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Abstract

Effects such as global illumination, caustics, defocus and motion blur are an integral part
of generating images that are perceived as realistic pictures and cannot be distinguished
from photographs. In general, two different approaches exist to render images: ray tracing
and rasterization. Ray tracing is a widely used technique for production quality rendering
of images. The image quality and physical correctness are more important than the time
needed for rendering. Generating these effects is a very compute and memory intensive
process and can take minutes to hours for a single camera shot. Rasterization on the
other hand is used to render images if real-time constraints have to be met (e.g. computer
games). Often specialized algorithms are used to approximate these complex effects to
achieve plausible results while sacrificing image quality for performance.

This thesis is split into two parts. In the first part we look at algorithms and load-balanc-
ing schemes for general-purpose computing on graphics processing units (GPUs). Most
of the ray tracing related algorithms (e.g. KD-tree construction or bidirectional path trac-
ing) have unpredictable memory requirements. Dynamic memory allocation on GPUs
suffers from global synchronization required to keep the state of current allocations. We
present a method to reduce this overhead on massively parallel hardware architectures.
In particular, we merge small parallel allocation requests from different threads that can
occur while exploiting SIMD style parallelism. We speed-up the dynamic allocation using
a set of constraints that can be applied to a large class of parallel algorithms. To achieve
the image quality needed for feature films GPU-cluster are often used to cope with the
amount of computation needed. We present a framework that employs a dynamic load
balancing approach and applies fair scheduling to minimize the average execution time
of spawned computational tasks. The load balancing capabilities are shown by handling
irregular workloads: a bidirectional path tracer allowing renderings of complex effects at
near interactive frame rates.

In the second part of the thesis we try to reduce the image quality gap between production
and real-time rendering. Therefore, an adaptive acceleration structure for screen-space
ray tracing is presented that represents the scene geometry by planar approximations. The
benefit is a fast method to skip empty space and compute exact intersection points based
on the planar approximation. This technique allows simulating complex phenomena in-
cluding depth-of-field rendering and ray traced reflections at real-time frame rates. To
handle motion blur in combination with transparent objects we present a unified render-
ing approach that decouples space and time sampling. Thereby, we can achieve interactive
frame rates by reusing fragments during the sampling step. The scene geometry that is
potentially visible at any point in time for the duration of a frame is rendered in a ras-
terization step and stored in temporally varying fragments. We perform spatial sampling
to determine all temporally varying fragments that intersect with a specific viewing ray
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Abstract

at any point in time. Viewing rays can be sampled according to the lens uv-sampling to
incorporate depth-of-field. In a final temporal sampling step, we evaluate the pre-deter-
mined viewing ray/fragment intersections for one or multiple points in time. This allows
incorporating standard shading effects including and resulting in a physically plausible
motion and defocus blur for transparent and opaque objects.
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Zusammenfassung

Computergenerierte Objekte und Szenen in Filmen, Werbung und Computerspielen zeich-
nen sich durch einen hohen Realisumus aus. Diese können kaum noch durch den Be-
trachter von klassisch fotografierten Objekten unterschieden werden. Dabei sind Effekte
wie globale Beleuchtung, Kaustiken sowie Bewegungs- und Tiefenunschärfe integrale Be-
standteile für eine realistische Darstellung. Es existieren zwei unterschiedliche Verfahren
zur Erzeugung solcher Bilder. Die Verfolgung von Strahlen (Ray tracing im folgendem ge-
nannt) wird im Bereich der fotorealistischen Bildsynthese für Filme eingesetzt. Dabei ist
die Bildqualität und physikalische Korrektheit entscheidend. Die Berechnung eines einzel-
nen Bildes kann mehrere Minuten oder auch Stunden dauern, spielt aber im Gegensatz
zur Korrektheit nur eine untergeordnete Rolle. Rasterisierung auf der anderen Seite findet
hauptsächlich Verwendung im Bereich der Computerspiele und anderer interaktiver Me-
dien. Oft kommen dabei vereinfachte Modelle und Verfahren zum Einsatz, die schnell ein
glaubwürdiges Bild erzeugen und wichtige Effekte aufgrund der limitierten Rechenzeit
nur approximieren.

Die Dissertation beleuchetet neue Algorithmen für interaktive Anwendungen mit dem
Ziel, die visuelle Qualität und Korrektheit von Ray tracing basierten Verfahren zu errei-
chen. Dazu ist die Dissertation in zwei Teile gegliedert. Im erste Teil werden Algorith-
men und Lastverteilungsverfahren für Grafikkarten untersucht. Für Algorithmen wie Bi-
directionales Path Tracing oder die Konstruktion von KD-Bäumen als Beschleunigungs-
struktur kann der Speicherverbrauch nicht zum Startzeitpunkt angegeben werden und
ist abhängig von Eingabedaten. Dynamische Speicherverwaltung kann das Problem mini-
mieren. Bei der Verwendung massiv paralleler Hardware ist darauf zu achten, dass der
Zustand der Speicherverwaltung immer konsistent ist. Dies erfolgt mittels Synchronisatio-
nobjekten, deren Verwendung aber Performanceeinbußen hervorrufen. Wir präsentieren
ein Verfahren, welches den Synchronisationsaufwand auf massiv paralleler Hardware si-
gnifikant reduziert. Im Speziellen werden einzelne Allokationsaufrufe unterschiedlicher
nebenläufiger Threads zusammengefasst. Durch weitere restriktive Anforderungen an die
Anwendung, etwa das Freigeben von Speicher am Ende des Programms, kann die Laufzeit
verbessert werden. Im Bereich der Filmproduktion ist der Rechenaufwand zur Bildgene-
rierung besonders hoch. Daher werden häufig CPU Rechnerverbünde eingesetzt, um den
zeitlichen Aufwand zu reduzieren. Im Zuge dieser Arbeit präsentieren wir ein System zur
dynamischen Lastverteilung in Grafikkarten basierten Rechnerverbünden. Das Verfahren
minimiert speziell die Antwortzeit interaktiver Anwendungen.

Im zweiten Abschnitt der Dissertation kombinieren wir Ray tracing basierte Verfahren mit
Rasterisierung um die Bildqualität für interaktive Anwendungen zu verbessern. Wir stellen
dazu eine adaptive Beschleunigungsstruktur für Ray tracing Verfahren im Bildraum vor.
Die Struktur approximiert dabei die sichtbare Szenengeometrie anhand von Flächen. Der
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Zusammenfassung

Vorteil ist ein schneller Ausschluss von Leerraum innerhalb der Geometrie, die nicht durch
einen Strahl getroffen werden. Desweiteren kann der Ansatz einen exakten Schnittpunkt,
basierend auf der Approximation der Fläche, berechnen. Das Verfahren erlaubt es uns kom-
plexe Phänomene, wie Tiefenunschärfe und korrekte Reflektionen auf rauen Oberflächen,
in Echtzeit zu simulieren. Um Bewegungsunschärfe in Kombination mit transparenten und
opaquen Objekten zu simulieren haben wir einen auf Ray tracing basierenden Algorithmus
entwickelt. Dieser trennt das Samplen der Raum- von der Zeitkomponente. Es ermöglicht
uns durch die Wiederverwendung von sichtbaren Fragmenten interaktive Bildwiederhol-
raten zu erreichen. Die zu jedem Zeitpunkt eines Bildes potenziell sichtbare Szenengeo-
metrie wird rasterisiert. Im Anschluss erfolgt das räumliche Sampling um alle Fragmente
zu ermitteln, die einen Sichtstrahl schneiden. Sichtstrahlen werden dabei anhand der Lin-
se der Kamera erzeugt, um Tiefenunschärfe zu simulieren können. Abschließend wird die
zeitliche Komponente evaluiert, der Farbwert berechnet und alle Fragmente eines Pixels
akkumuliert.

VI



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my advisor Prof. Dr.-Ing.
Michael Goesele for the continuous support of my Ph.D study and related research, for his
patience, motivation, immense knowledge, and valuable feedback. His guidance helped
me through out the time of research and writing of this thesis. I would also like to thank
Prof. Dr.-Ing. Carsten Dachsbacher who kindly agreed to review this thesis. Furthermore,
I thank David Luebke and his research group for the opportunity of an internship at NVidia.
Especially, I’d like to thank Dawid Pajak for the tremendous help, the valuable discussions,
and pushing me to achieve the best possible solutions as well as Douglas Lanman for the
interesting task and insights into a different research topic. Thanks are due to Prof. Dr.
Kay Hamacher and his Computational Biology and Simulation group at the TU Darmstadt.
Without his interest in general-purpose computing on graphics processing units I probably
would not have done my Ph.D thesis.
I would like to thank the Graduate School of Excellence Computational Engineering at
the TU Darmstadt for their support and would also like to thank all external guests at our
group retreats for the feedback and suggestions.
Special thanks go to all my colleagues in GCC who have accompanied me for the last
years, in particular to Dominik Wodniok, Daniel Thuerck, Nicolas Weber, Andre Schulz,
Daniel Thul, and Carsten Haubold. Without their support, programming and debugging
skills, the collaboration, and helpful feedback from so many discussions the thesis would
not have been possible.
Last but not least, I would like to thank my family: my parents and sister for supporting
me throughout writing this thesis and my life in general.

VII



Acknowledgements

VIII



Contents

Abstract III

Zusammenfassung V

Acknowledgements VII

1 Introduction 1
1.1 Image Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7
2.1 Ray tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Depth-of-field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Motion blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Distributed ray tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

I Foundations for GPU Computing 21

3 Motivation 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Fast Dynamic Memory Allocator for Massively Parallel Architectures 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

IX



Contents

5 Dynamic Load Balancing and Fair Scheduling for GPU Clusters 41
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

II Hybrid Ray Tracing 65

6 Motivation 67
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

7 Adaptive Acceleration Structure for Screen-space Ray Tracing 73
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
7.3 Data structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.4 Ray traversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8 Decoupled Space and Time Sampling of Motion and Defocus Blur for Unified
Rendering of Transparent and Opaque Objects 95
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
8.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
8.3 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
8.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
8.5 Discussion and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
8.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

9 Conclusion 115
9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
9.2 Discussion and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Appendices 119

A Fast Dynamic Memory Allocator for Massively Parallel Architectures 121

B Dynamic Load Balancing and Fair Scheduling for GPU Clusters 123

C Adaptive Acceleration Structure for Screen-space Ray Tracing 125
C.1 Additional figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
C.2 Pseudo code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

X



Contents

D Decoupled Space and Time Sampling of Motion and Defocus Blur for Unified
Rendering of Transparent and Opaque Objects 129
D.1 Additional graphs and figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
D.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

(Co-)Authored Publications 135

Bibliography 137

XI



Contents

XII



Chapter 1
Introduction

Figure 1.1: In 2014, around 60 - 75 percent of all IKEA’s product images (pictures showing
only one single product) were computer generated. 35 percent of all non-product images
were fully rendered and not composited afterwards [Parkin, 2014]. The photo shows a
rendered kitchen scene [Giovanni_cg, 2015], Creative Commons CC0.

Our daily life is greatly influenced by media such as movies, games, and magazines. They
use computer generated images to build new fantastic worlds, tell a new story or show
beautiful and appealing images in advertisements to influence our decisions and actions
(e.g. images of the latest cars, recent blockbuster movies, or the furniture in a catalog
as shown in Figure 1.1). Nowadays, most people cannot distinguish between a computer
generated picture and a real photograph anymore. An example can be found in the blog
entry "Render Me Speechless: Get a Peek at Future of Design at SIGGRAPH 2015" [Estes,
2015].
Simulating phenomena such as global illumination, caustics, defocus and motion blur are
an integral part to generating images. They are vital to perceive a rendered image as
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Chapter 1. Introduction

a realistic picture which can not be distinguished from a photograph. Defocus blur for
example is often used as an artistic style element to emphasize a certain character or
object. Motion blur on the other hand is an integral part for perceiving the velocity and
motion of an object. The simulation and rendering of such complex light and material
interactions is very compute and memory intensive. It can take from minutes up to hours
to render one single frame of a sequence. The image quality and physical correctness
are the driving forces [Pantaleoni et al., 2010, Seymour, 2014]. On the other side of the
spectrum are computer games and interactive media in general. For those applications
performance is the key factor. The image quality and physical correctness of the simulation
has to be reduced to achieve interactive or real-time frame rates with a refresh frequency
of at least 30Hz. Computationally intensive phenomena such as global illumination as
well as defocus and motion blur that make an image perceived as realistic are simplified
and approximated.
To summarize, the main difference between offline and real-time rendering is the achieved
image quality and the computation time for a single image. As the requirements are the
opposite of each other two different approaches exist to generate images. Ray tracing is
a widely used technique to generate photorealistic and physically correct results. In con-
trast, the rasterization of triangles is used if the performance of the application is critical.
Advances in hardware architecture and novel algorithms made it possible to use insights
from offline rendering and transfer them to real-time rendering. Therefore, a lot of re-
search effort has been spent to bridge the gap between offline and real-time rendering
using ray tracing for real-time applications. Unfortunately, the performance increase is
still not sufficient enough to apply ray tracing in its general form. Most applications still
rely on approximations of computationally intensive effects. With this thesis we try to
close the gap further. In the following section, we briefly describe the two principle ren-
dering techniques and motivate our contributions.

1.1 Image Generation

Ray tracing and rasterization are the two most common techniques to render images. Both
are used for distinct purposes. Ray tracing is the preferred approach for photorealistic
image in movies where rasterization is more commonly found in real-time applications.
In this section, we would like to outline the two different rendering techniques.

1.1.1 Ray tracing

Ray tracing is the foundation of photorealistic image synthesis. Algorithms based on ray
tracing (e.g. recursive ray tracing [Whitted, 1980], distributed ray tracing [Cook et al.,
1984], path tracing [Kajiya, 1986], metropolis light transport [Veach, 1998], and photon
mapping [Jensen, 1996]) can simulate a wide range of complex phenomena such as global
illumination, caustics, depth of field, and motion blur. All these variants have in common
that they simulate the transport of light to the eye, either based on following the path
of rays of light or collecting photons. The underlying ray tracing algorithm is based on
geometrical optics. Thereby, the light transport is described in terms of rays.
Ray tracing can be split up into several independent building blocks — the camera model,
the ray-triangle intersection test, the light and material interaction, the recursive tracing
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1.2. Problem Statement

to gather all incoming radiance, and the acceleration structure to speed-up the ray traver-
sal. The camera is the starting point for photo-realistic and real-time rendering. In the
first step primary rays are generated based on the origin and view direction of the camera.
Thereby, different camera models can be used such as the pinhole camera (Section 2.1.1)
or a more complex model using the thin lens approximation for depth-of-field effects. The
intersection of these rays with the scene geometry provides a point at which light and
material interaction occur. The light and material interaction computes the incoming and
outgoing radiance for the given intersection point. Therefore, we sample a bidirectional
scattering distribution function (BSDF). As light may interact with several surfaces and
materials before reaching the intersection point it is necessary to trace additional rays us-
ing the recursive nature of ray tracing. According to the incoming ray, the surface normal,
and the BSDF we create new rays. This may result in several billion rays which have to
be traced to converge to the final result. Bounding volume hierarchies (BVH) or other
acceleration structures can be used to speed-up the ray traversal.
We will discuss the building blocks and their extension to distributed ray tracing in more
detail in Section 2.1.

1.1.2 Rasterization

Rasterization [Pineda, 1988] on the other hand is typically used to render images if real-
time constraints have to be met (e.g. computer games or other interactive media). Simple
rendering primitives (e.g. triangles, lines, or complex polygons) are projected onto a 2D
plane and converted into a raster format (pixel image) to display the primitives (see Sec-
tion 6.2.1 for more details).
Unfortunately, the algorithm cannot handle complex phenomena natively. Specialized
algorithms are often used to approximate some of those effects to achieve plausible re-
sults. These approximations are always driven by the underlying hardware architecture
to achieve real-time frame rates. With the increasing compute capabilities more and more
complex phenomena become available to rasterization. In recent years hybrid approaches
using specialized variants of ray tracing and the underlying acceleration structures have
emerged (e.g. sparse voxel octrees [Laine and Karras, 2010] and screen space ray tracing
[McGuire and Mara, 2014]).
We will discuss the process of rasterization, the general rendering pipeline, and hybrid
algorithms such as screen space ray tracing in Section 6.2.1.

