , , , 〉
If the same tree is rotated into , the task is emitted in the first iteration by the
sequential root node. It can execute in iteration → and produce its successor:

: = 〈 , 〉: = 〈 , , , 〉: = 〈 , , , 〉: = 〈 , , , 〉
Hence, there is only one leaf task on the stream at any time. Although has the lowest
depth, it also takes four iterations to finish due to data dependencies, so that in this case,

is the most efficient solution. Although important, the optimization of the DT is left for
future work.
Most important for stream rewriting, the decomposition tree represents a scheme to
serialize the task graph on the stream, so that both scheduling and modifications of the
topology can be expressed in terms of rewriting rules. For this purpose, the restriction to
series-parallel topologies is necessary to ensure that the graph can be transformed into a
tree. In particular, there is at most one directed path between two nodes in a tree, so that
regardless of the serialization scheme, each node is visited at most once. Especially
important for parallel rewriting, each task is located at a single position in the stream and
each sub-graph is associated with a continuous region. Hence, local modifications of the
graph correspond to local modifications of the stream.

56

On the other hand, an arbitrary graph may contain several paths towards a single shared
node, which complicates the storage format. For instance, it is possible to store the shared
node only at the first appearance and embed references into the stream, which has been
proposed for the rewriting of binary decision diagrams (BDD) in [119]. However, using
references would require a global dictionary of nodes and an appropriate naming scheme,
which directly conflicts with the approach of local rewriting rules. In particular, the creation
and synchronization of threads would always require global access, while these operations
can be currently performed local on a stream fragment. Hence, stream rewriting omits
arbitrary topologies in favor of improved concurrency. If arbitrary connections are
necessary for a particular use case, they can be also implemented manually as queues in
memory. In addition, for many use cases like graphics processing, an SP topology already
offers a significant advantage in comparison to current rendering pipelines (Section 5).

3.2.4 Functional Model
The SP task graph can be translated into an equivalent decomposition tree (DT) consisting
of nested , or operations. Before specifying rewriting rules, the tree will be
first transformed into a functional program.
While the leaf nodes () with = 1 … can be immediately associated with
functions , the remaining parallel () and sequential compositions () must be also
converted into a functional form. Let = | | be the number of tasks, be the number of
sequential nodes and be the number parallel nodes in the DT. The functional program
is given as a finite set of functions:

: = , … ,× , , … ,× , , …×
(49)

The execution model of stream rewriting is self-timed, so that a sequential ordering must
be enforced using data dependencies in case of and a barrier at the end of a
operation. For this purpose, a strict evaluation order is assumed, which guarantees that all
arguments of a function must be available before execution is started:
Let denote the function of a , or operation, which will be recursively
defined as follows:

1) Leaf Task
A leaf node () with task is mapped directly to the associated function:

(()) ∶= (50)

57

2) Sequence
Similarly, a sequential node (,), with two sub-graphs and , corresponds to a
functional composition. Due to data dependencies, the function of the second sub-graph() will be evaluated after the first sub-graph ():

(,) : = () ∘ () (51)

3) Parallel Composition
For the parallel composition (,), two functions : ℤ → ℤ and : ℤ → ℤ
for both sub-graphs and are defined as:

: = () and : = () (52)

The input vector of the node : = , … , contains arguments for and ,
which can be evaluated in parallel to produce the vector : = , … , according to:

, … , ∶= , … ,, … , : = (, … ,) (53)

Finally, the strict evaluation order synchronizes both data paths via the identity function :

(,) : = , … , ↦ (, … ,) (54)

Here, the usage of ensures that all , … are evaluated to guarantee that both
and are completed before the parallel process finished. Hence, the end of the parallel

composition enforces a barrier for the computations of both sub-graphs. Important to note,
without the strict evaluation order of stream rewriting, this assumption cannot be made. As
a result, the application, initially given as an SP task graph, is translated into the functional
program and can be evaluated via stream rewriting.

3.2.5 Rewriting Rules
The basic model of stream rewriting (Section 2.1.1) consists of nested CALL expressions
and is therefore already sufficient to represent the call tree of the functional program . A
more detailed functional language can be constructed using additional tokens. Also
important in this context, functions cannot only emit literals but also CALL token
themselves to represent pending invocations. This technique is called continuation-passing
style [90] and maps natively to the execution model. For instance, a single leaf task(()) ∶= is mapped trivially to the following sub-stream:

〈… , , , … 〉 (55)

58

Likewise, the sequence of tasks and is translated into with the functional composition
of the corresponding functions can be described by the pattern:

〈… , , , , , … 〉 (56)

Here, the outputs of are supplied as arguments to and the strict evaluation order
ensures that cannot start execution until is finished. For example, let the two tasks

and be defined as () = + 1 and () = 2 . According to the previous
definition, the sequential composition , is given as the new task with:

: = , = 〈1, , 2, 〉 (57)

The invocation of , with argument = 1 leads to the following sequence of streams:

: = 〈1,3, 〉: = 〈1,1, , 2, 〉: = 〈2,2, 〉: = 〈4〉
(58)

Similarly, the parallel execution of tasks and with and arguments, which are
eventually joined at node (Figure 41 on page 53), can be specified by the definition:

, , … , = 〈 , … , , , , , … , , , , 〉 (59)

An example for the parallel composition with : = : =∗ and : = + is shown in Figure 14
on page 22. Here, both multiplications can be computed in parallel and their result is joined
by the addition task.

3.2.6 Dynamic Task Graphs
For applications with varying amount of workload, static task graphs might either over- or
underestimate the actual computational requirements. In addition, recursive algorithms
require to start new tasks dynamically and to parallelize the execution of branches. Also, it
should be possible to select different tasks at runtime similar to a conditional task graph.
Currently, a task is evaluated to a tuple of integers, which are then passed to the next
instance via sequential or parallel nodes. By redefining a task as : ℤ → Σ∗, it can return any
sequence of tokens which may be constants but also entire sub-graphs (Figure 45).

Figure 44. Dynamic task graphs. Figure 45. Dynamic expansion of sub-graphs.

59

Hence, the principles, used for the composition of the initial stream in Section 2, can be also
applied dynamically. Although the graph is dynamic, it is still encoded on the stream and
remains series-parallel at any time. However, the ability to expand tasks via stream
rewriting at runtime leads to the following additional use-cases (Figure 44), which are not
possible with static SP task graphs:

 Conditional Task Graphs
Similar to literal outputs, which are produced by emitting literals, the id of the CALL
token can be calculated dynamically, too. Therefore, it becomes possible to
conditionally select one or multiple successor tasks. In the following example, the task

either invokes or depending on the value of argument :

(): = 〈 , , 〉 if < 0〈 , , 〉 else (60)

 Recursion
In addition, tasks can be also expanded recursively to process hierarchical data
structures. Branches of identical depth are created in the same iteration and can be
rewritten in parallel. For example, the task is either expanded further or replaced by
the leaf task depending on the value of :

(): = 〈 , , 〉 if > 0〈 , , 〉 else(): = 〈 − 1, , 〉(): = 〈〉
(61)

 Finite State Machine
As an extension of the conditional task graph, the dynamic selection of the successor
task can be also used to implement finite state machines (FSM) on the stream. This
technique might be in particular useful to virtualize a large and possible unpredictable
number of FSMs. In general, each state is mapped into a task that invokes the
next state dynamically if the condition is true. The following example shows the
basic scheme for implementing a FSM with states and transitions:

(): = 〈 , , 〉 if… …〈 , , 〉 if… (): = 〈 , , 〉 if… …〈 , , 〉 if
(62)

60

3.2.7 Conclusion
In this section, a formal approach for the translation of static and dynamic task graphs into
the execution model of stream rewriting has been presented, so that the SRM is
appropriate for running a large variety of different applications. In particular, also the
support for dynamic task graphs requires only the basic model of stream rewriting
consisting of CALL and literal tokens. Therefore, the technique, specified in this section, is
compatible to all SRM implementations.
Further, the restriction to series-parallel task graphs represents a tradeoff, which enables
dynamic scheduling without central task management. It actually complies with the basic
principles of stream rewriting, which aims to improve the processing of unpredictable tasks
at runtime. Although this decision excludes several task graphs, which might be trivial to
handle using a traditional scheduler, the dynamic and recursive expansion of nodes at
runtime facilitates scenarios that cannot be described using a static approach. Several
examples are evaluated using three different SRM architectures in Section 4.

3.3 C Source Code
In this section, the generation of rewriting rules from a C-like language is specified. It will be
used to construct a tool-chain for the high-level synthesis of recursive functions, which is
based on a hardware implementation of the stream rewriting machine (Section 6).

3.3.1 Introduction
The mapping of a functional language to the execution model of stream rewriting is
straightforward because each CALL expression already represents the invocation of a
function (Section 3.1). Hence, an imperative language like C can be compiled into rewriting
rules by translating it into a functional form.
The two main differences between the imperative and the functional forms are the notion
of state and control flow. In contrast to C, the functional language does not allow to modify
the value of a local variable. Actually, local declarations are just aliases and not associated
with a mutable state or a storage location. Hence, in compliance to the underlying
execution model, all modifications occur through rewriting parts of the stream. As a result,
the modification of a local variable can be only implemented by passing the new value to
another CALL expression.
Immediately linked to the concept of a mutable state, the idea of control flow provides an
implicit order for the operations of the program. However, due to the absence of side-
effects, the functional model does not need to include an absolute execution order.
Instead, the evaluation of expressions is implicitly controlled by data dependencies. In
addition, the control flow of the program can be also seen as another mutable state
variable. Hence, the translation of the C source code requires to analyze both data and
control flow of the program and to map modifications into rewriting operations.
In particular, each basic block of the program can be modeled as the state of a FSM, while
each state is translated into a separate rewriting rule according to Equation (62). Similarly,
active local variables are passed as parameters. In addition, rewriting rules can be also
further sub-divided into more fine-grained operations to fit into the primitives of the target

61

platform. For example, for hardware synthesis, the compiler automatically derives a set of
primitive operations, which are directly implemented in hardware and adapts the rewriting
functions accordingly (Section 6.3.2).
The individual steps of the compilation process are described in the following sections.
Here, the preorder format of the stream grammar is used in combination with extension for
ordered-writes (Section 2.5.1), which adds the OUT token.

3.3.2 Functions and Recursion
Function calls are the most basic operation in the SRM and can be represented directly
using the CALL expressions. Due to the pattern matching, multiple nested frames persist
on the stream until their arguments are computed, so that all types of recursion are
supported. Similar to branching, function pointers are implemented by choosing the
identifier of the CALL token dynamically.
The example in Figure 46 shows a recursive counter, which outputs the numbers from
to . In order to improve readability, the function identifier ∈ ℤ is replaced by the name
of the function with COUNT=1 and EXIT=2. Hence, the corresponding SRM using the
post-order format is given by:

≔ { , } (63): ℤ → Σ(,) ↦ 〈 , , , , + 1, 〉
with ≔ (CALL,COUNT) <(, EXIT) ≥

(64)

The function EXIT is called at the end of the loop and removes both arguments from the
stream to terminate the thread:

: ℤ → Σ(,) ↦ 〈〉 (65)

These rewriting rules can be described by the following C program, which consists solely of
function calls and arithmetic expressions. In particular, the loop counter is passed as an
argument to the recursive call instead being stored in a local variable, which is shown by
the following source code on the next page:

Figure 46. Recursive loop counting from 0 to 1

CALL 0 1COUNT

CALL 1 1COUNTOUT 0

CALL 2 1EXITOUT 0 OUT 1

OUT 0 OUT 1

62

void exit(int min, int max);

void count(int min, int max)
{

out(min);
void (*next)(int, int) = (min < max) ? count : exit;
next(min+1, max); // modify the counter for the next iteration

}

Hence, the next task is to bring an arbitrary C program into this format by removing control
flow and assignments to local variables. However, it should be noted that the rewriting
system does not define an explicit order of evaluation, so that all calls are asynchronous by
default. The actual order is determined by data dependencies, so that inner calls are
evaluated first. Synchronous calls and barriers are special cases that can be implemented by
introducing artificial dependencies, which has been shown for task graphs in Section 3.2.3.3.3 Branching and Loops
The following C code shows a more high-level description of the counter example from the
previous section and the corresponding control flow graph is illustrated in Figure 47.

void count(int min, int max)
{

int i = min
do
{

out(i);
i = i + 1;

} while (i < max);
}

First, each function is converted into basic blocks by translating branches and loops into
conditional jumps and labels. According to the control flow graph, there are three basic
blocks in this example named to . The function starts in which
directly calls the body of the loop in . Similar to the previous example, the current
value of the loop counter is printed. Likewise, the dependent branch at the end is
implemented by selecting between the two different successor blocks or .

Figure 47. Mapping of flow control into rules.

63

The last block exits the program and therefore does not call any further functions.
A verbose C representation after this intermediate step corresponds to the following code:

void count(int min, int max)
{
block1:

i = min;
goto block2;

block2:
out(i);
i = i + 1;
if (i < max)

goto block2;
goto block3:

block3:
}

As a result, each basic block is terminated by at least one unconditional jump and one or
multiple conditional branches. In order to convert each of these blocks into a rewriting
function, the next step eliminates local variables and parameters. For this purpose, the
code is brought into a single static assignment format (SSA), where each variable is written
exactly once. Therefore, each assignment generates a new variable to track the most recent
value. For example, the assignment i=i+1 of i is stored in the new variable i_1:
void block1(int min, int max) {

block2(min, max);
}

void block2(int i, int max) {
out(i);
int i_1 = i + 1;
void (*next)(int, int) = (i < max) ? block2 : block3;
next(i_1, max);

}

void block3(int i, int max){ }

Active local variables are added to the signature of each block. For instance, reads
and writes the variable , so that it has to be included into the parameter list. As a
consequence, the predecessors of (= { , }) must supply a value for
when branching to . In addition, also the outputs of a block are merged, so that the
argument list of all successor blocks is equivalent and the branch at the end can switch
between two function pointers. Though, arrays of local variables are not supported since
they hinder the data flow analysis and complicate the transformation into the SSA form.
Finally, the C program consists exclusively of declarations and function calls. Thus, the code
can be directly converted into the functional language by replacing arithmetic operations
with build-in macros. In contrast to the initial example, there are three rules but
and are equivalent and could be merged. Also, it should be noted that the
conditional if/else is actually an expression and the return value of .

64

The following functional program represents the result of the compilation process and can
be evaluated on the stream rewriting machine according to Section 3.1:

func block1(min, max) = block2(min, max);

func block2(i, max) = {
out(i);
var i_2 = add_i32(i,1);
if (clt_i32(i, max))

block2(i_2,max)
else

block3(i_2,max);
}

func block3(i, max) = {};

As consequence, a restricted subset of C can be compiled into the abstract model of the
stream rewriting machine and therefore profits from the dynamic parallelism. In order to
execute the program on an actual implementation, the functional language must be
subsequently translated into a platform dependent format. For example, Section 6
describes a high-level synthesis tool for recursive functions, which performs further
optimizations and finally outputs RTL code. Other implementations of the SRM like the
general purpose many-core system (Section 4) or the graphics processors (Section 5) have
not been evaluated using this approach. However, targeting these architectures would
require a similar technique in order to generate microcode for the processor (Section 5.5)
or invoke a software library for stream rewriting (Section 4.2).

65

4 Multi-Core Architectures
When designing the software and hardware architecture of many-core systems with
hundreds of processors on a single chip, a central problem is the scheduling and binding of
work-items to execution units. This section contains a novel synthesis flow for applications
with highly dynamic and unpredictable behavior, which is based on the concept of parallel
stream rewriting. Complex examples, evaluated using an FPGA prototype, show the
effectiveness of stream rewriting architectures. This section is based on [84] and [87].

4.1 Introduction
Multi and many-core systems offer
numerous benefits like reduced energy
consumption and latency, as well as
improved throughput for both high-
performance and low-power
applications. Scalability is achieved by
parallelization instead of high clock
rates and can therefore overcome
technological limitations like thermal heat or power issues [1]. While functional units and
also processor cores can be replicated at the expense of increased area, the utilization of
the additional resources remains a more fundamental problem [12]. Hence, beside the
design of the actual hardware architecture, also the programming raises several challenges.
In particular, the binding and scheduling of tasks to processor cores as well as the efficient
communication and synchronization at the system level are not yet solved in general [7].
Hence, task mapping is often a trade-off between an optimal solution and application
specific heuristics [13]. Conventionally, parallelism is exploited by partitioning an
application into tasks that can run on different processor cores and communicate via
shared memory or message passing. In particular, the binding of tasks to processor cores
can be either calculated as a preprocessing step [51] or dynamically at runtime.
Usually, the set of tasks contains interdependencies, described as directed graph [49],
which must be considered for scheduling and binding the application on the target
architecture [50]. For a static application model [120], specified as a graph of task nodes
and its dependencies, an optimal schedule can be pre-computed at design time [108].
However, in case of embedded systems, which are interacting with dynamic environments,
often an adaptive mapping [37] is required to account for varying workloads.
Figure 48 shows the design flow for many-core systems based on stream rewriting. The
application is first modelled as a task graph and translated into a set of rewriting rules and
an initial stream, which has been discussed in Section 3.2. In this section, the hardware and
software architectures for a stream rewriting machines are designed and evaluated. Since
the system must be able to handle a large and unpredictable number of dynamically
created tasks, the majority of static optimizations, which are based on an extensive
knowledge of the behavior at design time, cannot be applied in this case.

Figure 48. Design flow for many-core architecture

66

Ring

Shared Memory

Figure 49. SRM using ring or shared memory. Figure 50. Stream rewriting network with routers (R).

In order to analyze the consequences of different design decisions, three separate
architecture templates for many-core system are evaluated. The first design is based on the
ring architecture (Figure 49 top), which has been already shown in Section 2.2. The
rewriting cores are implemented as general purpose processors rewriting cores and
connected via queues storing the token stream.
The second design (Figure 49 bottom) is also based on general purpose processors, but in
this case, the token stream is stored in an external shared memory and a small circular
communication channel is used only for synchronization. The advantage of the shared
memory design is simplicity, generality and portability since it does not require custom
hardware components. Especially important for the wide variety of embedded SoCs, it can
be ported to different platforms and performs the stream rewriting entirely in software.
Despite its flexibility, the shared memory design clearly exhibits a potential bottleneck for
the performance of the system. Though, the experiments show scalability for a moderate
number of cores and reasonable course grained tasks.
On the other hand, the third design employs the stream rewriting network (SRN) (Figure 50)
to connect a set of general purpose processor cores. It consists of several routers (R) for
task distribution and reassembly of the resulting sub-streams. Also, the pattern matching is
performed in parallel by specialized hardware components, while the processors are
responsible for executing the detected tasks. Therefore, this architecture combines the
performance advantages of application-specific hardware with the flexibility of software on
off-the-shelf general purpose processors. As a result, the experiments show the scalability
of the SRN for up to 128 cores. Thus, the SRN is more likely usable for many-core
architectures and represents an alternative to the classis processor arrays connected via a
mesh network [11] and dataflow machines [65]. Both architectures use the post-fix format
of the stream grammar (Section 2.1.3) without extensions, so that tasks are described as
the pattern 〈 , , , … , 〉 with , … , ∈ ℤ. Tasks are implemented as the functions
of a C program, whose entry point is given by the identifier , so that the original tool-chain
of the corresponding processor can be utilized.
In the next sections, the shared memory architecture and the SRN are presented in more
detail, while the more simplistic ring is mainly used for comparison (Section 4.4).

67

4.2 Shared Memory Architecture
In this section, an algorithm for parallel stream rewriting using shared memory is described.

4.2.1 Parallel Rewriting
In the shared-memory architecture, the token stream is stored in a global memory and can
be accessed by a set of general purpose processor cores. All cores are running the same
software and there is circular channel for synchronization. Hence, the stream can be
partitioned into blocks and each core rewrites a specific segment (Section 2.2). A uniform
splitting of the stream into blocks of the same size is illustrated in Figure 51. However, in
addition to the problem of false fixed-points, which has been already resolved, a concrete
implementation has to consider the following challenges:

 Stream Modification
The size of the stream naturally grows and shrinks during the rewriting process.
Similarly, also the length of a particular segment is most likely different after a rewriting
step, so that it does not fit into its previous storage location. However, inserting or
deleting a token segment in the middle of a large stream is costly, involves copy
operations and would require an explicit synchronization of all cores.

 Stream Partitioning
The partitioning of the stream into equally sized segments guarantees optimal load-
balancing if the tasks are distributed uniformly. However, for recursive problems, it has
been shown that the innermost and therefore executable tasks are either located at
the end or the beginning of the stream (Section 2.3.3). If the block size is chosen too
large, a certain core might receive all executable tasks, while the rest of the system is
only copying non-matching tokens. On the other hand, a block, which is too small might
contain only a too few rewriting rules to be efficient. Hence, it can be expected that the
optimal block size must be adapted dynamically.

 Memory Coherence
Since all processors access non-overlapping regions of the stream, no direct conflict
occurs. However, two neighboring tokens, which are written by distinct cores, can
belong to the same cache line. When using incoherent caches with a write-back policy,
it is possible that different versions of a cache line from separate cores are overwritten
by each other. Hence, if the platform does not offer memory coherence, data caches
must be configured as write-thought and explicitly invalided after a rewriting step.

Figure 51. Partitioning and parallel rewriting of the stream.

68

Figure 52. Software and hardware architecture Figure 53. Phases and synchronization of the cores.

The software, running on each core, is split into the application layer, which defined the
task and a kernel, which is responsible for the actual stream rewriting (Figure 52). It runs an
infinite loop and implements a parallel stream rewriting algorithm consisting of the five
steps Partition(P), Decode(D), Allocate(A), Execute(E) and Synchronize(S). If a task is
detected as executable, the application is invoked to produce the resulting tokens. The
software image is exactly the same on all cores in order to keep function pointers
interchangeable.
The kernel receives synchronization data from the preceding processors via the
communication channel, performs the required computations and forwards the results. In
particular, the token stream is organized as a large FIFO in external memory and the circular
communication channel is used to exchange its address range as the 4-
tuple∶ (, , ,) ∈ ℤ . Here, start and end define the dimensions of the
FIFO, while read and write specify the corresponding read and write pointers. Actually, the
FIFO tuple is the only shared variable, which is simultaneously access by multiple cores, and
then used to allocate non-overlapping regions on the stream that do not require
protection. Hence, the tuple acts as a shared token, which owned by exactly one of the
cores and passed around for synchronization. The five steps of the algorithm are illustrated
in Figure 53 and can be described more detailed in the follow list:

1. Partition (P)
In the first step, each core receives the current FIFO tuple and reserves a certain
amount of input tokens. For this purpose, the size of the stream is evaluated and the
optimal block size is determined using a heuristic. If no executable task has been
found, is increased in the next iteration until one core tries to rewrite the entire
stream to handle the special case of incorrect fixed-points. The read pointer is moved
forward and wrapped around if necessary, and finally, the modified FIFO is passed to
the successor. This phase is performed sequentially, since each core has to wait for the
FIFO tuple but due to its simplicity, it takes only a few cycles.

69

2. Decode (D)
After a core has allocated its input range, it can immediately start analyzing the
corresponding token stream. It calculates the number of output tokens, which will be
produced during the rewriting process, so that the output region can be allocated
accordingly. Therefore, the stream is decoded using pattern matching and each task is
executed in a special mode in order to retrieve the number of outputs. In contrast to
the partitioning step, the decoding phase can be performed in parallel on all cores and
is only limited by memory throughput.

3. Allocate (A)
At this point, the sub-stream of each core, the executable tasks and the number of
tokens, which will be eventually produced during the rewriting process, have been
determined. As shown in Figure 51, the resulting fragments must be compacted in
memory to build the stream of the next iteration. Hence, the start address of the
outputs generated by a particular core depends on the number of tokens written by the
preceding processors.
Similar to the partitioning of the input stream, also the allocation of the output parts in
the FIFO must be performed in order. Thus, in the allocate phase, each core receives
the current FIFO, moves the write pointer and passes the tuple to the next processor.
As a consequence, the allocation phases of different cores cannot overlap and must be
serialized. However, similar to the partitioning step, the computations are inexpensive
in comparison to the stream rewriting.

4. Execute (E)
In the execute phase, the tasks marked in the decode phase are invoked and the
resulting tokens are written into the previously allocated regions of the global token
stream. The rewriting can be performed in parallel but takes most likely the largest
amount of time per iteration.

5. Synchronize (S)
Finally, the cores are synchronized in the last step to ensure that all cores have written
their results before the algorithm starts again with the partitioning and decoding
phases. Without the explicit synchronization, a read-after-write conflict is possible
between the execute and decode phases of subsequent iterations.

The chronological order of these five phases and the synchronization points between
adjacent cores are illustrated in Figure 53. The duration of the partition phase is notated as

and similarly, the other time spans are named accordingly as , , and . Based on
their timing, two types of phases can be distinguished. First, there are the partition (P),
allocate (A) and synchronization (S) phases, which are executed sequentially but always
have a fixed-length: + + = (66)

70

On the other hand, the duration of the decode (D) phase depends on the block size and can
be approximated by ∈ (). Similarly, if there exists a maximum delay of for each task,
the upper bound for the length of the execution phase (E) is given by ∈ (). Hence, in
order to achieve scalability, the granularity of tasks and the block size must comply with:

+ + ≪ + (67)

Further, let ∈ be the ratio between both types of phases, so that the following
equation hold true:

+ + ⋅ = + . (68)

In particular, is determined by the granularity of the threads. Coarse grained threads,
which perform more work per invocation, lead to a longer execution phase and in general,
larger values of increase the scalability of the system. The relation between the thread
granularity and the number of cores is computed more formally in the following section.
For this purpose, the total execution time (,) of an iteration using cores is
approximated as the sum of the parallelizable and non-parallelizable phases:(,): = + + ⋅ + +

= + + ⋅ + + + ⋅
= + + ⋅ +

(63)

Hence, for a given value of , the speedup of cores can be computed as:(): = (1,)(,) = 1 ++ (69)

By differencing () and solving the equation () = 0, a local maximum can be found at: = √ . As a result, for an application with granularity , the best speedup is achieved
using : = √ cores. For a larger system, the overhead of the non-parallelizable phases P, A
and S becomes significant and for a smaller number of cores, there is still unused
concurrency. The speedup for up to 16 cores and ∈ {4,9,16,64} is plotted in Figure 54.
For = 64, the maximum acceleration of ≈ 4 is reached with 8 cores.

Figure 54. Speedup for different cores. Figure 55. Speedup for thread granularity.

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

0 2 4 6 8 10 12 14 16

Sp
ee

du
p

Number of Cores

x=4

x=9

x=16

x=64

0

1

2

3

4

5

6

7

0 25 50 75 100 125 150 175 200

Sp
ee

du
p

Granularity x

n=1

n=2

n=4

n=8

71

On the other hand, the speedup can be evaluated with respect to in order to find the
optimal thread granularity for a given system with cores. As shown in Figure 55 for∈ {1,2,4,8} cores, larger values of provide better scalability. The curves are
asymptotically approaching the maximum theoretically speedup given by the limiting
value lim → () = , which is never reached for a concrete implementation. However, it
is possible to determine the thread granularity, which is necessary to achieve a reasonable
fraction of the maximum speedup. For this purpose, the equation of is solved for :

() ≥ ⋅ ⇔ 1 ++ ≥ ⋅ ⇔ ≥ − 11 − (70)

For instance, in order to reach an efficiency of = 90% using 4 cores, the granularity must

be larger than ≥ . ⋅ . = 134. Similarly, for = 50% and a system with 8 cores, the

granularity must be ≥ . ⋅ . = 62.

Figure 56. Resource distribution of the test system with eight cores.

4.2.2 Hardware Platform
The proposed architecture has been synthesized as a SoC for the ML605 evaluation board
from Xilinx, which contains a Virtex 6 VLX240T FPGA and 512MB of external DDR3 memory.
The rewriting cores are implemented as MicroBlaze processors, which are configured with
16KB cache and floating-point units run at 100MHz. All processors can access the token
stream in the external memory via an AXI interconnect clocked at 200MHz. The timing has
been met for up to eight cores and the resource consumptions of six-input lookup tables
(LUT), flip-flops (FF), block rams (BRAM) and DSP blocks (DSP48) are listed in Table 2.
Each core adds roughly 6,000 LUTs to the system but when synthesized individually, a single
MicroBlaze requires ≈ 3,500 LUTs. Actually, the remaining 2,500 LUTs are spent on the
connection between the processor and the external memory. In particular, the distribution
of lookup tables and slice registers for a system with eight cores is illustrated in Figure 56.
While the memory controller (DDR3) consumes 12% of the lookup tables and 14% of the
occupied slice registers, the eight MicroBlaze cores make up half of the system. However,
the other half must be dedicated to the AXI interconnect (green), which is responsible for
routing memory request between processor cores and DDR3 controller. Hence, the global
memory access of each core is relatively expensive although it offers the convenience to
implement stream rewriting in software.

49%

12%

36%

3%
Lookup Tables

8 MicroBlaze DDR3 Interconnect Rest

30%

14%
54%

2%
Slice Registers

8 MicroBlaze DDR3 Interconnect Rest

72

Hence, stream rewriting based on shared memory is most useful for existing platforms that
already contain a reasonable fast memory interconnect. However, if the synthesis of
custom hardware modules is possible, the stream rewriting network (SRN), which will be
presented in Section 4.3, allows for a much larger number of cores.

Table 2. Resource usage of the shared memory test system.

Component LUT FF BRAM 18K/36K DSP48E
System Cores

1 14,874 19,446 1 29 5
2 20,309 24,795 2 41 10
4 31,494 35,463 4 65 20
6 41,695 46,117 6 89 30
8 52,737 56,772 8 113 40

MicroBlaze ≈ 3,557 ≈ 2,814 0 4 5
DDR3 Controller ≈ 7,629 ≈ 8,401 0 0 0

4.2.3 Recursive Tests
Stream rewriting allows for dynamic scheduling of recursive functions. Therefore, the
performance of the system is evaluated using the following three representative recursive
functions to simulate the workload of a typical branch-and-bound algorithm:

1.) (,) = , + , if >else (71)

2.) () = (− 2) + (− 1) if ≥ 2else (72)

3.) (,) = + 1 = 0 ∧ = 0(− 1,1) = 0 ∧ > 0(− 1, (, − 1)) > 0 ∧ > 0 (73)

The runtime of each function and the size of the token stream per iteration are shown in
Figure 57 on the next page. Since the actual computations of these functions mostly consist
of a few integer operations, a delay of 1,000 cycles was inserted to emulate a coarse
grained task. Both the recursive sum and the Fibonacci test show a reasonable scalability of
3.0 on a system with four cores. However, the step from four to eight cores yields only a
minor speedup to 4.0-4.5. Contrary, the Ackermann function does not scale at all since
mostly one thread at the end of the stream can be replaced per iteration and the rest is just
copied. Further explanations can be found when looking at the size of the stream. Actually,

and expand exponentially with a peak after ≈15 iterations but (3,4) is
oscillating and takes more than 10.000 iterations to converge from which the only first 200
steps are shown.

73

Figure 57. Performance of recursive test cases.

4.2.4 Application Tests
In addition to the generic examples, the three more complex tests Mandelbrot, Bezier3D
and Raytracing, which represents different types of concurrency, have been also evaluated.
The Mandelbrot test represents a typical branch-and-bound algorithm that subdivides the
screen (640x480) recursively into small rectangles, whose contents is then computed in
parallel. In general, Mandelbrot is a classic data parallel problem since each pixel can be
evaluated independently. However, in order to improve load-balancing, the recursive
expansion method (Section 2.3.4) is utilized and iteratively enlarges the stream in parallel.
Bezier3D implements a complex rendering pipeline for the rasterization of bezier surfaces
and contains both data and pipeline parallelism. First, the surface is subdivided into quads
and then into triangles, which are lit and projected on the screen. Each 2D triangle is drawn
by recursively determining the set of pixels that are located inside. As an optimization,
blocks outside of the triangle are hierarchically skipped.
Similarly, the Raytracing test draws a simple geometric scene consisting of a reflecting
sphere lying on top of an infinite checkerboard. The color of each pixel is determined by
several sub-tasks, which are shooting rays into the scene and calculate the nearest
intersection point. Especially the screen area of the sphere is expensive to compute since
the reflection requires additional rays. In contrast to a fixed assignment between pixels and
cores, the reflecting rays are handled by dynamically created tasks, which are distributed
across all cores.

0

10

20

30

40

0 10 20 30

rsum(0,10000)

tokens

iterations
0

10

20

30

0 10 20 30

fib(20)

tokens

iterations
0

20

40

60

0 100 200

ack(3,4)

tokens

iterations

0 200 400 600

8

4

2

1

rsum(10000)

ms

1.0

1.8

3.0

4.0

0 200 400 600

8

4

2

1

fib(20)

ms

1.0

1.7

3.0

4.5

0 500 1000

8

4

2

1

ack(3,4)

ms

1.0

1.0

1.0

1.0

74

The computation time of each test case and the corresponding screenshots are shown in
Figure 58. All examples indicate a scalability of the system although the speedup is
stagnating at eight cores. Though, it has to be considered that all examples are scheduled
dynamically and especially the Raytracing test utilizes more than one million threads. As a
result, the generic software-based stream rewriting technique represents a viable solution
for highly dynamic scheduling and binding in many-core systems.

4.3 Stream Rewriting Network
In contrast to the shared memory approach, the Stream Rewriting Network (SRN) offers
potentially a larger throughput since it decodes and distributes a wide stream in parallel.

4.3.1 Overview
The architecture of the SRN (Figure 50) is refined by the schematic in Figure 59. In this
example, it consists of = 2 groups of = 4 processors, which is called a 2 × 4
configuration. However, in general, the design can be parameterized from 1 × 1 to 8 ×16 cores and experimental results as well as resource usages are presented in Section 4.3.6.

Figure 59. SRN for parallel stream rewriting (2x4). Figure 60. Parallel decoding of the token stream.

Figure 58. Performance and screenshots of test applications.

0 200 400 600

8

4

2

1

Mandelbrot

ms

0 200 400 600

8

4

2

1

Bezier3D

ms

0 200 400 600

8

4

2

1

Raytracing

ms

75

Especially for the larger configurations, the distribution of the token stream to the cores
might cause a potential bottleneck, since the stream is a global resource. Hence, the
interconnection network should provide a sufficient large bandwidth, so that the cores
never run empty and are always fully utilized. Through, depending on the granularity of the
tasks, the actual throughput of each core is most likely less than one token per cycle, so
that resources of the SRN can be safely shared between processors. As a result, the cores
are organized in a two-level hierarchy of parallel and scalar data paths, which provides a
trade-off between area and performance.
At the top level, the global stream can transmit tokens per cycle, where is the number
of processor groups (limited by memory throughput). In each cycle, these tokens are
processed by the parallel decoder and distributed to the processor groups. It used a fast
heuristic to ensure that that the tokens of a expression are sent to the same
processor group. Hence, the partitioning can vary between the case, when all tokens are
assigned to the same processor group and the other extreme, when each token is assigned
to a different group. On average, it can be expected that each group receives one token per
cycle, so that the further processing and exact pattern matching at the scalar decoder is
based on streams, which transmit at most a single token per cycle.
The throughput of each core is less than one token per cycle for moderate complex tasks.
Thus, the stream is distributed by the scalar splitter to processors for rewriting with an
average rate of tokens per cycle. It is reassembled by the scalar combiner, widened again
and merged by the parallel combiner. Finally, the resulting stream is stored as a FIFO in
global memory and the memory write module is responsible for handling write operations.
Since all parameters and results are exchanged using the token stream, the performance of
the system is limited by its throughput. However, the memory is accessed in bursts of
tokens that can be split on multiply banks to ensure the required band-width. Hence, in
case of a × system, a task : ℤ → ℤ should take at least (,) cycles.

4.3.2 Stream Decoding
The does not need to detect every pattern but instead it is responsible
for dividing a parallel stream at nearly optimal positions, so that the tokens of matching
calls are all sent to the same group for final decoding by the scalar decoder. The individual
steps of this algorithm are illustrated in Figure 60 on page 65 and work on tokens in
parallel. Assume that the stream is as : = 〈 , … , | |〉 with tokens . First, possible break
points at the transition between literal and tokens are marked with a stop bit:

(): = 1 if (≠) ∧ (=)0 else (74)

The prefix sum (Figure 60) of the stop bits yields is used to attach a thread id to each token:

ℎ (): = () (75)

76

Threads are bound to consecutive groups, so that the sub-stream for a group is
constructed by removing unwanted tokens:(): = 〈 : ℎ () = 〉 (76)

In particular, the calculation of the bits and the prefix sum is also pipelined, allowing
the decoder to process tokens per cycle. The scalar decoder accepts ≈ 1 token per cycle
from the narrow stream and looks for matching patterns according to the
specification. Each processor reads its sub-stream and in case of an executable
expression, it immediately jumps to the function and rewrites the stream.

4.3.3 Ordered Writes
In addition to scheduling, the SRN also handles memory writes and is based on the concept
described in Section 2.4. While it is possible to handle memory writes directly in the task
function, this behavior can lead to race conditions because the SRN does not provide any
guarantee at which time and on which resource a task is executed. For instance, the
rasterization test in Section 4.3.6 allows multiple overlapping triangles to be computed in
parallel as long as the pixel writes are committed in order. As a solution, the final literal
values on the stream are interpreted as (,) tuples, which should be written into
memory. In particular, from a stream : = 〈 , … , , … , 〉 with , … , ∈ ℤ, the 2
literal values at the beginning can be safely extracted, because these tokens will be never
modified again, and perform the write operations (,) with = 1. . . In addition,
the tuples are also run-length encoded to save stream and memory band-width.

4.3.4 Software Development
In contrast to the fixed pattern matching, the functionality of the tasks is more flexible due
to the software implementation. The SRN is compatible to any processor, which has an
input and output streaming interface and supports the three opcodes listed in Table 3. In
particular, the processor has to provide an opcode get for reading a token and an opcode
put for writing a literal. Further, there is an opcode call required that takes a function and
its number of argument to emit a CALL token. The scalar decoder (Figure 50) already marks
matching calls with a special flag, so that the processor only has to invoke the associated
task of a expression. Here, the identifier , which is located immediately after the

token, is interpreted as the starting address of the function.
Since the three opcodes get, put and call, represent a minimal interface between the
application and the underlying stream rewriting architecture, their functionality might be
also implemented as a runtime library in case of a pure software implementation.

Table 3. Minimal set of opcodes for stream rewriting

OpCode Description
get(x) Read literal token from stream.
put(x) Append literal token to the stream.
call(func, arg_count) Emit CALL token of function func with argc arguments.

77

The following complete example shows a C program of the recursive Fibonacci function:
void fib()
{

int x;
get(x); // read argument x

if (x <= 1)
{

put(x); // return result
}
else
{

call(add, 2); // calculate sum of
call(fib, 1); put(x-1); // fib(x-1)
call(fib, 1); put(x-2); // fib(x-2)

}
}

void add()
{

int x, y;
get(x); // read argument x
get(y); // read argument y
put(x+y); // return result x+y

}

In order to improve the readability of the source code, a set of utility functions has been
built on top of these basic instructions. For instance the macros param_* declare and read
arguments, the put* functions write typed values to the stream, and call* performs type-
safe invocations. Thus, the example can be written more verbosely as:

void fib() {
param_1i(x);

if (x <= 1)
{

put1i(x); // return result
}
else
{

call(add, 2); // calculate sum of
call1i(fib, x-1); // fib(x-1)
call1i(fib, x-2); // fib(x-2)

}
}
void add() {

param_1i(x);
param_1i(y);
put1i(x+y);

}

As a further improvement, the high-level compiler (Section 3.3) for hardware synthesis of
recursive functions (Section 6) inserts these stream instructions automatically.

78

Config Cores LUT FF BRAM18K/36K DSP48
1x1 1 19.910 29.768 6 26 3
1x2 2 21.060 30.856 6 30 6
1x4 4 23.023 33.032 6 38 12
1x8 8 27.129 37.380 6 54 24
1x16 16 34.157 46.080 6 86 48
2x16 32 52.519 66.336 3 154 96
4x16 64 88.580 111.270 5 286 192
8x16 128 174.601 225.197 9 550 384

Table 4. Resource usage of the SRN test system.

4.3.5 Implementation
First, the scalability of the design is tested, which is followed by a direct comparison to the
shared memory architecture presented Section 4.
A prototype of SRN architecture has been implemented using the VC707 evaluation board
from Xilinx. The design contains also a memory controller (MIG), a VGA controller and a
PCIe interface, so that it can be used as an add-on card in a PC. The processor is a custom
implementation of the MicroBlaze from Xilinx, which is slower but smaller and can run at
the same frequency of the SRN (200MHz). It has been specially designed for minimal size to
test the concept of stream rewriting in a many-core environment. As a result, the processor
does not support floating-point operations in hardware but there is a 32-bit multiplier and a
barrel shifter, so that floating-point operations can be emulated. Due to the lack of
pipelining, each instruction takes at least three cycles to complete.
In order to evaluate the scalability of the architecture, different configurations of the SRN
with up to 128 cores have been synthesized. The resource usage measured of look-up
tables (LUT), flip-flops (FF), block ram modules (BRAM) with 36/18kbits and multipliers
(DSP48) is illustrated in Table 4. There is an almost linear increase of ≈ 1207 LUTs per core
and a fixed overhead of ≈ 16640 LUTs. Since the FPGA contains ≈ 300.000 LUTS in total,
even the largest 8x16 configuration can fit the onto the device without timing issues.
Performance and scalability of the system are tested using both generic and complex test
cases. The generic test cases consist of the recursive sum (), the Fibonacci () and
Ackermann () functions. In contrast to the balanced call tree of the recursive sum
(Figure 61 a), the task graph of is asymmetric (Figure 61 b). To simulate a reasonable
work load, each non-leaf task sleeps for approximately 8192 cycles and each leaf task for
4096 cycles. The worst-case for stream rewriting is given by the Ackermann function (sleeps
4096 cycles), which executes only the single task at the end of the stream per iteration.

Figure 61. Call trees of the recursive sum and Fibonacci function.

79

The test is completed by the three application tests mandelbrot, bezier3d and raytracing
introduced in Section 4.2.4. Especially the bezier3d test can take advantage of the ordered
writes because it draws long spans of the same color.

4.3.6 Results
For each configuration, the execution times of every test case have been measured in
cycles and can be found in the paper [87]. However, in order to estimate the scalability of
the SRN, the relative speedup is more important than the absolute but platform-specific
timings. Therefore, the duration of a computation in relation to the 1x1 configuration is
shown in Figure 62 on the next page.
It can be seen that the speedup of (0,100) begins to stagnate with speedup of 15 for
2x16 cores due to insufficient work load. As a result, this test is bound by the latency of the
external stream memory. However, when rewriting the larger stream of the (0,10)
and (0,10) functions, the performance scales almost linearly with the number of
cores. For examples, the 8x16 configuration receives a speedup of 126 for (10) and
the Fibonacci function runs 117 times faster. As expected, the Ackermann does not scale
well since by construction, only one task can execute per iteration. Though, it still profits
from the parallel decoding and the increased band-width in the 2 16, 4 16 and 8 16
configurations. In addition to the generic examples, the Mandelbrot and Bezier3d tests can
be parallelized and achieve large speedups, while the scalability of the Raytracing test is
mediocre. Hence, the SRN is well-suited for handling large task graphs if there is an
adequate amount of concurrency. Also important, the same software has been used for all
configurations of a particular test case.

4.4 Comparison
The SRN is directly compared to the ring and shared memory techniques using software-
based stream rewriting. For this purpose, all three architectures for stream rewriting have
been implemented on the ML605 board from Xilinx and utilize the MicroBlaze software
with floating-point unit and 32Kb of local memory. Since both the ring and shared memory
architectures perform the stream rewriting in software, they can run on the same generic
hardware platform shown in Figure 52.
The central difference of the ring design is the usage of the circular communication channel
instead of the external memory for passing tokens. However, in the SRN architecture, the
stream management is moved into hardware and the ordered writes are placed on the
stream as tokens, so that the memory interface of the processors can be omitted. The
resource consumptions of these two hardware architectures are listed in

Table 5. Although the SRN is slightly smaller for the 4x2 configuration, there is a larger
hardware overhead for up to four cores, so that the size of both designs is roughly
comparable.

80

Figure 62. Relative speedup and scalability of the SRN using various test cases.

Table 5. Resource consumption of the stream rewriting architectures on ML605

Configuration Cores LUT FF BRAM18K/36K DSP48
Ring, Shared Memory
Software stream rewriting

1 14,874 19,446 1 29 5
2 20,309 24,795 2 41 10
4 31,494 35,463 4 65 20
8 52,737 56,772 8 113 40

Stream Rewriting Network
Hardware stream rewriting

1x1 16,185 21,266 3 25 5
2x1 20,823 26,148 3 36 10
4x1 31,188 39,597 5 63 20
4x2 42,732 48,114 21 95 40

0
5

10
15
20

1x
1

1x
2

1x
4

1x
8

1x
16

2x
16

4x
16

8x
16

rsum(100)

0

50

100

1x
1

1x
2

1x
4

1x
8

1x
16

2x
16

4x
16

8x
16

rsum(1000)

0
32
64
96

128

1x
1

1x
2

1x
4

1x
8

1x
16

2x
16

4x
16

8x
16

rsum(10000)

0
32
64
96

128

1x
1

1x
2

1x
4

1x
8

1x
16

2x
16

4x
16

8x
16

rsum(100000)

0
32
64
96

128

1x
1

1x
2

1x
4

1x
8

1x
16

2x
16

4x
16

8x
16

fib(20)

0

1

2

1x
1

1x
2

1x
4

1x
8

1x
16

2x
16

4x
16

8x
16

ack(3,5)

0
32
64
96

128

1x
1

1x
2

1x
4

1x
8

1x
16

2x
16

4x
16

8x
16

Mandelbrot

0
32
64
96

128

1x
1

1x
2

1x
4

1x
8

1x
16

2x
16

4x
16

8x
16

Bezier3D

0
32
64
96

128

1x
1

1x
2

1x
4

1x
8

1x
16

2x
16

4x
16

8x
16

Raytracing

81

Figure 63. Performance comparison of different stream rewriting architectures.

The performance results of all three platforms and six test cases are illustrated in Figure 63.
Given exactly the same compute capabilities, it can be seen that the SRN (blue) provides a
performance advantage over the shared memory and ring architectures in nearly all tests.
While the difference is mediocre for the compute-intensive tests like rsum(105), fib(20),
Mandelbrot and Raster2D, the speedup of the SRN becomes significant for the bandwidth
limited ack(3,4) and Raytracing. In case of the Ackermann function, one only task is
executed per iteration, so that the stream is mostly copied within the system. Likewise, the
raytracing test employs several nested tasks per pixel and therefore also benefits from the
hardware-based stream distribution.
The ring pipeline is usually slower than the two other topologies for compute-intensive test
cases. In particular, consecutive iterations are mapped onto subsequent cores, so that all
the expensive leaf tasks of the Mandelbrot are assigned to a single core. Consequently, in
the eight core configuration, seven processors are waiting for input data, while the last one
is busy and responsible for all expensive computations. However, since the stream is only
stored in memory between the last and the first core of the chain, less bandwidth is
consumed and the ring architecture outperforms the shared memory design in the
Ackermann test case. Also, the rendering of the Bezier3D scene using the ring with eight
cores is even slightly faster than the SRN and the best timing for this particular test case. As
a result, the scalability of the ring architecture depends heavily on the application and is
mostly unpredictable.
The performance of the shared memory is often located between the SRN and the ring
architecture. However, the relatively minor improvement from 4 to 8 cores shows that this
specific implementation is also limited by memory bandwidth. In particular, for both the
shared memory and the ring, there are worst cases, which are not relevant for the SRN.

0 500 1000

8
4
2
1

rsum(100000)

ms
0 500 1000

8
4
2
1

fib(20)

ms
0 1000 2000

8
4
2
1

ack(3,4)

ms

0 2000 4000

8
4
2
1

Mandelbrot

ms
0 10000 20000

8
4
2
1

Raster2D

ms
0 50000 100000

8
4
2
1

Raytracing

ms

82

4.5 Conclusion
This section demonstrates two important aspects of stream rewriting:

1) It has been shown that stream rewriting can be implemented on generic multi-core
systems without special hardware components. Especially the shared memory
technique is highly portable and might be integrated into several existing embedded
SoCs. Although the relatively slow MicroBlaze processor is mostly limited by memory
throughput, the tests show scalability in many cases.

2) The performance of stream rewriting has been evaluated for many-core systems with up
to 128 processors. A special on-chip network, the stream rewriting network (SRN), has
been used both pattern matching and task distribution. The results (Figure 62) show
linear scalability for some generic test cases, while the more complex applications like
Bezier3D and Raytracing still achieve a speedup of more than 64 for 128 cores. A direct
comparison of all three techniques indicates a performance advantage of the SRN over
the shared memory and ring architectures. Since the SRN requires modifications at the
system level, the shared memory technique offers an advantage in case of existing
designs, for which such a fundamental change might not be feasible.

83

5 Graphics Processing
Despite the computational power and memory bandwidth of modern graphics processing
units (GPU), a main limitation of these architectures is often the lack of efficient on-chip
communication between different shader cores. Although individual stages of the Direct3D
and OpenGL rendering pipeline are programmable, its topology and data flow remain fixed.
In this section, novel hardware architectures for software-based rendering are presented,
which provide an efficient communication infrastructure for the creation of highly
optimized and application-specific rendering pipelines. For this purpose, the state of the
pipeline is encoded as a stream of data and control tokens, while the functionality of the
shader stages is represented as rewriting operations. As a result, this architecture supports
an arbitrary amount of dynamic and recursive shader stages as well as complex data flow
and light-weight synchronization within the rendering pipeline. This section is based on
paper [86] and further unpublished work.

5.1 Introduction
Since the introduction of shaders in Direct3D [17] with version 8.0 and in OpenGL [121] via
the ARB_vertex_program and ARB_fragment_program extensions, there is a shift from the
traditional fixed-function pipeline of the original OpenGL towards a more programmable
and software-centric approach [122]. Subsequently, further pipeline stages have been
added, so that there are currently up to six different shader types for pixels, vertices,
tessellation, per-triangle, and general purpose computations [18].
In recent years, GPUs have evolved from specialized coprocessors for rendering to general
purpose computation platforms supporting a wide range of applications [123]. Compute
APIs like CUDA [19] [124] and OpenCL [125] offer even a more fine-grained control of the
underlying graphics hardware by directly exposing the grid of processing cores. However,
their architecture is mainly focused on data parallelism and forces a large number of cores
to execute the same kernel. Hence, in order to take advantage of the parallelism achieved
by hundreds of identical processing cores [4], problems must be translated into a set of
data parallel kernels [126] [127]. In addition, there is little support for the creation of
custom pipeline stages, so that queues and even the scheduling must be implemented in
software. While this development might eventually lead to a revival of software rendering,
current graphics processors consist of fixed, configurable and programmable components,
whose complexity is rather exposed than hidden by the main graphics APIs.
On the other hand, even modern GPUs typically do not allow redefining the structure of the
graphics pipeline and neither permit the addition of custom shader stages. As a
consequence, there is a discrepancy between the computational power of individual shader
stages and the flexibility of the graphics pipeline in general. For example, separate shaders
for surfaces and lights, linked dynamically on demand, could enforce a more modular
material design similar to Pixar's RenderMan [128].

84

Also, hardware support for recursion is
still weak or non-existent, although
recursive data structures and algorithms
are common for graphics processing. In
this context, recursive shaders could
enable custom tessellation patterns,
procedural geometry, ray-tracing, and
the traversal of the scene graph to be
implemented entirely on the GPU.
Hence, both the limitations of recent
graphics hardware and also the fixed
programming model hinder the development of more advanced rendering techniques.
However, it is possible to implement custom rendering pipelines by manually scheduling
shader instances in software and storing work queues in external memory [129]. In fact,
this approach effectively emulates a different type of graphics hardware on top of general
purpose computing APIs like CUDA or OpenCL.
This section presents a much more general solution for dynamic rendering pipelines and
evaluates the usage of stream rewriting for graphics processing using three different
architectures, which are both based on a modified version of the stream rewriting network
(Section 4.3). The first architecture is based on functional programming. The second design
utilizes SIMT shader cores and tile-based rendering, while the third prototype employs
general purpose processors. The concept of stream rewriting for graphics processing is
illustrated in Figure 64 and consists of two views. The rendering pipeline on the top is
modelled as a graph of programmable shader nodes, which are invoked by a draw call and
eventually produce pixels that are written into the framebuffer. At the hardware level, the
state of the pipeline is represented as a token stream and the functionality of the shader
stages corresponds to rewriting operations. Initially, the draw call is placed on the stream
as a sequence of tokens that refer to an input node of the graph. When the stream
becomes empty, the execution of the draw call is completed and at this point all primitives
are written into the framebuffer. Beside the general benefits for many-core architectures,
stream rewriting offers the following benefits graphics processing:

 Data and Pipeline Parallelism
The majority compute APIs are focused on data parallelism and only CUDA supports a
very limited type of dynamically nested tasks on recent GPUs. However, graphics
processing requires data parallelism to within the same stages and pipeline parallelism
between subsequent stages. In addition, even the most recent programmable graphics
pipeline does not support programmable communication between shader units beside
data exchange via the global memory. Here, stream rewriting provides a unified model
of computation, which can describe both types of concurrency.

Figure 64. Graphics pipeline based on stream rewriting.

Graphics Pipeline

Token Stream

Draw Call

Rewrite

Framebuffer

85

 Virtual Rendering Pipeline
All graphics processors based on stream rewriting support an arbitrary amount of
custom pipeline stages defined by the software with full programmability. Therefore, a
more flexible application-specific graphics pipeline can be build to better fit the
application-specific requirements of a particular rendering algorithm. There is only one
generalized type of shader stage, which can be instantiated and connected using
queues, feed-back loop as well as fork and join nodes to create complex topologies.

 Recursive Shaders
Recursion is commonly used in geometric algorithms but current graphics hardware
provides little support for this powerful technique. However, the proposed model
directly supports recursion in a general way and also parallelizes the evaluation of
concurrent branches via load-balancing on multiple processors.

Before the computational model of stream rewriting for graphics processing is presented,
the next sections first contain a discussion of related work.