1.2 Problem Statement

Despite the large body of literature and ongoing research in the area of real-time rendering
the integration and usage of offline rendering algorithms and techniques into interactive
applications has still not been solved. The "Holy Grail" of rendering - creating photore-
alistic images which are not distinguishable from a photograph in real-time - is not yet
reached.
To achieve photorealistic results (production quality) the propagation of light in a scene
using geometrical optics has to be simulated. Geometrical optics describes the light prop-
agation in terms of rays. Kajiya [1986] derived the light transport equation (or rendering
equation) using geometrical optics and the underlying ray approximation.

3



Chapter 1. Introduction

Lo(p,ωo, t) = Le(p,ωo, t) +

∫

Ω

fr(p,ωo,ωi , t)Li(p,ωi , t)(−ωi · n)dωi , (1.1)

where Lo(p,ωo, t) denotes the outgoing radiance in the direction ωo from the surface
point p at the time t. Le(p,ωo, t) expresses the emitted radiance at p in the direction ωo
where Li(p,ωi , t) is the incoming radiance at the surface point from the directionωi . The
given equation can be integrated over time to support motion blur. The radiance that is
reflected from ωi into the direction ωo is calculated by the phase function fr(p,ωo,ωi , t)
(BSDF).
Overall, the radiance that arrives at a pixel on the image plane from a visible point is
the sum of radiance reflected by other surfaces and the radiance emitted from a light
source onto that point (Equation 1.1) (see Sections 2.1.4 and 2.1.5 as well as Pharr and
Humphreys [2016] for more details). Monte Carlo integration is used when solving multi-
ple integrals. A different approach is based on finite element methods. The computational
power and memory bandwidth needed to solve the light transport equation is tremendous.
To reduce the noise introduced by the Monte Carlo sampling methods we have to generate
a large amount of samples per pixel. Each sample is related to a set of rays we have to
trace through the scene, compute the intersection with the scene geometry, and evaluate
the BSDF. With respect to the overall goal, creating photorealistic images in real-time, the
following problems and challenges can be derived:

1. Novel rendering algorithms try to combine rasterization and ray tracing to achieve
a higher image quality for real-time applications. Screen space ray tracing projects
a ray into the image space. The ray traversal is simplified to an algorithm which is
similar to the digital differential analyzer (DDA). It can be used to simulate a vari-
ety of different effects such as reflections and depth-of-field. Due to the perspective
division oversampling can increase the number of traversal steps. This leads to un-
necessary memory operations and therefore reduces the performance. To overcome
the downside a fixed number of traversal steps can be used [McGuire and Mara,
2014]. Unfortunately, this can lead to artifacts due to incorrect intersection points
and a reduced image quality.

How can we speed-up the ray tracing process without reducing the image qual-
ity?

2. Nowadays, distribution effects such as depth-of-field and motion blur play an impor-
tant role for the image quality and story telling in games. To achieve these effects
real-time frame rates constraints and approximations have to be applied. The pro-
duced results are visually pleasing but not physically correct. To solve the visibility
and dis-occlusions at any point in time between two frames requires a tremendous
amount of memory as well as computing power. By introducing transparency the
problem becomes more complex as the order of objects has to be taken into account.
Navarro et al. [2011] gives a comprehensive introduction to motion blur and dis-
cusses several motion blur rendering algorithms for ray tracing (e.g. distributed
ray tracing [Cook et al., 1984]) and real-time rendering (e.g. the accumulation
buffer approach [Haeberli and Akeley, 1990]). Both approaches can be applied to
depth-of-field rendering as well.

How can we achieve a physically correct result which is still applicable to real-
time applications?

4



1.3. Contributions

3. For production quality rendering such as movies compute clusters are often used.
They render different self-contained images of an animation sequence in parallel.
Recent approaches try to employ a cloud or cluster computing to speed-up real-time
rendering and increase the image quality. Crassin et al. [2015] describe the asyn-
chronous computation of indirect lighting using a "cloud" environment. The main
drawback of those techniques are the network latency and bandwidth requirements
with respect to real-time user input — input delays have to be minimized. A different
problem arises by using multiple processing units, cluster, and cloud computing. An
optimal partition of work into smaller chunks and scheduling is not feasible. The
computation time of a chunk may not be known in advance or differ from other
chunks significantly. This will increase the overall computation time.

How can we schedule and distribute chunks in a cluster environment more
efficiently to reduce the overall computation time for interactive applications?

4. An important algorithmic building block to solve the problem is dynamic memory
allocation. The usage of a dynamic memory allocator can reduce the performance
dramatically. Thousands of allocations from independent threads on a GPU will
increase the synchronization overhead.

How can we reduce the synchronization overhead introduced by dynamic mem-
ory allocation on a GPU?

1.3 Contributions

The thesis contains several contributions in the area of specialized ray tracing for real-time
rendering as well as algorithms for general-purpose computing on graphics processing
units (GPGPU). In particular, we extend the state-of-the-art for screen space ray tracing
as we used a novel acceleration structure to speed-up ray tracing effects (e.g. multi-view
synthesis and depth-of-field rendering) for real-time applications. We propose to decouple
space and time sampling to handle transparent and opaque fragments in a unified pipeline
for interactive applications. The driving motivation is to bridge the gap between offline
rendering and real-time rendering in terms of achieved image quality and performance.
In addition we show how to employ different scheduling schemes to realize interactive
applications on a GPU-cluster. Furthermore, an algorithm to speed-up dynamic memory
allocation on a GPU is proposed. This algorithm can handle unpredictable memory peaks,
e.g. during the construction of acceleration structures for ray tracing or the number of
rays needed over the lifetime of a path during tracing.
Most main contributions were published as peer-reviewed publications at international
conferences and journals.

• We present a method to reduce the required global synchronization for dynamic
memory allocations on massively parallel hardware architectures (see Challenge
4 in Section 1.2). In particular we merge small parallel allocation requests from
different threads that can occur while exploiting SIMD style parallelism. In addition
we speed-up the dynamic allocation using a set of constraints that can be applied to
a wide range of parallel algorithms.

Chapter 4, [Widmer et al., 2013]
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• A framework is developed which employs dynamic load balancing and applies fair
scheduling to minimize the average execution time of spawned computational tasks
on a GPU-cluster and allows concurrent access on GPUs. The load balancing ca-
pabilities are evaluated using the irregular workload generated by a bidirectional
path tracer. The proposed framework allows us to render complex effects at near
interactive frame rates (see Challenge 3 in Section 1.2).

Chapter 5, in coop. with D. Wodniok, C. Haubold, and M. Goesele, unpublished

• We propose an adaptive acceleration structure to speed-up real-time screen-space
ray tracing to tackle Challenge 1 in Section 1.2. The acceleration structure repre-
sents the scene geometry as a combination of bounding boxes and planar approxima-
tions. The benefit is a fast way to skip empty space and compute exact intersection
points based on the planar approximation. The technique can handle several ap-
plications, including depth-of-field rendering, stereo warping, and screen-space ray
traced reflections at real-time frame rates.

Chapter 7, [Widmer et al., 2015]

• A unified rendering approach is presented that jointly handles motion blur, trans-
parency and defocus at interactive frame rates (see Challenge 2). The scene ge-
ometry that is potentially visible at any point in time for the duration of a frame
is rendered in a rasterization step and stored in temporally-varying fragments. A
decoupled space and time sampling allows use to reuse fragments during the sam-
pling step. In combination with a specialized intersection test for temporally varying
fragments we achieve interactive frame rates.

Chapter 8, [Widmer et al., 2016]

1.4 Thesis Outline

In Chapter 2 we introduce the main building blocks (e.g. camera model, light and ma-
terial interaction, and acceleration structures) and outline the needed steps to render
images using ray tracing. Based on these foundations we extend the building blocks by
introducing distributed ray tracing [Cook et al., 1984] to support soft phenomena such as
depth-of-field and motion blur.
Afterwards, the thesis is split up into two parts. Part I introduces massively parallel archi-
tectures, describes the mapping of ray tracing to a GPU, and outlines possible drawbacks.
We show how to speed-up dynamic memory allocation (Chapter 4) for arbitrary allocation
requests. In Chapter 5 we introduce a dynamic load balancing and distribution algorithm
to support interactive applications in GPU cluster environments.
Part II of the thesis tries to bridge the gap between real-time and production rendering.
Chapter 6 describes rasterization, screen space ray tracing, and illustrates state-of-the-art
depth-of-field and motion blur algorithms. Based on these insights we propose an accel-
eration structure for screen space ray tracing (Chapter 7) and try to increase the quality
of distribution effects for real-time applications (Chapter 8).
We finally summarize and discuss our achieved results in Chapter 9 and lay out possible
future developments.
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Chapter 2
Background

One of the key foundations for rendering photorealistic images is ray tracing. In the pre-
vious section we outlined the main building blocks of ray tracing: The pinhole camera
model and ray generation, the ray triangle intersection, the light and material interaction,
recursive tracing, and the need for acceleration structures to speed-up the rendering pro-
cess. In this section we will discuss these in further detail and describe how distribution
ray tracing [Cook et al., 1984] is integrated to simulate soft phenomena such as motion
blur, depth-of-field, and soft shadows.

2.1 Ray tracing

Appel [1968] describes several techniques for shading solid objects. One of those is an
algorithm based on marching along a ray to find the closest intersection point with a solid
object for hidden surface removal and to compute shadows. In modern days, ray casting
is widely used in different standard algorithms in computer graphics such as hidden sur-
face removal or direct volume rendering. Important phenomena such as reflections and
shadows can be integrated using the recursive nature of ray tracing as shown by Whitted
[1980]. To simulate soft phenomena (e.g. motion blur, depth-of-field, and soft shadows)
it is necessary to generate several rays for one pixel on the image plane. Cook et al.
[1984] showed how to distribute the directions of a ray to sample the function. Kajiya
[1986] introduced the rendering equation (or light transport equation - Equation 1.1) a
generalization of several known rendering algorithms such as the Whitted approximation
[Whitted, 1980]. To solve the light transport equation Kajiya [1986] outlined an algo-
rithm using Monte Carlo methods - the foundation of path tracing. As the algorithm
suffers from noise he proposed several variance reduction techniques. Bidirectional path
tracing (BDPT) [Lafortune and Willems, 1993, Veach and Guibas, 1994] creates two ran-
dom walks — one from a randomly sampled point on a light source and the other from the
camera. The random walks are traced and the radiance and importance are evaluated and
later combined to reduce the variance further. In the next step both walks are connected
and the visibility between the intersection points is evaluated. For each possible path from
the camera to the light source the contribution is computed. All possible combinations of
all possible connections are created by multiple importance sampling using the maximum
heuristic. The additional rays traced to solve the visibility between the intersection points
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

Figure 2.1: (a) Rendering using the Whitted style recursive ray tracing [Whitted, 1980]
showing phenomena such as reflections, refractions, and shadows. The image (b) shows
motion blur, depth-of-field and soft shadows rendered using distributed ray tracing [Cook
et al., 1984].

Image plane

Pinhole

Figure 2.2: Pinhole camera — In the simplified camera model all light rays have to go
through a pinhole to reach the image plane. As the pinhole is infinitely small the model
does not support depth-of-field.

reduces the performance. As the algorithm may converge faster the performance loss is
mitigated. In addition, BDPT can render effects such as caustics which are not feasible
by a standard path tracer. Metropolis Light Transport (MLT) [Veach, 1998, Veach and
Guibas, 1997] reuse paths that contribute to the final image. They are created by mutat-
ing existing paths. The mutation strategies are designed to sample different phenomena
such as caustics more efficiently. Thereby, MLT explores the path space locally around the
important path. For a broader introduction on algorithms and techniques used to solve
the rendering equation please refer to the following books [Dutre et al., 2006, Pharr and
Humphreys, 2016].
At first we take a look at a simple camera model, the first building block of ray tracing. For
the next sections we follow the notations as given in "Physically Based Rendering" [Pharr
and Humphreys, 2016]. To reduce complexity and simplify the overview we assume that
our scene only consists of triangles and only consider the light transport in a vacuum. The
interaction of rays with participating media (e.g. smoke) will not be discussed.

2.1.1 Camera

Everybody is familiar with cameras (e.g. digital single-lens reflex camera, smartphone
cameras, or video cameras) to simply take snapshots or high quality photographs. The
physics of these devices is surprisingly complex. A correct simulation would involve a lot
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Eye

Near plane

Far plane

Figure 2.3: A modified pinhole camera model where the extent of the view volume is
given by the near and far plane. The image plane can be located between the eye position
and the near plane. In case of ray tracing the image plane is often the near plane.

of computation. Effects introduced by complex lens systems, motion blur from the shutter
movement itself, lens aberrations, and aperture shape have to be considered. To simplify
the model approximations were made. The simplest form, the pinhole camera model,
consists of a light-tight box with a small hole in the middle of one side. On the opposite
side of the box a paper, film or image plane is attached that captures all incoming light.
Due to the infinitely small hole a long exposure time is needed to capture the scene. The
rays with their origins at the four corners of the image plane going through the pinhole are
spanning a view volume (see Figure 2.2). Every object inside or intersecting the volume
is visible on the image plane.

In computer graphics to project the content inside the view volume onto the image plane
a projective camera model is generally used. The projection is described by a 4 × 4
projection matrix. Thereby we can distinguish between an orthographic and a perspec-
tive projection which mimics the behavior of a pinhole camera model. The orthographic
projection is a parallel projection where the projection rays are orthogonal to the image
plane. Every surface plane (e.g. triangle) is transformed using an affine transformation.
In contrast the perspective projection includes foreshortening. Objects in the background
are projected smaller onto the image plane than objects with the same size in the fore-
ground. Thereby geometric properties are not preserved such as the distance and angle.
Parallel lines are not parallel anymore.

We can use the perspective camera model to describe a transformation and projection
that mimics the behavior of a pinhole camera model. In addition we place a plane in front
of the pinhole — the near plane. The pinhole itself lies at the eye position (also called
the view position). The near and far plane describe the view volume. Every object inside
the volume will be rendered. Both planes are used to map the depth between z = 0 and
z = 1. Figure 2.3 shows the modified pinhole camera model (perspective camera model)
as used in computer graphics. In general, the image plane is positioned between the near
plane and the eye position. To render an image (compute the color) we have to sample
the image plane and trace a new ray for each sample point. Thereby the ray direction is
given by the eye position and the sample point on the image plane.
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Chapter 2. Background

2.1.2 Ray/Triangle intersection

After creating a new ray we have to find the nearest intersection point of the ray with the
given scene primitives. A ray is described by the following equation:

r(t) = ~o+ t ~d, (2.1)

where ~o is the origin of the ray, ~d the direction vector, and t the scaling parameter of the
direction vector to compute any point along the ray with t[0,∞] as we only trace forward.
A simple triangle contains at least the vertices describing the position and the face normal
needed for further operations. Other possible triangle attributes are the shading normal
for proper shading, material information (e.g. color or complex material attributes), and
a set of texture coordinates.
Möller and Trumbore [1997] introduced an efficient algorithm for ray triangle intersec-
tion. The benefit of the method is that the plane equation need not be computed on the
fly nor to be stored. This can reduces the memory consumption of a triangle mesh signif-
icantly without loss in performance. The algorithm translates the origin of the ray ~o and
then changes the base to yield a vector (t b1 b2)T , where t is the distance to the plane in
which the triangle lies and b1 and b2 represents the coordinates inside the triangle. A
parameterization of a triangle using barycentric coordinates b1 and b2 can be written as
the following equation where b1 ≥ 0, b2 ≥ 0 and b1 + b2 ≤ 1:

p(b1, b2) = (1− b1 − b2) ~p0 + b1 ~p1 + b2 ~p2 (2.2)

r(t) = p(b1, b2) (2.3)

~o+ t ~d = (1− b1 − b2) ~p0 + b1 ~p1 + b2 ~p2 (2.4)

�

~−d ~p1 − ~p0 ~p2 − ~p0

�





t
b1
b2



= ~o− ~p0 (2.5)

By solving the linear Equation 2.5 using Cramer’s rule we obtain the ray parameter t to
describe the intersection point as well as the barycentric coordinates b1 and b2 which later
can be used to interpolate per vertex triangle attributes.
In the past years several hardware dependent and independent optimizations for the ray
triangle intersection algorithms have been proposed (e.g. Schmittler et al. [2004], water-
tight intersection test by Woop et al. [2013]).
As we need to find the nearest intersection point from the origin of the ray we have to
perform the test for every possible triangle in the scene. As the scene can contain millions
of triangles a brute-force test, with an algorithmic complexity of O(n·m)with n the number
of rays and m the number of triangles, against all triangles is not feasible. To speed-up
the rendering process we can use different acceleration structures (see Section 2.1.6).

2.1.3 Monte Carlo integration

The rendering equation presented in Section 1.2 can be approximated using Monte Carlo
methods. In this section we will give a short overview of evaluating an integral using
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Monte Carlo integration. For an in-depth view into Monte Carlo methods we refer the
reader to the following books [Dutre et al., 2006, Pharr and Humphreys, 2016, Rubinstein
and Kroese, 2016]. We assume a function f (x) with x ∈ [0,1] and evaluate the following
integral:

I =

∫ 1

0

f (x)d x . (2.6)

To compute the integral we choose N samples to estimate the value of the integral. Thereby
we randomly select the samples over the domain of I with a probability distribution func-
tion p(x) (pdf), evaluate the function f using the sample, and average the weighted sam-
pled values.

〈I〉=
1
N

N
∑

i=1

f (x i)
p(x i)

. (2.7)

As the expected value of the estimator is E[〈I〉] = I the estimator is unbiased. If E[〈I〉] 6= I
the estimator is biased and the bias is B[〈I〉] = E[〈I〉]− I . A biased estimator is consistent
if limN→∞ B[〈I〉] = 0.

The Monte Carlo integration can be extended to multiple dimensions

I =

∫∫

f (x , y)d xd y, (2.8)

〈I〉=
1
N

N
∑

i=1

f (x i , yi)
p(x i , yi)

. (2.9)

Monte Carlo integration is a general method that can be used to estimate arbitrary func-
tions f by sampling a pdf, using the samples to evaluate f , and average the weighted
sampled values.

2.1.4 Light distribution and surface scattering

We obtained the nearest intersection point and interpolated attributes such as shading
normals and colors using the barycentric coordinates b1 and b2, as well as some non-in-
terpolated material properties.
In this step we compute the amount of radiance that is reflected from the intersection point
into the direction of the camera. Therefore, we have to randomly select a light source from
the scene and evaluate the visibility. The light source can either be a point light, spot light,
directional light or area light. In case of an area light we have to sample a point on the
geometry of the light. After randomly selecting the sampling point we have to evaluate
the visibility for the intersection point. Therefore an additional ray with the intersection
point as origin and the direction towards the light position is traced. The resulting scaling
parameter t of the ray gives us the distance to the nearest intersection point with the scene
geometry. If t is smaller than the distance to the light source the intersection point lies in
shadow. If the point is visible we can calculate the incoming radiance, and compute the
reflected amount using the assigned BSDF. For this section we assume direct lighting only.
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This means we take only the amount of radiance into account which is directly reflected
from the light source to the camera without the reflection from other surfaces.
As we want to compute the distribution of light energy in a scene we first want to give
an overview over the most important quantities for light transport. The basic quantity is
radiant power Φ. It represents the total amount of energy flowing from or to a surface per
unit time in watts W (joules/sec).
Irradiance E is the incident radiant power on a surface per unit surface area in W/m2:

E =
dΦ
dA

. (2.10)

Radiant exitance M describes the exitant radiant power per unit surface area in W/m2:

M =
dΦ
dA

. (2.11)

Radiance L is the radiant power per unit solid angle per unit projected area in W/(sr ·m2):

L =
d2Φ

dωdAcosθ
. (2.12)

Thereby the radiance depends on the position p and the direction vector ωi .
Based on this information we can now compute the reflected radiance in the direction ωo
leaving the surface at point p to the camera. The bidirectional reflectance distribution
function (BRDF) [Nicodemus, 1965] describes the fraction of the incident irradiance from
a direction ωi as reflected radiance in direction ωi .
The irradiance function for a solid angle:

dE(p,ωi) = Li(p,ωi) cosθidωi , (2.13)

with Li(p,ωi) the incident radiance from the direction ωi , θi the angle between ωi and
the surface normal n, the differential irradiance dE(p,ωi) at p from direction ωi .

fr(p,ωo,ωi) =
d Lo(p,ωo)
dE(p,ωi)

=
d Lo(p,ωo)

Li(p,ωi) cosθidωi
(2.14)

Important physical properties of a BRDF are:

1. Reciprocity: fr(p,ωo,ωi) = fr(p,ωi ,ωo)

2. Energy conservation: The total energy of light reflected is less than or equal to the
energy of incident light.

3. Range: fr(p,ωo,ωi)≥ 0

One of the most common BRDFs is the diffuse BRDF. Such materials reflect the light uni-
formly over the complete hemisphere. Thereby, the reflected radiance is independent of
ωo and the value of BRDF is constant for all directions ωo and ωi .

fr(p,ωo,ωi) =
ρd

π
, (2.15)

with ρd ∈ [0, 1] the fraction of incident radiance that is reflected at the surface.
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Figure 2.4: The figure illustrates the principle of recursive ray tracing [Whitted, 1980].
The algorithm can incorporates perfect reflections, refraction, and shadows to renderings.
A primary ray from the camera is reflected and transmitted at the glass sphere. From the
intersection point we recursively trace new rays to evaluate the perfect reflections and
refractions as well as the shadow.

2.1.5 Recursive ray tracing and path tracing

In Section 2.1.4 we only take the energy into account which is directly reflected from a
light source (direct lighting) to the camera. To achieve realistic results light reflections
from one surface to another have to be taken into account. As introduced in the problem
statement 1.2 we have to solve the light transport equation [Kajiya, 1986] (Equation 1.1).
Earlier, Whitted [1980] highlighted the recursive nature of ray tracing. To support mirrors
he proposed to reflect a ray at the intersection point about the face normal and trace a
novel ray in the reflection direction. The incoming light energy arriving at the intersection
point is then summed up. Thereby, it is necessary to follow the ray recursively over several
bounces if another mirror was hit. Transparent materials can be handled in a similar way
by computing the refraction vector instead. Whitted-style ray tracing only evaluates the
light transport equation for perfect reflections and refractions (Figure 2.4).

2.1.6 Acceleration structure

To significantly speed-up the computation time different acceleration structures can be
applied. One can group them into two different categories, object hierarchies and spatial
hierarchies. Both organize a soup of primitives (e.g. triangles, rectangles, and complex
polygons) in a n-dimensional tree structure. An object hierarchy uses a simple volumetric
object (e.g. sphere, axis aligned bounding box, or object oriented box) to describe the
extents of a subset of primitives from the complete soup. The parent is recursively split
into n child nodes beginning from the root. Thereby child nodes can overlap each other.

13



Chapter 2. Background

The corresponding bounding volumes are typically stored at the inner nodes while the
leaf nodes contain pointers to the primitives. In contrast, a spatial hierarchy splits up
the space populated by the primitives into a set of half-spaces based on a near optimal
splitting plane. Afterwards, the primitives will be grouped and sorted to the left or the
right side of the plane. Each half-space is recursively split until certain criteria are met.
A typical object hierarchy is the bounding volume hierarchy (BVH) where an axis aligned
bounding box is used to describe the extents of a node. This acceleration structure is
widely used in ray tracing as it is easy and fast to build in parallel on multi- and many-
core architectures [Wald, 2007, 2012]. In contrast, KD-trees [Zhou et al., 2008] partition
the space into a hierarchy of disjoint sets. Wu et al. Wu et al. [2011] presented an efficient
construction algorithm for GPUs. Up until now, BVHs construction on many-core architec-
tures easily outperform kD-tree construction algorithms. Vinkler et al. [2014] compared
the ray tracing performance for a GPU ray traversal algorithm based on Aila and Laine
[2009]. They showed that for simple and moderate complex scene the BVH ray trac-
ing performance outperforms kD-trees. KD-trees, on the other hand, perform better for
complex scenes. Stich et al. [2009] apply spatial splits in bounding volume hierarchies
(SBVH) and gain similar tracing performances as the kD-trees but can be constructed
faster. An optimized acceleration structure for many-core architectures are multi-branch
BVHs [Dammertz et al., 2008, Ernst and Greiner, 2008, Wald et al., 2008]. It reduces the
depth complexity of a BVH tree by merging inner nodes to test multiple child nodes in a
single traversal iteration. The structure increases memory access coherence and reduces
the number of traversal steps by performing multiple child node intersection tests using
vector instructions. In both cases, object and spatial hierarchies, the termination criteria
for the construction of the tree can either be the number of primitives in a child node
or the surface area heuristic (SAH). The best way to reduce the overall traversal costs
for both data structures is to use a top-down, greedy SAH based construction algorithm
[Wald, 2007]. Thereby the expected costs of the ray traversal have to be minimized. Equa-
tion 2.16 estimates the expected traversal cost. We assume a volume V encompasses N
triangles which can be split into two child nodes of the tree VL and VR with NL and NR.

Cost() = KT + KI

�

SA(VL)
SA(V )

NL +
SA(VR)
SA(V )

NR

�

, (2.16)

where SA(V ) is the surface area of the volume V, and KT and KI are constants which
estimate the cost of the traversal and triangle intersection. For BVH trees the volume V
can be split into two child nodes by choosing an axis aligned split plane in one of the three
dimensions which minimizes the cost function. The axis aligned bounding box (AABB) of
the volume is uniformly subdivided into K bins. This gives us K − 1 ways per dimension
to partition the set of triangles. In the next step all triangles are sorted into the bins using
their centroids. Each bin has knowledge of the number of triangles it contains and their
tight AABB. With this information we can evaluate the cost function (Equation 2.16) of
each possible bin combination that constructs VL and VR. We choose the combination with
minimal cost and split the two child nodes further. The algorithm can be terminated if the
number of triangles is under a certain threshold, the costs cannot be minimized further
or the size of the AABBs is too small. For an in-depth discussion of the algorithm and its
parallelization we refer the reader to Wald [2007]. Recent research by Aila et al. [2013]
and Wodniok and Goesele [2016] has shown that the SAH cost can not predict the gain
in traversal performance well.
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Focal point

f

d

R1 R2

Figure 2.5: The figure illustrates the thin lens approximation. All rays that are parallel
to each other will converge in the focal point after they where refracted by the lens. The
focal length f describes the distance of the focal point from the lens midpoint. The lens
thickness d can be neglected under the thin lens approximation if the radii of the lens
surface R1 and R2 (blue lines) are significantly larger.

2.2 Depth-of-field

A camera uses a complex system of lenses to focus light through the aperture onto the
camera sensor. The larger the aperture diameter the more light can reach the sensor. If the
aperture diameter is decreased the depth-of-field is increased. Thereby, depth-of-field is
the distance between the closest and furthest points which are still recognized as in-focus.
Using a narrow depth-of-field, only a small amount of the image is in focus and vice versa
for a wide depth-of-field. The amount of light that reaches the sensor can be limited by
a shutter (or diaphragm). The thin lens approximation can be used to model the finite
aperture.

2.2.1 Thin lens camera model

The thin lens model approximates an optical system (set of lenses) using a single lens.
It assumes that the thickness of the lens is negligible in comparison to the radius of cur-
vature of the lens surfaces (see Figure 2.5). Therefore, ray tracing can be simplified. All
optical effects based on the thickness of lenses are ignored. As we assume the surrounding
medium of the lens is vacuum the index of refraction is n = 1. According to the thin lens
approximation all rays that are parallel to each other will converge in the same point after
the refraction, the focal point at the distance f from the lens. If we place an image plane
at the focal point all objects with an infinite distance from the lens are always in focus
(infinity focus).
In the following we use the Cartesian sign convention for the Gaussian form of the lens
equation. Thereby, the distance to the object o is negative and the distance to the image
positive, the light travels from the left to the right side. All distances are measured from
a refracting surface. As d is negligible we use the midpoint of the lens in all figures.
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Figure 2.6: Geometric description of the Gaussian lens equation 2.17. The distance o is
the scene distance of the object to the midpoint of the lens and i the distance on the image
plane size.

1
i
−

1
o
=

1
f

, (2.17)

where o is the distance of the object to the lens and i is the signed distance from the lens
where the object is in focus. If we set o = −∞ in Equation 2.17, this yields i = f as
described above. All parallel rays converge at the focal point (see Figure 2.6).

i =
f o

f + o
. (2.18)

The Gaussian lens equation 2.18 can be used to compute the distance i at which the point
P at distance o would be in focus (point I in Figure 2.7). The projection of the point
becomes a disk on the image plane — the circle of confusion (COC) with a diameter of dc .
The extent of the circle depends on the diameter of the aperture.
We can compute the circle of confusion dc (Equation 2.19 and Equation 2.20) by applying
the properties of similar triangles based on the diameter of the lens dl and i. The ratio
must be the same as dc to i

′
− i (see Figure 2.7).

dl

i
=

dc

|i′ − i|
, (2.19)

dc = |
dl(i

′
− i)

i
|. (2.20)

Based on the size of the COC dc and the size of a pixel dp we can derive a formal definition
for the depth of field. A point is in-focus if the corresponding size of the COC dc is smaller
than the size of the pixel dp on the image plane. We can express the relation between
depth-of-field and the aperture size using Equation 2.21, where o is the distance of the
object center in-focus, o

′
the distance of the frontmost point on the object in-focus. The
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Figure 2.7: The Figure illustrates the geometric meaning of Equation 2.20 to calculate
the diameter of the circle of confusion, dc . Given dl , the diameter of the lens, a point P

′

in focus results in a point on the image plane I
′
with the distance i

′
from the lens.

Figure 2.8: The photos show object motion blur. Due to the motion of the subject it is
blurred on the images (motion of the water, moving bus and cars) and the background is
sharp as the camera does not move, Creative Commons CC0.

point is on a sphere with the radius r. Therefore we can say that with an increasing
aperture size the depth-of-field becomes smaller.

r < |
ods( f + o)

dl f + ds( f + o)
| =⇒ r∝

1
dl

(2.21)

As our main goal is to achieve a more realistic image at real-time frame rates we stick to the
thin lens approximation. For an introduction to realistic camera models using a lens sys-
tem and thick lenses please refer to "Physically Based Rendering" [Pharr and Humphreys,
2016]. In Section 2.4 we discuss the implementation of the thin lens approximation for
ray tracing. Later on, in Section 6.2.3 we will introduce depth-of-field for real-time appli-
cations. Therefore, the circle of confusion is an essential concept.

2.3 Motion blur

The exposure time of a camera describes the length of time the camera sensor is exposed
to light. During that time-span objects can move and will introduce blur (motion blur) to
an image. Figure 2.8 shows motion blur based on object motion relative to the camera.
The moving objects get blurred as the background and static objects such as the telephone
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Figure 2.9: The figure illustrates Equation 2.23. The function integrates the incoming
light Ll(ω, t) over the hemisphere Ω at a pixel. The visibility of the rays is solved by
gl(ω, t).

booth remain sharp.
Sung et al. [2002] formalized the exposure process using Equation 2.22. Thereby, (x , y)
represents the pixel position on the image plane I . The captured light is the integration
of the radiance L(ω, t) over the exposition time T at the sensor. Using the reconstruc-
tion filter r(ω, t) we can model physical properties such as the diameter, geometry, and
movement of the aperture.

I(x , y, t) = I(ω, t) =

∫

Ω

∫

T
r(ω, t)L(ω, t)d tdω (2.22)

We can extend Equation 2.22 by modeling the visibility of objects l of a scene in the
direction ofω at time t. Thereby the function gl(ω, t) evaluates the visibility and Ll(ω, t)
computes the radiance for the object l. Current algorithms do not take the motion blur
introduced by the shutter movement into account [Sung et al., 2002]. This can simplify
the reconstruction filter r(ω, t).