5.2 Related Work
This section describes several different architectures related to graphics processing.

5.2.1 Direct3D and OpenGL
The functionality of current GPUs is exposed at
the application level through various
programming interfaces (API) which can be
distinguished into graphics and compute APIs. In
graphics mode, the individual steps of the
rendering process are represented as stages of a
pipeline (Figure 65). An application can use APIs
like Direct3D [130] or OpenGL [121] to configure
the pipeline and to supply input data. The
rectangular stages correspond to fixed blocks of
hardware and can be modified by a set of
parameters only. In contrast, the rounded blocks
can be programmed by custom functions, which
are called shaders. For instance, the user can load
a function that calculates the lighting of vertices
or pixels into the corresponding stage. However,
the data-flow between these blocks is based on a
fixed set of registers, so that the structure of the
rendering-pipeline cannot be changed.
As a result, new shader types for specialized tasks
have been introduced continuously. While
Direct3D 8.0 knew only pixel and vertex shaders,

Figure 65: The Direct3D 11 graphics pipeline
[http://msdn.microsoft.com]

86

the current version 11.1 supports up to six different shader types. In addition, the amount
of input and output data per stage is fixed. The only programmable stage that can amplify
data is the geometry shader, but it can output a maximum of 1024 values per invocation.
Since computing power is growing faster than memory bandwidth, it can be advantageous
to create geometry procedurally in the rendering pipeline. Therefore, the tesselator unit,
which can generate a large amount of dynamic vertices, has been added recently in
Direct3D 11. But it is also a fixed function that works on a unit rectangle and only the stages
before and after the tesselator are programmable to compensate for this limitation.
Feedback loops are not directly supported but the intermediate results of computation can
be streamed out into memory resources and later read back. If the requirements of the
application match this scheme, the graphics APIs offer a convenient high-performance
interface for rendering.
However, for more sophisticated problems, compute APIs like OpenCL [125] or CUDA [124]
must be employed. They offer more flexibility by directly exposing the grid of processing
cores and are thus most useful for data-parallel problems. As a result, the creation of
custom pipeline structures on the GPU is still an open problem, because there is little
hardware support for pipeline parallelism. For example, queues can be implemented in
shared memory and threads are synchronized using atomic functions. While this approach
has be particular successful for implementing custom rendering techniques [131], it
effectively simulates a completely different type of hardware on top the data-parallel
processor grid. This thesis proposes stream rewriting as a tradeoff between these two
modes to enable efficient thread management and scheduling in hardware, while the
execution of shaders is handled in software for maximum flexibility.

5.2.2 Hardware Architectures
In addition to the GPU architectures from NVIDIA [96] or AMD [132], there exist also
several alternative designs, which improve certain aspects of the rendering pipeline:
The Larrabee processor [133] has been already mentioned in Section 1 as a many-core
system but actually it has been designed as a more flexible GPU based on up to 48 x86-
compatible cores. Thus, the instruction set contains additional opcodes for vector
arithmetic for floating-point calculations. Instead of dynamic scheduling, the execution
units are utilized by multiple hardware threads. In addition, the Larrabee supports cache
coherence, virtual memory and arbitrary data exchange between the cores to facilitate
high-level software development of rendering architectures.
The two relevant rendering techniques are rasterization and ray-tracing. The ray processing
unit RPU [134] [135] has been developed especially for raytracing and handles irregular
control flow and recursion. Shader programs can contain a special trace instruction, which
performs a scene traversal in hardware and computes the nearest intersection point of a
ray. Similarly, the mobile SGRT ray-tracing architecture [136] contains a dedicated tree
traversal unit with four pipelines, which handles recursion by storing pending threads in a
FIFO that is connected to the input buffer. The concept of stream rewriting is based on a
similar mechanism but instead of rays, there is native support for recursive and indirect
functions in general.

http://msdn.microsoft.com

87

The programmable culling unit (PCU) [137] represents a step towards a programmable but
hardware accelerated rasterizer. Unlike the pixel shader, which works on individual pixels,
the PCU can speed up rendering by excluding larger blocks of pixel from the rasterization
process. In comparison, the fully reconfigurable stream rewriting pipeline could also
support a programmable culling stage as part of the rasterizer.
Also related to the token stream, the F-Buffer [138] stores the intermediate state of pixel
shaders in external memory. However, since the token stream contains control information
to encode state and topology of the entire rendering pipeline, it can be seen as a
generalized form of the F-Buffer.
Order independent transparency requires the fragments for each pixel to be sorted and
merged from back to front. There are several software solutions like depth peeling [139],
the K+-buffer [140] or linked lists [141]. Alternatively, the R-Buffer [93] keeps all active
fragments of the current frame in a queue and writes them in order for each pixel. For this
purpose, each fragment has to circulate in the R-Buffer until all further values at the same
location have been written. Hence, the maximum number of iterations corresponds to the
depth complexity of the scene.
The Delay Stream [142] is actually a relaxed version of the R-Buffer and defers the
processing of rendering commands until a certain threshold is reached. This allows the
rasterizer to look ahead the command stream and cull triangles, which will be overdrawn by
subsequent primitives.
The Pomegranate design [94] is a scalable graphics architecture with several vertex and
pixel pipelines working in parallel. Here, the main challenge is maintaining the original
order of triangles from the draw call, so that the rendered image is indistinguishable from a
sequential implementation. For this purpose, Pomegranate contains a point-to-point
network, which sorts the results the triangle fragments according to their screen space
position. The stream rewriting network (SRN) introcued in Section 4.3 architecture
resembles a generic variant of this design.

5.2.3 Software Pipelines
Before introducing the concept in Section 5.3, several different software and hardware
architectures are presented, which are related to graphics processing for more flexible
graphics pipelines. The creation of custom graphics pipelines on current GPUs has been
already researched extensively since it provides the foundation for the implementation of
novel rendering techniques [143]. While a rendering pipeline usually contains both data
and pipeline parallelism, compute APIs like CUDA or OpenCL are optimized for data parallel
kernels with coherent control flow. Also, the communication between processing cores is
usually bound to several restrictions. Hence, the central challenge is the dynamic
scheduling of heterogeneous work items within the limitations of the CUDA model.
One possible solution for the management of dynamic threads on the GPU is the
implementation of the scheduler as a kernel itself [131] [144] and the usage of work
stealing for load-balancing [145]. For instance, a hierarchical software rasterizer has been
implemented entirely in CUDA [129] but requires significant modifications to fit into the
data parallel scheme. Due to the lack of hardware support, queues must be stored as

88

buffers in global or shared memory, while the read and write pointers are accessed using
atomic operations. Though, it is possible to manage queues with multiple concurrent
producers using parallel prefix sums [146]. However, most of these software-based
scheduling approaches require combining all tasks into a single kernel (mega-kernel) that
selects the correct sub-task at runtime through dynamic branching. Therefore, this
technique effectively interferes with the single-instruction multiple-thread (SIMT)
architecture of modern GPUs, which is optimized executing for groups of threads executing
the same control path. As a possible solution, the authors of [147] propose to sort threads
according to their kernel and to divide complex shader into more specialized tasks.
A more recent feature of CUDA is called dynamic parallelism and permits the recursive
invocation of kernels on the GPU [148]. However, the driver has to reserve up to 150MB of
external memory for each level of recursion, so that this technique is most useful for large
nested grids of kernels. Stream rewriting supports all types of recursion and a more fine-
grained creation of individual threads by inserting control tokens into the stream. The
generic GRAMPS pipeline shares some similarities with this theoretical model and also
supports different types of concurrency [149] like pipeline and data parallelism. Shaders are
represented as process nodes and connected via ordered and unordered communication
queues. In comparison, stream rewriting basically restricts the topology of the shader
network to the class of series parallel graphs [109], which are built from sequential and
parallel composition.
This restriction allows storing the shader network and the contents of the communication
queues as a stream (Section 3.2), so that the inputs of a particular shader instance are
always located in a compact range of tokens. There is no explicit management of threads
required and therefore also the topology of the network can be modified at runtime.
Another challenge of in rendering pipelines is the parallel processing of multiple geometric
primitives and the subsequent reordering of fragments, before they are written into the
framebuffer. For this purpose, the authors of the K-Buffer [150] propose a hardware
extension for distributing fragments to a specific shader core. Since this functionality does
not exist in current GPUs, a workaround to minimize the resulting memory hazards is
presented in [151] and a different solution [140] utilizes atomic operations.

5.2.4 Shader and Compute Languages
The first programmable graphics hardware supported only a few selected instructions and
registers, so that shader programs were naturally very short and had been optimized
manually in assembly language to exploit the limited capabilities. Due to the development
of flexible graphics processors with a general purpose instruction set, more complex
shaders became available and required the usage of high-level languages like Cg (multi-
platform), HLSL (Direct3D) or GLSL (OpenGL).
These languages are variants of C with special data types and optimized for graphics
processing. In particular, each shader program replaces the functionality of a previous fixed
block like the vertex or fragment processing stages and interacts with the remaining fixed
hardware via a set of input and output registers. However, the communication between
shader stages is currently an underrated aspect of all OpenGL or Direct3D shading

89

languages. Several restrictions are lifted due to the further improved flexibility of modern
graphics hardware, so that more functionality can be moved into software but on the other
hand, modularity and reusability are becoming important issues.
For this purpose, the Spark [152] shading language bundles the functionality of an effect,
which is often spread across several stages, into a single class. This aspect-oriented
approach is orthogonal to the programming model of stream rewriting and could be
optionally layered on top of the SRM. Hence, the Spark language could take advantage of
the dynamic composition and becomes even more useful as the SRM enables almost
arbitrary complex rendering pipelines.
A scene can contain several different types of materials and lights. For instance, there can
be point-lights, spot-lights, an ambient environment light or the sun. Some materials may
be reflective or interact with the light in different ways. As a result, the calculations for each
combination of a material and a light are unique. Offline renderers like, for instance, Pixar’s
RenderMan use different light and material shaders that can invoke each other [128].
Although there is only one active pixel-shader in Direct3D 11, the API still supports a limited
form of dynamic linkage, which permits to combine different subroutines at runtime.
Though, each variant requires a separate draw call, which is expensive in terms of CPU
cycles. For comparison, stream rewriting is even more flexible and enables the dynamic
composition of shader fragments without CPU interaction.
Also, the generation of procedural geometry using grammars [153] [154] might map
natively to the concept of stream rewriting. For the general purpose bulk-synchronous GPU
programming language (BSGP) [155], which supports dynamic threads as well as fork and
join constructs, the stream rewriting processor (SRP) could be a possible target
architecture. Similarly, the Cilk programming language extends C with the spawn keyword
to invoke functions on a new thread and therefore also supports dynamic and recursive
tasks. Basically, spawn cound be implemented on the SRM as a processor opcode that
inserts the corresponding control and data tokens into the stream.
The diversity of shading languages, which are often tied to a special rendering architecture,
hinders the maintainability and reusability of shader programs. The AnySL [156] compiler
demonstrates a method that allows a renderer to support several different shading
languages through recompilation. In this context, the functional programming model could
be also used as an intermediate language that is dynamically mapped to different target
platforms. As a result, the stream rewriting language presented in this paper might become
also relevant for existing rendering systems.
Similarly, the GRAMPS programming model also deals with the dynamic scheduling of
irregular pipeline and data parallelism [149]. However, they employ a more traditional
global scheduler that manages task queues and thread instances while the SRM uses local
pattern matching.

90

In addition, several functional languages have been also proposed for GPU programming.
For instance, Vertigo [157] is based on Haskell and allows composing complex objects from
parametric surfaces and geometric operators in the shader. For example, a torus is
constructed by rotating a circle using the revolve operator and the displace function adds a
height field onto an existing surface. In addition, the library contains already several basic
definitions for computing the interaction between light and materials, which can be applied
to these objects as well. Since Vertigo targets an old class of graphics hardware (DX8.1), the
functional program is compiled into a restrictive pseudo assembly code without flow
control. Using the SRM, it might be possible to execute at least a sub-set directly in
hardware and therefore retain the modularity of the functional language.
The more recent functional shading language Renaissance [158] is conceptually based on
Vertigo and pursuits similar goals. Technically, it does not generate low-level assembly code
but utilized the vendor and platform independent OpenGL Shading Language (GLSL). While
the underlying hardware usually expects a pair of tightly coupled vertex and fragment
shaders, Renaissance allows specifying the shader as a single program and attaches
different frequencies to variables. For instance, uniform variables never change during the
invocation of a draw call, while per-vertex variables are automatically interpolated to the
fragment level. The environment of stream rewriting supports an arbitrary number of
user-defined frequencies although there is no automatic interpolation.
The language Obsidian [159] is also based on Haskell but targets general purpose
computations on GPUs and therefore generates CUDA source code. Consequently, the
language provides an abstract array type, which either represent a concrete dataset or
references result of a previous computation. There are several standard functions like map,
fold or zip for array manipulation that can be combined with user-defined functions by a
special composition operator. Hence, by threatening the GPU as a vector machine, the
error-prone indexing of individual array elements and the manual handling of threads can
be mostly avoided, so that the development of CUDA kernels is greatly simplified. A very
similar approach for C++ is also attempted by the library Thrust [160], which contains a
large number of templates for array handling on the GPU and also supports the fusion of
kernel functions.

5.2.5 Recursive Shaders
Despite the coarse grained dynamic parallelism of recent GPUs [161], general support for
recursive functions and functional languages requires significant effort [162]. In particular,
the two most important challenges are the storage of the stack for a large number of
threads [163] and the SIMT divergence during recursion [164]. Through, there are several
important use cases for recursive algorithms and data structures in computer graphics [20].
For instance, by storing the geometry of a scene as a bounding hierarchy tree, visible parts
can be queried hierarchically with logarithmic complexity [165]. In addition, point
hierarchies allow to dynamically improve the quality at visually important regions like the
silhouette [166]. Hence, these recursive techniques help to avoid computations on
elements of a scene, which are either not in the field of vision or do not contribute to the
quality of the final image.

91

However, the implementation of recursion on the GPU has not been solved in general.
Although recursive shaders can be constructed by a while loop and a stack in local or global
memory, this approach raises several issues. Beside the high latency of global memory and
the overhead of dynamic branching, it is not possible to create a new thread for each
recursive invocation, so that this technique is far from optimal. While recursion can be
eliminated in some case like the stack-less raytracing implementation [167], this method
visits only one branch of the tree and therefore does not represent a general solution.
For highly detailed scenes, the memory bandwidth required to read the geometry data
from external memory can represent a bottleneck. Hence, it is often more efficient to
generate the dynamically within the rendering pipeline from a more course grained
representation like high-order surfaces [168]. For this purpose, Direct3D 11 introduces the
tesselator stage, which subdivides a square, triangle or line segment, which is then mapped
to the corresponding geometry using the domain shader. If more flexibility is required, also
the compute shader can be used to generate geometry, which has been shown for stack-
based terrains in [169]. Further, a recursive approach for geometric subdivision has been
presented by [170] but requires to load and store the entire geometry for each level of
detail, so that they basically perform a deep-first expansion of the stream. Contrary, the
stack-based scheduling (Section 2.3.2) employs a combination of depth-first and breast-first
traversal and therefore requires significantly less memory bandwidth.
As an alternative, the adaptive tesselation of [171] is written in CUDA and does not require
special hardware support for packing the resulting vertices into a continuous stream.
Instead, it uses multi-pass approach to recombine the outputs of each patch. First, the
number of vertices per patch, which depends on the tessellation level, is computed. Then,
the output address of each patch is determined by adding the size of all preceding patches
using the fast parallel prefix sum [146]. Finally, the patches are sub-divided and each
instance writes its outputs the previously computed address in parallel. However, this
technique is not applicable for stream rewriting since it relies on a fixed number of inputs
per patch, which fit better onto a data parallel model of a SIMT GPU.

5.2.6 Task Queues
Queues are the preferred communication medium between concurrent processes, because
they decouple different rates of production and consumption while maintaining the order
of elements. For instance, a task queue can be used for distributing non data parallel work
items [172]. However, for optimal performance, both reader and writer must be replicated
many times, so that multiple elements can be produced and consumed in parallel. Currently
there are two possibilities to implement queues on the GPU. The first method uses a buffer
in shared memory and atomic operations to update the read and write pointers [145]. The
second approach uses prefix sums to assign parts of the queue to distinct threads, before
the actual calculation happens. Afterwards, multiple threads can access the memory
simultaneously without explicit synchronization. Although this method employs more
concurrency, the amount of data, a thread writes into the queue must be known or
calculated before, so that the memory regions can be aligned seamlessly [146].

92

5.3 Generic Graphics Pipeline
The execution model of the proposed graphics processor is based on the concept of stream
rewriting. In this section, the mapping between a generic rendering pipeline and the
rewriting rules of the token stream is described. After the abstract rendering pipeline and
its functional representation have been specified, several advanced examples and three
different implementations are presented. Similar to the task graphs presented in Section
3.2, the stream holds the state and the topology of the rendering pipeline, while each
function, and therefore each shader stage, is modeled as a rewriting rule.

5.3.1 Shader Stages
The basic building block of the
rendering pipeline is a generic shader
stage (Figure 66) with input and
output registers. In addition, shaders
can be hierarchically combined to
create more complex networks using
either sequential () or parallel
() composition. Similar to the
mapping of task graphs (Section 3.1), the rendering pipeline is modeled as a functional
program consisting of shaders, sequential, and parallel nodes:

: = , … ,× , , … ,× , , …×
(77)

The generic stage is specified as a function that maps the input values to results:: ℤ → ℤ (78)

Here, ℤ represents a machine word and can contain both integer and floating-point
numbers. Similar to Section 3.1, the sequence , of two rendering
pipelines : ℤ → ℤ and : ℤ → ℤ with = corresponds to the composition:, : = ∘ ∈ { : ℤ → ℤ }(, … ,): = ((, … ,)) (79)

As shown on top of Figure 66 the input values are first processed by and then passed to
to produce the outputs of the combined stage. Hence, the resulting function has the

same signature as a single shader and can be used itself for hierarchical combination.

Figure 66. Blocks of the generic rendering pipeline.

93

Figure 67. Pipeline fragments modelled via rewriting rules.

The parallel composition (,) of : ℤ → ℤ and : ℤ → ℤ can be also
described in a similar way. Here, an implicit fork block distributes the + input registers(, … ,) of the combined stage to both and to produce the result vector(, … ,) of the join block:, … , : = (, … ,), … , : = (, … ,) (80)

The formal description of the join operation uses the identity function to synchronize the
results of and . For this purpose, the strict evaluation order of stream rewriting ensures
that both are completed before is invoked:(,): = (, … ,) ↦ (, … ,) (81)

In a summary, the formalism for mapping a generic graphics pipeline into rewriting rules is
equivalent to the scheduling of task graphs presented in Section 3.2.

5.3.2 Pipeline Fragments
Based on rules for parallel and sequential composition, also the more complex pipeline
fragments shown Figure 67 can be derived using a similar approach. The examples
presented in this section are based on the post-order format of the stream grammar but
could be also described in preorder. Each node represents a single pipeline stage and the
listed fragments can be combined recursively to create more complex topologies.
Example 1 in Figure 67 shows a minimalistic pipeline built from the two shaders and .
Similar to the behavior of pixel and vertex shaders, each invocation of creates exactly one
call to . In terms of stream rewriting, shader can be specified by the rule:(, … ,): = 〈 , … , , , 〉 (82)

Here, denotes the inputs and the outputs of stage . However, it is also possible to
produce several invocations by emitting multiple tokens. In example 2, the stage is
called twice, so that the rule is extended to:(, … ,): = 〈 , … , , , , , … , , , 〉 (83)

94

This functionality can be used to describe the geometry shader stage of Direct3D, which
emits a variable amount of triangles per invocation. A primitive might be also culled by
returning an empty sequence. In addition, it is also possible to choose the target stage
dynamically by calculating the stage identifier (Example 3 in Figure 67):

(, … ,): = 〈 , … , , , 〉 if < 0〈 , … , , , 〉 else (84)

Here, shader either calls or depending on the value of argument . Similar to the
dynamic branching in Direct3D, the shader can switch between different code paths. In
addition, shaders can be also linked dynamically by threatening the stage identifier as a
function pointer. For example, different materials and lights in a scene could be stored as
function pointers and combined without intervention from the CPU.
Further, a shader can invoke itself to create a feed-back loop (Example 4 in Figure 67). For
instance, a tesselation shader can use this capability to create a smooth surface by
recursively subdividing a triangle into four fragments , … , . First, the shader checks if
the maximum detail level has been already reached (= 0) and then either draws the
triangle by calling the stage DRAW or performs a further subdivision step (> 0):

(,): = 〈 , , , , … , , , , 〉 if > 0〈 , , 〉 else (85)

Similar to the task graphs, the pipeline can be split and later synchronized by the fork-join
construct, which basically corresponds to a sub-routine. In example 5, a complex surface
shader invokes multiple material layers (,), whose results that are eventually
combined by shader :(…): = 〈… , , , … , , , , , … , 〉 (86)

Hence, the rewriting rules are suitable for modelling a large number of different pipeline
configurations. As a result, the flexibility is greatly enhanced in comparison to the fixed
rendering pipelines of Direct3D and OpenGL (Section 5.2.1).

5.3.3 Dynamic Parallelism and Recursion
Similar to the dynamic task graphs, also the structure of the rendering pipeline can be
modified at runtime. For this purpose, a shader returns a sub-stream, which encodes the
corresponding rendering pipeline instead of literal values. Several use cases for this
approach are shown in Figure 68. For instance, a dynamic d fork shader (Figure 68a) can
create threads of with = 1 … by emitting a variable number of tokens:(, … ,): = 〈0, , … , , 1, , , … , , … , , , , , 〉 (87)

95

Figure 68. Examples of dynamic and recursive rendering pipelines.

In particular, the join shader requires one argument and wait for the zero literal at the
beginning for synchronization. As a possible use case, this technique enables a graphics
processor to generate a variable number of draw calls within a shader, which is not feasible
with the current Direct3D and OpenGL implementations.
The interaction between lighting and materials is usually highly complex and often depends
on application-specific requirements to create a particular graphics style. For this purpose,
high-quality off-line renderers like RenderMan [128] usually support separate shader
programs for lights and materials, which are combined on demand. Similarly, recent GPUs
offer dynamic linking to allow modular shaders but it is actually performed on the CPU and
therefore does not account for dynamic conditions calculated within a shader. However,
since the stage identifier for a token can be chosen dynamically, different paths in
the shader network can be chosen dynamically for each primitive. The example shown in
Figure 68b) displays a combination of three materials and three light stages, which would
require to a combination of nine statically linked shaders.
In addition, stream rewriting can express recursive shaders to implemented branch-and-
bound algorithms (Figure 68 c), which are commonly used as a performance optimization
when iterating over large data sets. By conditionally invoking or discarding subsequent
stages, parts of the call tree can be cut early to omit unnecessary computations. For
instance, the intersection test between a ray and the scene may skip larger blocks based on
their bounding volume. Another example for recursion is the tesselation shader illustrated
in Figure 69. Here, each invocation of the patch rule subdivides the given triangle into four
smaller fragments. As a result, the triangular patch of iteration is subsequently expanded
into a set of 16 triangles in , which are eventually sent to a rasterizer stage. Most notably,
the concept of stream rewriting naturally maps to the refinement steps.

Figure 69. Recursive tessellation using stream rewriting.

96

Figure 70. System architecture of the stream processor. Figure 71. Structure of a stream rewriting core

5.4 Functional Processor
In this section, the design of a stream rewriting processor (SRP), which is based on the
functional language from Section 3.1, is implemented and evaluated.

5.4.1 Stream Rewriting Processor
The proposed system architecture of the stream rewriting processor (SRP) is illustrated in
Figure 70. At the top level, the processor contains several rewriting cores (SRC), which are
working on different streams in parallel (Figure 71). Each of them has access to a local
buffer, which stores the token stream, and the external memory, containing framebuffer
and textures. While all cores receive the same sequence, each core is responsible for
executing the whole rendering pipeline for a different part of the screen. The partitioning is
configured by the host CPU using parameters.
Further, the SRP is equipped with a PCIe interface for communication with the host CPU
and a VGA controller displaying the rendered image. The PCIe channel is split into a debug
interface and a DMA controller, responsible for sending and receiving token streams.

5.4.2 Stream Rewriting Core
Similar to the abstract execution model, the stream rewriting core consists of a ring pipeline
processing the token stream. In addition, there is also an entry point, which receives new
tokens from the DMA controller, and an exit point, where results can leave the ring. The
rewriting rules are implemented in the pipeline stages in the middle, so that one iteration
in the ring corresponds to one invocation of the function . The queue between exit
and entry is used as a temporary storage to compensate for varying stream lengths.
First, the decoder receives the token stream and performs the pattern matching. It
generates a sequence of program addresses that are used in the instruction fetch stage to
load a program, which evaluates the rule or bypasses unmatched tokens. Likewise, the
parameter fetch stage retrieves global parameters from the parameter memory. LET tokens
are interpreted by the configuration stage, which also initializes the program memory. The
execution stage evaluates arithmetic operations and is responsible for memory access.
Finally, the results are written back on the token stream to proceed with the next iteration
or leave the core at the exit point. In contrast to a RISC processor, there are no temporary
registers, so that all inputs of an instruction are either arguments or parameters. Hence, the

97

argument fetch, execute and write back phases of a
single rewriting function never overlap. Therefore,
several types of pipeline conflicts can be avoided,
which leads to considerable simpler hardware. On the
other hand, complex functions must be split in a
preprocessing step and intermediate results are
passed as arguments on the stream.
The execution unit (Figure 72) contains several stages
and their arrangement has been chosen according to
the requirements of graphics processing to chain as
many commands as possible. Several stages have
additional registers or even a stack to store
temporary values. As a result, multiple subsequent
instructions can be combined into macro opcodes to
reduce the number of dependent rules significantly.
Beside the standard 32-bit integer and single-precision floating-point formats, the pipeline
also supports 32-bit packed RGBA colors for framebuffer operations and textures. The first
stage can evaluate a 4D dot product, which is a very common operation in geometry
computations. An integer variant is also used for address calculation of pixels and texels.
After that, the REQUEST stage may initiate a read operation at the memory interface while
the result will be collected later in the RECEIVE stage. Similarly, the rest of the stages are
responsible for packing floating-point values, performing color operations (RGBA),
comparisons, and bitwise logical operations. The IF/ELSE/END_IF stage conditionally
discards values and contains a stack for up to 32 nested blocks. Finally, the last stage may
optionally write the value into external memory.
The proposed ALU implements a complex instruction set and requires a large 48-bit opcode
but on the other hand, it can perform up to 11 operations per cycle, so that the equivalent
functionality would consume a far larger number of RISC instructions. Also important, the
intermediate results are stored in small local registers instead of a large register file. If
utilized by a large number of threads, the latency of more than 100 cycles can be hidden
and especially graphics applications benefit from the improved throughput. For example,
the perspective correct rasterization of a pixel with vertex colors takes six cycles and a
bilinear texture sample is completed in four cycles. Also, blend operations, consisting of a
read, a color operation (RGBA), and a write-back step, can be performed in two cycles.

5.4.3 Scheduling
The rewriting process expands and evaluates multiple
functions per iteration. It represents a breadth-first
search of the call tree, so that the number of tokens
in the stream may grow exponentially according to
the call depth. Consequently, a mechanism to throttle
the expansion of the stream is necessary to keep the
length below a threshold (Figure 73).

Figure 72. Pipelined execution unit.

Figure 73. Expansion with constraint b.

0

DOT

1 2 3 4 5 6 7

Request

Div/Sqrt

Receive

RGBA

Pack

Unpack

Compare

And, Or, Xor

IF/ELSE/END_IF

Reg

Reg

Reg
Reg

Stack

Memory Write

Stack

Reg

Reg

Memory

Memory

MemoryReg

98

According to the stack-based scheduling (Section 2.3.2), the current sequence is divided
into an active part of at most tokens and the inactive remainder shown in Figure 73. New
tokens are created only in the active part while the inactive part is left unmodified, so that
the system combines depth-first and breath-first traversal. When the size of the stream
exceeds the threshold , tokens at the end of the stream are shifted into the inactive area.
Later, when the active part has completed evaluation and shrinks, the tokens at the end are
moved back and can continue execution. For example, a FOR loop is interrupted and later
resumed by writing the current state on the stream. Similarly, the entry point only appends
new tokens to the end of the stream until the threshold size of has been reached.