I(ω, t) =
∑

l

∫

Ω

∫

T
r(ω, t)gl(ω, t)Ll(ω, t)d tdω (2.23)

Using Monte Carlo integration we can approximate Equation 2.23. Therefore, we sample
in the spatio-temporal domain (Equation 2.24). This approach can be directly mapped to
distributed ray tracing [Cook et al., 1984]. We will discuss this in the following Section
2.4.

I(ω, t)≈
1
N j

1
Nk

∑

j

∑

k

∑

l

r(ω j , tk)gl(ω j , tk)Ll(ω j , tk) (2.24)

Navarro et al. [2011] has analyzed the physical properties of motion blur and methods
that can simulate it in computer generated images. They introduced and categorize the
existing algorithms based on their differences, strengths and limitations.
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

Figure 2.10: The image (a) shows motion blur, depth-of-field and soft shadows rendered
using distributed ray tracing [Cook et al., 1984]. Figure (b) illustrates motion blur intro-
duced by camera and object motion.

2.4 Distributed ray tracing

Several phenomena such as perfect specular reflections and transparent objects can be
rendered using recursive ray tracing [Whitted, 1980] (see Section 2.1.5). To simulate mo-
tion blur, depth-of-field, and soft shadows it is necessary to generate several rays per pixel.
Cook et al. [1984] proposed sampling strategies to incorporate these effects. Thereby, a
new ray with an uniformly distributed origin on a camera lens is generated. In addition
we have to sample in the time domain to create motion blur. Therefore, the simplified
pinhole camera model 2.1.1 has to be replaced by a lens and aperture.

Depth-of-field The basic idea of depth-of-field rendering using distributed ray tracing is
to sample the associated size of the lens aperture and create a ray from the lens position
with a direction through the focal plane. Therefore we need the know the focal distance
to compute the focal point.
At first we sample a point on the unit disk. Therefore we map a randomly selected point on
the unit square (ξ1,ξ2) to a point on a unit disk so that we achieve a uniform distribution.
The most basic way to map the unit square is to use a polar mapping such as r =

p

ξ1 and
θ = 2πξ2. Shirley and Chiu [1997] presented an algorithm that maps points onto a unit
disk (ξ1,ξ2) ∈ [−1,1]2 to concentric circles. To compute a new ray origin we multiply
the sampled point with the lens radius (size of the lens aperture).
To create the new ray direction we assume that the focal plane is perpendicular to the
z-axis. This simplifies the computation of the focal point ~f p as we know that a ray which
passes through the center of the lens is not refracted — the direction is not changed (see
Section 2.2.1). We need to compute the intersection of the original ray r with the focal
plane using the focal distance i as follows:

~f p = ~or +
i

dzr

~dr . (2.25)

Motion blur In addition to the spatial domain (lens (u, v)) the time domain t is sampled
to incorporate motion blur. All that is needed is to calculate the position of an object at
the time t between two transformations with t = 0 and t = 1. The calculation of the
position can be arbitrarily complex as in general the motion of an object does not have
to be linear. To simplify the problem it is possible to assume that the complex motion is

19



Chapter 2. Background

piecewise linear so we can simply interpolate between t = 0 and t = 1. Afterwards, the
intersection of the transformed object with the ray has to be computed.
To accelerate distributed ray tracing one can use specialized acceleration structures which
encompass the motion trajectory. For example, a BVH tree can be constructed for a cer-
tain t (e.g. t = 0.5). During the ray traversal each bounding box must be interpolated
according to t. A tighter bounding volume can reduce the number of intersection tests.
The intersection test itself becomes more complex and therefore the overall performance
can suffer. Olsson [2007] extended kD-trees by adding a temporal split in the time do-
main. The increasing number of object references introduce a significant memory over-
head, which limits its practical applicability. Grünschloß et al. [2011] proposed a 4D
space-time extension to the spatial split BVH algorithm [Stich et al., 2009].
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Foundations for GPU Computing
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Chapter 3
Motivation

With the introduction of the programmable rendering pipeline, general purpose comput-
ing on GPUs became available not only for computer graphics but also gained a wide
acceptance in the high performance and scientific computing community. In this part of
the thesis we will introduce the current GPU architecture, discuss its implications on pro-
gramming models, describe the mapping of ray tracing on a GPU, and outline possible
drawbacks. We present a dynamic memory allocation algorithm (Chapter 4) for arbitrary
allocation requests optimized for many-core architectures such as GPUs. The allocator can
be applied not only to ray tracing but to high performance computing as well. In Chapter
5 we introduce a dynamic load balancing and distribution algorithm to support interactive
applications in a GPU cluster environment. We use a classic bidirectional path tracer to
evaluate the scalability and performance of our approach.

3.1 Introduction

Parallel architectures can be classified using Flynn’s taxonomy [Flynn, 1972]. They are
based on single instruction multiple data (SIMD) model or multiple instructions multiple
data (MIMD). Multiple processing units are executing the same single instruction on dif-
ferent data in parallel or multiple instructions in case of MIMD. Based on the viewpoint,
current CPUs and GPUs can be grouped into different classes. A single core of a CPU works
in the SIMD fashion while multiple cores can execute different instructions in parallel and
therefore will be classified into MIMD — going up to clusters of compute units.

3.2 Background

In contrast to CPUs, GPUs use a modified version of SIMD — single instruction multi-
ple threads (SIMT). A group of threads contains a program counter to efficiently support
branching. The number of threads in such a group is given by the SIMD-width. Current
GPUs are using a width of 32 or 64 threads which are grouped to one unit of execution.
The execution of instructions inside a group of threads (so-called warp) is implicitly syn-
chronous.
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Figure 3.1: The diagram in this figure shows all components of a Streaming Multiproces-
sor (SM) of the GP104 architecture [NVIDIA, 2016](redrawn after [NVIDIA, 2016]).

3.2.1 GPU architecture

To understand the advantages and disadvantages of GPU based algorithms we have to
take a look at the current state-of-the-art GPU architecture based on the NVidia Geforce
GTX 1080 and the underlying Pascal architecture [NVIDIA, 2016]. Thereby, we will fo-
cus on the SIMT execution model, how it is mapped to the GPU hardware, and outline
possible performance bottlenecks that may occur. For simplicity we will use the notations
introduced by NVidia. But the core principles can be easily adapted to other programming
languages and to GPU architectures of other vendors.
The basic unit of execution on a GPU are threads as well as warps. A warp operates in a
SIMD fashion. All threads in a warp are executing the same instruction on different data.
As branching may happen during the execution, the number of threads that execute an
instruction is reduced. Those who are not following the branch are masked out. At the end
of the branching path all threads are running synchronously due to the SIMD execution
model.
To map threads to the hardware each Streaming Multiprocessor (SM) on a GPU contains
128 cores (arithmetic logic units) whereby each core executes one thread (see Figure 3.1
- light green boxes). As threads are grouped in warps, an SM can run four different warps
with different program counters in parallel. A multiprocessor has access to a set of special
function units (SFU) to execute transcendental instructions such as sin, cosine, reciprocal,
and square root operations. The load/store units (LD/ST) handle the bidirectional transfer
of data between memory and registers.
Another crucial part for an efficient execution of GPU kernels is the memory model. Cur-
rent GPU architectures contain several different memory areas which differ in scope and
therefore in read/write bandwidth, latency, and size due to different technologies used
(Figure 3.1 - blue boxes). The hierarchy contains the register file set, shared memory, and
global memory. Shared memory is often used for data distribution as it is shared between
all threads in a thread block. To reduce the high latency a GPU uses a hierarchy of caches.
The L1 data and instruction caches increase the performance of instruction decoding and
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data fetches. Texture caches as well as L2 cache reduce the latency of global memory. A
typical non-cached read operation from a kernel can take up to several hundred GPU-cy-
cles.
A typical multiprocessor of a state-of-the-art GPU may has a 256 Kbyte register file, 96
Kbyte shared memory, and a 48 Kbyte working set for L1 cache / texture cache. In ad-
dition 10 Kbytes are available to cache the access to constant memory, a part of global
memory only available for constant variables. 2048 Kbyte L2 cache are used to cache
global memory access for the entire GPU. If a thread uses too many register or the data
structures become too large they are spilled into local memory — essentially a memory
area residing in the global memory. Each thread can use 512 Kbyte of local memory at
max.
In the end, five Streaming Multiprocessors are combined into one Graphics Processing
Cluster (GPC). A GPU can contain a different number of GPCs depending on the exact
model.

3.2.2 Programming model

Based on the described hardware architecture, we will now introduce the programming
model and discuss some implications of the underlying hardware.
Parallel programs can decompose a problem — an algorithm or a program — in two
different ways. Task parallelism distributes a set of tasks across different processing units.
Thereby a task, a C like kernel , is executed concurrently by one processor. Each processor
runs the same or a different kernel on the same or a different set of data — classified as
MIMD. In contrast, in a decomposition using data parallelism all processors run the same
task on different set of data and is classified by Flynn’s taxonomy as SIMD. Each parallel
task and data chunk can further be decomposed into concurrent sub-tasks and smaller
data independent chunks. So we can combine task and data parallelism.
The parallel programming model for GPUs uses task and data parallel decomposition.
Independent tasks are executed concurrently by different warps using a task parallel de-
composition model. Each thread in a warp runs the same instruction off the task on a
different data word. Thereby it is important that tasks and data chunks are independent
to minimize possible synchronization.
While developing algorithms for GPUs it is essential to think about SIMD efficiency, the
overlay of memory access and computation, and the memory access pattern for good cache
usage to achieve the best possible performance.
In a SIMD efficient algorithm all threads are working entirely in parallel over the complete
execution time of a kernel. Branching code introduced by conditional statements or loops
can reduce the SIMD efficiency. Based on the statement not every thread executes the
same instruction at the same time. A second problem is the latency of the memory access
as described in the previous section. A typical uncached read operation can take up to
several hundred GPU-cycles. In this case a new warp has to be scheduled to overlay
memory operations with computation. We can use shared memory to speed-up memory
reads by pre-fetching the data we use for computation or rely on the cache hierarchy.
To facilitate the possibilities of general purpose computation on GPUs (GPGPU) modern
high-level programming languages and APIs were introduced, such as NVidia’s CUDA
[NVIDIA, 2015] and the cross-platform OpenCL standard [Khronos Group].
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3.2.3 Ray tracing on GPUs

After the short description of the current NVidia Pascal architecture the question arises
how to map ray tracing onto GPGPUs. A basic and the most common mapping of ray
tracing onto the SIMD model is the mapping of one ray onto one thread. Each thread
of a warp traverses the bounding volume hierarchy, intersects the tree nodes, computes
the intersection with the triangles, and does the final shading computation independently
from other threads.
Ray tracing on GPUs is a widely studied field [Aila and Karras, 2010, Aila and Laine, 2009,
Laine et al., 2013, van Antwerpen, 2011]. The main performance drawback is caused by
incoherent rays [Aila and Karras, 2010]. These are rays which are handled by neighboring
threads in a warp but traverse a different path in the BVH tree. Thereby, the memory
access while fetching the child nodes is not contiguous. This results in increased memory
traffic, cache trashing, and serialization of threads and therefore reduces the achieved
SIMD efficiency [Aila and Laine, 2009]. A different source of a reduced SIMD efficiency is
branching inside a warp. As rays can traverse different paths in the tree the neighboring
rays can have different states. One can still traverse the BVH, another one may do the
AABB intersections with some nodes of the tree, and another may already have found a
leaf node with a triangle and do the triangle intersection test. All threads in a warp are
executing a different instruction and have to wait until they reach the same instruction.
To alleviate the problem we use a while-while ray traversal kernel [Aila and Laine, 2009].
Depending on the light transport algorithm used, the memory footprint for book keeping
can be very high. Techniques such as bidirectional path tracing have to store the complete
path (several ray segments) to generate different combinations of eye and light paths.
Normally one can allocate the needed buffers for the temporary data in advance. Due
to the different path lengths (based on material properties and random events) memory
can either be wasted as too many rays were pre-allocated or the size of the allocation was
insufficient.
In large scale production rendering, CPU based path tracers such as Arnold Solid Angle
[2016] and Disney’s production renderer Hyperion [Eisenacher et al., 2013, Seymour,
2014] are often used. Limitations of GPUs are the small amount of global memory avail-
able, the additional data streaming costs for out-of-core algorithms, well understood hard-
ware with existing code base and years of experience on optimizing CPU based path trac-
ing using Streaming SIMD Extensions (SSE). GPUs are often applied to pre-computation
of certain effects and data structures Pantaleoni et al. [2010] or pre-visualization during
production. Often large computing clusters are used with little support of GPUs and FP-
GAs for special tasks [Seymour, 2014]. Christensen and Jarosz [2016] give an overview
of current technologies used in production rendering.

3.2.4 GPU cluster computing

At the end of the previous section we have outlined some reasons why production quality
path tracers are CPU based. All use CPU clusters to render the set of final images. They
distribute different self-contained images of an animation sequence and render them in
parallel. Recent approaches in real-time rendering try to use GPU based cloud or clus-
ter computing to speed-up real-time rendering and increase the image quality [Crassin
et al., 2015]. A drawback of these approaches are the network latency, bandwidth re-
quirements, and input lag which have to be minimized. Production quality rendering can
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be partitioned into smaller chunks such as tiles of an image or the radiance of indirect
light passes. Unfortunately, the computation time is not known in advance and may differ
from tile to tile due to different material shader complexity or other effects. Therefore,
the overall computation time can suffer from an irregular workload and a less optimal
distribution of work (Challenge 3 in Section 1.2).
In Chapter 5 we present a framework which can distribute and reschedule GPU compu-
tations in a heterogeneous environment. We show how to reduce the overall rendering
time of an interactive application by using work stealing to alleviate the uneven workload
distribution.

3.2.5 GPGPU dynamic memory allocation

In many scenarios it is beneficial to know the memory consumption in advance. There-
fore, the most efficient implementations of parallel algorithms work on fixed size buffers
which are allocated using an estimated upper bound of the memory consumption of the
algorithm over the complete runtime of a kernel. One reason to use these pre-allocated
buffers is the lack of dynamic memory allocation on the kernel side. Another reason is the
performance impact of the allocator itself. If many threads request memory independently
at any time the synchronization overhead introduced by the dynamic memory allocation
increases the kernel runtime significantly. On the other hand, using fixed buffers with an
upper bound size can waste memory as the buffer may be too large.
More importantly, well known algorithms and data structures exist where the amount of
temporary data needed for the construction of a data structure cannot be computed in
advance (e.g. KD-tree construction [Vinkler and Havran, 2014]). More problematic is
an unpredictable memory consumption which is based on the input data in combination
with random events. As described in the previous Section 3.2.3, algorithms based on ray
tracing and traversal can have an unpredictable memory consumption which is not known
ahead of time (Challenge 4 in Section 1.2).
In the following chapter we describe an algorithm for dynamic memory allocation (Chap-
ter 4) which reduces the synchronization overhead significantly and can be applied on a
per thread basis for ray tracing. This can reduce the amount of wasted memory as we do
not rely on pre-allocated buffers.
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Chapter 4
Fast Dynamic Memory Allocator for
Massively Parallel Architectures

Abstract

Dynamic memory allocation in massively parallel systems often suffers from
drastic performance decreases due to the required global synchronization.
This is especially true when many allocation or deallocation requests occur
in parallel. We propose a method to alleviate this problem by making use
of the SIMD parallelism found in most current massively parallel hardware.
More specifically, we propose a hybrid dynamic memory allocator operating
at the SIMD parallel warp level. Using additional constraints that can be ful-
filled for a large class of practically relevant algorithms and hardware systems,
we are able to significantly speed-up the dynamic allocation. We present and
evaluate a prototypical implementation for modern CUDA-enabled graphics
cards, achieving an overall speedup of up to several orders of magnitude.
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4.1 Introduction

Dynamic memory allocation is one of the most basic features programmers use today. It
enables memory allocation at runtime and is especially useful, if the amount of memory
needed is not known ahead of time. Modern operating systems provide therefore easy to
use interfaces to allocate and free memory arbitrarily. Unfortunately, these approaches do
not generalize directly with good performance on massively parallel architectures such as
current graphics processing units (GPUs) or even many-core systems. The key problem
is hereby that bookkeeping during naïve allocation and deallocation requires a form of
global synchronization. This is a severe performance bottleneck when systems become
more and more parallel.
This effect can, e.g., be observed in practice when using the C functions malloc() and
free() that were recently included into NVIDIA’s CUDA framework [NVIDIA, 2015] to
allocate memory dynamically at runtime. Several approaches have therefore been de-
veloped to build a dynamic memory allocator capable of working in a massively parallel
environment, where traditional approaches do not work, including XMalloc [Huang et al.,
2010] and ScatterAlloc [Steinberger et al., 2012]. Although these implementations show
better results than the built-in CUDA allocator, their application still results in a noticeable
slowdown.
Our key observation is that massively parallel architectures typically operate in a SIMD
fashion where a single instruction is physically executed in parallel. In CUDA, this cor-
responds to the concept of a warp. Memory allocation and deallocation should take this
into account and will ideally yield a significant speedup when operating in this granu-
larity. We additionally propose multiple constraints and assumptions which are fulfilled
in many practically relevant algorithms and hardware systems that yield a different and
much faster implementation. In particular, we assume that a systemwide default memory
allocator is available. Further, we expect the application to free memory not arbitrarily
but free all memory at certain points during the execution.
These assumptions fulfill the SIMD parallel programming scheme and can be applied to
various algorithms, in particular algorithms with an unpredictable transient or output
data size such as Monte Carlo-based simulation techniques, graph layout algorithms, or
adaptive FEM simulations. All these algorithms can be implemented without dynamic
memory allocation by interrupting the GPU computations at critical points and allocating
additional needed memory. The introduced global synchronization can be at least partially
reduced if not eliminated by use of dynamic memory allocation.
Our contributions are as follows:

• an improved memory allocator for massively parallel architectures with a wide SIMD
width such as Nvidia’s CUDA and Intel’s Xeon Phi. It drastically increases performance
and works for a wide variety of applications.

• a comparison of the proposed allocator with the standard CUDA malloc and ScatterAl-
loc.

4.2 Related work

Dynamic memory allocation is nowadays an ubiquitous operation. Therefore most pro-
gramming languages provide some mechanism to allocate memory at runtime. The com-
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plexity of such operations is transparent for most programmers. They are in most cases
not aware of the implications the operations have on the overall runtime of an application.
This is specially the case for multi-processors and in particular multi-core CPU systems.
Many different memory allocators and algorithms for memory management where pro-
posed over time. An introduction and basic overview is given by Knuth [1997] and Tanen-
baum [2007]. Wilson et al. [1995] have evaluated and compared the most common algo-
rithms regarding the overall memory consumption.
Over the past years a lot of dynamic memory allocators for multi-processor and multi-core
systems were proposed. Gloger [1998] extended the well known and widely used dlmalloc
[Lea, 1996] to support multi-thread environments. Berger et al. [2000] uses per processor
heaps in addition to a global heap to increase scalability. Dice and Garthwaite [2002] as
well as Michael [2004] introduced memory allocators based on lock-free data structures.
Modern parallel architectures have a wide variety of active hardware threads. They range
from multi-core systems with up to 16 cores over many-core systems to massively parallel
architectures such as GPUs which can execute thousands of threads concurrently. With
the increasing number of threads running concurrently the synchronization overhead in-
creases and becomes a severe bottleneck. As a result the scalability and in particular the
SIMD scalability decreases.
In this chapter we will focus on dynamic memory allocation for massively parallel architec-
tures with a wide SIMD width such as GPUs or Intel’s Xeon Phi. Our main goal is hereby
to increase the SIMD scalability.

4.2.1 Dynamic memory allocation on CPU

With the introduction of multi-processor and multi-core systems the classic memory allo-
cation algorithm became a severe bottleneck. To increase the scalability of an allocator on
a multi-processor system Häggander and Lundberg [1998] proposed two optimizations.
A parallel heap and memory pools for commonly used object types were implemented
to gain a significant speedup. For every processor a heap area is created. A thread can
allocate memory using this area of the processor it is executed on. If the heap area is occu-
pied by a different thread one can try to lock a heap area of another processor. A similar
approach, the Hoard allocator, was proposed by Berger et al. [2000]. They augment a
global heap with a per-processor heap that every thread may access. Hoard caches a lim-
ited number of superblocks (a chunk of memory) per thread. To keep fragmentation at
a minimum, unused superblocks can be migrated into the global heap and used by other
processors.
Most dynamic memory allocators rely on atomic operations or even require mutual exclu-
sion locks to handle their critical section and keep shared data structures consistent. This
can have a significant performance impact and reduced scalability with increasing number
of cores per processor. To reduce mutual exclusion locks, lock-free data structures which
build on the atomic Compare-and-Swap (CAS) or the Load-Linked and Store-Conditional
(LL/SC) operation are supported by almost all current CPU architectures. In this context
Michael [2004] presents a completely lock-free memory allocator.
Hudson et al. [2006] presented McRT-malloc, a scalable non-blocking transaction-aware
memory allocator that is tightly integrated with a software transactional memory system.
It avoids expensive CAS operations by accessing only thread-local data and increases scal-
ability even further.
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4.2.2 Dynamic memory allocation on massively parallel architectures

Publications dealing with dynamic memory allocation for GPGPU applications are scarce.
Huang et al. [2010] introduce the problems that have to be faced when building a memory
allocator for massively parallel architectures, identifying the need to synchronize access
to header data as the main issue. This synchronization serializes execution and therefore
decreases the performance gain from parallel architectures.
XMalloc uses a similar approach as the Hoard allocator [Berger et al., 2000] by intro-
ducing superblocks and using the atomic CAS operation from Michael [2004] to reduce
synchronization overhead. To parallelize memory allocation, all threads are divided in
smaller groups. Each group maintains their own superblocks. This allows groups to work
independently from each other and to only access the global memory management when
allocating a new superblock. Each superblock can be divided into several smaller blocks
and distributed among the threads in the group.
ScatterAlloc [Steinberger et al., 2012] expands XMalloc [Huang et al., 2010] by introduc-
ing a new approach to further reduce simultaneous access from different threads to the
same memory region. Their implementation does not search linearly for a free memory
slot, but instead scatters the memory access. This reduces the concurrent access to the
same memory region and speeds up the allocation process.
In contrast to XMalloc and ScatterAlloc we introduce a voting algorithm to determine
a single worker thread, reducing the amount of concurrent access to the critical section
and increasing SIMD scalability. We propose assumptions that minimize the algorithmic
complexity and suggest an allocation principle based on superblocks that increases the
overall performance.

4.3 Design

Various modern many-core architectures (e.g., GPUs or accelerator cards) are executing
a group of threads in a SIMD style fashion, each thread corresponding to a SIMD lane.
All those threads must execute the same instruction to minimize divergence and achieve
the best performance. A dynamic memory allocator for those systems must scale when
thousands of threads allocate different chunks of memory at the same time. In the fol-
lowing, we call a group of SIMD lanes of one streaming processor core a warp, similar to
the CUDA terminology. An important consequence of the SIMD nature is that threads in
a warp are implicitly synchronized.
Allocation algorithms such as Hoard [Berger et al., 2000] are optimized for multi-thread-
ing environments. They do not scale with increasing numbers of warps. Allocators pro-
posed for many-core architectures (e.g. XMalloc [Huang et al., 2010]) are too general
since they are based on the assumption that all threads are independent and not executed
in SIMD style.
The main design goal for our allocator was to increase the SIMD scalability for small,
frequent memory allocations and therefore endeavor to reduce the branch divergence. To
achieve this, we rely on the following three assumptions.

1. A system wide default memory allocator exists and works fast, as long as there are
only few simultaneous requests.
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2. There is no need to free single chunks of memory during the execution. It is sufficient
that the complete allocated memory of a group of threads can be freed at a certain
point during the execution.

3. Most memory requests are smaller than some threshold.

ScatterAlloc [Steinberger et al., 2012] and XMalloc [Huang et al., 2010] are using su-
perblocks, a chunk of memory that is allocated for a group of threads. They divide this
superblock into several smaller memory chunks that are only accessed by this group. This
reduces the number of global memory allocation requests and there is no need for global
synchronization when manipulating a superblock. In our approach one superblock is
shared by all threads in a warp. To reduce the simultaneous memory requests a voting is
performed that determines a so called worker thread. This thread does all the work for
his group. Thereby we can reduce the invocations up to SIMD width times.
Our second assumption makes it obsolete to have any header data for the superblock
except for one pointer register, which points to the next unoccupied chunk inside the su-
perblock. With this simplification, the time needed to allocate memory inside a superblock
is reduced significantly. We further reduce the synchronization and memory overhead in-
troduced by a general free() method.
The last assumption ensures that the default allocator is used as little as possible. To
guarantee not only good performance in allocating memory but also efficient cache use,
we aggregate all memory requests inside a warp.

4.3.1 Data Layout

Similar to the parallel heap used by Hoard [Berger et al., 2000] as well as Häggander
and Lundberg [Häggander and Lundberg, 1998] we create a heap per warp accessible for
all threads in the corresponding warp. The so called WarpHeader organizes all memory
requests inside a group of SIMD lanes. Figure 4.1 shows the data layout and how the
objects are organized. Each header contains a pointer to the current SuperBlock and a
pointer to a list (SuperBlock_List) that stores all pointers to superblocks that have been
allocated using the default memory allocator. The size of the list is fixed. If it is full, it
is replaced by a new empty list and the old list is registered in the new list, so that the
reference is not lost. SB_Counter denotes the number of allocated elements in the list.
Besides its memory allocation region, a superblock also stores the amount of allocated
memory in SB_Allocated.
Two additional variables are stored inside the warpheader for later use. The TotalCount
describes the number of threads inside a warp which use dynamic memory allocation. The
second ActiveCount, contains the number of threads that have not finished execution.

4.3.2 Initialization

To initialize the dynamic memory allocator, every thread that needs the ability to request
memory dynamically, has to obtain a warpheader. At first all threads inside a warp have
to determine how many threads in a warp require the warpheader. This can be realized
by a voting function. After that a worker thread has to be declared by using the position
of the most significant set bit of the voting mask as the ID of the thread. The worker
thread allocates the warpheader using the default memory allocator and distributes the
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Figure 4.1: Overview of the data layout and organization of the three data structures used
by our allocator.

pointer to the other threads. This worker thread also allocates the current superblock and
registers it in the list. The algorithm is illustrated in Figure 4.2.

4.3.3 Allocation

The allocation process is divided into two phases (see Figure 4.3). In the first phase, the
required memory amount of each requesting thread is mapped to the next multiple of a
minimum allocation block size. The default minimum allocation block size is 16 bytes, but
it can be adjusted to fit the application needs. Memory can only be allocated in blocks,
therefore allocating 17 bytes would result in a 32 byte allocation. This guarantees correct
alignment inside memory for better cache reads and writes.
In the second phase, it is checked if the total requested memory size of all requesting
threads is smaller than the maximum superblock size. If this is the case, the threads try
to allocate memory in the associated superblock. All threads that have not been able to
allocate memory in the superblock again perform a voting to decide on a worker thread,
which allocates a new superblock and registers it in the superblock list. The remaining
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threads allocate memory in the new superblock.
If the total requested memory size exceeds the maximum superblock size the whole request
is served using the default allocator. The returned pointer is registered in the superblock
list, so that the developer does not need to know whether the request was handled by a
superblock or the default allocator.
As mentioned before, there is no need for any header data in a superblock except for a
pointer register, which points to the last used block. To enable coalesced memory access,
all requests are mapped to a contiguous memory region. All active threads calculate the
sum of requested memory for all other threads up to their own thread ID. This can be
done by a prefix sum or a simple iteration. The sum is used as an offset to calculate the
thread’s own block position in the superblock. The active thread with the highest ID has
all information needed to update the allocation status information of the superblock.

4.3.4 Garbage Collection

The proposed memory allocator keeps track of allocated memory using a list. To free these
allocations we use three strategies:

1. Clean all dynamically allocated memory: A function traverses all lists and frees
all stored memory pointers. After this, a new empty superblock will be allocated.

2. Shutdown dynamic memory allocation: All allocated memory including the warp
header is deallocated. This strategy is meant to be invoked at the end of the kernel,
so that all memory is freed correctly and no memory leaks occur. After this function
has been executed, it is no longer possible to allocate memory.

3. Make allocated memory available to other kernels after kernel termination:
In contrast to clean up the complete warpheader at the end of kernel execution a
pointer to the warpheader is returned. This allows us to use allocated memory over
several kernel calls but it is still required to eventually invoke the previous strategy.
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In each strategy the calling threads atomically decrement ActiveCount. The thread that
reduces the count to zero executes the respective strategy. For the first strategy it addition-
ally resets ActiveCount to TotalCount. This follows from the assumption that all threads
with a warpheader keep the ability to dynamically allocate memory.

4.3.5 Constraints and Limitations

Our proposed allocator design implies a few constraints which we summarize here. These
constraints must be fulfilled to guarantee fast and correct operation.

• All constraints of the default allocator are inherited and are still applicable.

• Threads that have requested a WarpHeader eventually must call one of the clean up
functions. Otherwise the memory will not be freed as described in Section 4.3.4.

• The used hardware must provide a voting function for an efficient implementation.

4.4 Implementation

We used Nvidia’s CUDA Version 5.0 NVIDIA [2015] to implement our proposed allocator
(Fast Dynamic GPU Memory Allocator – FDGMalloc). The design is kept very generic.
This allows the system to be used with most current many-core architectures (e.g., Intel
Xeon Phi INTEL [2012]) if the architecture supports a warp voting function (see Section
4.3).

4.4.1 Allocator on GPU using CUDA

As Figures 4.4 and 4.5 illustrate, the CUDA toolkit built-in memory allocation function
(CUDAMalloc) is fast for large and few simultaneous allocation requests. Therefore, it is
used for the allocation of new superblocks. The bottleneck for CUDAMalloc (as well as
for most other allocators) is the SIMD scalability. We reduce the amount of concurrent
requests and therefore increase the scalability.
To determine a worker thread we use the CUDA voting function __ballot, which essentially
returns the lane mask for all participating threads when called with a predicate not equal
to zero. The corresponding bit of non-participating threads is automatically set to zero.
Afterwards we us bfind to find the most significant set bit and declare the corresponding
thread as the worker thread.
To create a warpheader all threads in a warp use the CUDA voting function __ballot to de-
termine how many threads in a warp require the warpheader. The worker thread allocates
the warpheader using CUDAMalloc and distributes the pointer to the other threads.
The distribution of the pointer to the warpheader as well as later the pointer to a chunk of
memory can be realized in two different ways. For compute capability 2.0 shared memory
is used to distribute the pointer to the other threads. If compute capability 3.0 or higher
is available, the pointer exchange between threads within a warp is realized using the
function __shfl, removing the need for shared memory. Performance analysis has shown,
that there is no difference in execution time by using shared memory or the __shfl function.
As described in Section 4.3.3, all allocation requests that are smaller then a certain thresh-
old are served by a superblock without any atomic operations involved. In this case we
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reduce the number of global memory allocation requests and there is no need for global
synchronization or thread serialization.

4.4.2 Usage

Listing A.1 in Appendix A shows a simple example of how to use the allocator. All threads
request a warpheader, allocate some memory, and free all memory at the end of the kernel.
The example demonstrates usage of the tidyUp() function, which implements the first
strategy for garbage collection. Each thread allocates some memory every time the loop
is executed. memory is freed at the end of every loop cycle. After the execution of the
warp the warpheader and all other header data is freed.
To prevent memory leaks, the function end() has to be executed at the end of the kernel.
Otherwise at least one list, one superblock, and the warpheader per warp will not be freed.
The example in Listing A.2 shows a misusage of our allocator. Not all threads that allocate
memory have also requested the warpheader. Further not all threads that requested the
warpheader also exectue the end() function. As a consequence, the warpheader will not
be freed.

4.5 Evaluation

All experiments were performed on a PC running Windows 7 64-bit version and Nvidia
driver (version 306.97). The system is equipped with an Intel Core i7 920, 12 gigabytes
of RAM, an Nvidia Geforce GTX 480 (primary device), and a GTX 680 with 2 gigabytes of
RAM (headless device). All tests were performed on the Geforce GTX 680.