5.4.3.1 Software Development
The SRP has a long pipeline with a complex instruction set, which leads to numerous
optimization opportunities by chaining appropriate operations, but requires an extensive
knowledge of its micro-architecture. Even for the assembly language of Section 3.1.3, a
manual mapping into ALU opcodes would be inefficient and difficult. In particular, the
assembly contains generic operations like the 32-bit integer addition add_i32 or a floating-
point multiplication mult_f32, which must be assigned to the corresponding ALU stages. In
addition, this architecture does not contain temporary registers, so that complex
expressions, which do not fit into the ALU scheme, must be split into multiple passes.
Hence, the assembler performs the following optimization steps on the functional program:

1. LET and FOR expressions are moved into separate functions, which are later
translated into distinct rewriting rules.

2. Arithmetic expressions like addition or multiplications are optimized to reduce and
balance the depth of the expression tree.

3. All functions are mapped into ALU operations using a greedy algorithm.
4. Unused functions and constants are removed from the program.
5. The tree is partitioned, so that each function can be computed in one pass through

the ALU and there corresponds to a rewriting function.

As a result, the expression tree of each function has a maximum depth of one node and
consists solely of ALU operations, so that the program can be directly translated into the
binary instruction format.

5.4.3.2 Stream Debugger
Debugging highly concurrent programs often requires a different approach than examining
singled-threaded applications. Due to the large amount of threads, the current state of a
multi-core machine contains numerous instances of registers, local variables and stack
frames, so that it becomes in particular difficult for the user to track the progress of the
parallel execution. Similar to the verification of hardware components, the debugger often
creates a trace file, which can be evaluated offline [173]. However, there are also
combinations like the hardware-aware debugger for the OpenGL shading language [174],
which enables source-level debugging at runtime by instrumenting shader programs.

99

Figure 74. Schematic of the stream rewriting debugger.

For stream rewriting, the debugger (streamdb) is implemented as a combination of
software library and a hardware component inserted into the token stream (Figure 74). It
has to ability to block the stream and return the token at the current position to the
software layer via an asynchronous communication channel. The debugger decodes the
token into a readable representation and annotates the name of the corresponding
function for CALL expressions. In addition, the stream can be advanced to the next control
token, to the end of the iteration, or the device can run until the stream becomes empty,
which usually marks the end of a larger computation.
The debugger is especially useful to detect dead-locks causes by infinite running threads. It
shows the contents of the stream and can be attached or detached at any time. Since the
debugger runs as a separate application and uses a different communication channel than
the graphics driver, it does not interfere with the stream computations.

5.4.4 Results
In order to demonstrate the capabilities
of the proposed processor architecture,
it has been prototyped using an FPGA
board and connected to a PC via PCI
express. Two example pipelines,
implementing rasterization and ray-
tracing, show the improved
configurability compared to existing
GPUs. A schematic of the hardware and
software components in the test system
is shown in Figure 75. The ML605 board
is equipped with a PCIe connector and was plugged into a PC with an Intel Core 2 Q9650
running at 3.00GHz on a Dell OptiPlex 780 mainboard. The operation system for this test
system is Ubuntu 11.10 with kernel version 3.0.0. The DMA controller shown in Figure 75
utilizes the embedded PCIe core of the FPGA to autonomously transfer data from the
mainboard to the FPGA. It provides a bi-directional data stream, which is mapped to a file
descriptor using a custom Linux driver, so that applications can communicate with the
graphics processor using file IO. At the topmost level, the application uses two libraries
streamrw and streamdb (Debugger) that provide an abstract view of the SRM.
The driver manages two buffers in system memory, which provide the space for the two
FIFOs. It uses Linux kernel functions to send the physically addresses of these buffers to the
DMA controller on the FPGA. At the hardware level, the PCIe packets are transmitted from
the root complex on the mainboard to the embedded PCI express endpoint on the Virtex 6.

Figure 75. Setup of the complete test system.

100

The DMA controller itself autonomously sends read request to the mainboard to transfer
portions of the FIFO to the stream rewriting processor.
The proposed stream rewriting processor has been synthesized for the Virtex 6
XC6VLX240T-1FFG1156 FPGA and tested using the ML605 evaluation board from Xilinx. The
resource usage for a varying number of cores is presented in Table 6. In this case, a LUT
corresponds to a 6-input lookup table of the FPGA, a FF represents a single register, DSP48
is an embedded multiply-adder and a BRAM is a fixed 18K or 36K memory block. The design
met timing at 200MHz.

Table 6. Resource usage of the FPGA prototype

Cores LUT FF BRAM 18K/36K DSP48
1 16,230 30,771 26 32 14
2 25,835 48,867 49 44 28
3 35,674 66,963 72 56 42
4 43,328 85,049 95 68 56

5.4.4.1 Rasterization

Figure 76. Example pipeline implemented for rasterization.

A simplified rasterization pipeline has been implemented to demonstrate the abilities of the
stream rewriting processor Figure 76. It contains LET environments, FOR loops and the
stream is split and synchronized several times. In addition, the data-rates between stages
differ significantly because the triangle is sub-divided into a much larger number of pixels.
The actual drawing is similar to the technique presented in [175] and works by testing pixels
against the edge equations of the triangle.
The input of the rasterization pipeline is a sequence of triangles in world space. For each of
the three vertices, there is a series of calculations. First, the vertex is transformed into view
space using a matrix-vector-multiplication (Matrix). Next, it is projected on the screen and
finally scaled according to the current viewport. The pipeline is split and later recombined,
so that these computations can be performed in parallel.
At this position, the triangle is two-dimensional and fed into the setup stage to calculate its
bounding box and three edge equations. The edges will be evaluated at every pixel but are
constant for the whole triangle, so that they can be stored as part of an environment
(dashed box). For comparison, pixel coordinates are represented by two words, while the

101

three edge equations take nine words. Hence, without the environment, the data passed
between the stages and therefore also the data on the stream would be more than
quadrupled. Inside the environment, two nested FOR loops iterate over the pixels of the
box (IterateY, IterateX). The coordinates are tested against the edge equations and pixels
outside the triangle are discarded. Color and address are calculated and the pixel is drawn
into the framebuffer.
Although it is possible to implement a rasterization pipeline in CUDA, it must be re-
engineered to fit into the data-parallel processor grid [176]. Contrary, the SRP architecture
allows describing the stages of the rendering pipeline directly as individual functions.
In order to evaluate performance and scalability of the stream rewriting processor, various
models from

 http://simonfuhrmann.de/uni/bthesis.html
 http://www-i8.informatik.rwth-aachen.de
 http://www-graphics.stanford.edu/data/3Dscanrep/

have been rendered at a resolution of 640x480 pixels. Figure 77 lists the render time for
one frame measured at the application-level. The render time for the same type of model
increases less than linear when choosing a more detailed version because most of the work
is done at the pixel level, which is mostly independent from the triangle count.

Test 1 Core 2 Cores 3 Cores 4 Cores
Bunny (1k) 156 ms 95ms 91 ms 73 ms
Bunny (5k) 275 ms 200ms 190 ms 173 ms
Bunny (10k) 411 ms 326 ms 314 ms 292 ms
Armadillo (4k) 199 ms 176 ms 175 ms 151 ms
Armadillo (9k) 330 ms 306 ms 303 ms 278 ms
Armadillo (18k) 567 ms 541 ms 535 ms 506 ms
Sphere (1k) 115 ms 92 ms 91 ms 84 ms
Sphere (5k) 222 ms 168 ms 178 ms 161 ms
Sphere (20k) 627 ms 531 ms 544 ms 515 ms
Figure 77. Render times of rasterization test.

0

200

400

600

1k 5k 10k

Bunny

1 Core 2 Cores 3 Cores 4 Cores

ms
0

200

400

600

4k 9k 18k

Armadillo

1 Core 2 Cores 3 Cores 4 Cores

ms

http://simonfuhrmann.de/uni/bthesis.html
http://www-i8.informatik.rwth-aachen.de
http://www-graphics.stanford.edu/data/3Dscanrep/

102

5.4.4.2 Ray-Tracing
In addition to the rasterization pipeline, also a ray-tracing test case has been implemented
that sends rays from the camera into the scene to determine the color of a pixel. Shadows
are calculated by tracing secondary rays from the intersection point towards the light
source. While the first test uses a constant color, the second renders a textured plane and
the last two examples show three lit spheres with optionally shadows (Figure 78).
The performance measurements of these tests are listed in Figure 79 and achieve an almost
linear speedup in all cases. In contrast to the rasterizer, the raytracing application requires
a significant higher number of per-pixel computations to calculate the intersection between
a ray and a sphere. However, the costs of each pixel are roughly the same, so that the
partitioning of the screen into separate areas for each core works well. In case of the
shadows sample, the minor slowdown might be causes by the black background, which
does not utilize additional shadow rays. Also, in case of a reflecting sphere, a better
mechanism for global load-balancing like the stream rewriting network (Section 4.3), might
provide an advantage.

Color Plane Shadows
Figure 78. Screenshots of ray-tracing scenes.

Test 1 Core 2 Cores 3 Cores 4 Cores
Color Only 3093 ms 1547 ms 1031 ms 770 ms
Plane 248 ms 125 ms 83 ms 64 ms
Spheres 3117 ms 1559 ms 1039 ms 776 ms
Shadows 4079 ms 2076 ms 1401 ms 1069 ms
Figure 79. Render times of raytracing test.

0 2000 4000

4

3

2

1

Color Only

ms

1.0

2.00

3.00

4.02

0 200 400

4

3

2

1

Plane

ms

1.0

1.98

2.99

3.88

0 2000 4000

4

3

2

1

Spheres

ms

1.0

2.0

3.0

3.82

0 2000 4000

4

3

2

1

Shadows

ms

1.0

1.96

2.91

3.82

103

5.4.5 Conclusion
A novel graphics processor based on stream rewriting has been presented that allows
describing custom rendering pipelines as a functional program. As a result, the rendering
pipeline is virtualized by reducing all functionality to rewriting operations.
Although the FPGA prototype cannot compete with commercial ASIC solutions in terms of
performance, the two non-trivial examples show the flexibility, its feasibility and to some
extend also the scalability of the functional SRP architecture. Most important, the design
has been evaluated as part of a standard computer system, so that the measurements
include all costs that would also occur for a commercial graphics device. The experimental
results clearly indicate the success of the architecture for an authentic test case. Thus, the
concept of stream rewriting via pattern matching has been proven as a viable solution for
the problem of scheduling and synchronization in a multi-threaded environment.
The next step for this architecture would be the development of a compiler for a more
high-level functional language that could be layered on top the existing assembly. In
addition, it would be also interesting to combine the functional concept with the traditional
OpenGL pipeline.

5.5 SIMT Shader Core
In this section, the architecture of a SIMT based design is presented and similar to the
functional approach (Section 5.4), its performance is analyzed using a FPGA prototype. The
main innovation of this architecture are the usage of a global dispatcher (Figure 78), which
redistributes the token stream in each iteration and therefore improves the load-balancing.
The shader core (Figure 79) executes a same instruction of four threads in parallel (SIMT)
and contains a local register file for intermediate results to reduce the traffic on the stream.
The costs of read-modify-write operations are reduced by storing pixels into an on-chip tile
buffer (Figure 78) before they are flushed into the global memory. As result, the SIMT
architecture achieves better scalability than the previous design and has been evaluated
using a larger number of examples (Section 5.5.4).

Figure 80. Architecture of the stream rewriting processor. Figure 81. Design of a stream rewriting core (SRC).

104

5.5.1 Overview
The concept of stream rewriting leads to an efficient hardware architecture for graphics
processing because all rewriting operations modify only local, compact and non-
overlapping regions of the stream. For comparison, one of the general purpose many-core
systems presented in Section 4 organizes several rewriting cores (SRC) sequentially as a
ring, so that all tokens, even if they are not modified, have to pass through the execution
units of a core before they can be accessed by its successor. Therefore, it takes as many
cycles to execute a function locally as it would require passing it to another core. The
results of the ring architecture show scalability but load-balancing becomes challenging and
the architecture mainly benefits from pipelining (Section 4.4).
Contrary, in this architecture (Figure 78), the stream is also circulating in a ring but the
stream rewriting cores are arranged in parallel. Only several distinguished hardware units
like the entry and exit point, the raster output stage (ROP), the stack, and a performance
monitor, are chained. Tokens sent by the host CPU correspond to draw calls and are
fetched by the entry point until the ring is filled with a minimum work load. Similarly, the
exit point allows results, which should not be written into the framebuffer, to be returned
to the CPU. In order to avoid bottlenecks and to keep all components utilized, the data
width of the ring is chosen large enough to handle several tokens (here: 3) per cycle.
The actual rewriting is performed by the group of parallel stream rewriting cores (SRC). For
clarity, the schematic (Figure 78) shows only three cores but actually, the architecture has
been evaluated for up to eight cores. A dispatcher creates threads from executable rules,
which are then passed to the array of stream rewriting cores. Finally, the results are
reassembled in the correct order by the combiner. The ROP stage performs blending and
depth-testing on the incoming pixels and stores them in a local memory tile (here 512kb),
which is later flushed into external memory. In particular, the pixels are described as three
consecutive OUT tokens (2.5.1) storing the address, color and depth values. Also, there is a
performance monitor that records the number of executed tasks and tokens per iteration.
Due to the recursive expansion, the size of the stream varies frequently and may quickly
exceed the capacity of the available on-chip memory. As specified for global scheduling in
Section 2.3.2, the stack stores the last part of long streams in the external memory, so that
only the active part of the stream and at most tokens are circulating in the ring.
Consequently, this architecture utilizes the post-order format of the stream grammar.

5.5.2 Stream Rewriting Core
Each stream rewriting core (Figure 81) contains a ring pipeline of several stages, three
register files and connections to the dispatcher and the combiner. Executable rules are
received from the dispatcher and translated into corresponding tasks, circulating in the
pipeline. For non-matching parts of the stream, a pass-through program is executed, which
simply copies the input tokens. There are separate register files for inputs, local variables
and outputs, so that the decoding of rules, the execution of tasks and the write back of
results can occur in parallel. Beside the instruction memory, also a limited set of constants
are available to store global parameters like the current camera matrix or light vectors.

105

Table 7. Instruction Set of the SRC (excerpt).

Name Function Description
Integer
DOT_I32 r, a, b, c, d → + dot product
ADD_I32 r, a, b, c, d → + + + sum of four
SEQ_I32 r, a, b, c, d → = ? ∶ set on equal
SLT_I32 r, a, b, c, d → < ? ∶ set on less
Float
DOT_F32 r, a, b, c, d → + dot product
SEQ_I32 r, a, b, c, d → = ? ∶ set on equal
SLT_I32 r, a, b, c, d → < ? ∶ set on less
RCP_F32 r, a → 1/ approximate reciprocal
RSQ_F32 r, a → 1/√ inverse square root [177]
Memory
READ r, a → [] read 32-bit word
SAMPLE r, u, v, tx → 2 (, ,) sample texture at (,)
Control
EMIT a, b append token a to stream if≠ 0 conditional write

EXIT exit program if ≠ 0 conditional exit

Table 1 lists some of the instructions supported by the SRC. Each of them can refer up to
four operands , , , which are either fetched from the input, local or constant register
file. The result of an ALU operation is stored in the local register file. In addition, there are
two control flow instructions: An EMIT instruction appends a token to the output stream
and is used to produce the results of a rewriting rule. END either exits the shader
conditionally or terminates the execution immediately if operand is zero. There are no
complex control flow instructions but instead this behavior can be emulated by using the
pipeline fragments shown in Section 3.4 to implement branches and feed-back loops similar
to functional programming. As an advantage, dynamic flow control can be scheduled
globally across all cores.
The actual program execution takes place in the ring pipeline of stages (here = 32),
which are grouped into the blocks instruction fetch (IF), instruction decode (ID), ALU,
execute (EX), write-back (WB) and a stage for thread management (TR). For each
instruction of a thread, the IF stage fetches the current command word, which is then
decoded in the ID stage that also loads the corresponding inputs, locals or constant values.
The next stage is the combined ALU and memory stage, which implements deeply pipelined
integer and floating-point operations as well as load instructions and texture fetches. Then,
the execute stage (EX) handles control flow and finally, the write-back stage (WB) stores the
results either in the local or the output register file.
Each hardware thread is represented by a tuple describing the execution context and the
associated resources of a thread. It contains the current instruction pointer (∈ ℤ) as well
as the number (∈ ℤ) of assigned input, output and local registers:

: = (, , ,) ∈ ⊆ ℤ × ℤ × ℤ × ℤ (88)

106

The design of the SRC resembles a barrel processor and supports multiple hardware
threads for improved utilization and latency. In fact, there are two levels of concurrency.
First, each stage can store its own thread, so that the processor can execute up to
unrelated rules in parallel. In addition, the pipeline also supports SIMT parallelism up to a
level of (here = 4) to account for the data parallelism of computer graphic tasks. As a
consequence, each stage can process up to threads in parallel as long as they execute
the same rewriting rule. Hence, the maximum number of active threads in the pipeline is⋅ (here 128). For comparison, in terms of CUDA, the warp size of the SRC is and its
functionality approximately corresponds to CUDA cores.

5.5.3 Shader Programs
The stream rewriting processor (Figure 80 on page 103) emulates a graphics pipeline by
modifying a token stream. Each stage corresponds to a rewriting rule, so that the complete
pipeline can be described as a set of functions : ℤ^Σ with , ∈ ℕ (see Section 5.3).
Conceptually, the SRP contains a single program memory as an array of instructions:

: ℤ → (89)

Figure 82. Linkage of CALL expressions and shader stages

A pipeline stage is defined by binding a logical stage identifier ∈ ℤ , which is also used in
the CALL token, to identify the starting address of the corresponding rewriting rule:

: ℤ → ℤ (90)

Hence, an executable rewriting rule with token CALL causes the SRC to create a new
thread at address s (). While the thread executes, it produces a variable amount of
output tokens via the EMIT instruction, which are then used to replace the original CALL
expression. The relation between the stage identifier and the associated shader is also
illustrated in Figure 82. Individual shaders are stored in the flat program storage. The start
address of each shader is defined by the stage table, while the last instruction of a program
is always the opcode. This extra level of indirection permits to rebind logical shader
stages without modified the program memory. In the current implementation of the SRP,
the minimum size of the stage table contains 64 entries to define up to 64 logical stages.
An example is given by the shader program on the next page, which is stored at address100 and returns the sum of both arguments.

107

100: ADD_I32 L0, I0, I1 # add inputs I0, I1
101: EMIT L0, 1 # emit local L0
102: EXIT 0 # exit shader

By setting (4) ∶= 100, this shared is invoked using the CALL expression with index 4:〈… ,1,2,4, , … , 〉 → 〈… ,3, … 〉 (91)

Currently, the system is programmed from a host CPU using a low-level hardware-specific
library. Similar to CUDA or Direct3D, calls are submitted using the dispatch function, which
takes the id of the stage, an optional rectangle and a list of arguments:

ℎ(, ,) (92)

Technically, dispatch sends the following stream to the stream rewriting processor:

〈arg , … , arg , , 〉 (93)

In the next section, a prototype implementation using this API is presented.

5.5.4 Implementation
In order to evaluate the concept of stream rewriting for graphics processing, the SRP has
been implemented using Verilog and synthesized for the VC707 prototyping platform from
Xilinx, which features a Virtex 7 XC7VX485T FPGA that can be re-configured with a user-
defined netlist. Most important, the board also has a PCIe connector and can be plugged
into a PC for communication between the SRP and a graphics application. The hardware
and software setup of the complete test system consists of a PC with a dual core 3.20GHz
Pentium 4 CPU with Ubuntu (kernel 3.2).
The SRP has been evaluated with eight SRCs in a 8 × 4 configuration. The design met timing
at 200MHz and required 173,774 6-input lookup tables, 224,757 registers, 396 embedded
multiply-adders, 374 BRAM blocks. Individual utilizations are listed in Table 8.

Table 8. Resource usage per component

Component LUT Slice Registers BRAM DSP48E1
System (8 Cores) 174,438 225,493 374 396
SRC Pipeline 0 17,768 21,812 24 48
Dispatcher 1,144 1,850 0 0
Combiner 3,645 4,368 0 0
Stack 2,101 2,478 2 0
ROP + TILE 3,557 8,785 128 8
MIG 10,156 12,909 0 0
PCIe Interface 1707 2273 14 0
HDMI Interface 480 838 7 0

108

5.5.4.1 Generic Performance Tests
To estimate the raw performance and scalability of the design, three generic test cases are
run first, and record the required cycles, processed tokens, executed threads and the
maximum stack size. All tests are rendering into a tile of 256x256 pixels and the
measurements do not include the effort to initialize or flush the buffer. The tests draw a
plain rectangle (256x256) as well as two rectangular triangles with interpolated colors and
texturing.

DOT_I32 L0, $X, A0, $Y, B0 # edge 0
DOT_I32 L1, $X, A1, $Y, B1 # edge 1
DOT_I32 L2, $X, A2, $Y, B2 # edge 2
SLT_I32 L3, L0, C0, 0, 1 # if L0<C0
SLT_I32 L3, L1, C1, 0, L3 # or L1<C1
SLT_I32 L3, L2, C2, 0, L3 # or L2<C2
EXIT L3 # the pixel is outside => exit
...
EMIT color, 1 # write PIXEL
EMIT depth, 1 # token to the
EMIT PIXEL($X, $Y), 1 # stream

Figure 83. Rasterization Shader

The rectangle uses a short shader, which emits a single pixel token per iteration, to
measure the throughput of the system. Likewise, the triangle shader (Figure 83) contains
arithmetic instructions for attribute interpolation and outputs only pixels, which are
contained within the triangle. It uses instancing (Section 2.4.1) to enumerate and optionally
discard uncovered 16x16 blocks [176] [178]. The source code shown in Figure 83 checks if a
single pixel (,) is inside the triangle by testing the conditions ⋅ + ⋅ ≥ against
the three edges (∈) of the triangle.
The results of these tests are presented in Figure 84. For one core, the plain rectangle takes
three cycles per pixel because each core can emit one token per cycle and each pixel is
encoded using three OUT tokens (2.5.1) in hardware for address, color and depth. The
number of tokens has been recorded as zero because in this minimalistic example, they are
immediately processed by the ROP stage and never reach the monitor (Figure 80). Since the
global stream has a width of three tokens in this implementation, the rectangle test is
bandwidth limited for more than three cores. Contrary, the colored and textured triangles
require more work per pixel, so that the ratio between communication and computations is
more convenient. Though, the speed-up also drops for more than four cores with 16
pipelines but the more expensive textured triangle scales slightly better.

109

Cores (SRC) 1 2 4 8
Plain Rectangle
Cycles 197,185 98,885 66,121 66,121
Tokens 0 0 0 0
Max. Stack 0 0 0 0
Threads 65,536 65,536 65,536 65,536
Colored Triangle
Cycles 178,904 89,856 46,180 38,154
Tokens 3,345 3,345 3,345 3,345
Max. Stack 246 246 246 246
Threads 38,912 38,912 38,912 38,912
Textures Triangle
Cycles 376,410 192,919 102,579 79,524
Tokens 4,257 4,257 4,257 4,257
Max. Stack 1,152 1,152 1,152 1,152
Threads 38,912 38,912 38,912 38,912
Figure 84. Performance of generic tests

5.5.4.2 Recursion
In addition, the recursive capabilities and the performance of the stack are evaluated by
drawing a rectangular 2D triangle through repeated subdivision. The triangle is recursively
split into four sub-triangles until the pixel-level has been reached, so that each iteration
roughly quadruples the number of tokens. The results have been recorded for various
triangles sized and are shown on the top of Figure 85.
Obviously, the number of executed threads, and therefore also the number of clock cycles,
grows exponentially when the edge length of the triangle is doubled. Likewise, multiple
cores offer some scalability but cannot account for the exponentially grow of threads.
However, the maximum required stack size increases only linearly. Similarly, a trace of the
stack size and the number of active tokens is shown at the bottom of Figure 85. Despite the
frequently varying size of the stack, the number of circulating tokens remains nearly
constant at the requested level (here b = 3072).

0 500 1000 1500

8

4

2

1

Plain Rectangle

µs

1.0

1.99

2.98

2.98

0 500 1000

8

4

2

1

Colored Triangle

µs

1.0

1.99

3.87

4.69

0 1000 2000

8

4

2

1

Texture Triangle

µs

1.0

1.95

3.67

4.73

110

Figure 85. Results of recursive tests.

5.5.4.3 Graphics Pipeline
Based on the generic examples, a more complex pipelines is built to estimate performance
and flexibility of the system. In addition, the SRP architecture using a global dispatcher and
parallel working cores is compared to much simpler ring pipeline, which arranges the SRC
sequentially and uses a FIFO instead of a stack. All tests render into a framebuffer of
640x480 pixels and six tiles (256x256). In contrast to the generic test, the complete
rendering time of a frame is measured. The results are listed in Figure 86 and Figure 87 for
different numbers of cores, while the corresponding screenshots are shown in Figure 88
and Figure 89. The models used is this test, the bunny, dragon and armadillo meshes are
taken from the Stanford 3D Scanning Repository:
http://www.graphics.stanford.edu/data/3Dscanrep/.
First, a rasterization pipeline has been implemented with perspective correct attribute
interpolation [179] and triangle setup as custom shader stages. It supports both vertex
colors and per-pixel lighting by interpreting the color as a normal vector. In addition, Phong
Tessellation [180] is added as a set of recursive rules and interpolates a surface based on
the vertex normals. In this example, a cube is subdivided one, two or four times by a
recursive shader program. Further, a torus is rendered using vertex colors, per-pixel lighting
or texture mapping. In addition, a test using small triangles (3 pixel) is run to estimate these
non-pixel-related costs like the triangle setup. It can be observed that most tests scale with
the number of cores and that the parallel arrangement is slightly more efficient but the
results also expose several scalability issues, which are discussed in the next section.

0
10
20
30
40
50

16x16 64x64 256x256

M
ill

io
ne

n Cyclesx 106
1

2
4
8

0

5000

10000

15000

16x16 64x64 256x256

Max. Stack Size

0

100

200

300

400

16x16 64x64 256x256

Ta
us

en
de Threadsx103

0

10

20

30

40

50

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900

Ta
us

en
de Iterationsx 103

processed tokens

stack size

http://www.graphics.stanford.edu/data/3Dscanrep/

111

Bunny (Vertex Color)

Bunny (Lighting)

Objects

Phong Tesselation (Cube)

Figure 86. Performance of rendering tests.

0 10 20

8
4
2
1

948 Triangles

ms
0 20 40 60

8
4
2
1

3,851 Triangles

ms
0 100 200

8
4
2
1

16,301 Triangles

ms

0 10 20 30

8
4
2
1

948 Triangles

ms
0 20 40 60

8
4
2
1

3,851 Triangles

ms
0 100 200

8
4
2
1

16,301 Triangles

ms

0 5 10 15 20

8
4
2
1

Deformed (1.280 Triangles)

ms
0 10 20 30 40 50 60 70

8
4
2
1

Armadillo (4.860 Triangles)

ms
0 50 100 150

8
4
2
1

Dragon (11.102 Triangles)

ms

0 5 10 15

8
4
2
1

1x: 48 Triangles

ms
0 5 10 15 20

8
4
2
1

2x: 192 Triangles

ms
0 50 100 150

8
4
2
1

4x: 3072 Triangles

ms

112

Torus (512 Triangles)

Small Triangles (3 Pixel)

Figure 87. Performance results of rendering tests.

Bunny Color (1K) Bunny Color (4K) Bunny Color (16K)

Phong Tesselation (1x) Phong Tesselation (2x) Phong Tesselation (4x)
Figure 88. Screenshots (640x480) of rendering tests.