4.5.1 Different allocation sizes

First, we compare the proposed allocator with the default CUDA allocator (CUDAMalloc)
and ScatterAlloc [Steinberger et al., 2012].
In the following test scenario X threads are created which allocate N times S bytes of
memory. At the end all memory is freed. For FDGMalloc this is done by invoking the
end() method. In the case of CUDAMalloc and ScatterAlloc it has to be done by hand.
We measure the runtime performance by allocating memory chunks of different sizes.
Therefore the parameters for the test scenario have been set to X = {64}, N = {16} and
S = {16,32, 64, . . . , 8160, 8176,8192}. The size of a superblock is 32 kilobytes and the
minimum allocation block size is 16 bytes. The list of a warpheader contains 126 entries to
manage superblocks before allocating a larger list. To analyze the impact of FDGMalloc’s
allocation strategy and the usage of superblocks we implemented two different versions.
One uses superblocks, the other one gathers all requests and allocates memory directly
using the CUDA memory allocator.
Figure 4.4 shows the time needed to allocate S bytes. While CUDAMalloc and ScatterAlloc
have to synchronize to serve the alloc request for each thread in a warp, we use the implicit
synchronization between the threads. The chosen thread performs the request just by a
simple atomic operation and propagates the pointer to the other participating threads.
The graph shows that our allocator requires always the same amount of time to allocate
a chunk of memory. Allocation time increases linearly because the operation needs more
superblocks with growing memory consumption.
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Figure 4.4: Performance Comparison of our proposed FDGMalloc, CUDAMalloc[NVIDIA,
2015] and ScatterAlloc[Steinberger et al., 2012].

4.5.2 Varying thread count

In the second evaluation test case we vary the number of threads allocating a memory
chunk. Because of the different amount of time needed to allocate different sizes of mem-
ory chunks the count and size of the allocations has been varied. In the end the mean of
all results for one thread count has been calculated. The limited GPU Memory does not
allow us to perform all tests with all combinations.

The values used for the tests have been X = {1, 2, 4, . . . , 16384, 32768, 65536}, N =
{16, 32, 64, 128, 256, 512} and S = {16, 32, 64, 128, 256, 512}. Figure 4.5 shows the
results of this comparison as absolute (left figure) and relative (right figure, relative to
FDGMalloc) values.

Since we allocate the first superblock during the initial phase our proposed FDGMalloc
with superblocks is nearly ten times faster at the beginning than any other measured
allocator. The speedup between both FDGMalloc (blue and light blue lines in Figure 4.5)
is in the range of 10 to 300 depending on the number of threads requesting memory
simultaneously. Here, one can clearly see the benefit of superblocks.

Comparing the default CUDA allocator (green line) with FDGMalloc without superblocks
the gained speedup is related to the used voting function and reduction of concurrent
memory requests. With a small number of threads (one to three) simultaneously request-
ing memory CUDAMalloc is faster. With more concurrent allocations the synchronization
becomes a severe bottleneck.
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Figure 4.5: The figures show the performance comparison under varying thread count.
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Figure 4.6: The chart shows a comparison of different allocation counts over the number
of blocks using FDGMalloc with superblocks.

4.5.3 Scalability

For the scalability evaluation of FDGMalloc with superblocks we used 1 to 512 blocks
with 1024 threads each, which allocate 1, 16 and 128 times 16 bytes of memory (X =
1024∗[1,512], N = {1, 16,128}, S = 16). Our results shown in Figure 4.6 clearly indicate
the linear scaling of our allocator depending on the number of active threads. The bigger
gradient in the range from 1 to 16 blocks is probably caused by hardware constrains. The
GTX 680 has 8 multiprocessors which can handle up to 2 blocks with 1024 threads at
once. With more blocks scheduled, the multiprocessors are able to hide the waiting time
of a block by executing another block in the meantime.
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4.6 Conclusion

We presented a dynamic memory allocator for many-core architectures with a wide SIMD
width. Frequent and concurrent requests are reduced and handled efficiently by a vot-
ing function in combination with a fast allocation inside a superblock. The performance
evaluations have shown that our proposed allocator is able to speed up dynamic memory
allocation by several orders of magnitude although it relies on the CUDA allocator. All in
all we increase the SIMD scalability significantly for frequent dynamic memory allocations.
The implementation shows that concurrent dynamic memory allocations in massively par-
allel architectures do not need to be slow. However, the assumption of the allocator do
not allow it to be an all-round solution. It is still necessary to improve dynamic memory
allocation schemes that allow memory to be arbitrarily freed during the execution. Our
implementation is based on CUDA but could be extended to any of the other hardware
architectures supporting a voting function. In the future we would like to evaluate the per-
formance using Intel’s SPMD Program Compiler (ISPC) using AVX vector units and Xeon
Phi.
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Chapter 5
Dynamic Load Balancing and Fair
Scheduling for GPU Clusters

Abstract

Despite the tremendous compute power of modern GPUs, many compute-in-
tensive problems cannot be solved on a single GPU in ample time. GPU clus-
ters can handle the increasing demand of compute power but require efficient
ways to execute the concurrent tasks submitted by the users. We present a
dynamic load balancing approach and apply a fair scheduling scheme to mini-
mize the average execution time of spawned computational tasks. This is espe-
cially important if multiple tasks, applications, and/or users access the cluster
concurrently. We demonstrate our approach using a CUDA-based framework
supporting fine grained task parallelism and transparent distribution to clus-
ter nodes and analyze the performance on a GPU cluster with eight multi-GPU
nodes. The proposed system is evaluated using two example applications run-
ning concurrently including a bidirectional path tracer running entirely on the
GPUs. The load balancing capabilities are shown by the irregular workload of
the bidirectional path tracer using different scenes.
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5.1 Introduction

Even with current hardware, many compute-intensive applications cannot be executed
with sufficient performance on a single graphics processing unit. Examples cover a wide
range of applications from graphics and simulation to domain specific applications. The
reasons for this fact are not only the high demand for computational power but also the
irregular work distribution and in many cases the requirement to support interactive ma-
nipulations of a system (e.g., when navigating through a scene rendered by a bidirectional
path tracer requiring interactive frame rates).
One way to address this problem are GPU clusters. A GPU cluster in the classical sense is a
set of workstations with identical hardware (including identical GPUs) connected via low
latency and high bandwidth links. Such clusters can either be programmed by adapting
traditional frameworks for distributed computing such as the message passing interface
(MPI) or by developing specialized solutions for GPUs [Fan et al., 2008, Frey and Ertl,
2010, Müller et al., 2009, Strengert et al., 2008]. The latter have the advantage that they
can be easily tailored to the peculiarities of GPU computing. However, to our knowledge
none of the existing systems support dynamic load balancing and task stealing, two con-
cepts required to handle irregular workload, and to take the possibly varying performance
of the GPUs in the cluster into account. Likewise, none of the existing systems contains a
fair scheduling scheme which is essential to equally share the available resources when al-
lowing concurrent access by multiple applications or users to the cluster while minimizing
the average execution time for each application.
We present an approach that integrates a set of workstations equipped with potentially
different GPUs (hardware generations, compute capabilities), ranging from single to mul-
ti-GPU systems, into a loosely coupled GPU cluster. The critical part in such a hetero-
geneous environment is efficiently using the available resources and balancing irregular
workload under the aspect of concurrent and interactive usage from different programs.
Our approach addresses these issues. It uses the resources in a possibly heterogeneous
GPU compute cluster in an efficient way by applying the task parallel and data paral-
lel programming model to decompose a problem into a number of smaller independent
chunks. Interactivity is provided on the cluster level by the scheduling and load balancing
schemes. These are distributed and run in parallel on different GPUs. Our contributions
are

• a CUDA-based cluster approach for efficient and transparent distribution of data and
compute jobs onto a heterogeneous GPU cluster,

• fair scheduling of jobs and dynamic load balancing including task stealing using a
two level hierarchical scheduling system for concurrent and interactive access to the
cluster,

• an extensive evaluation using two applications with different characteristics: mutual
information computation and a bidirectional path tracer implemented completely
on the GPU with highly irregular workload.

5.2 Related work

The increasing computational resources of GPUs have been used for quite some time for
general purpose computations. To facilitate programming, specialized programming envi-
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ronments, such as Brook [Buck et al., 2004] which uses the GPU as a streaming processor,
were developed. Modern high-level languages for general purpose GPU programming
include ATI’s Stream [ATI, 2007], Nvidia’s CUDA [NVIDIA, 2015], and the cross-platform
OpenCL standard [Khronos Group]. In the following, we first discuss related work on GPU
clusters and then focus on dynamic load balancing of GPU workload, a key component of
our system.

5.2.1 GPU Cluster Computing

Zippy [Fan et al., 2008] was the first framework using GPUs in a cluster environment. It
abstracts the complexity of GPU cluster programming via a two-level parallelism hierarchy
using global arrays. Computation is performed in a classical GPGPU way using shaders
and (possibly multiple) rendering passes.
In contrast, CUDASA [Strengert et al., 2008] extends the CUDA C programming language
by additional keywords to support multi-GPU systems and GPU-cluster environments. The
extensions are handled by an independent compiler. The underlying data sharing between
different GPU nodes is expressed by the application programmer using the language exten-
sions. To minimize the communication overhead, a data locality aware static scheduling
mechanism was later added by Müller et al. [2009]. The PaTraCo (Parallel Transparent
Computation) [Frey and Ertl, 2010] framework distributes parallel applications to differ-
ent kinds of compute resources (e.g., CPU, GPU, and Cell). They use a critical path analysis
as scheduling method to minimize the overall execution time. This takes device speed,
availability, and transfer cost statically into account, i.e., before the execution of the device
specific kernel implementation.
The middleware rCUDA [Duato et al., 2010] virtualizes a CUDA compatible GPU and
therefore enables remote computation when no capable device is installed locally. The
client-side wraps the CUDA API calls and uses remote procedure calls to configure and
launch kernel functions on the compute server.
Based on the MOSIX cluster management system the Virtual OpenCL (VCL) cluster plat-
form [Barak and Shiloh, 2011] is an implementation of the OpenCL standard that allows
unmodified OpenCL applications to transparently use many devices in a cluster. Similar
to rCUDA the VCL framework virtualizes OpenCL capable devices for the application. The
communication between application and the back-end daemon is handled by the VCL bro-
ker, a daemon running on the host-side. The broker allocates and monitors devices for a
running application.
Sequoia++ [Fatahalian et al., 2006] is a programming language for writing portable paral-
lel programs. The language exposes the underlying structure of the memory hierarchy to
programmers in an abstract manner to ensure portability across a wide variety of contem-
porary machines. The compiler maps the memory hierarchy levels to host memory, GPU
device memory, threadblocks and threads using the Sequoia GPU backend. The Sequoia
runtime environment and programming model can exploit clusters by using MPI.
Note that traditional frameworks for distributed computing such as MPI can use GPUs
as well. This is, e.g., used in CUDASA [Strengert et al., 2008], rCUDA [Duato et al.,
2010] and Sequoia++ [Fatahalian et al., 2006]. One of the key differences between our
system and MPI driven applications is, however, that in our case jobs are transparently
distributed over the network whereas in the case of MPI the user has to model the data
sharing between different cluster nodes. Likewise, grid batch computing frameworks (e.g.,
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BOINC [Anderson, 2004]) can make use of underlying GPUs but typically focus on large
scale computations with completely independent tasks (e.g., SETI@home [Anderson et al.,
2002]).
In contrast to rCUDA and VCL we employ a two level scheduling scheme and work stealing
over all compute servers to handle irregular workload. Furthermore we allow concurrent
access to the compute resources and therefore use a fair scheduling scheme to avoid star-
vations of running applications.

5.2.2 Dynamic Load Balancing

Typical cluster environments use a batch scheduling system allocating user defined re-
sources if and when available. To increase resource utilization, load balancing algorithms
try to distribute workload according to the available heterogeneous resources. These al-
gorithms can be classified into two main categories: static and dynamic load balancing.
Static load balancing algorithms allocate tasks based on information known at compile
time (e.g., resource consumption). In contrast, scheduling decisions for dynamic load bal-
ancing are made at runtime using online information about each cluster node [Casavant
and Kuhl, 1988, Zaki et al., 1996]. Allowing concurrent access to cluster resources addi-
tionally requires a fair scheduling scheme which assigns the available GPUs to the different
applications, ensuring that all applications get on average an equal share of computation
time.
The out-of-core data management layer for path tracing on heterogeneous architectures
presented by Budge et al. [2009] applied an on-demand scheme for load balancing where
each consumer prioritizes the available tasks in the kernel queues and selects the highest
task allowed. To prioritize the workload, a cost-driven model is employed where the task
is evaluated according to its workload and memory transfer. They claim without further
details that the system can run on multiple cluster nodes.
In our work we use a centralized scheduler which distributes the work equally in a hetero-
geneous cluster, optionally weighting the workload based on a performance metric of the
resource. On each cluster node, we adopt the fair-share and lottery scheduling scheme to
allow for concurrent access to the GPUs from different applications. To handle the irregu-
lar workload in an appropriate way we incorporate work stealing as presented by Blumofe
and Leiserson [1994] when resources are idle. We focus on dynamic load balancing with-
out any prior knowledge of the work distribution and irregularity of an application. But
we are aware of the many application specific load balancing algorithms and therefore
add support for user specified scheduling to exploit the knowledge.

5.3 Overview

In our approach, we use three layers as illustrated in Figure 5.2: the application, the ser-
vice, and the computation layer. The application layer creates and distributes new work-
load. The service layer performs resource allocation and load balancing. The computation
layer executes the scheduled jobs independently. In this section, we give an overview over
the task and job decomposition used to enable parallel execution of applications on the
cluster. Details about the layer structure, the job distribution, and the algorithms used for
load balancing, scheduling, and work stealing will be discussed in the next section.

44



5.3. Overview

Figure 5.1: Possible decomposition of an application into a set of dependent tasks (Task
1 and Task 2) and jobs. The jobs spawned by each task have to be independent from each
other. Dependencies can be modeled as tasks as shown in the diagram.

5.3.1 Task and Job Decomposition

To enable a flexible decomposition of applications, we support two levels of parallelism
(besides the obvious SIMT parallelism inherent in the execution of a CUDA kernel). At
the coarse grained level, the application creates a set of concurrent, mutually dependent
or independent tasks, each running in a separate CPU thread of the application. As illus-
trated in Figure 5.1, the dependency graph between tasks forms a general directed acyclic
graph (DAG). Each task consists of several independent jobs, forming the second level of
parallelism. We typically use a global array approach assigning each job in a task a unique
identifier yielding a data decomposition. Other decompositions such as a second level of
task decomposition are, however, possible as well.

5.3.2 Programming Model

Our goal is to minimize the changes (resp. the programming overhead) when porting
an existing CUDA application or implementing a new application on the cluster. The
Listings B.1 and B.2 in Appendix B, excerpts from our bidirectional path tracer (see Section
5.5.2), illustrate the programming interface. The interface to enqueue allocations, kernel
configurations, and the launch environment is therefor identical to the Nvidia CUDA Driver
API. The exceptions are that some calls receive a kernel ID as an additional argument, in
our examples m_rndFunc, and the changed prefix cl of all keywords. Porting an existing
CUDA application to the cluster environment is therefore straightforward.
A new task has to implement a virtual method from its base class that initializes a batch
of jobs. In addition a second method can be provided that will spawn new jobs after the
initial set has been finished and the result was fetched, working on the same dataset. This
method is essential for our mutual information computation example (see Section 5.5.1)
and can be used to further improve the result of a task, e.g., tracing additional paths
in the refinement step of a path tracer (see Section 5.5.2). In short the task schedules,
dispatches, and retrieves the results of all jobs as described in Section 5.4.2.
On the job scope of our decomposition scheme the user has to reimplement two virtual
methods, dispatch() and retrieve(). These methods, shown in Listings B.1 and B.2, are
called automatically when a job is dispatched and when the result of the computation
is passed on, respectively. The dispatch method generates a proxy object which is im-
plemented as a command queue. It is identified by a unique job identification number,
generated by the parent task, given as a parameter and represents the CUDA allocations,
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kernel configurations, and an arbitrary number of dependent kernel calls. This proxy ob-
ject contains all information to execute a given CUDA kernel. Once the dispatch method
has flushed the command queue, it is automatically serialized, scheduled, and sent to a
compute node with matching compute capabilities.
Allocations can either have task or job scope. A task allocation will be fetched by the
compute node and cached afterwards to minimize network traffic and overhead. These
allocations can be used for constant datasets such as triangle meshes and will be shared
by all jobs over the lifetime of the task. CUDA kernel source files are handled like task
allocations and are also cached. A job allocation is used for varying, job dependent data
and is not cached. Incoming results are fetched by the second method reimplemented by
the application programmer.
Each job instance is executed by a separate CPU thread in every stage of execution (sched-
ule, distribute, and receive result). After issuing a stage change the job releases the thread.
The underlying CPU thread is reissued for a new job. To avoid starvation due to too many
active threads we use a thread pool assigning free hardware threads. To maximize the
scalability of the approach we reduce the need for synchronization by employing scalable
memory pools and lock- or wait-free data structures if applicable.