0 5 10 15 20

8
4
2
1

Vertex Color

ms
0 5 10 15 20 25

8
4
2
1

Per-Pixel-Lighting

ms
0 10 20 30

8
4
2
1

Texture & Vertex Color

ms

0 5 10 15 20 25

8
4
2
1

1K Triangles

ms
0 25 50 75 100

8
4
2
1

4K Triangles

ms
0 200 400

8
4
2
1

16K Triangles

ms

113

Dragon (11.102) Deformed (1.280) Armadillo (4860)

Torus (Color) Torus (Lighting) Torus (Textuer & Color)

Bunny Lit (1K) Bunny Lit (4K) Bunny Color (16K)
Figure 89. Screenshots (640x480) of rendering tests.

5.5.5 Discussion
The performance evaluation of the SRP prototype and indicates some limitations of the
proposed architecture and leads to the following results:

 Stream Management
The throughput of the stream might easily become a limitation of this architecture, so
that it has been made wide in the presented implementation. The combiner (Figure 80)
reassembles multiple narrow streams, which are coming from the SRCs, into a wide
stream in parallel. Similarly, the ROP unit also reads three tokens at once and can
therefore write one pixel per cycle. In addition, its capacity could be easily extended by
widening the stream to six or even more tokens. For this prototype, a raw fill rate of
200 MPixel/s is sufficient since the focus has been put on the flexibility of the shader
cores (SRC). However, the generic tests in Section 5.5.4.1 show that for simple shaders,
which output a constant color, the stream still becomes a bottleneck and that,
according to the stream width of three tokens, their speed-up is also limited by three.

114

 Stack-based Scheduling
In comparison to the FIFO, the main advantage of the stack is the reduced memory
usage. However, it has a lower raw throughput due to implementation details. Hence,
for one core, there is just has the overhead of the stack without the benefits of the
improved scheduling, which can be seen in the Phong Tesselation test case.

 Dispatcher
The dispatcher is currently the slowest component because it has a maximum
throughput of one token per cycle. Hence, the usage of instancing provides a significant
speed-up because it can reuse input data, which allows creating up to four SIMT
threads per cycle. Currently, geometry processing has been implemented via CALL
tokens, so that is does not utilize SIMT and also suffers from stream contention.
Contrary, the pixel operations are specified as instanced calls (2.4.1) and dispatched at
a much higher rate. Therefore, the experiments in Figure 86 and Figure 87 show a
better scalability for models using fewer and large triangles.

This section presents the evaluation of stream rewriting for graphics processing that
combines a traditional SIMT approach for local threads at each core with a global
scheduling algorithm for stream management. As a result, it effectively solves many existing
limitations and supports both programmable computations and communication. In the next
section, the flexibility of this approach is extended towards the general purpose processors.

5.6 General Purpose Graphics Processor
Based on the experimental results of the
functional processor and the SIMT design,
a third stream rewriting processor (SRP) for
graphics is developed in this section.
Instead of specialized shader cores and
microcode, this architecture utilizes
general purpose processors, which can be
programmed in ANSI C and are optimized
for instruction-level parallelism. The
flexibility of this architecture is further
enhanced by a two-level cache hierarchy, custom atomic operations through dynamic
binding (Section 2.5.2) and support for stream compression (Section 2.4). In addition, a
functional simulator and an OpenGL extension for stream rewriting simplify the
development of test cases. As a result, these novel capabilities greatly reduce the
complexity of several advanced rendering methods, like order-independent transparency
via K-buffering, path-tracing and the recursive generation of procedural geometry.
Although these techniques require significant effort to run efficiently on current GPUs, the
experiments show that they fit well into the concept of stream rewriting and thus benefit
from the flexibility this stream rewriting processor (SRP).

Figure 90. Components of the SRP test system.

Application

Runtime API

DDR3 RAM

User Mode

OpenGL

SW Emulator

DMA DriverKernel

Mainboard

SRP HDMI Output

FPGA

PCIe Root

PCIe Endpoint

HDL Simulation

115

5.6.1 Overview
The complete test system of the SRP is shown in Figure 90 and consists of several hardware
and software layers. A graphics application can program the SRP either via a runtime API or
by using a custom OpenGL extension. In addition to the hardware SRP, there are two
simulated devices:

1. The HDL simulation is written in Verilog and based on the same source code as the
hardware to provide a slow but cycle-accurate model. Hence, it is mainly used to verify
correct functionality of the hardware SRP.

2. The software emulator utilizes a much faster but less precise functional model, which is
better suited for complex test cases. It is integrated into the driver stack and performs
binary translation of the shader at runtime, so that stream rewriting applications can be
run at decent speed without modifications.

A hardware prototype of the SRP has been implemented on the VC707 FPGA board from
Xilinx and runs at 200MHz. Most important for graphics processing, the board includes 1GB
of 800MHz DDD3 memory, a PCIe slot, and a HDMI output. In this configuration, the initial
token stream of the application is copied to the SRP via the PCIe interface. Similar to the
other PCIe interfaces, a kernel mode driver allocates a ring buffer in system memory and
the SRP fetches the commands autonomously via DMA transfers. In addition, read-backs
from the host CPU to the SRP are implemented in a similar way.

Table 9. Resource Usage of the FPGA (Relative Usage in %)

#Cores LUT REG BRAM DSP48E1
1 27,909 (9%) 41,234 (6%) 7/137 10
2 34,834 (11%) 49,051 (8%) 7/147 20
4 49,084 (16%) 65,767 (10%) 8/181 40
8 76,405 (25%) 96,854 (15%) 8/221 80
16 128,583 (42%) 159,033 (26%) 8/301 160
32 240,188 (79%) 282,591 (46%) 7/447 320

The entire system has been synthesized, placed and routed for different configurations
of the SRP, which consists of up to 32 stream rewriting cores (SRC). The resource utilization
of each setup is listed in Table \ref{tab:resources}. The resources are distinguished into six-
input look-up tables (LUT), registers (REG), block rams (BRAM) with 18/36kbits and 25x18
bit multipliers (DSP48E1). In the next sections, the components of this SRP are described in
more detail.

116

5.6.2 Stream Rewriting Processor (SRP)
The data flow model of the stream
rewriting processor (Figure 91) consists of
concurrently working hardware blocks
that are connected via queues (arrows),
so that all steps of the stream rewriting
process can be optimally performed in
parallel. In general, the structure
resembles the abstract design of current
GPUs [9] and contains a decoder for work
items and several stream rewriting cores
(SRC). The stream rewriting network
(green) with routers (R) transports the
token stream. In addition, each core has
also access to the external memory via a
separate network (red) with routers (M)
and a shared L2 cache (256 KB).
Here, the single most significant difference to established architectures is the global feed-
back loop at the left side, which allows the SRCs to dynamically generate work-load during
the execution of a shader. The rewriting process starts at the PCIe interface with the initial
stream received from the CPU. The entry point ensures that arriving tokens are always
appended to the end of the existing stream and truncates the input stream if the optimal
size of tokens has been reached (Section 2.3). Executable CALL expressions are detected
by the decoder and are then rewritten by the tree of stream rewriting cores (Section 5.4.2).
The cores are connected through a hierarchical network of routers (R), which split and
reassemble the resulting token stream in the correct order. Eventually, the stream is
reaching the stack, which implements the scheduling algorithm presented in Section 2.3
and at the exit point, results are removed from the stream and sent back to the CPU.
Contrary, pending computations are passed to the entry point to proceed the rewriting
process with another iteration. Memory requests from the SRCs are collected using a 512
bit wide ring-bus and routed through a direct-mapped L2 cache in order to reduce the
latency of external memory access. The cache utilizes a write-back strategy and contains
4096 blocks of 64 bytes. Eventually, the results of a read operation are sent back to the SRC
via second hierarchically network (red) with routers (M).
The binary token format is illustrated in Figure 92 and consists of 33 bits. The most
significant bit distinguishes between literal values and CALL tokens, which contain the
number of arguments, the address of the corresponding function and additional flags.

Figure 91. Architecture of the stream rewriting processor.

Figure 92. Binary token format of the SRP.

SRC SRC SRC SRC

R R

R

R R

R

SRC SRC SRC SRC

R R

R

R R

R

Entry

R

R

Exit Stack

Decoder

PCIe
Interface

DRAM

from CPU

to CPU

L2 Cache

R M receive

request

R M

R M R M R M

R M

R M

0

Literal Token

data

1 bit 32 bits

1

CALL Token

1 bit 8 bits14 bits4 bits

flags

6 bits

func args

117

5.6.3 Stream Rewriting Core (SRC)
While the stream management and
decoding is well-suited for dedicated
hardware blocks and pipelining, shaders are
written in software to combine the
performance advantages of fixed hardware
with the flexibility of general purpose
computations. The stream rewriting core
(SRC) is designed as a general purpose
processor with additional streaming
rewriting instructions (Table 10) but in
contrast to the CUDA multiprocessor, it is
optimized for single-thread performance to
handle frequently varying and incoherent streams. Similar to the echelon research GPU
from NVidia [181], it runs only four unrelated threads to execute different code paths
without performance loss. Since the results of a rewriting operation must be reassembled
into a single stream, a moderate number of threads also helps to minimize the capacity of
the required input and reorder buffers (255 tokens per thread). In addition, the SRC also
contains a dual-issue pipeline as well as an 8-way associative L1 cache (Figure 93).
The instruction-set of the SRC is mostly binary compatible to the MicroBlaze architecture
from Xilinx, so that the existing GCC tool-chain can be employed for the compilation of
shader programs.

Table 10. Instructions for Stream Rewriting

OpCode Description
get(x) Read a literal value from the stream and store it in variable .
put(x) Write as a literal on the stream.
call(func, argc) Generate a CALL token for function func with argc arguments.

However, the internal design of the SRC is fundamentally different and optimized for
moderate instruction-level parallelism. Four hardware threads are cycling through the
processor in order to compensate the latency of floating-point operations without the costs
of dynamic scheduling. Also, the FETCH stages load two subsequent opcodes from the
32KB local memory, which is shared among all threads and also contains a separate stack
for each thread as well as local data. In the DECODE stages, up to five operands are read
from the register file with 4 × 32 = 128 entries.
The two ALU stages perform integer arithmetic, the full FPU is responsible for floating-
point addition, multiplication, division, and square-root but there is a also second FMUL
unit, so that two multiplication can be issued per cycle. In addition, the branch unit handles
control flow and computes the address of the next instructions to be fetched. Beside
floating-point division and square-root, most of the functional units are pipelined, so that
the SRC can reach a maximum throughput of two instructions per cycle.

Figure 93. Schematic of the stream rewriting core.

Fetch

Decode

FPU

Fetch

Decode

ALU

FMUL

ALU

Memory

L1Cache

Local Memory

Register File

Branch

Input
Buffer

Stream

Reorder
Buffer

Put/Call

Stream Input

Stream Output

Stream
Unit

Memory Request/Receive

Stream Rewriting Core

118

Each of the four threads owns a small cache with a size of 512 bytes, which are divided into
eight fully associative blocks. Since the rendering of a frame usually requires random access
of multiple source and destination buffers, associativity has been preferred in favor of the
total cache size. Due to the small number of threads, a cache becomes necessary in this
design to reduce the costs of an external memory access (> 40 cycles latency).
For stream rewriting, the SRC implements the three additional opcodes , and ,
described in Table 10. In particular, reads a literal token from the stream, emits a
literal and generates a new function call. Initially, the STREAM UNIT (Figure 93) scans
the stream for executable tasks and invokes the corresponding function, whose entry point
is an address in local memory and given by the stage identifier . The function itself is then
responsible for fetching arguments and producing output tokens. For instance, the
following shader with : ℤ → ℤ returns the sum of its two arguments:

void f()
{

int x, y:
get(x); // read argument x
get(y); // read argument y
put(x+y); // write sum of x and y

}

More complex examples are presented in Section 5.6.6. Instead of specifying the stream
opcodes manually, it would be also possible to let a high-level compiler map the basic
blocks into individual shaders (Section 3.3).

Table 11. Runtime API of the SRP

Function Description
Stream
put(x) Append literal to the stream.
call(func) Append CALL token to the stream.
receive(size) Read results from the SRP.
Synchronization
sync() Ensures that all preceding calls are finished.
flush() Start rewriting of the token stream.
Memory
mem_alloc(size) Allocates size bytes of global memory.
mem_free(ptr) Frees a global memory region starting at ptr.
mem_write(addr,size, data) Write into global memory.
mem_read(addr,size) Read size bytes from global memory starting at addr.
mem_set(addr,size, data) Clear global memory region starting at addr with data.
Utility
display(addr) Display video output at the address addr.
config(addr, size, data) Write into local memory of all SRCs.

119

5.6.4 Runtime API
The runtime library abstract the software interface to the SRP, which consists of the
functions listed in Table 11. In particular, the main purpose of this library is to build the
command stream for the SRP, to provide basic memory management, and to invoke certain
system calls and utility functions. Therefore, more high-level libraries like OpenGL can omit
hardware details and token encoding. In addition, the runtime API works mostly
transparent with all three device types, so that test cases can be quickly brought from the
emulator to the real hardware with minimal effort.
The stream instructions are similar to the opcodes of the SRP itself (Table 10). Here,
writes a literal and inserts an invocation into the command stream. Likewise, results of
a computation can be retrieved by . As an important implementation detail, the
stream is buffered locally before it is written to the kernel mode driver. In addition, the
runtime library is usually linked statically, so that the corresponding functions can be
inlined to reduce the overhead of this immediate style API.
The runtime API supports two different instructions for synchronization. A call to ℎ
transfers the current stream to the SRP and starts the rewriting process. Hence, it is
normally called at the end of a command sequence and also before receiving data from the
SRP. Since there might be still tokens from a previous call circulating in the ring (Figure 91),
there is a second function , which ensures that all preceding tasks are rewritten
completely. For this purpose, its blocks the entry point until the ring becomes empty and is
usually called before modifying global configuration data. Both functions are inserted into
the stream and execute in-order but asynchronously.
In addition, the runtime library provides the functions _ and _ for
allocating and deallocating global memory. There are also three system calls for writing,
read and clearing a continuous region of memory, which are executed on the SRC. In
contrast to the global memory, the local RAM must be managed manually and can be
written for all SRCs in parallel by using the system call. At the end of a frame,

sets the start address of the front buffer for HDMI output.

Figure 94. OpenGL pipeline with stream rewriting module.

Global Memory

Display List

Per-Vertex
Operations

Rasterization

Per-Fragment
Operations

Application

Stream
Rewriting

ShaderTexture
Memory

Pixel
Operations

Framebuffer

120

5.6.5 OpenGL Integration
On top of the runtime library (Section 5.6.4), a proof-of-concept OpenGL front-end has
been implemented without support of the fixed function pipeline. A special feature of
OpenGL is the extension mechanism, which allows to introduce experimental functionality
into the API before it is standardized. The standard OpenGL pipeline and its relation to
stream rewriting are illustrated in Figure 94. Initially, rendering commands are processed by
the per-vertex, rasterization, and per-fragment stages, which also contain programmable
shaders in more recent OpenGL versions. This thesis propose an alternative type of
programmable stage called the stream rewriting shader, which bypasses the existing per-
vertex, rasterization, and per-fragment processing but stream rewriting commands are still
compiled into display lists.
In order to minimize the number of modifications, the extension EXT_stream_rewriting is
built on top of the existing OpenGL shader API (glCreateProgram, glDeleteProgram). A
stream program is actually written in C, compiled using the existing GCC tool chain for the
MicroBlaze architecture and the resulting ELF executable can be loaded via
glProgramBinary. The stream program exports a list of global variables and functions,
whose address can be retrieved by calling glGetUniformLocation. Variables are set using the
class of glUniform* functions and for the invocation of a stream program, the following
commands are added to emit literal tokens of various types (*) and function calls:

void glPut*(T x, T ...);
void glCall(GLuint addr);

Similar to the glBegin/glEnd immediate mode, stream commands are exclusively placed
inside a block of glBeginStream and glEndStream. As a result, the same GL state can be
used for multiple calls to reduce the validation overhead in the driver.

void glBeginStream();
void glEndStream();

The minimalistic example on the next page shows the recursive shader subdiv, which
tesselates the triangle (; ;) until the specified detail level has been reached. In this
case, the coordinates are passed to the next stage (draw_tris) for further processing.

121

#define get3(v) get(v[0]); get(v[1]); get(v[2]);
#define put3(v) put(v[0]); put(v[1]); put(v[2]);

void subdiv()
{

float a[3], b[3], c[3], ab[3], bc[3], ca[3];
get3(a); get3(b); get3(c); // read 3x3 floats

int level;
get(level); // read detail level

if (level == 0) // end of recursion reached {
put3(a); put3(b); put3(c); // draw current triangle
call(draw_tris, 12);
return;

}

int d = level-1; // proceed with subdivision

for (int i = 0; i < 3; i++) {
ab[i] = (a[i]+b[i])*0.5f; // midpoint of a and b
bc[i] = (b[i]+c[i])*0.5f; // midpoint of b and c
ca[i] = (b[i]+c[i])*0.5f; // midpoint of c and a

}

// create four smaller triangles
put3(ca); put3(a); put3(ab); put(d); call(subdiv,13);
put3(ab); put3(b); put3(bc); put(d); call(subdiv,13);
put3(bc); put3(c); put3(ca); put(d); call(subdiv,13);
put3(ab); put3(bc); put3(ca); put(d); call(subdiv,13);

}

The compiled ELF image is loaded into a program object :

const char elf_image[] = { ... };
GLuint p = glCreateProgram();
glProgramBinary(p, GL_FORMAT_ELF, elf, sizeof(elf));
Gluint subdiv = glGetUniformLocation(p, "subdiv");

The following code selects the program and utilizes the new functions to invoke the
shader for the coordinates (; ;):

glUseProgram(p); // select shader program p
glBeginStream(); // begin initial stream
glPut3fv(a); // write coordinates a, b, c
glPut3fv(b);
glPut3fv(c);
glCall(subdiv); // append call token

glEndStream(); // submit initial stream

In the next section, the proposed extension EXT_stream_rewriting and the OpenGL
prototype driver are utilized to implement more complex examples.

122

5.6.6 Results
In this section, experimental results and performance measurements of the FPGA
prototype are presented. The design is implemented using the VC707 board and connected
to a PC with a dual core 3.20GHz Pentium 4 CPU that runs Ubuntu (kernel 3.2).
Hardware configurations for up to 32 cores have been tested. In addition, the software
simulator (SW) is evaluated using an i5-4670K processor with 3.4HGz and Windows 8.1. For
the hardware version, the execution time of a shader is measured using the
ARB_timer_query extensions with a resolution of 5 . The images have been rendered at a
resolution of 640x480 pixels. This section consists of three parts. As a reference for
subsequent test cases, arithmetic and memory throughput of the SRP is evaluated first. The
second part utilizes several basic rendering tests to demonstrate the ability of the SRP to
execute various graphics pipelines in software. Finally, the third part contains three
advanced examples, which are difficult to implement on current GPUs and therefore
especially benefit from the more flexible architecture of the stream rewriting processor.

Table 12. Arithmetic Performance in MIPS

ADD MULT FADD FMULT FDIV
Max./SRC 400.00 400.00 200.00 400.00 27.59
1 375.98 376.39 196.90 376.38 23.53
2 751.11 752.75 393.79 752.73 47.06
4 1,498.80 1,505.29 787.53 1,505.05 94.12
8 2,983.74 3,008.52 1,574.73 3,008.66 188.22
16 5,911.50 6,009.33 3,146.95 6,010.53 376.41
32 11,598.97 11,957.08 6,277.81 11,960.83 752.60
SW 2,083.41 1,666.92 1,655.36 3,428.56 524.09

Table 13. Memory Throughput in MB/s

Read Write Increment Clear
1 254.37 325.80 149.15 1,517.96
2 498.92 609.05 293.77 3,017.31
4 971.44 1,047.80 561.56 5,955.01
8 1,432.23 1,564.73 935.67 5,946.51
16 1,291.72 1,133.41 1,006.56 5,938.92
32 1,262.05 916.24 852.54 5,929.74
SW 8,870.77 7,735.24 9,226.41 not supported

5.6.6.1 Performance Tests
The ALU performance is measured by distributing 2 operations of a specific type equally
on all SRCs and the results are shown in Table 12. In addition, the theoretical maximum of
each instruction type per SRC is listed in the first row. As a result, the largest configuration
reaches ≈ 90% of the theoretical performance. Beside the division, the raw ALU
performance of the hardware SRP exceeds the results of the software emulation, so that it
most likely does not represent a bottleneck in further test cases.

123

The VC707 prototyping platform contains a DDR3 SODIMM 800MHz / 1600Mbps with 64-
bit data width, which leads to a maximum throughput of 12.8 / for the external
memory interface. In order to match the peak performance, the L2 cache and the memory
interconnect are running at 200 MHz with 512-bit data width. However, the actual
efficiency of DRAM access heavily depends on the address pattern. In this test, the
capability of the memory sub-system to handle concurrent requests from up to 32 SRCs is
measured. In particular, 256x1MB are read, written, incremented and cleared by separate
threads (Table 13). In comparison to existing GPUs and the software simulator, memory
bandwidth is several magnitudes smaller, so that a performance difference in further tests
is certainly caused by memory access.

5.6.6.2 Generic Tests
After measuring the basic performance of the SRP, several generic applications are run to
evaluate distinct use-cases of the system.
The Mandelbrot example demonstrates the evaluation of a data parallel function using
stream rewriting, where each pixel is computed individually. Similarly, Rotozoom displays a
rotating texture, but instead of expensive computations, there is one read and one write
operation per pixel. Further tests include the rendering of a texture-mapped cube, a torus
with per-pixel lighting, and the bunny with 69,451 triangles from the Stanford Computer
Graphics Laboratory.
Bezier3D contains a complex pipeline, which sub-divides and draws a bi-cubic Bezier patch,
and a low-poly object is tessellated using N-patches [182]. Ray-casting reimplements a
classic 2.5D ray casting engine in the shader and displays an old cellar environment, while
the ray-tracing tests draws a reflecting sphere on a plane with a chessboard pattern to
measure the efficiency of dynamic scheduling with non-uniform workload. For each of test,
the average rendering times per frame are shown in Figure 96 and selected images are
displayed in Figure 95.

Torus Bezier3D Bunny (69,451 Triangles)

N-Patch Ray Casting Ray Tracing
Figure 95. Screenshots (640x480) of the rendering tests

124

Mandelbrot Rotozoom (Texture) Textured Cube

Torus Bezier3D Bunny (69,451 Triangles)

N-Patch (948*43 triangles) Ray Casting Ray Tracing
Figure 96. Average rendering time per frame in ms for different number of cores.

The results expose the general scalability of the system but also limitations of the current
implementation. For instance, the software emulator is faster in all cases except Bezier3D
and Mandelbrot, which suggests stream contention or cache trashing. Also, an increased
number of small triangles cause stagnation at eight cores for the Bunny and N-Patch tests.

5.6.6.3 Advanced Tests
In this section, three examples, which benefit from the improved flexibility of the stream
rewriting processor, are presented. The corresponding images are shown in Figure 97 and
measurements are presented in Figure 99.
The k-Buffer has been proposed to solve the problem of order-independent transparency
with a single geometry pass [150]. Regardless of the draw order, it collects the nearest
color and depth samples during the rendering of the scene. At the end of a frame, the
stored samples are combined using alpha-blending. Hence, the rendering of a pixel requires
the insertion of the current color and depth values into a sorted list of elements. A
significant technical challenge is to guarantee the correctness of this read-modify-write
operation in case of multiple concurrent threads accessing the same location. However,
recent GPUs often support only a fixed set of atomic operations for basic arithmetic, which
do not cover this more complex and application-dependent case. Thus, the original k-buffer
suffers from hazards and rendering artefact, which can be resolved by introducing per-pixel
spin-locks [140] or applying software error correction [151].

0

200

400

600

1 2 4 8 16 32 SW
0
5

10
15
20
25
30
35

1 2 4 8 16 32 SW
0

10

20

30

1 2 4 8 16 32 SW

0

50

100

150

1 2 4 8 16 32 SW
0

10

20

30

40

1 2 4 8 16 32 SW
0

500

1000

1 2 4 8 16 32 SW

0

500

1000

1 2 4 8 16 32 SW
0

20

40

60

80

1 2 4 8 16 32 SW
0

500

1000

1500

1 2 4 8 16 32 SW

125

k-Buffer: Gears k-Buffer: Drive k-Buffer: Building

PT0 (Basic) PT0 (Adaptive) Iteration Count

PT1 (Adaptive) PT2 (Adaptive) Tree
Figure 97. Screenshots (640x480) of the rendering tests.

a) k-Buffer b) Adaptive Path Tracing
Figure 98. Performance of advanced rendering tests.

0

50

100

150

200

250

300

350

400

1 2 4 8 16 32 SW
Gears Drive Building

ms
0

50

100

150

200

250

300

350

1 2 4 8 16 32 SW

Ta
us

en
de

PT0 PT1 PT2

s

126

c) Tree d) Rendering Time per Frame
Figure 99. Performance of advanced rendering tests.

The k-Buffer implementation for stream rewriting follows the original proposal, which
describes a possible hardware extension to assign pixels to a specific shader core based on
their coordinates (Fig. 2 in [150]). The suggested programmable scheduler can be
implemented on the SRP in software using the atomic calls described in Section 2.5. Since
this SRP is optimized towards coarse grained threads, the dynamic binding is not performed
at the level of pixels but instead assigns scanlines to a particular core.
The k-Buffer implementation of this tests stores = 4 elements per pixel and can therefore
display up to four levels of transparency. It is evaluated using the gears, drive and building
models (Figure 97). The average rendering times per frame are shown in Figure 98a) and
indicate acceptable scalability for up to eight cores as well as a moderate speed up for 16
cores. Since each pixel stores 2 ⋅ = 8 32-bit values for color and depth information,
memory bandwidth can become a bottleneck of this test and therefore, the software
emulator outperforms the hardware implementation.
The second test employs path tracing to approximate the problem of global illumination.
For this purpose, path tracing generates random rays, which are iteratively reflected from
surfaces to collect both direct and indirect light contributions [183]. This technique
effectively utilizes a Monte Carlo algorithm to approximate the integral of the rendering
equation and is able to produce realistic images at the expense of computation time.
However, since the calculations of pixels and rays are independent, it can benefit from
many-core architectures. Unfortunately, stochastic algorithms generally do not map well to
the data parallel SIMT architectures of current GPUs and in this case, the randomly
generated rays lead to divergent control flow in the shader.
As a possible solution, the author of [184] suggests to remove inactive rays after each
iteration and compact the stream to improve utilization. Since the SRP already reassembles
rewritten fragments into a single continuous stream, the compaction is actually performed
in hardware by the combiners of the stream rewriting network. As a result, the presented
SRP architecture can handle non-data-parallel threads with different code paths at full
speed. In addition, the conditional creation of additional rays corresponds to the dynamic
instantiation of threads and fits well into the execution model of stream rewriting.

0

50

100

150

200

250

300

350

1 2 4 8 16 32 SWms
0

200

400

600

800

1000

1200

1400

1600

1800

0 8 16 24 32 40 48 56ms

Adaptive: 1 - 8 Rays per Pixel

Basic: 8 Rays per Pixel

Frame

127

Three test cases (PT0, PT1, PT2) are presented in Figure 97 on page 125 and show (1, 2,3)
partly reflective spheres in a colored box. The basic example always computes 64 frames
with 8 rays per pixel but the adaptive version skips the remaining rays of a frame as soon as
a pixel converges. Hence, each pixel in the image is computed using a different number of
iterations (Figure 97, middle right, colors normalized), so that the rendering time of the
adaptive approach drops after a few frames (Figure 99d). Contrary, the basic approach with
a fixed number of rays wastes computational time by processing pixels, which are not likely
to change. Due to the large amount of floating-point arithmetic, the adaptive path tracing
achieves good scalability (Figure 98b). However, for the 32 core version, a delay of 1 had
to be inserted after each frame, which is not shown here, to stabilize the power supply of
the FPGA board.
Similar to shape grammars [153], the recursive refinement of the token stream naturally
corresponds to the creation of procedural geometry on the GPU and exceeds the
capabilities of the Direct3D 11 tesselator stage. In order to demonstrate this functionality, a
growing tree is generated in the shader based on an age parameter. For this purpose, the
tree is constructed from cylindrical shapes [185], which are then rasterized as triangles. The
final image of the tree is shown in Figure 97 and the performance results (Figure 99c)
indicate scalability.

5.6.7 Conclusion
Based on the concept of stream rewriting, a novel graphics processor has been designed,
which supports custom rendering pipelines, recursion, complex atomic operations and
incoherent workloads. It combines the performance advantages of hardware-based
scheduling with the flexibility of general purpose processors. Beside its limitations, the
FPGA prototype provides worthwhile insights for future GPU architectures and runs a large
variety of applications.

128

6 High-Level Synthesis
This section describes the usage of stream rewriting for high-level synthesis of hardware
components. Current high-level synthesis tools based on C/C++ offer only limited support
for recursion and functions pointers. Stream rewriting enables hardware support for the
dynamic creation of threads, parallel recursive tasks, and data-dependent branching in
hardware. Complex examples are used to show the effectiveness of the proposed method.
This section is mostly based on the paper [83].

6.1 Introduction
The synthesis of hardware components from a high-level software specification makes it
possible to increase the complexity of the system while shortening the development time.
In addition, resource consumption and performance can be optimized by automated design
space exploration. Further, when compared to a manual implementation, the automated
process is less error prone and can be verified, so that the quality of the resulting design is
greatly improved [186]. However, most tools only support a subset of the C/C++ language
and focus on either data-flow or control-flow based applications [187]. While data-flow
graphs can be mapped very efficiently into hardware, the synthesis of dynamic control-flow
and especially recursive function calls is often not possible. Usually, pointers are also not
supported in general, because the tools rely on static analysis to constrain the set of
possible locations [188] [189]. If a program does not match the expectations of the
synthesis software, the compilation either fails or produces inappropriate large structures.
Hence, a program must be adapted according to the restrictions of the synthesis tools
before it can be implemented in hardware [190]. Although high-level synthesis can be
considered as a great success, the following open problems can be identified:

1. Often a fixed mapping between high-level functionality and hardware components
is constructed, so that the design cannot react to varying workloads at runtime.

2. Arbitrary communication between two modules requires at least one logical
channel implemented via a network or direct connections.

3. If recursion is supported, the local state if often stored on a stack which enforces
sequential access and hinders concurrent execution of multiple branches.

In this context, the computational model of stream rewriting offers significant advantages
for the high-level synthesis of RTL code from C sources. First, it has been already shown in
Section 3.3 that a restricted form of C can be translated into a SRM. In this section, the SRM
will be further used to generate RTL Verilog code. Finally, both steps are combined into a
complete tool-chain for the high-level synthesis of recursive C functions (Figure 100) .

Figure 100. The synthesis tool-chain consists of several steps

129

First, the compiler parses the source file and converts the program into an expression tree
similar to a functional language (Section 3.3). This tree is then rewritten and mapped into
an acyclic graph of rules describing functional units of the hardware. In the last step, the
hardware implementation of these rules is generated and written to a Verilog source file,
which serves as an input for RTL synthesis. In contrast to the fundamental different
representation, all C languages features except indirect access of local variables and
arguments can be supported. Functions with and without return value can be marked as
asynchronous to execute on a new thread. The synchronization occurs when the result is
accessed the first time.
As a result, recursive functions, indirect calls via pointers and the dynamic creation of new
threads are supported natively. However, unlike a software-based solution, which uses a
stack for recursion, the synthesized hardware is able to execute multiple branches in
parallel. Based on the distributed light-weight scheduling mechanism of stream rewriting, it
becomes possible to spawn and synchronize multiple threads per clock cycle. As shown in
Section 3.3, all branch operations are implemented as asynchronous function calls by the
synthesis front end when it splits the source program, so that even normal control flow can
take advantage of the hardware-based scheduling to hide the latency of long pipelines.

6.2 Related Work
In the context of hardware synthesis, there exist two different types of recursion:

 Structural recursion allows creating hierarchical designs and, similar to macros or inline
functions, it is always expanded during synthesis. As a result, most tools including VHDL
or Verilog provide support for structural recursion.

 Generative recursion is based on dynamically computed values and requires the
expansion of a function at runtime. Stream rewriting provides a method for generating
hardware from a recursive behavior specification.

For comparison, there have been several attempts of recursive hardware synthesis [191]:
The stack-based approach presented in [192] offers a general solution to this problem. Two
stacks for storing local variables and execution position are used to remember the previous
state. The control flow is implemented as a hierarchical state machine controlling these
stacks, which are implemented in fast on-chip memory. Although the computations within
each function can be parallelized, it is not possible to execute several recursive branches in
concurrently. Similarly, the recent work on synthesis of affine recursion [193] uses a single
stack but does not permit multiple invocations.
A stack-less solution has been proposed in [194] to enable parallel processing of recursive
calls. Similar to the SRM, a chain of processing nodes is connected in a pipeline. However, if
the recursion level exceed the maximum supported depth, an expensive dynamic
reconfiguration of the chip is required. Contrary, the SRM is fully functional with only one
node and the maximum recursion depth is only limited by the amount of available memory.

130

Term rewriting systems have been already used for both verification [195] and synthesis
[196] of hardware components. Also, the Bluespec language [197], which is based on
Haskell, transforms the program into a set of rules for hardware implementation. Though,
their concept is fundamental different from the stream rewriting approach. The rules in
Bluespec are guards monitoring the state and signals of each module. A rule executes by
performing an atomic modification of the module's state. Concurrency is employed by
allowing different rules to fire simultaneously and partitioning the functionality into
separate modules. Contrary, the stream rewriting rules work on a stream of tokens and
allow substituting several non-overlapping parts of the stream in parallel.
A very similar approach is the queue machine [67], which also performs iterative
replacement operations on a stream. It is optimized for pipelined operations, but does not
support flow control nor recursion or indirect calls. In addition, it always operates on
neighboring tokens and does not provide random access to arguments.
The concept of program evaluation by term rewriting has been presented for the software
development language Joy [198], which is similar to FORTH [99]. The execution model of
stream rewriting is related to the approach of Joy, but supports random access of
arguments to avoid the costly reordering like the queue machine.

6.3 Implementation
In this section, the generated hardware architecture is described and resembles a more
specialized version of the general purpose (Section 4) and graphics processors (Section 5).
Though, it is based on the pre-order format of the stream grammar.

6.3.1 Architecture
Figure 101 shows the layout of the component generated by the SRM tool-chain. In
contrast to the abstract model, there are multiple processing elements named to

and a shared memory block for data-exchange. However, one core would be also
sufficient, because each of them implements the complete functionality necessary for
substituting the tokens. The result is passed to the next stage, so that subsequent
iterations can be overlapped and executed in parallel. The shared memory can be accessed
from any core as part of term rewriting processes. In addition to the formal specification, a
replacement function may also modify or read the shared memory. Though, the execution
order of rules is based purely on data-dependencies and does not account for side-effects.
Hence, memory accesses must be serialized similar to synchronous calls if necessary.

Figure 101. Synthesized hardware architecture Figure 102. Structure of the rewriting core

Core1

Core2

…

Coren

Shared
Memory

Exit

Entry Data

FSM

Pattern Detection

Ring Buffer

CU

Match

OpCode

Arguments

Constants

memory
mapped
I/O

from entry

Start

MEM
to
exit

131

The actual stream processing takes place inside the rewriting core which is illustrated in
Figure 102. The token stream, coming from the entry point, is arriving at the top-left corner
of this scheme. First, it goes through the pattern detector which marks all CALL tokens
followed by a sufficient number of arguments. Each of these tokens can be executed
immediately and is tagged with an extra bit indicating the positive match. The ring buffer is
used as a temporary storage for the arguments, allowing them to be later accessed in any
order. The buffer can hold a pending rule while another one is evaluated, so that argument
fetch and execution can be overlapped. As a result, even the last argument can be read in
the first cycle of the term rewriting process. Depending on the state of the match bit, the
FSM either issues the corresponding sequence of tokens or initiates a pass-through
operation. The pass-through operation is effectively a NOP, so that unmatched parts of the
stream are preserved for further iterations. The computational unit (CU) is responsible for
calculating types and values of the new tokens by arithmetic or logic operations. Arguments
are received either from the ring buffer or from a special constant RAM.
The CU itself consists of several functional units (FU), each one implementing a special
function in hardware. During synthesis, the operations required by all rules determine the
concrete set of FUs built into the computational unit. In addition to the formal specification,
the last stage provides a general I/O interface, allowing rules to access external memory or
periphery. Since the execution order of rules is based purely on data-dependencies,
memory accesses must be explicitly serialized.

6.3.2 Rule Extraction
The functional program generated by the analysis phase Figure 100 does not yet represent
hardware operations. First, the abstract operations like addition or multiplication are
mapped into functional units (FU) from a library. In addition, multiple simple operations
can be combined, but this merge may hinder the reusability of a FU. Since every core is able
to execute all functions hardware resources can be shared between rewriting rules. Thus,
the hardware costs of the CU (Figure 102) do not increase if an operation is used multiple
times. Instead, it will be composed of all functional units selected in this phase.
Almost the complete execution is pipelined to support complex arithmetic like floating-
point at high clock rates. Hence, there is no possibility to reuse temporary results. All inputs
must be either arguments of the rule or can be fetched from the constant memory. As a
consequence, rules containing multiple FUs in a chain must be split and are executed in
multiple steps (Figure 103).

Figure 103. A complex expression tree is split into two simpler rewriting rules and .

1
+

*

a b c a b c

* NOPCALL,f2

a b

+

F1

2

1 : ℤ3 → TOKEN3(, ,) ↦ 〈CALL, 2, , 〉
F2 2: ℤ2 → TOKEN(,) ↦ 〈 + 〉

132

However, the proposed architecture allows pipelining these calculations, because the next
step is then evaluated on the next core. In the example illustrated in Figure 103, the
argument is used in the sum and is therefore copied using a NOP operation. The
expression tree shown on the left side of Figure 103 implements a multiply-add operation.
For this example, it is assumed that there exist only separate functional units for addition
and multiplication. Hence, a break is inserted after the multiplication to split the tree into
the two rewriting rules and . Both rules are linked by inserting a 〈CALL, 2〉 token from
the first rule to pass the temporary results to the second rule .

6.3.3 Analysis
The definition of the rewriting system allows for a sufficient hardware implementation due
to the following properties:

 Prefix rule facilitates hardware decoding
All rules using the token belong to a single class of prefix rules, so that a single
parametrized pattern detector component can detect all of them. As a result, the
complexity of this module does not depend on the number of rules in the program.
Further, all rules are prefix rules, so that no backtracking is required either.

 Pipelining
Each rule corresponds to an acyclic data flow graph containing a fixed number of inputs
and outputs. Therefore, the substitution of tokens can be pipelined to increase the
maximum clock rate of the synthesized circuit.

 Light-weight dynamic scheduling
Deep pipelines also increase the latency of the module, but it can be partly
compensated if the ring contains an appropriate number of matching function calls. As
a result, complex functions containing both compute-intensive arithmetic and irregular
control flow can be implemented without branch prediction.

 Locality of stream modifications
A replacement operation is a local modification of the stream removing tokens and
inserting results. Hence, the size of the ring buffer (Figure 102), which is required to
hold the inputs of at most two executable expression, is proportional to the
maximum number of arguments. Due to this locality and the absence of an explicit
execution order, the stream can be modified at multiple positions simultaneously
without affecting the final result.

The design space can be explored synthesizing multiple functionally equivalent versions of
the hardware with different resource and performance characteristics.

133

6.3.4 Scalability
All rules perform local rewrite operations by removing tokens and inserting results.
Further, the abstract model of the SRM does not define an explicit execution order, so that
multiple matching rules can be replaced simultaneously without affecting the final result.
Hence, the computation can be accelerated by instantiating several identical Rewriting
Cores to modify the stream of tokens at multiple positions.
According to Figure 101, the architecture of the Stream Rewriting Machine consists of
Rewriting Cores to and a shared memory block that may be replaced by a
more sophisticated approach.
Since, the results of one core are passed to the next stage, subsequent iterations can be
overlapped and executed in parallel. Hence, the function is composed times to
create a pipeline of stages:

: = ($$)

Thus, the number of iterations required to calculate the result is reduced by the factor .

Figure 104. Pipelined rewriting of consecutive iterations.

6.4 Results
The proposed tool-chain has been implemented and employs a prototype compiler that
generates RTL Verilog from restricted C source code.

6.4.1 Recursive Functions
On the next page, Table 14 and Figure 105 show the execution time in cycles for several
recursive functions and multiple cores. All examples have been generated by the presented
tool chain from and the resulting Verilog modules have been evaluated using a cycle
accurate RTL simulator. The number of cores is modified using a generic parameter and
does not require a new run of the high-level synthesis tools. The function is a simple
recursive sum using integer addition with a latency of one cycle. It runs slowly because
every instance creates only one additional thread, but due to pipelining it achieves a
moderate speedup. The function is almost 10 times faster, because it uses a balanced
binary call-tree, which better utilizes the architecture of the ring. The Fibonacci ()
examples show a similar behavior and also compute multiple branches in parallel. The
Ackermann function () also contains two recursive invocations, but has dependencies,
which hinder a concurrent evaluation.

0
1

2
Latency
of Rewriting Core

Time

134

Table 14. Execution Time in Cycles

Test\Cores 1 2 4 8 16
sum(100) 32148 16589 9229 6479 6255
rsum(100) 3460 1989 1262 1223 1215
fib(9) 1530 959 709 734 735
fib(12) 5827 3226 1894 1335 1463
fib(16) 38698 20443 10502 5871 4930
ack(2,5) 6821 6253 5981 5845 5777
ack(3,2) 53789 37945 35729 34917 34649

Figure 105. Execution Time in Cycles

Test 1 Core 4 Cores 16 Cores
LUT FF BRAM LUT FF BRAM LUT FF BRAM

sum 1311 1085 7 4443 3809 27 17109 14378 105
rsum 1727 1402 8 6170 5074 29 23829 19770 113
fib 1335 1089 7 4539 3825 27 17493 14442 105
ack 1318 1096 7 4471 3853 27 17221 14554 105
all 2060 1669 10 7580 6142 34 29344 24046 130
Figure 106. Resource usage of look-up tables (LUT), registers (FF) and BRAMs (LUT/FF/BRAM).

0 20000 40000

16
8
4
2
1

sum(100)

0 2000 4000

16
8
4
2
1

rsum(100)

0 1000 2000

16
8
4
2
1

fib(9)

0 20000 40000 60000

16
8
4
2
1

fib(16)

5000 6000 7000

16
8
4
2
1

ack(2,5)

0 20000 40000 60000

16
8
4
2
1

ack(3,2)

0
10000
20000
30000
40000

sum rsum fib ack all

LUTs

1 Core 4 Cores 16 Cores

0
10000
20000
30000
40000

sum rsum fib ack all

FF

1 Core 4 Cores 16 Cores

135

All functions have been synthesized for the XC6VLX240T-FF1156-1 FPGA from Xilinx by
using the provided Verilog RTL compiler (XST). The source code of the Fibonacci function is
shown below and the other test cases are implemented in a similar way:

// writes x to the exit point
// generates OUT token
void print(int x);

// Calculates the fibonacci number x
int fib(int x)
{

if (x < 2)
return x;

return fib(x-1) + fib(x-2);
}

void main(int x)
{

print(fib(x));
}

The resource usage of 6-input look-up tables (LUT), flip-flops (FF) and embedded RAMs
(BRAM) consumed by a particular implementation is shown in Figure 106. The high-level
synthesis time without RTL synthesis always remained below one second using an Intel i7-
2720 CPU and 8GB RAM. In addition, a Stream Rewriting Machine implementing all four
functions has been synthesized for comparison. Since every functional unit is shared
globally across all rules, the combination requires only 30% more resources. It does not
achieve a true linear speedup, because the function of multiple iterations also
consumes more cycles than the single-core variant (). However, according to the
definition of the term rewriting system, a full parallel evaluation is possible, so that these
results are unrelated to the computational model and only reflect a drawback of the
current implementation.

6.4.2 Ray-tracing
In order to provide a more complete example, a ray tracing application has been
implemented. It shows the usage of function pointers, recursive functions and the parallel
evaluation of branches. Hence, all elements of the computational model are demonstrated
in this example. Ray tracing generates images by sending rays from the camera through
every pixel into a three-dimensional scene. The color of the pixel is then determined by the
object at the nearest intersection point. In this example, the objects are stored as a set of
parameters and a pointer to an intersection function. It takes origin and direction of a ray
and returns the color of the corresponding object at the intersection point.
Similar to virtual functions, the usage of the function pointer allows to handle the three
types of objects (Plane, Sphere, Node) equally and without switch statements. Also the
scene itself is stored as an object and represents a tree that is visited recursively. For
instance, the basic data structures of this test case are declared as:

136

struct Node;
struct Intersection;

// Generic intersection function
typedef Intersection (*IntersectFunc)(Node *node, float3 start, float3 dir);

// Stores one object of the scene
struct Node
{

float4 pos; // position
IntersectFunc intersect; // intersection function
int left; // left child node
int right; // right child node
float3 color; // color rgb

};

// Represents an intersection between a ray and the scene
struct Intersection
{

float dist; // distance from the start
float3 color; // color at this position

};

// intersection functions for all three types
Intersection plane_intersect (Node *node, float3 start, float3 dir);
Intersection sphere_intersect (Node *node, float3 start, float3 dir);
Intersection node_intersect (Node *node, float3 start, float3 dir);

Figure 107. Results of the ray tracing simulation

The ray tracing simulation has been run to produce 32x32 pixel images of different scenes
and assumes 12 cycles latency for floating-point addition, 8 cycles for multiplication and 28
cycles for division and square root. These values nearly correspond to the parameters of
the floating-point cores from Xilinx when optimized for maximum frequency. The resulting
images and the number of cycles are shown in Figure 107. As a result, it can be seen that
the computational model is able to evaluate complex C programs containing recursion and
function pointers.As a further improvement, it would be possible to place the state
machine into a RAM, so that already synthesized hardware could be patched by updating
the microcode.

137

7 Conclusion
This section contains an integral discussion of stream rewriting, a comparison of the
presented approaches and ideas for further improvements.

7.1 Results
This thesis on stream rewriting has led to several new insights for dynamic scheduling in
multi- and many-core environments. The achievements can be summarized as follows:

 Stream rewriting as a new model of computation
Although term or string rewriting systems are well known, the concept of stream
rewriting has been first described in this thesis and the related papers. The most
significance difference is the aspect of local rewriting rules, which enable an efficient
many-core implementation. In contrast to other models of computation, stream
rewriting can encapsulate data and pipeline parallelism, supports dynamic topologies,
and schedules a large number of threads based on their dependencies.

 Concept for concurrent stream processing
The basic approach of replacing pattern in the stream already employs a large degree
of concurrency by construction. Several parallel stream rewriting machines have been
proposed (Section 2.2), implemented and, evaluated in the section 4,5, and 6.

 Synchronization via the stream and without shared memory
Stream rewriting supports the synchronization of concurrent threads without atomic
operations in shared memory. Parallel data paths are joined locally using rewriting rules
and the access to global resources is synchronized by dynamically binding interfering
tasks to the same rewriting unit.

 Connection of task graphs and stream rewriting
Tasks graphs are commonly used to specify concurrent and dependent parts of an
application. This thesis shows an approach for translating these graphs into stream
rewriting programs (Section 3.1).

 Compilation of a high-level language for the SRM
In Section 3.1, a compiler for the hardware synthesis of recursive C functions is
presented. It generates HDL code for a specialized SRM. In particular, the compiler
converts the control flow between basic blocks into rewriting rules and passes local
variables as arguments.

138

 Extensive tests using several FPGA prototypes
Beside Section 6, which is based on an RTL simulation, all stream rewriting architectures
have been actually prototyped using an FPGA implementation. Since hardware never
works in isolation, the experiments have been performed in a realistic test environment
including external memory, a PCIe connection to the host processor, drivers, OS and
application software, so that the measurements cover all aspects of the system. A large
number of complex examples have been run to prove the usefulness of stream
rewriting for a wide variety of problems and platforms.

7.2 Future Work
There are still some unsolved questions regarding the concept and the implementation of
stream rewriting, which might be the topic of further research.

7.2.1 Stream Rewriting
The following possible improvements have been observed for the basic rewriting model:

 Modeling of arbitrary graph topologies
Although hierarchically expandable task graphs can be mapped into rewriting rules,
their topology must conform to the sub-class of series-parallel graphs (Section 3.2.3). It
might be possible to extend the basic definition of the SRM with additional rules that
would allow for more complex elements like feed-back loops or even arbitrary
topologies. Currently, the restriction to series-parallel graphs ensures the locality of
operations since sub-graphs correspond to compact sub-streams. Hence, the most
important challenge is the efficient processing of an arbitrary graph as a token stream.

 Classification of data flow graphs
The capabilities of stream rewriting in relation to data flow graphs are not completely
clear. Though, the SRM supports the flexibility to conditionally emit tokens to arbitrary
actors and to instantiate sub-graphs at runtime. On the other hand, even very simple
homogeneous data flow graphs cannot be mapped into rewriting rules if their topology
contains a loop or is not series-parallel. In addition to arbitrary topologies, it should be
researched what type of data flow graphs might be translated into rewriting rules.

 Reassembly of stream fragments causes implicit synchronization
The synchronization of threads is a local operation since it involves only a limited range
of tokens on the stream. Similarly, the rewriting process can be parallelized since
matching rewriting rules never overlap. However, the reassembly of the rewritten
stream fragments is the most expensive part because at this point, the system must
guarantee that the resulting sub-streams are concatenated in their original order. In
case of significantly varying task granularities, some processors might have finished the
rewriting of their sub-stream earlier than others or might have generated a larger
amount of tokens. Although reorder buffers usually compensate for different
throughputs, a stall might occur at the synchronization point of the streams.

139

7.2.2 Embedded Systems
Stream rewriting is suitable for dynamic scheduling in embedded and mobile systems and
might be especially valuable for the connection of heterogeneous components and
different computational models at the system level. For this thesis, the following open
problems have been identified:

 Real-time scheduling
The current research of stream rewriting has put a focus on handling a large number of
dynamically created threads. Especially for graphics processing, throughput are more
important than latency and the SRM is untimed by construction. The presented model
does not impose any constraints concerning the execution times of threads because
most of these decisions are made dynamically at runtime to facilitate concurrency.
Hence, stream rewriting is not suitable for real-time systems with hard deadlines.

 Static and dynamic scheduling
Stream rewriting offers a novel mechanism for scheduling a large amount of
dynamically created threads and also enables the recursive expansion of task graphs at
runtime. Although this flexibility induces fixed costs, it might not be required entirely
for all problems. By identifying static parts of an application, it might be possible to
determine a tradeoff between static and dynamic scheduling.

 Power estimation
The topic of power consumption has been completely omitted in this work but might
be important for the usage of stream rewriting in embedded or mobile systems.

7.2.3 Graphics Processing
The initial concept of stream rewriting has been developed to improve the flexibility of
graphics processing by introducing a dynamic rendering pipeline with programmable
communication. However, for competitive implementation, the following issues should be
resolved:

 Efficient GPU Implementation
The performance of the FPGA prototype is limited by its size and several technological
factors. As a result, the presented implementation is scalable to some extend but still
several magnitudes slower than modern graphics processors. By porting stream
rewriting to CUDA or OpenCL, the improved flexiblity of the SRM could be possible
combined with the massive computational power of the GPUs. However, the main
challenge is the adaption of the rewriting algorithm to data parallel SIMT architectures
since the execution of different threads might not be feasible with current hardware.

140

 OpenGL and Direct3D drivers
This thesis describes an incomplete OpenGL implementation that offers the stream
rewriting functionality via an extension. By adding the remaining standard functions, it
would become feasible to evaluate the performance of existing OpenGL applications.
Similarly, a Direct3D driver for the SRM graphics processor would enable a much larger
amount of test cases.

 Novel and minimalistic graphics API
Due to legacy interfaces and inappropriate abstractions, the communication between
CPU and graphics processor involves a significant overhead. Especially in Direct3D, each
individual draw call causes an expensive transition between user and kernel mode, so
that an application can be quickly become CPU bound. Also for OpenGL, the classic
rendering pipeline does no longer represent the structure and the capabilities of the
underlying hardware. As a consequence, the driver has to perform dynamic code
generation and validation at runtime to translate the current OpenGL state into
hardware instructions.
The runtime API (Section 5) is a statically linked library, which provides a minimal
interface to the stream rewriting hardware and consists of a few functions for encoding
the initial stream. Likewise, shaders are written in plain C/C++, compiled via the
standard GCC tool chain and submitted as pre-compiled binaries. The functionality of
fixed hardware components like texture mapping units or the rasterizer is provided via
software libraries and included into the shader binary. Hence, an application has full
control over the device but can still apply domain-specific optimizations.

141

8 References

[1] David Geer, "Industry Trends: Chip Makers Turn to Multicore Processors," Computer,
vol. 38, no. 5, pp. 11-13, May 2005.

[2] G. Blake, R.G. Dreslinski, and T Mudge, "A survey of multicore processors," Signal
Processing Magazine, IEEE, vol. 26, no. 6, pp. 26-37, November 2009.

[3] Per Hammarlund et al., "Haswell: The Fourth-Generation Intel Core Processor," IEEE
Micro, vol. 34, no. 2, pp. 6-20, March 2014.

[4] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos,
"Demystifying GPU microarchitecture through microbenchmarking," in 2010 IEEE
International Symposium on Performance Analysis of Systems Software (ISPASS),
White Plains, NY , march 2010, pp. 235-246.

[5] K. Hirata and J. Goodacre, "ARM MPCore; The streamlined and scalable ARM11
processor core," in Design Automation Conference, 2007. ASP-DAC '07. Asia and
South Pacific, Yokohama, 2007, pp. 747-748.

[6] Shekha Borkar and Andrew A. Chien, "The future of microprocessors,"
Communications of the ACM, vol. 54, no. 5, pp. 67-77, May 2011.

[7] P. Choudhury, P.P. Chakrabarti, and R. Kumar, "Online Scheduling of Dynamic Task
Graphs with Communication and Contention for Multiprocessors," Parallel and
Distributed Systems, IEEE Transactions on, vol. 23, no. 1, pp. 126-133, jan. 2012.

[8] NVIDIA, Nvidia's next generation cuda compute architecture: Kepler gk110. [Online].
http://www.nvidia.com/content/PDF/kepler/ NVIDIA-Kepler-GK110-Architecture-
Whitepaper.pdf

[9] Erik Lindholm, John Nickolls, Stuart Oberman, and John Montrym, "NVIDIA Tesla: A
unified graphics and computing architecture," Micro, IEEE, vol. 28, no. 2, pp. 39-55,
March 2008.

[10] T.G. Mattson et al., "The 48-core SCC Processor: the Programmer's View," in High
Performance Computing, Networking, Storage and Analysis (SC), 2010 International
Conference for, New Orleans, LA, 2010, pp. 1-11.