5.4 Architecture

In this section, we give an overview over the basic architecture and take a look at the layer
structure, the job distribution and the algorithms used for load balancing, scheduling, and
work stealing. For an in-depth overview over distributed systems and a general discussion
of the relevant issues, we refer the reader to basic text books such as "Distributed Systems:
Principles and Paradigms" [Tanenbaum and van Steen, 2006].

5.4.1 Structure

With our approach, we allow for interactive applications using our loosely coupled het-
erogeneous GPU resources concurrently as a compute cluster. Essential for the proposed
system is the scheduling of irregular, unpredictable workload and concurrent access of
different applications with different and potentially varying resource requirements. The
system is designed with a three-tier client server architecture in mind. The application
layer requests a scheduling plan from the service layer. It then sends compute jobs to
computation nodes and receives the result directly as shown in Figure 5.2.

Application Layer

Compute jobs are created and managed by the application as described in Section 5.3.1
in a way that is completely transparent to the user. We enforce that the compute jobs of
a particular task must be independent of each other and thus do not need to model data
sharing between compute nodes as in MPI systems. This allows us to completely hide the
complexity of the network communication from the programmer. In practice, this leads to
a potentially larger communication overhead which can be reduced as outlined in Section
5.4.2. To distribute programs to the compute nodes, the system uses the Parallel Thread
Execution Assembly Language Files (PTX files) as an intermediate representation of the
CUDA kernels. Since PTX is platform independent and only later compiled for particular
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Figure 5.2: System overview. The three-tier client server structure is composed of the user
applications, a service node handling scheduling and work stealing, and a set of compute
nodes which perform the actual computation on their GPUs.

hardware, this allows us to use different compute capabilities and types of cluster nodes
for the computation and permits the nodes to run on either Linux, Windows, or MacOS. It
is therefore possible to not only use a dedicated cluster but also collect suitable machines
from an office environment for computation regardless of its operating system.
The application automatically creates a data server thread which is used to answer re-
quests for missing task allocations and CUDA kernel files. After a computation is com-
pleted the result is sent back to the application’s result server as shown in Figure 5.2.
Although data and result server could theoretically be merged into a single server, we
separated the two to increase scalability (see Section 5.6.1). In addition, all jobs are exe-
cuted in parallel to decouple the requests and allow for asynchronous modification of the
result. This approach can lead to a high memory usage during job distribution, which is
circumvented by splitting the distribution process into batches.

Service Layer

We use a centralistic scheduling approach to allocate workload to the compute nodes. The
service node governs all compute nodes and schedules incoming computation requests.
Handling too many requests at the same time can unfortunately lead to delays and de-
crease the scalability of the cluster system. We therefore batch the requests from the
application and employ a second scheduling level directly at the compute nodes to mini-
mize network traffic and overhead. Each application is registered at the service node and
receives a cluster wide unique ID used for caching task allocations and kernel sources. Dur-
ing the registration process a specific service thread is generated that contains a subset of
compute nodes suitable to fulfill all application demands and runs the desired scheduler.
The set of available compute nodes is restrained by the available CUDA compute capabil-
ity and the required GPU memory. As we want to incorporate office workstations into our
cluster, we need to be able to add and remove GPU compute nodes at runtime. Therefore
new nodes can be registered dynamically at the service node. If an application is running
while a node is added, work stealing as shown in Section 5.4.3 is applied to make use of
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the newly available compute capacities. If a compute node is removed, its remaining jobs
are rescheduled.

Computation Layer

Nodes at the computation layer execute job requests. The first stage during the process is
to fetch all missing allocations and kernel PTX-files from the application and to add them
to the on-GPU caching facility. Task allocations and compiled CUDA modules are cached
using a least recently used scheme and shared across the jobs of the same application
within a CUDA context. The CUDA kernel is compiled via the CUDA JIT compiler using
a target profile specifying the minimal compilation target. After a compute job is created
from the serialized proxy object (Section 5.3.1) it will be enqueued in a work-queue as-
signed to the scheduled GPU device. At the end of the kernel execution the result is sent
back to the application. During the initialization of each device we measures the floating
point operations per second using the CUDA BLAS library and parse the capabilities of the
current GPU. The amount of floating point operations per seconds is used by the scheduler
as a performance heuristic for scoring the current device.

5.4.2 Distribution

In our approach the distribution of jobs is application centric (as stated in the previous
section). This can lead to a large communication overhead and a high number of mes-
sages between the nodes of each layer. To tackle this drawback we propose batching the
requests between the application and the service node as well as the application and the
computation layer. A task generates a batch of compute jobs and requests one scheduling
plan for the complete set of compute jobs. The scheduling plan is batched by compute
nodes and GPU devices per node. This reduces the communication between the service
node and the application to a minimum.
During the execution of the scheduling request the application generates proxy objects
for the compute nodes in parallel. To limit the memory consumption we only handle a
batch of proxy objects at a time. After the scheduling result was received, the applica-
tion aggregates all proxy objects per compute node and GPU to minimize the network
communication overhead at this point (more specifically the number of messages) when
spawning hundreds of jobs at the same time. These sets are then sent to each node. At the
compute node the packet of jobs is split up and added to the work-queues. The result of
a compute job will be sent to the application immediately and the compute node notifies
the service about the completion of the job. The scalability, communication overhead and
performance impact of the batching will be discussed in Sections 5.6.1 and 5.6.2.

5.4.3 Dynamic Load Balancing

As our goal is to use the system in an interactive, concurrent manner for different applica-
tions with varying resource utilization, we require an efficient allocation of the available
resources. This is particularly important when assigning GPU devices because the exe-
cution of CUDA kernel is generally not preemptive. To avoid starvation of fast compute
nodes, to minimize response time, and to maximize throughput we propose an efficient
multi-level load balancing system. We distinguish between long term scheduling decisions
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established by a global scheduler and short term scheduling decisions initiated by a local
scheduler.

• Global scheduling decisions are based on the application requirements, e.g. the
minimal compute capabilities needed, the overall system load and resource usage.
The scheduling layer maximizes the overall utilization of the given cluster resources.
Therefore we utilize work stealing to handle irregular workload and differences in
compute performance between cluster nodes.

• Local scheduling decisions are based on a fair scheduling scheme employed by each
compute node to avoid starvation of an application spawning less compute jobs than
others and ensures concurrent access of jobs from different applications.

Global Scheduler

The global scheduler, which is part of a service node, distributes the incoming computation
requests based on the workload of each node in the computation layer and the applica-
tion’s requirements. The default behavior is a First-Come First-Served strategy. But since
there exist more suitable load balancing algorithms for various problems, we offer the
possibility to change the algorithm by injecting a new implementation via a shared object
file for each application.
A possible implementation of such a system in the case of a tile based bidirectional path
tracer (see Section 5.5.2 for more details) is a scheduler which takes the temporal co-
herence during camera movement into account. The part of a scene rendered by a tile
typically does not change significantly. The execution time of the tile is therefore similar
to the execution time in the last frame. Using this information in the scheduling process
can lead to a better initial distribution of the tiles. Another approach would be a data
distribution-sensitive scheduler for a finite element method.

Local Scheduler

For the local scheduling at the computation layer we use a two-level scheduling strategy.
A priority queue is created for every application assigning a job to the compute node. If
no priority is assigned by the global scheduler the job will be executed in a First-Come
First-Served manner.
Since CUDA does not allow to interrupt running jobs, we implemented a lottery scheduler
to randomly select a queue from which the next job is taken based on a weighted fair-share
scheduling scheme [Kay and Lauder, 1988]. We modify the probability of a queue being
chosen depending on the last selection, i.e., for a selected queue the probability will be
decreased and the probability for every other queue increased. If a new application is
assigned to the node the probabilities are re-weighted. The goal of the local scheduler
is to minimize the average execution time of an application when sharing concurrent
resources with other applications.

Work Stealing

Unpredictable workload, e.g., the irregular work generated by a bidirectional path tracer
as described in Section 5.5.2, can reduce the overall utilization of the cluster resources and
increase the execution time for all programs using the cluster environment. In particular, it
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can lengthen the response time for interactive applications. To handle such unpredictable
workload we integrated two different work stealing mechanisms in the multi-level sched-
uler hierarchy.
At the computation layer, a CUDA device that has finished a compute job and has an
empty device work queue just steals a job from another compute device of the same node
(assuming that there are multiple GPUs on the node and/or multiple compute devices per
GPU). If all allocations and CUDA kernels are already cached on the node, we start the
execution immediately. This approach at the lowest hierarchy level allows us to efficiently
utilize a multi-GPU system and to significantly reduce the network traffic. If a computation
node is running out of jobs, the global scheduler will reschedule a compute job from
another node to maximize the overall utilization of the cluster.
In Sections 5.6.3 and 5.6.4, we will evaluate the proposed load balancing schemes using
our two example applications.

5.5 Applications

We evaluate our cluster framework using two applications with different characteristics:
distributed mutual information computation as a standard benchmark and ray tracing of
a complex scene with global illumination effects using bidirectional path tracing.

5.5.1 Mutual Information

In the recent past, genome sequencing hardware became widely affordable, which led
to the availability of large genome sequence as well as protein sequence datasets. These
datasets can be analyzed for structures that are co-evolving among individuals, which can
in turn be used for structural and functional protein analysis [Martin et al., 2005]. One
way of analysis is the computation of Mutual Information (MI) among protein sequence
positions.
The datasets being used should be normalized due to finite-size effects. This can be done
in a stochastic manner by iteratively (usually for around 10,000 iterations) shuffling the
sequence set and comparing the "true" MI to the MI computed from the shuffled versions
[Hamacher, 2008, Weil et al., 2009]. This so called shuffling null-model is highly compute
intensive. Computation can take on the order of days or even weeks for typical dataset
sizes on a CPU.
Since MI computation as well as shuffling scale well even for a large number of process-
ing elements, the MI computation was recently ported to the GPU, achieving speed-ups
between 10 and 20 compared to state-of-the-art multi-core CPUs [Waechter et al., 2012].
We ported this system to our cluster framework. The whole shuffling null-model compu-
tation is a single task. Each iteration of the shuffling null-model (which includes shuffling
the sequence set and computing the MI from the shuffled version) is a single job. The jobs
are then distributed among the cluster nodes by our framework. The size of the result of a
single job is quadratic in the length of a sequence, which results in sizes ranging from 5MB
to 100MB for typical datasets. This forces us to dispatch iterations in batches with size
depending on sequence length to reduce the application side memory footprint by using
the task mechanism to spawn additional jobs. The runtime of a single kernel increases
linearly with the number of sequences and quadratically with sequence length.
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Figure 5.3: Image of a 478k triangle living room scene rendered with our bidirectional
path tracer in about 250 seconds on a cluster with 32 GPUs. Resolution is 1920 by 1152
with 4096 samples per pixel which results in 36 million samples per second for the cluster
(1.12 million samples per second per GPU). The distribution of the computation time per
tile is shown in the heat map, ranging from 36 seconds (blue) to 76 seconds (red).

Figure 5.4: Image of a 855k triangle mustang scene rendered with our bidirectional path
tracer in about 171 seconds on a cluster with 32 GPUs. Resolution is 1920 by 1152 with
16,384 samples per pixel which results in about 212 million samples per second for the
cluster (6.6 million samples per second per GPU) including all possible overhead. The
heat map shows the distribution of the tile computation times for the given view. From
blue to red computation times range from 38 seconds to 88 seconds.

5.5.2 Bidirectional Path Tracing

Bidirectional path tracing is a global illumination technique concurrently introduced by
Lafortune and Willems [1993] and Veach [Veach, 1998, Veach and Guibas, 1994]. The
key idea of the approach is to first trace partial paths both from the camera and the light
sources into the scene. In a second step, the resulting sub-paths are combined, requiring
an intersection test and the evaluation of the appropriate reflectance functions before a
contribution is added to the corresponding image pixel.
We implemented a Veach style bidirectional path tracer for triangulated scenes that com-
pletely runs on GPUs. Acceleration structure building and rendering is done in two sep-
arate tasks. We use a bounding volume hierarchy (BVH) with branching factor two and
spatial splits [Stich et al., 2009] for the ray/scene intersections. The structure is build on
the CPU.
The rendering task partitions the image to be rendered into tiles which are processed
as rendering jobs by the cluster. A rendering job launches a single CUDA uberkernel
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which performs all bidirectional path tracing calculations from construction of eye and
light paths via importance sampling and ray traversal, to path combination and evalua-
tion with multiple importance sampling (MIS). We employ the recursive MIS computation
scheme from van Antwerpen [2011] to efficiently parallelize calculations of path combi-
nations and MIS-weights. To bound the possibly exploding number of combinations, eye-
and light-subpath length are limited to a maximum of 16 each. For shading we use the
bidirectional scattering distribution function and importance sampling techniques from
Walter et al. [2007], which allowed us to extend the Ashikhmin-Shirley bidirectional re-
flectance distribution function by a bidirectional transmittance distribution function for
rough surfaces. To increase SIMD efficiency for incoherent rays we employ the persisten-
t-while-while kernel design from Aila and Laine [2009] for ray traversal. As BVH nodes
are accessed much more frequently than geometry during traversal, we fetch them directly
from cached global memory and read geometry from textures in order to fit as much BVH
nodes into L1 cache as possible.
After an initial image has been rendered we can improve the result by adaptively adding
more samples to the image. Therefore we determine the quality of every pixel in terms
of the Renyi entropy [Xu et al., 2005] on application side. Then we extract a list with
pixel positions of the first P percent of all pixels with the worst quality by fast sorting via
the Thrust library [Hoberock and Bell, 2010]. The cluster processes batches of this list by
spawning additional refinement jobs.

Irregular Work

The two main sources of irregular workload are non-deterministic path lengths and ray
traversal. Path lengths are non-deterministic due to termination of path extension via
russian roulette. The more energy is absorbed per path bounce the more likely it will be
terminated sooner. Partitioning of the image into tiles leads to grouping of primary rays
that hit surfaces with the same material. Tiles covering more absorbing areas of the scene
can produce shorter eye-subpaths than tiles covering highly reflective areas. The length of
light-subpaths is independent of the tile they belong to. This way the average number of
combinations per tile varies between tiles. Ray traversal performance depends heavily on
the coherence of a batch of processed rays. Tiles covering specular, or at least highly glossy
areas can keep rays coherent for a longer time during path construction, while coherence
is lost much faster for tiles covering diffuse areas.
Thus association of cluster jobs with image tiles leads to highly varying computation times,
which motivates the need for load balancing. Figures 5.3 and 5.4 show the varying com-
putation times of each tile for two example scenes. For both scenes the distribution of tile
computation times is depicted in Figure 5.5.
To save network bandwidth, compute nodes store the scene geometry and acceleration
structure as static allocations. This way a compute node can process an undeterministic
amount of render and refinement jobs without the need to refetch the scene, which is
necessary for efficient dynamic load balancing.