[11] Anant Agarwal, "The tile processor: A 64-core multicore for embedded processing," in
Proceedings of HPEC Workshop, 2007.

http://www.nvidia.com/content/PDF/kepler/

142

[12] J. Henkel et al., "Invasive manycore architectures," in Design Automation Conference
(ASP-DAC), 2012 17th Asia and South Pacific, Sydney, NSW, 2012, pp. 193-200.

[13] L. Gauthier, Sungjoo Yoo, and A.A. Jerraya, "Automatic generation and targeting of
application-specific operating systems and embedded systems software," vol. 20, no.
11, pp. 1293-1301, Nov 2001.

[14] John Nickolls and William J Dally, "The GPU computing era," Micro, IEEE, vol. 30, no.
2, pp. 56-69, March 2010.

[15] Victor W. Lee et al., "Debunking the 100X GPU vs. CPU Myth: An Evaluation of
Throughput Computing on CPU and GPU," ACM SIGARCH Computer Architecture
News, vol. 38, no. 3, pp. 451-460, June 2010.

[16] R. M. Tomasulo, "An Efficient Algorithm for Exploiting Multiple Arithmetic Units," IBM
Journal of Research and Development, vol. 11, no. 1, pp. 25-33, January 1967.

[17] David Blythe, "The Direct3D 10 system," ACM Transactions on Graphics (TOG), vol. 3,
pp. 724-734, July 2006.

[18] Chas Boyd, "The DirectX 11 compute shader," ACM SIGGRAPH 2008 classes, 2008.

[19] Rob Farber, CUDA Application Design and Development.: Morgan Kaufmann, 2011.

[20] Timo Aila, Samuli Laine, and Tero Karras, "Understanding the efficiency of ray
traversal on GPUs--Kepler and Fermi addendum," Proceedings of ACM High
Performance Graphics 2012, Posters, pp. 9-16, 2012.

[21] H. Tomiyama, T. Hieda, N. Nishiyama, N. Etani, and I. Taniguchi, "SMYLE OpenCL: A
programming framework for embedded many-core SoCs," in Design Automation
Conference (ASP-DAC), 2013 18th Asia and South Pacific, Yokohama, Japan, 2013, pp.
565-567.

[22] Tianyun Ni, "Direct Compute - Bring GPU Computing to the Mainstream," in GPU
Technology Conference, 2009.

[23] Kate Gregory and Ade Miller, C++ AMP: Accelerated Massive Parallelism with
Microsoft Visual C++.: Microsoft Press, 2012.

[24] Leonardo Dagum and Ramesh Menon, "OpenMP: an industry standard API for
shared-memory programming," Computational Science & Engineering, IEEE, vol. 5,
no. 1, pp. 46-55, January 1998.

143

[25] Seyong Lee, Seung-Jai Min, and Rudolf Eigenmann, "OpenMP to GPGPU: A Compiler
Framework for Automatic Translation and Optimization," SIGPLAN Not., vol. 44, no. 4,
pp. 101-110, April 2009.

[26] M.E. Wolf and M.S. Lam, "A Loop Transformation Theory and an Algorithm to
Maximize Parallelism," IEEE Transactions on Parallel and Distributed Systems , pp.
452-471, October 1991.

[27] Hritam Dutta , Frank Hannig, Holger Ruckdeschel, and Jürgen Teich, "Efficient control
generation for mapping nested loop programs onto processor arrays," Journal of
Systems Architecture, vol. 53, no. 5-6, pp. 300-309, may 2007.

[28] Joachim Keinert et al., "SystemCoDesigner- an Automatic ESL Synthesis Approach by
Design Space Exploration and Behavioral Synthesis for Streaming Applications," ACM
Transactions on Design Automation of Electronic Systems, vol. 14, no. 1, pp. 1:1--1:23,
January 2009.

[29] E.A. Lee and T.M. Parks, "Dataflow process networks," Proceedings of the IEEE, vol.
83, no. 5, pp. 773-801, May 1995.

[30] Jörn W. Janneck et al., "Synthesizing hardware from dataflow programs: An MPEG-4
simple profile decoder case study," in Signal Processing Systems, 2008. SiPS 2008.
IEEE Workshop on, 2008, pp. 287-292.

[31] Gustav Cedersjö and Jörn W. Janneck, "Software Code Generation for Dynamic
Dataflow Programs," in Proceedings of the 17th International Workshop on Software
and Compilers for Embedded Systems, vol. SCOPES '14, Sankt Goar, Germany, 2014,
pp. 31-39.

[32] Joachim Falk, Joachim Keinert, Christian Haubelt, Jürgen Teich, and Shuvra S.
Bhattacharyya, "A Generalized Static Data Flow Clustering Algorithm for Mpsoc
Scheduling of Multimedia Applications," in Proceedings of the 8th ACM International
Conference on Embedded Software, Atlanta, GA, USA, 2008, pp. 189-198.

[33] E.A. Lee and D.G. Messerschmitt, "Synchronous data flow," Proceedings of the IEEE,
vol. 75, no. 9, pp. 1235-1245, September 1987.

[34] Edward Ashford Lee and David G. Messerschmitt, "Static Scheduling of Synchronous
Data Flow Programs for Digital Signal Processing," IEEE Transactions on Computers,
vol. C-36, no. 1, pp. 24-35, jan. 1987.

144

[35] M. Damavandpeyma, S. Stuijk, T. Basten, M. Geilen, and H. Corporaal, "Modeling
static-order schedules in synchronous dataflow graphs," in Design, Automation Test in
Europe Conference Exhibition (DATE), 2012, Dresden, march 2012, pp. 775-780.

[36] Joachim Falk et al., "Analysis of SystemC actor networks for efficient synthesis," ACM
Transaction on Embedded Computing, vol. 10, no. 2, pp. 18:1-18:34, jan 2011.

[37] Peng Yang et al., "Managing dynamic concurrent tasks in embedded real-time
multimedia systems," in 15th International Symposium on System Synthesis, 2002. ,
Kyoto, Japan, 2002, pp. 112-119.

[38] S. Stuijk, M. Geilen, B. Theelen, and T. Basten, "Scenario-aware dataflow: Modeling,
analysis and implementation of dynamic applications," in Embedded Computer
Systems (SAMOS), 2011 International Conference on, Samos, july 2011, pp. 404-411.

[39] Qinghua Li, Youlin Ruan, ShidaYang, and Tingyao Jiang, "An optimal scheduling
algorithm for fork-join task graphs," in Parallel and Distributed Computing,
Applications and Technologies, 2003. PDCAT'2003. Proceedings of the Fourth
International Conference on, aug. 2003, pp. 587-589.

[40] Weijia Che and Karam S. Chatha, "Unrolling and retiming of stream applications onto
embedded multicore processors," in Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, San Francisco, CA , 2012, pp. 1268-1273.

[41] Michael I. Gordon, William Thies, and Saman Amarasinghe, "Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs," in Proceedings of the 12th
international conference on Architectural support for programming languages and
operating systems, San Jose, California, USA, 2006, pp. 151-162.

[42] Manjunath Kudlur and Scott Mahlke, "Orchestrating the execution of stream
programs on multicore platforms," ACM SIGPLAN Notices, vol. 43, no. 6, pp. 114-124,
jun 2008. [Online]. http://doi.acm.org/10.1145/1379022.1375596

[43] A. Hagiescu, Weng-Fai Wong, D.F. Bacon, and R. Rabbah, "A computing origami:
Folding streams in FPGAs," in Design Automation Conference, 2009. DAC '09. 46th
ACM/IEEE, San Francisco, CA , july 2009, pp. 282-287.

[44] Amir Hormati, Manjunath Kudlur, Scott Mahlke, David Bacon, and Rodric Rabbah,
"Optimus: efficient realization of streaming applications on FPGAs," in Proceedings of
the 2008 international conference on Compilers, architectures and synthesis for
embedded systems, New York, NY, USA, 2008, pp. 41-50.

http://doi.acm.org/10.1145/

145

[45] Amir H. Hormati, Mehrzad Samadi, Mark Woh, Trevor Mudge, and Scott Mahlke,
"Sponge: portable stream programming on graphics engines," in Proceedings of the
sixteenth international conference on Architectural support for programming
languages and operating systems, Newport Beach, California, USA, 2011, pp. 381-
392.

[46] J. Kaida et al., "Task mapping techniques for embedded many-core SoCs," in SoC
Design Conference (ISOCC), 2012 International, Jeju Island, 2012, pp. 204-207.

[47] I. Ahmad and Yu-Kwong Kwok, "On parallelizing the multiprocessor scheduling
problem," Parallel and Distributed Systems, IEEE Transactions on, vol. 10, no. 4, pp.
414-431, apr 1999.

[48] M. Abid, K. Jerbi, M. Raulet, O. Deforges, and M. Abid, "System level synthesis of
dataflow programs: HEVC decoder case study," in Electronic System Level Synthesis
Conference (ESLsyn), 2013, 2013, pp. 1-6.

[49] H. El-Rewini, H.H. Ali, and T. Lewis, "Task scheduling in multiprocessing systems," vol.
28, no. 12, pp. 27-37, Dec 1995.

[50] Yu-Kwong Kwok and Ishfaq Ahmad, "Benchmarking and Comparison of the Task
Graph Scheduling Algorithms," Journal of Parallel and Distributed Computing, vol. 59,
no. 3, pp. 381-422, December 1999.

[51] Ying Yi, Wei Han, Xin Zhao, A.T. Erdogan, and T. Arslan, "An ILP formulation for task
mapping and scheduling on multi-core architectures," in Design, Automation Test in
Europe Conference Exhibition, 2009. DATE '09., Nice, april 2009, pp. 33-38.

[52] H. Topcuoglu, S. Hariri, and Min-You Wu, "Task scheduling algorithms for
heterogeneous processors," in Heterogeneous Computing Workshop, 1999. (HCW '99)
Proceedings. Eighth, San Juan , 1999, pp. 3-14.

[53] Hoeseok Yang and Soonhoi Ha, "Pipelined data parallel task mapping/scheduling
technique for MPSoC," in Design, Automation Test in Europe Conference Exhibition,
2009. DATE '09., Nice, 2009, pp. 69-74.

[54] Chen-Ling Chou and R. Marculescu, "User-Aware Dynamic Task Allocation in
Networks-on-Chip," in Design, Automation and Test in Europe, 2008. DATE '08,
Munich, 2008, pp. 1232-1237.

146

[55] Ping Xiang, Yi Yang, Mike Mantor, Norm Rubin, and Huiyang Zhou, "Many-thread
aware instruction-level parallelism: architecting shader cores for GPU computing," in
Proceedings of the 21st International Conference on Parallel Architectures and
Compilation Techniques, Minneapolis, Minnesota, USA, 2012, pp. 449-450.

[56] D. Baudisch, J. Brandt, and K. Schneider, "Out-Of-Order Execution of Synchronous
Data-Flow Networks," in Embedded Computer Systems (SAMOS), 2012 International
Conference on, 2012, pp. 168-175.

[57] Jürgen Teich et al., "Invasive computing: An overview," in Multiprocessor System-on-
Chip.: Springer, 2011, pp. 241-268.

[58] J. Becker, S. Friederich, J. Heisswolf, R. Koenig, and D. May, "Hardware prototyping of
novel invasive multicore architectures," in Design Automation Conference (ASP-DAC),
2012 17th Asia and South Pacific, 2012, pp. 201-206.

[59] K. Agrawal, C.E. Leiserson, and J. Sukha, "Executing task graphs using work-stealing,"
in Parallel & Distributed Processing (IPDPS), 2010 IEEE International Symposium on,
2010, pp. 1-12.

[60] Yizhuo Wang, Weixing Ji, Feng Shi, and Qi Zuo, "A work-stealing scheduling
framework supporting fault tolerance," in Design, Automation Test in Europe
Conference Exhibition (DATE), 2013, Grenoble, France , 2013, pp. 695-700.

[61] Robert D. Blumofe and Charles E. Leiserson, "Scheduling multithreaded computations
by work stealing," Journal of the ACM (JACM), vol. 46, no. 5, pp. 720-748, 1999.

[62] Robert D. Blumofe et al., "Cilk: an efficient multithreaded runtime system," in
Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, Santa Barbara, California, USA, 1995, pp. 207-216.

[63] M.D. McCool, "Scalable Programming Models for Massively Multicore Processors,"
Proceedings of the IEEE, vol. 96, no. 5, pp. 816-831, May 2008.

[64] B.A. Nayfeh and K. Olukotun, "A single-chip multiprocessor," Computer, vol. 30, no. 9,
pp. 79-85, September 1997.

[65] R. Hartenstein, "A decade of reconfigurable computing: a visionary retrospective," in
Design, Automation and Test in Europe, 2001. Conference and Exhibition 2001.
Proceedings, Munich, 2001, pp. 642-649.

[66] S.C. Goldstein et al., "PipeRench: a reconfigurable architecture and compiler,"
Computer, vol. 33, no. 4, pp. 70-77, April 2000.

147

[67] Herman Schmit, Benjamin Levine, and Benjamin Ylvisaker, "Queue Machines:
Hardware Compilation in Hardware," in Proceedings of the 10th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, 2002, pp. 152-160.

[68] M. Lam, "Software pipelining: an effective scheduling technique for VLIW machines,"
ACM SIGPLAN Notices, vol. 23, no. 7, pp. 318-328, July 1988.

[69] S. Pillai and M.F. Jacome, "Compiler-directed ILP extraction for clustered VLIW/EPIC
machines: predication, speculation and modulo scheduling," in Design, Automation
and Test in Europe Conference and Exhibition, 2003, Munich, Germany, 2003, pp. 422-
427.

[70] V.A. Zivkovic, R. J W T Tangelder, and H.G. Kerkhoff, "Design and test space
exploration of transport-triggered architectures," in Design, Automation and Test in
Europe Conference and Exhibition 2000. Proceedings, Paris, 2000, pp. 146-151.

[71] Alex K. Jones, Raymond Hoare, Dara Kusic, Joshua Fazekas, and John Foster, "An
FPGA-based VLIW processor with custom hardware execution," in Proceedings of the
2005 ACM/SIGDA 13th international symposium on Field-programmable gate arrays,
2005, pp. 107-117.

[72] John R Ellis, "Bulldog: A compiler for VLIW architectures," New Haven, CT, USA, Tech.
rep. 1985.

[73] Bingfeng Mei, S. Vernalde, D. Verkest, and R. Lauwereins, "Design methodology for a
tightly coupled VLIW/reconfigurable matrix architecture: a case study," in Design,
Automation and Test in Europe Conference and Exhibition, 2004. Proceedings, vol. 2,
2004, pp. 1224-1229.

[74] S. Naffziger et al., "The implementation of a 2-core, multi-threaded itanium family
processor," IEEE Journal of Solid-State Circuits, vol. 41, no. 1, pp. 197-209, Jan 2006.

[75] Harsh Sharangpani and Ken Arora, "Itanium processor microarchitecture," Micro,
IEEE, vol. 20, no. 5, pp. 24-43, September 2000.

[76] S.K. Raman, V. Pentkovski, and J. Keshava, "Implementing streaming SIMD extensions
on the Pentium III processor," Micro, IEEE, vol. 20, no. 4, pp. 47-57, July 2000.

[77] Nadeem Firasta, Mark Buxton, Paula Jinbo, Kaveh Nasri, and Shihjong Kuo, "Intel avx:
New frontiers in performance improvements and energy efficiency," 2008.

148

[78] P. Bonnot et al., "Definition and SIMD Implementation of a Multi-Processing
Architecture Approach on FPGA," in Design, Automation and Test in Europe, 2008.
DATE '08, 2008, pp. 610-615.

[79] N. Togawa, K. Tachikake, Y. Miyaoka, M. Yanagisawa, and T. Ohtsuki, "Instruction set
and functional unit synthesis for SIMD processor cores," in Design Automation
Conference, 2004. Proceedings of the ASP-DAC 2004. Asia and South Pacific,
Yohohama, Japan, 2004, pp. 743-750.

[80] J. Davila et al., "Design and implementation of a rendering algorithm in a SIMD
reconfigurable architecture (MorphoSys)," in Design, Automation and Test in Europe,
2006. DATE '06. Proceedings, vol. 2, Munich, 2006, pp. 52-57.

[81] C. Kozyrakis and D. Patterson, "Overcoming the limitations of conventional vector
processors," in Computer Architecture, 2003. Proceedings. 30th Annual International
Symposium on, 2003, pp. 399-409.

[82] David W Wall, "Limits of instruction-level parallelism," SIGOPS - Operating Systems
Review, vol. 25, no. Special Issue, pp. 176-188, April 1991.

[83] Lars Middendorf, Christophe Bobda, and Christian Haubelt, "Hardware synthesis of
recursive functions through partial stream rewriting," in Design Automation
Conference (DAC), 2012 49th ACM/EDAC/IEEE, San Francisco, CA , june 2012, pp.
1203-1211.

[84] Lars Middendorf, Christian Zebelein, and Christian Haubelt, "Dynamic Task Mapping
onto Multi-Core Architectures through Stream Rewriting," in Embedded Computer
Systems: Architectures, Modeling, and Simulation (SAMOS XIII), 2013 International
Conference on, Agios Konstantinos, 2013, pp. 196-204.

[85] L. Middendorf and C. Haubelt, "A novel graphics processor architecture based on
partial stream rewriting," in Design and Architectures for Signal and Image Processing
(DASIP), 2013 Conference on, Cagliari, 2013, pp. 38-45.

[86] Lars Middendorf and Christian Haubelt, "A Programmable Graphics Processor based
on Partial Stream Rewriting," Computer Graphics Forum, vol. 32, no. 7, pp. 325-334,
2013.

[87] Lars Middendorf and Christian Haubelt, "System Level Synthesis of Many-Core
Architectures using Parallel Stream Rewriting," in Electronic System Level Synthesis
Conference (ESLsyn), Proceedings of the 2014, San Francisco, CA , 2014, pp. 1-6.

149

[88] Lars Middendorf and Christian Haubelt, "Scheduling of Recursive and Dynamic Data-
Flow Graphs using Stream Rewriting," in Proceedings of Special Edition on Data-flow
Programming Models and Machines (MPP’14), Paris, France, 2014.

[89] Christian Haubelt, Florian Ludwig, Lars Middendorf, and Christian Zebelein, "Using
stream rewriting for mapping and scheduling data flow graphs onto many-core
architectures," in Signals, Systems and Computers, 2013 Asilomar Conference on,
2013, pp. 1431-1435.

[90] A. W. Appel and T. Jim, "Continuation-passing, closure-passing style," in Proceedings
of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, Austin, Texas, USA, 1989, pp. 293-302.

[91] Haik Lorenz and Jürgen Döllner, "Dynamic mesh refinement on GPU using geometry
shaders," in 16-th International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision (WSCG) - Full Papers , 2008, pp. 97-104.

[92] Christopher Dyken, Martin Reimers, and Johan Seland, "Semi-Uniform Adaptive Patch
Tessellation," Computer Graphics Forum, vol. 28, no. 8, pp. 2255-2263, 2009.

[93] Craig M. Wittenbrink, "R-buffer: A Pointerless A-buffer Hardware Architecture," in
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware,
Los Angeles, California, USA, 2001, pp. 73-80.

[94] Matthew Eldridge, Homan Igehy, and Pat Hanrahan, "Pomegranate: a fully scalable
graphics architecture," in Proceedings of the 27th Annual Conference on Computer
Graphics and Interactive Techniques, 2000, pp. 443-454.

[95] K.C. Yeager, "The Mips R10000 superscalar microprocessor," Micro, IEEE, vol. 16, no.
2, pp. 28-41, April 1996.

[96] Craig M Wittenbrink, Emmett Kilgariff, and Arjun Prabhu, "Fermi GF100 GPU
architecture," Micro, IEEE, vol. 31, no. 2, pp. 50-59, March 2011.

[97] Robin Milner, The definition of standard ML: revised.: MIT press, 1997.

[98] Simon L Peyton Jones, Haskell 98 language and libraries: the revised report.:
Cambridge University Press, 2003.

[99] Paul Frenger, "The JOY of forth," SIGPLAN Not., vol. 38, no. 8, pp. 15-17, aug 2003.

[100] José Meseguer, "Conditional rewriting logic as a unified model of concurrency,"
Theoretical Computer Science, vol. 96, no. 1, pp. 73-155, April 1992.

150

[101] Jochem H. Rutgers, Marco J. G. Bekooij, and Gerard J. M. Smit, "Programming a
Multicore Architecture Without Coherency and Atomic Operations," in Proceedings of
Programming Models and Applications on Multicores and Manycores, Orlando, FL,
USA, 2014, pp. 29:29-29:38.

[102] Goguen Joseph, Kirchner Claude, and Meseguer Josè , "Concurrent Term Rewriting As
a Model of Computation," in Proc. Of a Workshop on Graph Reduction, Santa Fe, New
Mexico, USA, 1987, pp. 53-93.

[103] Matthew Naylor and Colin Runciman, "The Reduceron Reconfigured and Re-
evaluated," Journal of Functional Programming, vol. 22, no. 4-5, pp. 574-613, August
2012.

[104] Arjan Boeijink, Philip K. F. Hölzenspies, and Jan Kuper, "Introducing the PilGRIM: A
Processor for Executing Lazy Functional Languages," in Implementation and
Application of Functional Languages.: Springer Berlin Heidelberg, 2011, pp. 54-71.

[105] Tao Yang and A. Gerasoulis, "DSC: scheduling parallel tasks on an unbounded number
of processors," Parallel and Distributed Systems, IEEE Transactions on, vol. 5, no. 9,
pp. 951-967, September 1994.

[106] Tang Lei and S. Kumar, "A two-step genetic algorithm for mapping task graphs to a
network on chip architecture," in Digital System Design, 2003. Proceedings. Euromicro
Symposium on, Belek-Antalya, Turkey, sept. 2003, pp. 180-187.

[107] Yu-Kwong Kwok and Ishfaq Ahmad, "Static scheduling algorithms for allocating
directed task graphs to multiprocessors," ACM Comput. Surv., vol. 31, no. 4, pp. 406-
471, dec 1999.

[108] Yu-Kwong Kwok and I. Ahmad, "Dynamic critical-path scheduling: an effective
technique for allocating task graphs to multiprocessors," Parallel and Distributed
Systems, IEEE Transactions on, vol. 7, no. 5, pp. 506-521, May 1996.

[109] Jacobo Valdes, Robert E. Tarjan, and Eugene L. Lawler, "The recognition of Series
Parallel digraphs," in Proceedings of the eleventh annual ACM symposium on Theory
of computing, Atlanta, Georgia, USA, 1979, pp. 1-12.

[110] Lucian Finta, Zhen Liu, Ioannis Milis, and Evripidis Bampis, "Scheduling UET-UCT
Series-Parallel Graphs on Two Processors," Theoretical Computer Science, vol. 162,
no. 2, pp. 323-340, Aug. 1996.

151

[111] Yuan Xie and W. Wolf, "Allocation and scheduling of conditional task graph in
hardware/software co-synthesis," in Design, Automation and Test in Europe, 2001.
Conference and Exhibition 2001. Proceedings, Munich, 2001, pp. 620-625.

[112] P. Eles, K. Kuchcinski, Z. Peng, A. Doboli, and P. Pop, "Scheduling of conditional
process graphs for the synthesis of embedded systems," in Design, Automation and
Test in Europe, 1998., Proceedings, Paris, 1998, pp. 132-139.

[113] M. Cosnard and M. Loi, "Automatic task graph generation techniques," in System
Sciences, 1995. Vol. II. Proceedings of the Twenty-Eighth Hawaii International
Conference, vol. 2, Wailea, HI, jan 1995, pp. 113-122.

[114] M. Cosnard, E. Jeannot, and L. Rougeot, "Low memory cost dynamic scheduling of
large coarse grained task graphs," in Parallel Processing Symposium, 1998. IPPS/SPDP
1998., Orlando, FL , mar-3 apr 1998, pp. 524-530.

[115] A.N. Choudhary, B. Narahari, D.M. Nicol, and R. Simha, "Optimal processor
assignment for a class of pipelined computations," Parallel and Distributed Systems,
IEEE Transactions on, vol. 5, no. 4, pp. 439-445, apr 1994.

[116] J. C. M. Baeten, "A brief history of process algebra," Theoretical Computer Science,
vol. 335, no. 2-3, pp. 131-146, may 2005.

[117] Christian Zebelein, Joachim Falk, Christian Haubelt, and Jürgen Teich, "Classification
of General Data Flow Actors into Known Models of Computation," in 6th ACM/IEEE
International Conference on Formal Methods and Models for Co-Design, 2008.
MEMOCODE 2008., Anaheim, CA, 2008, pp. 119-128.

[118] W. Plishker, N. Sane, and S.S. Bhattacharyya, "A generalized scheduling approach for
dynamic dataflow applications," in Design, Automation Test in Europe Conference
Exhibition, 2009. DATE '09., Nice, april 2009, pp. 111-116.

[119] Shin-ichi Minato and Shinya Ishihara, "Streaming BDD manipulation for large-scale
combinatorial problems," in Design, Automation and Test in Europe, 2001. Conference
and Exhibition 2001. Proceedings, Munich, 2001, pp. 702-707.

[120] Richard Membarth et al., "Dynamic Task-Scheduling and Resource Management for
GPU Accelerators in Medical Imaging," in Proceedings of the 25th International
Conference on Architecture of Computing Systems, Munich, Germany, 2012, pp. 147-
159.

[121] Dave Shreiner, OpenGL programming guide: the official guide to learning OpenGL,
versions 3.0 and 3.1. Amsterdam: Addison-Wesley, 2009.

152

[122] Erik Lindholm, Mark J. Kilgard, and Henry Moreton, "A User-programmable Vertex
Engine," in Proceedings of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, 2001, pp. 149-158.

[123] Shuai Mu et al., "Evaluating the potential of graphics processors for high performance
embedded computing," in Design, Automation Test in Europe Conference Exhibition
(DATE), 2011, Grenoble, march 2011, pp. 1-6.

[124] M. Garland et al., "Parallel Computing Experiences with CUDA," Micro, IEEE, vol. 28,
no. 4, pp. 13-27, july 2008.

[125] Benedict Gaster, Timothy G. Mattson Aaftab Munshi, OpenCL Programming Guide.
Amsterdam: Addison-Wesley Longman, 2011.

[126] C. Nugteren, H. Corporaal, and B. Mesman, "Skeleton-based automatic parallelization
of image processing algorithms for GPUs," in Embedded Computer Systems (SAMOS),
2011 International Conference on, Samos, july 2011, pp. 25-32.

[127] G.-J. van den Braak, B. Mesman, and H. Corporaal, "Compile-time GPU memory
access optimizations," in Embedded Computer Systems (SAMOS), 2010 International
Conference on, Samos, july 2010, pp. 200-207.

[128] Anthony A Apodaca and Larry Gritz, Advanced RenderMan: Creating CGI for motion
pictures.: Morgan Kaufmann, 2000.

[129] Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu, "CUDA renderer: a
programmable graphics pipeline," in ACM SIGGRAPH ASIA 2009 Sketches, 2009, pp.
34:1-34:1.

[130] Jason Zink, Matt Pettineo, and Jack Hoxley, Practical rendering and computation with
Direct3D 11.: CRC Press, 2011.

[131] Kun Zhou et al., "RenderAnts: interactive Reyes rendering on GPUs," in ACM
SIGGRAPH Asia 2009 papers, Yokohama, Japan, 2009, pp. 155:1--155:11.

[132] Zhang Ying, Peng Lu, Li Bin, Peir Jih-Kwon, and Chen Jianmin, "Architecture
comparisons between Nvidia and ATI GPUs: Computation parallelism and data
communications," in 2011 IEEE International Symposium on Workload
Characterization (IISWC), Austin, TX , 2011, pp. 205-215.

[133] L. Seiler et al., "Larrabee: A Many-Core x86 Architecture for Visual Computing," ACM
Transactions on Graphics, vol. 27, no. 3, pp. 18:1-18:15, August 2008.

153

[134] Sven Woop, Gerd Marmitt, and Philipp Slusallek, "B-KD trees for hardware
accelerated ray tracing of dynamic scenes," in Proceedings of the 21st ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware, Vienna, Austria, 2006,
pp. 67-77.

[135] Sven Woop, Jörg Schmittler, and Philipp Slusallek, "RPU: a programmable ray
processing unit for realtime ray tracing," in ACM SIGGRAPH 2005 Papers, Los Angeles,
California, 2005, pp. 434-444.

[136] Won-Jong Lee et al., "SGRT: a mobile GPU architecture for real-time ray tracing," in
Proceedings of the 5th High-Performance Graphics Conference, Anaheim, California,
2013, pp. 109-119.

[137] Jon Hasselgren and Thomas Akenine-Möller, "PCU: the programmable culling unit,"
ACM Transactions On Graphics, vol. 26, no. 3, pp. 92:1-92:10, 2007.

[138] William R. Mark and Kekoa Proudfoot, "The F-buffer: A Rasterization-order FIFO
Buffer for Multi-pass Rendering," in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, Los Angeles, California,
USA, 2001, pp. 57-64.

[139] Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu, "Efficient Depth Peeling
via Bucket Sort," in Proceedings of the Conference on High Performance Graphics,
New Orleans, Louisiana, 2009, pp. 51-57.

[140] Andreas A. Vasilakis and Ioannis Fudos, "K+-buffer: Fragment Synchronized K-buffer,"
in Proceedings of the 18th Meeting of the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, San Francisco, California, 2014, pp. 143-150.

[141] Jason C Yang, Justin Hensley, Holger Grün, and Nicolas Thibieroz, "Real-Time
Concurrent Linked List Construction on the GPU," Computer Graphics Forum, vol. 29,
no. 4, pp. 1297-1304, 2010.

[142] Timo Aila, Ville Miettinen, and Petri Nordlund, "Delay Streams for Graphics
Hardware," ACM Transactions on Graphics (TOG), vol. 3, pp. 792-800, July 2003.

[143] Fang Liu, Meng-Cheng Huang, Xue-Hui Liu, and En-Hua Wu, "FreePipe: a
programmable parallel rendering architecture for efficient multi-fragment effects," in
Proceedings of the 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, Washington, D.C., 2010, pp. 75-82.

[144] Markus Steinberger et al., "Softshell: Dynamic Scheduling on GPUs," ACM
Transactions on Graphics, vol. 31, no. 6, pp. 161:1--161:11, November 2012.

154

[145] Stanley Tzeng, Anjul Patney, and John D. Owens, "Task management for irregular-
parallel workloads on the GPU," in Proceedings of the Conference on High
Performance Graphics, Saarbrucken, Germany, 2010, pp. 29-37.

[146] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens, "Scan Primitives
for GPU Computing," in Proceedings of the 22Nd ACM SIGGRAPH/EUROGRAPHICS
Symposium on Graphics Hardware, San Diego, California, 2007, pp. 97-106.

[147] Samuli Laine, Tero Karras, and Timo Aila, "Megakernels Considered Harmful:
Wavefront Path Tracing on GPUs," in Proceedings of the 5th High-Performance
Graphics Conference, Anaheim, California, 2013, pp. 137-143.

[148] Stephen Jones. (2012) Introduction to dynamic parallelism. [Online]. http://on-
demand.gputechconf.com/gtc/2012/presentations/S0338-GTC2012-CUDA-
Programming-Model.pdf

[149] D. Sanchez, D. Lo, R.M. Yoo, J. Sugerman, and C. Kozyrakis, "Dynamic Fine-Grain
Scheduling of Pipeline Parallelism," in Proceedings of the 2011 International
Conference on Parallel Architectures and Compilation Techniques, Washington, DC,
USA, oct. 2011, pp. 22-32.

[150] Louis Bavoil, Steven P. Callahan, Aaron Lefohn, Joao L. D. Comba, and Claudio T. Silva,
"Multi-fragment Effects on the GPU Using the K-buffer," in Proceedings of the 2007
symposium on Interactive 3D graphics and games, Seattle, Washington, 2007, pp. 97-
104.

[151] Nan Zhang, "Memory-Hazard-Aware K-Buffer Algorithm for Order-Independent
Transparency Rendering," IEEE Transactions on Visualization and Computer Graphics,
vol. 20, no. 2, pp. 238-248, Feb 2014.

[152] Tim Foley and Pat Hanrahan, "Spark: modular, composable shaders for graphics
hardware," ACM Transactions on Graphics, vol. 30, no. 4, pp. 107:1-107:12, July 2011.

[153] Jean-Eudes Marvie, Cyprien Buron, Pascal Gautron, Patrice Hirtzlin, and Ga, "Gpu
shape grammars," Computer Graphics Forum, vol. 31, no. 7pt1, pp. 2087-2095,
September 2012.

[154] Cyprien Buron, Jean-Eudes Marvie, and Pascal Gautron, "GPU Roof Grammars," in
Eurographics 2013-Short Papers, 2013, pp. 85-88.

[155] Qiming Hou, Kun Zhou, and Baining Guo, "BSGP: bulk-synchronous GPU
programming," ACM Transactions on Graphics, vol. 27, no. 3, pp. 19:1-19:12, August
2008.

http://on-

155

[156] Ralf Karrenberg, Dmitri Rubinstein, Philipp Slusallek, and Sebastian Hack, "AnySL:
efficient and portable shading for ray tracing," in Proceedings of the Conference on
High Performance Graphics, Saarbrücken, Germany, 2010, pp. 97-105.

[157] Conal Elliott, "Programming Graphics Processors Functionally," in Proceedings of the
2004 ACM SIGPLAN Workshop on Haskell, Snowbird, Utah, USA, 2004, pp. 45-56.

[158] Chad Austin and Dirk Reiners, "Renaissance: A functional shading language," in
Proceedings of Graphics Hardware, New York, 2005, pp. 1-8.

[159] Joel Svensson, Koen Claessen, and Mary Sheeran, "GPGPU kernel implementation and
refinement using Obsidian," in Procedia Computer Science, ICCS 2010, 2010, pp. 2059-
2068.

[160] Nathan Bell and Jared Hoberock, "Thrust: A productivity-oriented library for CUDA,"
GPU Computing Gems, vol. 7, pp. 359-373, 2011.

[161] Yi Yang and Huiyang Zhou, "CUDA-NP: Realizing Nested Thread-level Parallelism in
GPGPU Applications," in Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP '14, Orlando, Florida, USA,
2014, pp. 93-106.

[162] Lars Bergstrom and John Reppy, "Nested data-parallelism on the gpu," in Proceedings
of the 17th ACM SIGPLAN international conference on Functional programming,
Copenhagen, Denmark, 2012, pp. 247-258. [Online].
http://doi.acm.org/10.1145/2364527.2364563

[163] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron, "Scalable Parallel
Programming with CUDA," Queue, vol. 6, no. 2, pp. 40-53, March 2008.

[164] Xin Huo, Sriram Krishnamoorthy, and Gagan Agrawal, "Efficient Scheduling of
Recursive Control Flow on GPUs," in Proceedings of the 27th International ACM
Conference on International Conference on Supercomputing, Eugene, Oregon, USA,
2013, pp. 409-420.

[165] Hanan Samet, Applications of Spatial Data Structures: Computer Graphics, Image
Processing, and GIS. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1990.

[166] Mathias Holst and Heidrun Schumann, "Normal Mapping for Surfel-Based Rendering,"
Journal of WSCG, pp. 9-16, 2007.

http://doi.acm.org/10.1145/

156

[167] Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp Slusallek, "Stackless
KD-Tree Traversal for High Performance GPU Ray Tracing," Computer Graphics Forum,
vol. 26, no. 3, pp. 415-424, 2007.

[168] Henry Schäfer, Matthias Nießner, Benjamin Keinert, Marc Stamminger, and Charles
Loop, "State of the Art Report on Real-time Rendering with Hardware Tessellation,"
Eurographics 2014 - State of the Art Reports, pp. 93-117, 2014.

[169] Falko Löffler, Andreas Müller, and Heidrun Schumann, "Real-time rendering of stack-
based terrains," in Proceedings of the 16th Annual Workshop on Vision, Modeling and
Visualization, Berlin, Germany, 2011, pp. 161-168.

[170] Hyunjin Lee, Yuna Jeong, and Sungkil Lee, "Recursive Tessellation," in SIGGRAPH Asia
2013 Posters, Hong Kong, Hong Kong, 2013, pp. 16:1--16:1.

[171] Michael Schwarz and Marc Stamminger, "Fast GPU-based Adaptive Tessellation with
CUDA," Computer Graphics Forum, vol. 28, no. 2, pp. 365-374, 2009.

[172] Kirill Garanzha, Jacopo Pantaleoni, and David McAllister, "Simpler and Faster HLBVH
with Work Queues," in Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics, Vancouver, British Columbia, Canada, 2011, pp. 59-64.

[173] Qiming Hou, Kun Zhou, and Baining Guo, "Debugging GPU Stream Programs Through
Automatic Dataflow Recording and Visualization," ACM Transactions on Graphics, vol.
28, no. 5, pp. 153:1--153:11, December 2009.

[174] Magnus Strengert, Thomas Klein, and Thomas Ertl, "A hardware-aware debugger for
the OpenGL shading language," in Proceedings of the 22Nd ACM
SIGGRAPH/EUROGRAPHICS Symposium on Graphics Hardware, San Diego, California,
2007, pp. 81-88.

[175] Juan Pineda, "A parallel algorithm for polygon rasterization," in Proceedings of the
15th Annual Conference on Computer Graphics and Interactive Techniques, 1988, pp.
17-20. [Online]. http://doi.acm.org/10.1145/54852.378457

[176] Samuli Laine and Tero Karras, "High-performance software rasterization on GPUs," in
Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics,
Vancouver, British Columbia, Canada, 2011, pp. 79-88.

[177] Chris Lomont. (2003) Fast inverse square root. [Online].
www.lomont.org/Math/Papers/2003/InvSqrt.pdf

[178] Michael Abrash, "Rasterization on larrabee," Dr. Dobbs Journal, 2009.

http://doi.acm.org/10.1145/
www.lomont.org/Math/Papers/2003/InvSqrt.pdf

157

[179] Marc Olano and Trey Greer, "Triangle scan conversion using 2D homogeneous
coordinates," in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on
Graphics Hardware, Los Angeles, California, USA, 1997, pp. 89-95.

[180] Tamy Boubekeur and Marc Alexa, "Phong tessellation," ACM Transactions on
Graphics (TOG), vol. 27, no. 5, pp. 141:1-141:5, 2008.

[181] Stephen W Keckler, William J Dally, Brucek Khailany, Michael Garland, and David
Glasco, "GPUs and the future of parallel computing," IEEE Micro, vol. 31, no. 5, pp. 7-
17, September 2011.

[182] Alex Vlachos, Jörg Peters, Chas Boyd, and Jason L. Mitchell, "Curved PN Triangles," in
Proceedings of the 2001 Symposium on Interactive 3D Graphics, vol. I3D '01, New
York, NY, USA, 2001, pp. 159-166.

[183] James T Kajiya, "The rendering equation," in ACM Siggraph Computer Graphics, vol.
20, 1986, pp. 143-150.

[184] Dietger van Antwerpen, "Improving SIMD Efficiency for Parallel Monte Carlo Light
Transport on the GPU," in Proceedings of the ACM SIGGRAPH Symposium on High
Performance Graphics, Vancouver, British Columbia, Canada, 2011, pp. 41-50.

[185] Yoichiro Kawaguchi, "A Morphological Study of the Form of Nature," SIGGRAPH
Computer Graphics, vol. 16, no. 3, pp. 223-232, July 1982.

[186] M.C. McFarland, A.C. Parker, and R. Camposano, "The high-level synthesis of digital
systems," Proceedings of the IEEE, vol. 78, no. 2, pp. 301-318, feb 1990.

[187] G. Martin and G. Smith, "High-Level Synthesis: Past, Present, and Future," Design Test
of Computers, IEEE, vol. 26, no. 4, pp. 18-25, july-aug. 2009.

[188] Luc and Micheli, Giovanni De Semeria, "Resolution, optimization, and encoding of
pointer variables," IEEE Trans. on CAD of Integrated Circuits and Systems5, vol. 20, no.
2, pp. 213-233, 2001.

[189] Luc and Sato, Koichi and Micheli, Giovanni De Semeria, "Synthesis of hardware
models in C with pointers and complex data structures," IEEE Trans. VLSI Syst., vol. 9,
no. 6, pp. 743-756, 2001.

[190] S.A. Edwards, "The challenges of hardware synthesis from C-like languages," in
Design, Automation and Test in Europe, 2005. Proceedings, vol. 1, Munich, march
2005, pp. 66-67.

158

[191] I. Skliarova and V. Sklyarov, "Recursion in reconfigurable computing: A survey of
implementation approaches," in Field Programmable Logic and Applications, 2009.
FPL 2009. International Conference on, 31 2009-sept. 2 2009, pp. 224-229.

[192] V. Skylarov, I. Skilarova, and B. Pimentel, "FPGA-based implementation and
comparison of recursive and iterative algorithms," in Field Programmable Logic and
Applications, 2005. International Conference on, aug. 2005, pp. 235-240.

[193] Dan R. and Smith, Alex and Singh, Satnam Ghica, "Geometry of synthesis iv: compiling
affine recursion into Static Hardware," in Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming, Tokyo, Japan, 2011, pp. 221-
233.

[194] George and ElGindy, Hossam A. Ferizis, "Mapping Recursive Functions to
Reconfigurable Hardware," in Field Programmable Logic and Applications, 2006. FPL
'06. International Conference on, Madrid, 2006, pp. 1-6.

[195] M. S. Chandrasekhar, J. P. Privitera, and K. W. Conradt, "Application of term rewriting
techniques to hardware design verification," in Proceedings of the 24th ACM/IEEE
Design Automation Conference, New York, NY, USA, 1987, pp. 277-282. [Online].
http://doi.acm.org/10.1145/37888.37930

[196] James C. and Arvind Hoe, "Hardware Synthesis from Term Rewriting Systems," in
VLSI: Systems on a Chip.: Springer US, 2000, vol. 34, pp. 595-619.

[197] N. Dave, A. Pellauer, and M. Pellauer, "Scheduling as Rule Composition," in Formal
Methods and Models for Codesign, 2007. MEMOCODE 2007. 5th IEEE/ACM
International Conference on, Nice, 30 2007-june 2 2007, pp. 51-60.

[198] M. von Thun. (1996) A rewriting system for Joy. [Online].
http://www.latrobe.edu.au/humanities/research/research-projects/past-
projects/joy-programming-language

http://doi.acm.org/10.1145/
http://www.latrobe.edu.au/humanities/research/research-projects/past-

159

Abstract
Multi and many-core systems offer numerous benefits like reduced energy consumption
and latency, as well as improved throughput for both high-performance and low-power
applications. Scalability is achieved by parallelization instead of high clock rates and can
therefore overcome technological limitations like thermal heat or power issues. While
functional units and also processor cores can be replicated at the expense of increased
area, the utilization of the additional resources remains a more fundamental problem.
Hence, beside the design of the actual hardware architecture, also the programming of a
many-core system raises several challenges. Especially in case of irregular tasks and
dynamic parallelism, the binding and scheduling of tasks to processor cores as well as the
efficient communication and synchronization at the system level are not yet solved in
general. As a consequence, the majority of static optimizations, which are based on an
extensive knowledge of the behavior at design time, cannot be applied in this case.
This thesis proposes a novel model of computation, called stream rewriting, for the
specification and implementation of highly current applications. Basically, the active tasks
of an application and their dependencies are encoded as a token stream, which is
iteratively modified by a set of rewriting rules at runtime. As a result, the creation of new
tasks, the synchronization of cooperating tasks, and the scheduling of dependent tasks are
implemented as local pattern matching, which can be performed in parallel on several
regions of the stream and does not require a central scheduler. Hence, stream rewriting is
most useful for compute-intensive applications with frequently varying and unpredictable
data rates and further enables global resource sharing as well as lightweight lock-free
synchronization. In addition, this thesis presents a balanced scheduling algorithm, which
restricts the memory usage of dynamic and recursive computations, by switching
automatically between deep-first and breadth-first traversal.
The concept of stream rewriting has been extensively evaluated for several different use
cases and all results presented in this thesis have been either retrieved from a cycle
accurate HDL simulation or an FPGA implementation. For example, stream rewriting has
been utilized in a high-level synthesis tool to compile recursive functions into hardware.
Several many-core systems with up to 128 general purpose processors have been
implemented and show the scalability of stream rewriting for complex examples and
recursive algorithms.
In particular, the concept of stream rewriting fits perfectly to the requirements of graphics
processing. Since both data and pipeline parallelism are available and match the
requirements of specialized rendering algorithms, previously fixed blocks like the rasterizer
or tesselator stages can be stored in a software library. Recursive and indirect function calls
allow generating workloads dynamically at runtime, so that both rasterization and ray-
tracing can be implemented as a shader program. A novel graphics processor has been
designed, which supports custom rendering pipelines, recursion, complex atomic
operations and incoherent workloads. It combines the performance advantages of
hardware-based scheduling through stream rewriting with the flexibility of general purpose
processors and thus provides worthwhile insights for future GPU architectures.

160

Kurzfassung
Mehrkernprozessoren ermöglichen im Gegensatz zu Einkernprozessoren einen verringerten
Energieverbrauch, eine geringere Latenz sowie ein höherer Durchsatz für rechenintensive
Anwendungen. Anstelle von einer immer höheren Taktrate, basiert die Leistungssteigerung
dieser System auf der Parallelisierung von Berechnungen, so dass die üblichen Probleme bei
hohen Frequenzen wie Wärmeentwicklung oder Stromverbrauch umgangen werden
können. Dabei stellt die Duplizierung von einzelne Funktionseinheiten und Prozessoren auf
Hardwareebene oft kein unlösbares Problem mehr dar und macht sich lediglich in einem
höheren Platzverbrauch bemerkbar. Die effiziente Nutzung der zusätzlichen Funktionalität
ist dagegen die größere Herausforderung und hängt von einer Vielzahl ungelöster Fragen
ab. Diese Arbeit beschäftigt sich insbesondere mit dem Problem, wie man eine große
Anzahl an dynamischen und irregulären Tasks in einem Mehrkernsystem auf die
Prozessoren verteilen und einplanen kann. Besonders zu beachten ist hierbei, dass ohne
Vorwissen über die Art Anwendungen und die Aufgabenverteilung, viele der bekannten
Optimierungen für statische Systeme hier nicht angewandt werden können.
In dieser Dissertation wurde daher Stream Rewriting als eine neue Methode entwickelt um
Anwendungen mit einer großen Anzahl von dynamischen Tasks zu beschreiben und
effizient zur Laufzeit verwalten zu können. Dabei werden die aktiven Tasks in einem
Datenstrom verpackt, der zur Laufzeit durch wiederholtes Suchen und Ersetzen fortlaufen
umgeschrieben wird. Sowohl das Erstellen von neuen Tasks, als auch die Synchronisierung
von abhängigen Tasks können dabei durch Ersetzungsregeln dargestellt werden, die jeweils
nur auf einem begrenzten Abschnitt des Streams arbeiten und daher auf mehreren
Prozessoren parallel ausgeführt werden können. Diese Technik ist daher besonders für
rechenintensive Anwendungen mit vielen und nicht vorhersehbaren Tasks geeignet.
Um die Performance und Skalierbarkeit von Stream Rewriting zu bestimmen, wurde eine
Vielzahl von Experimenten mit Multi-Core Systemen durchgeführt. Zu einem wurden
Mehrkernprozessoren mit bis zu 128 Kernen auf einem FPGA aufgebaut und die Verwaltung
von Tasks über Stream Rewriting in Software und Hardware implementiert. Tests mit
verschieden Anwendungen zeigen die Skalierbarkeit dieser Technik für eine große Anzahl
an dynamischen und rekursiven Tasks. Außerdem eignet sich Stream Rewriting besonders
gut für Grafikverarbeitung, da es sowohl Pipeline- als auch Datenparallelität unterstützt und
so die Implementierung von neuen Rendering-Algorithmen erleichtert. Der vorgestellte
Grafikprozessor basiert auf Stream Rewriting und ermöglicht es benutzerdefinierte
Rendering Pipelines, Rekursion, sowie komplexe atomare Operationen und irreguläre Tasks
zu definieren. Die neue Architektur kombiniert eine hardwarebasierte Taskverwaltung über
Stream Rewriting mit der Flexibilität von Softwarerendering und zeigt so Möglichkeiten für
die Entwicklung von zukünftigen Grafikprozessoren auf.

161

Theses

Stream Rewriting

 Stream rewriting is a novel model of computation for the specification, analysis and
implementation of parallel applications. It encapsulates both data and pipeline
parallelism to manage a large number of dynamic, irregular and also recursive
expandable tasks without a central scheduler.

 Rewriting operations modify locally constrained and non-overlapping intervals of the
stream and can be therefore performed on different regions in parallel. The scalability
of this approach is demonstrated by several hardware and software architectures for
parallel stream rewriting.

 The execution order of tasks is defined implicitly by data dependencies, so that an
implementation can choose an optimal schedule at runtime in order to maximize
utilization of available processing units.

 The results of concurrent threads are synchronized via pattern matching on the stream,
so that the usage of shared memory or atomic operations can be omitted.

 Although data parallelism is supported, stream rewriting has been especially designed
for handling irregular and dynamic work load. For this purpose, the basic algorithm
requires a single rewriting rule and reduces all scheduling decisions into find-and-
replace operations.

 Access to shared resources is serialized by dynamically binding interfering tasks to the
same processor. This approach enables complex atomic read-modify-write operations
in many-core systems without global locks or bus snooping and is also suitable for non-
uniform memory.

 The stack-based scheduling automatically balances between depth-first and breadth-
first traversal of the call tree to avoid an exponential growth of the token stream while
still maintaining a large degree of concurrency. Most important, only a small part of the
potentially large stream must be accessible, so that the remainder can be paged out
into external memory.

 Local environments redefine the value of a global variable for restricted sub-stream and
therefore offer an efficient mechanism for the distribution of shared data in a highly
concurrent environment. At the end of computation, environments are automatically
garbage collected and removed from the stream.

162

 Instancing reduces the size of the stream by specifying data parallel rewriting rules only
once, so that multiple iterations can be expanded on demand.

 The token stream serves as a platform independent representation of a task graph or a
functional program. Since each processor is only responsible for replacing its own
patterns in the stream, different software or hardware components can cooperate
without explicit knowledge of each other.

Source Models

 The basic execution model of stream rewriting corresponds to a functional language
without side effects, which is well suited for modeling highly concurrent tasks. Hence,
the implementations of the stream rewriting machine are in fact hardware and
software interpreters for this functional language.

 The sub-class of series-parallel (SP) task graphs can be translated into stream rewriting
programs. In addition, stream rewriting allows adapting the topology of the graph to
varying workloads at runtime by the recursive expansion of nodes.

 High-Level C programs can be converted into rewriting rules and therefore benefit from
the parallel scheduling of recursive invocations. This thesis presents a compiler for the
hardware synthesis of a C-like language, which generates HDL code for a specialized
stream rewriting machine by mapping the control flow between basic blocks into
rewriting rules.

Multi-Core Architectures

 Stream rewriting can be implemented as a thin software library for general purpose
many-core architectures and embedded systems with strict resource constraints.
Hence, the concept of stream rewriting is not tied to a specific execution platform.

 Due to the simplicity of the pattern matching, both the binding and the scheduling of
rewriting rules can be also implemented in hardware, while the functionality of the
tasks remains in software for maximum flexibility. The resulting stream rewriting
network connects up to 128 general purpose cores and the FPGA implementation
indicates scalability for a large number of complex test cases.

163

Graphics Processing

 Despite the computational power and memory bandwidth of modern graphics
processing units (GPU), a main limitation of these architectures is often the lack of
efficient on-chip communication between different shader cores. The dynamic binding
of stream rewriting helps to overcome these issues and leads to a more flexible
architecture for graphics processing units.

 Although individual stages of the Direct3D and OpenGL rendering pipeline are
programmable, its topology and data flow are fixed. This thesis describes a graphics
processor based on stream rewriting, which supports an arbitrary amount of dynamic
and recursive shader stages as well as complex data flow and light-weight
synchronization within the rendering pipeline.

 The semantic gab between the sequential execution model of the CPU and the highly
parallel but more restricted GPUs require an application to be split into two distinct
parts, which are developed using separate languages and optimized according to
different rules. In this context, stream rewriting offers a unified execution model for
task, pipeline and data parallelism as well as support for individual threads.

 Most important, the concept of stream rewriting for graphics processing has been
evaluated as part of a complete test system consisting of several applications, an
OpenGL driver, a kernel mode driver, and the FPGA prototype connected via PCIe.
Despite the lower clock rate of the FPGA, the measurements include the delays and
latencies of the whole system, which would also occur for an ASIC design.

 This thesis proposes a novel OpenGL extension, which integrates stream rewriting into
the existing programming model and adds the stream rewriting shader as a new
general purpose shader stage.

 Stream rewriting greatly reduce the complexity of several advanced rendering
techniques, like order-independent transparency via K-buffering, path-tracing and the
recursive generation of procedural geometry, which require significant effort to run
efficiently on current GPUs.

164

Lebenslauf

1. Allgemeine Informationen

Persönliche Angaben: Geburtsort: Iserlohn
Geburtstag: 21.09.1982

Adresse: Lars Middendorf
Flensburger Str. 26
18109 Rostock

Kontakt: Telefon: 0151 1447808
E-Mail: lmid@gmx.de

2. Ausbildung

Schulbildung:
Aug. 1989 – Juli 1993 Brabeckschule Hemer
Aug. 1993 – Juni 2002 Friedrich-Leopold-Woeste-Gymnasium, Hemer, Abitur

Wehrdienst:
Juli 2002 – März 2003 Grundwehrdienst in Goslar, Burbach und Hemer

Studium:
April 2003 – März 2007 Studium Diplom Informatik, TU Kaiserslautern

3. Arbeitsstellen

RG Technologies GmbH Softwareentwickler für ein CAD System bei der
RG Technologies GmbH in UnterhachingJuni 2007 – April 2009

Universität Potsdam Wissenschaftlicher Mitarbeiter am Institut für
Informatik der Universität PotsdamMai 2009 – Juli 2011

Universität Rostock Wissenschaftlicher Mitarbeiter am Institut für
Angewandte Mikroelektronik und Datentechnik der
Universität Rostock

Seit August 2011

mailto:lmid@gmx.de

165

Selbstständigkeitserklärung
Hiermit versichere ich, dass ich die vorliegende Dissertation mit dem Titel:

„Dynamic Task Scheduling and Binding for Many-Core Systems
through Stream Rewriting “

selbstständig verfasst und ausschließlich die angegebenen Quellen und Hilfsmittel in
Anspruch genommen habe, sowie alle Ausführungen, die anderen Schriften wörtlich oder
sinngemäß entnommen wurden, kenntlich gemacht habe. Die vorliegende Arbeit wurde in
gleicher oder ähnlicher Fassung bisher nicht als Prüfungsarbeit zur Begutachtung vorgelegt.

Rostock, 28.03.2015

Lars Middendorf