5.6 Evaluation

We evaluated the proposed architecture under two aspects, scaling behavior and load bal-
ancing. The main experiments were performed in a homogenous hardware environment,
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Figure 5.5: Histogram over all tile computation times for both scenes, illustrating the
irregularity of bidirectional path tracing.

a cluster of PCs running Linux with NVidia drivers version 290.10. Each node is equipped
with two Intel Xeon DP E5649 hexacore CPUs, 48 GB of RAM, and two NVidia Geforce GTX
590 (each consisting of two GPUs). All nodes are connected over Gigabit Ethernet and 4x
QDR Infiniband. For Ethernet connections we use the UDP-based Data Transport (UDT)
protocol [Gu et al., 2004], a reliable UDP based application level data transport proto-
col. The Infiniband layer relies on the Sockets Direct Protocol (SDP). The cluster achieves
20.8 TFlops for single-precision floats, measured by the CUDA BLAS library using a matrix
multiplication.
For the heterogeneous setup we attached a wide range of different compute nodes to the
homogenous cluster nodes. These nodes are using Gigabit Ethernet only and are located
in a typical office environment. The application runs for all test settings on the head node
of the cluster. The node is equipped with a Intel Core i7 970 CPU, 24 GB of RAM, and
two GTX 480 (one headless). The head is connected via 4x QDR Infiniband and Gigabit
Ethernet to the cluster.

5.6.1 Scalability

For the evaluation of scalability we use the computation of mutual information for single-
precision floating point values as described in Section 5.5.1. The test runs on a fixed set of
eight cluster nodes using four GPUs per node. We use three sets of sequences. The first set
consists of over 45,000 sequences of length 1.400. Computation time of one iteration on
a single GPU without any overhead was about 19.72 seconds on average. The second set
with 4176 sequences and a length of 5025 is computed in 8.95 seconds per iteration. The
third one with 20,000 sequences and a length of 2189 took 6.707 seconds per iteration
without any overhead. During the test the number of iterations is gradually increased
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Figure 5.6: Average execution time for the computation of mutual information under
varying number of iterations. All experiments were run on 8 nodes equipped with two
NVidia Geforce GTX 590 (overall 4 GPUs per node.).

from 1 to 512 to measure the scalability of our system. Each iteration is a single compute
job.

Figure 5.6 shows the resulting runtime of an application with an increasing number of
iterations. The time is an aggregation of the communication overhead, I/O traffic plus
the kernel compute time over all iterations. Our approach results in a linear speed-up for
all three sequence sets. The speed-up for the first set converges to 31.5 for 32 GPUs as
stated in Figure 5.7, showing that the computation time prevails over the communication
overhead. In the second case the communication overhead is much higher. The memory
consumption for each compute job is more than twelve times higher than in the first case.
As a result we have to reduce the number of jobs running in parallel to 96 and spawn
additional jobs after the computation of the previous batch has been finished until we
reach the desired number of iterations. This introduces more communication between the
different layers. The third sequence set has similar computational demands having half
the sequence length of the second dataset but four times more sequences. The speedup
difference between both datasets, shown in Figure 5.7, is minimal. From this it follows,
that the computation of mutual information in our scenario is compute bound and not
limited by network latency and bandwidth. In this case our proposed system scales linearly
with the number of available GPUs when using a homogenous environment like a cluster.

The local maxima seen in Figure 5.7 occur when the number of iterations is a multiple
of the GPU count. At this point our approach maximizes the utilization of the test system
and reaches the lower bound of the communication overhead.
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Figure 5.7: Reached speedup for a single GPU vs. 32 GPUs under varying number of
iterations and for all sequences.

5.6.2 Network Overhead

For the evaluation of the communication overhead we use the MI computation with the
same sequence set as in the previous section, with 45,000 sequences of a length of 1400.
We fix the number of iterations to 64 but vary the number of available cluster nodes from
one to eight and switch between the usage of one and four GPUs per node. As can be
seen in Figure 5.8, the difference in communication overhead between single and multi-
-GPU nodes is negligible, only the results are sent back separately. It would be possible
and beneficial to cluster the results for multi-GPU usage when homogeneous workload is
spawned, but interactive applications would suffer from a slower response time. In our
test cases the accumulated overhead ranges from about 3.1 to 20.8 seconds. Similar as
in Section 5.6.1 the overhead increases when the number of jobs is not a multiple of the
number of available GPUs.
Using five compute nodes with 4 GPUs each we can observe an increased overhead, be-
cause 64 jobs can not be distributed evenly to 20 GPUs resulting in one node having to
compute the remaining four jobs. As can be seen in Figure 5.8 the network overhead
can be reduced by batching requests when we achieve a uniform distribution of jobs for
multiple GPUs per node. For our test scenario this is the case for two, four and eight com-
pute nodes. On the other side we do not batch incoming results from the same compute
node, which can lead to network overhead and less scalability of the application which is
noticeable for 8 compute nodes.

5.6.3 Load Balancing

We examine the load balancing capabilities of our proposed system using the bidirectional
path tracer described in Section 5.5.2. Therefore we run two different test setups measur-
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Figure 5.8: Average execution time for the computation of MI for the first sequence with
a fixed number of iterations. The experiments vary the number of utilized compute nodes
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Figure 5.9: Excerpt from the fly through of our kitchen scene. The sequence was gen-
erated using a resolution of 1024 by 512 with 256 samples per pixel and contains 100
frames. The average execution time is 3.14762 seconds per frame (min 2.78142 s, max
3.43880 s) with load balancing disabled.

ing the effectivity of the approach. The first setup simulates high computational demand
and as a result less network traffic. We use two different scenes, the kitchen scene (Figure
5.3) and the mustang scene (Figure 5.4) for the test. The path tracer configurations for
both scenes is similar, using a resolution of 1920 by 1152 and a fixed tile size of 64 by 64
pixels, resulting in 540 compute jobs to be spawned. The number of samples per pixel is
set to 4096 for the kitchen and 32,768 for the mustang scene respectively. As shown in
Figure 5.5 both scenes generate a different irregular workload distribution. The benefit
of load balancing for high computational demand can be seen clearly in Table 5.1. The
compute time varies a lot across jobs due to incoherent rays. By moving jobs from busy
devices to GPUs which are close to finishing, or have already finished their work, we can
assure the best possible resource utilization. We can enable both layers of load balancing
separately, task stealing within a single compute node to circumvent additional network
traffic, and overall load balancing using global task stealing as well.
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Scene none global TS only local TS only full
Kitchen 227.105 203.453 212.26 201.597
Mustang 236.324 193.776 210.258 190.51

Table 5.1: Runtime in seconds of the bidirectional path tracer without load balancing,
global task stealing only, local task stealing on compute layer only, and full load balancing.
The Full HD images of both scenes are rendered on 32 GPUs.
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Figure 5.10: The average render times per frame, with and without load balancing and
local task stealing only. The black line shows the wall time, the accumulated CUDA kernel
runtime.

The second setup mimics a setup for near interactive usage of our system. Therefore we
employ a fly through of our kitchen scene (Figure 5.9) and have chosen a scene config-
uration to achieve a frame duration of about three seconds in the case of disabled load
balancing. Even such a setup with high network traffic can benefit from task stealing as
shown in Figure 5.10. The average execution time is reduced in all cases. Without load
balancing we need 314.76 seconds for the complete camera path, for global only we ob-
tain 303.7 seconds and 300 seconds for full load balancing enabled. Because of the higher
network overhead and traffic the performance can decrease for full load balancing in com-
parison to local task stealing only. The additional communication between compute nodes
and the service node is reduced to a minimum. Therefore local task stealing is enabled by
default and global stealing can be activated by each application separately.

Figure 5.11 visualizes a run of the path tracer under high computational demand without
and Figure 5.12 with load balancing. For the experiment we enabled global and local task
stealing and used eight compute nodes with four GPUs each. A single line segment in the
graphs represents a compute job on a specific GPU. A compute node is encoded by the
alternating black-white pattern. The length of a segment expresses the computation time
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Figure 5.11: Running the path tracer without load balancing scatters the termination time
due to the irregular job computation duration. The execution times of the application for
both scenes are stated in Tabel 5.1.

for a particular job. As stated in Section 5.5.2 and visualized by the histogram in Figure
5.5 the bidirectional path tracer generates irregular and unpredictable workload. We use
the static mustang scene for the load balancing test. The jobs where distributed using the
default first-come, first-served scheduling policy without any prior knowledge about the
previous computation times.
Figure 5.12 illustrates the job migration from one GPU to another. Local migration is
visualized using red lines and migration over compute node boundaries with blue. Run-
time can be reduced significantly as shown in Table 5.1 which leads us to the conclusion
that global and local task stealing are crucial parts of a load balanced cluster to handle
irregular workload.

5.6.4 Concurrent Access

Figure 5.13 shows 16 rows of compute devices. Always four GPUs are grouped in one
node. For every device the execution of jobs is represented as bold lines with dots mark-
ing begin and end. The colors display whether a job belongs to the bidirectional path
tracer (black) or the MI computation (red). Below the line of execution, we display points
indicating the time when jobs were scheduled on a device.
One can see that jobs of both applications are executed alternatingly, following the fair lot-
tery scheduling from Section 5.4.3. This ensures that both applications receive a fair share
of compute time and are both finished within ample time. As long as no load balancing is
enabled jobs execute on the same device they were scheduled on.

5.6.5 Heterogeneous System

For our heterogeneous test case we use a set of loosely coupled workstations as a desktop
grid. The environment incorporates GPUs with compute capability 2.0 and 3.0 that are
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Figure 5.12: Running the path tracer with dynamic load balancing enabled, jobs are
passed to nodes reaching the end of their work queue, leveling the overall computation
time of all nodes. The execution times of the application for both scenes are stated in
Tabel 5.1.

Scene none global TS only local TS only full
Mustang 823.19 708.16 715.52 681.53

Table 5.2: Runtime in seconds of the bidirectional path tracer in our heterogeneous
setting without load balancing, global task stealing only, local task stealing on compute
layer only, and full load balancing.

connected using Gigabit Ethernet. If two workstations are linked together via Infiniband
in addition the cluster system will automatically adopt to the faster connection. In our
case we will mix both network architectures.
The desktop grid is composed of three Windows workstations, two equipped with a GeForce
GTX 680 each and one machine with a GTX 570. We added one additional Linux system,
using a Tesla C2070. All systems are connected via Gigabit Ethernet only. As components
equipped with Infinband network adapters we attached the three cluster nodes (two GTX
590 each) and the head node using a GTX 480. The accumulated FLOPS for single-pre-
cision floats, measured by the CUDA BLAS library, amounts to 11.2 TFlops varying from
583 GFlops for the Tesla C2070 to 1027 GFlops for a GTX 680.
The load balancing capabilities of our proposed system are exposed by the bidirectional
path tracer. We render one image of the mustang scene with a resolution of 1920 by 1152
pixels using 65,536 samples per pixel and a tile size of 64 by 64. This setting results
in 540 compute jobs handled by the desktop grid. Table 5.2 shows the overall runtimes
with load balancing enabled and disabled, respectively. The computation time is reduced
from 823.19 seconds to 681.53 by applying full load balancing. Local task stealing will be
applied first to reduce network communication. As a result the GTX 590 cards from the
cluster nodes will steal more tasks then the systems equipped with the GTX 680 despite
the fact that the GTX 680 is about 1.5 times faster.
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Figure 5.13: Timeline of two applications being run in parallel on 16 GPUs. The path trac-
ing kernel (black) execution times are varying and were all scheduled at the beginning,
whereas the homogeneous work of the MI computation (red) is scheduled in batches. No-
tice the alternating execution of jobs from each application. Scheduling times are marked
by symbols shifted slightly below the lines.

The Figures 5.14 to 5.17 are showing the job distribution for all four possible load balanc-
ing configurations. The first fact shown in all diagrams is the distribution of compute jobs
according to the heuristic. Both GTX 680 (IDs 14 and 15 in Figure 5.14) are getting more
jobs assigned then the Tesla C2070 (ID 12). Because we use a different CUDA launch con-
figuration when running the path tracer on cards with compute capability 3.0, to optimize
utilization for the Kepler architecture, the scheduled jobs on those cards are executed in
a shorter amount of time. In our setup these cards are well suited for load balancing. The
Figures 5.15, 5.16, and 5.17 show that most jobs are stolen by both GTX 680. A perfor-
mance impact of mixing network technologies can be seen as the difference between the
scheduling time (thin circle) and the execution time (bold circle) at the beginning of the
run. The Infiniband enabled cluster nodes (GPU ID 0 to 11) and the head node (GPU ID
13) fetch the static allocations faster than all other nodes using Gigabit Etherent only.
Running our sample applications on this system with varying GPUs using different net-
work technologies shows that our framework is capable of handling heterogeneous envi-
ronments reliably.

5.7 Conclusion and Future Work

We presented a cluster system for interactive and concurrent access to a heterogeneous
GPU cluster that includes fair scheduling, dynamic load balancing, and work stealing.
Data is efficiently distributed and persistently stored in the compute nodes. Likewise, ex-
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Figure 5.14: The diagram shows the job distribution based on our heuristic without load
balancing capabilities of our proposed system.

ecutables are only transmitted once and cached in the compute nodes. We demonstrated
the feasibility of such a highly flexible and dynamic approach. The system scales nearly lin-
early with the number of compute devices except for a minimal communication overhead.
As applications, we demonstrate an implementation of a bidirectional path tracer, imple-
mented completely on the GPU and a bio informatics application computing the mutual
information of sequences.
Our system is based on CUDA but could be extended to any of the other current languages
like OpenCL. In the future, we would like to employ the LLVM [Lattner and Adve, 2004] to
reduce the complex development of parallel applications for our system by supporting the
CUDA Runtime API instead of the Driver API. As an addition we would like to distribute the
LLVM intermediate code and incorporate the Just-In-Time compiler to support a broader
range of different compute devices. Another direction we would like to invest further is
the preemption of GPU programs using a snapshot system. This could allow us to schedule
high priority tasks more efficiently.
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Figure 5.15: The graph visualize the local job migration from one GPU to another in a
multi-GPU systems.
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Figure 5.16: The figure shows the work distribution and load balancing capabilities with
global task stealing enabled only.
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Figure 5.17: The diagram shows the full potential of the work distribution and load
balancing capabilities of our proposed system.
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Chapter 6
Motivation

Despite the huge amount of research on alternative rendering algorithms in recent years
such as stochastic rasterization [Akenine-Möller et al., 2007, McGuire et al., 2010], stan-
dard rasterization [Pineda, 1988] is still the state-of-the-art rendering algorithm for real-
time applications. Current GPU architectures (see Section 3.2.1) are optimized for vector,
matrix, and per fragment operations and can therefore deliver an astonishing image qual-
ity at real-time frame rates. As outlined rasterization cannot handle complex phenomena
(e.g. soft shadows, motion blur and global illumination) natively. In this part, we describe
two techniques that use ray tracing in combination with rasterization to render distribu-
tion effects.

At first we will outline the basic programmable rendering pipeline (Section 6.2.1) and
introduce screen space ray tracing (Section 6.2.2). In the following Chapter 7 we present
an adaptive acceleration structure based on a plane-based multi-layer approximation of
the depth buffer to increase the screen space ray tracing performance significantly. We
combine rasterization and distributed ray tracing in Chapter 8. A decoupled space and
time sampling approach allows us to reuse ray tracing results for motion sampling so we
can evaluate additional motion samples without the tracing overhead.

6.1 Introduction

As GPUs become more powerful they are capable of rendering high quality images (see
Chapter 3) within reasonable time frames using path tracing. Unfortunately, hardware
limitations (as outlined in Section 3.2.3) still render real-time path tracing impractical.
The image quality achieved by specialized algorithms for rasterization is better than any
general real-time ray tracing solution currently available. The open question we would
like to answer is how we can extend current rasterization algorithms by applying ray
tracing to reduce the algorithmic complexity and achieve a higher image quality without
sacrificing performance? Which effects can be implemented and how can we speed-up
ray traversal?
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Vertex Processing Primitive Processing

Tessellation

RasterizationFragment ProcessingPixel Processing

Vertex Primitive

FragmentsPixelImage

Figure 6.1: The figure shows a simplified diagram of a programmable rendering pipeline
based on OpenGL 4.4 - (Complete OpenGL 4.4 pipeline map [Khronos Group, 2014]).

6.2 Background

6.2.1 Rasterization

Rasterization in general describes the projection of a rendering primitive (e.g. triangles,
lines, or complex polygons) onto a 2D plane and converting them into a raster format
(pixel image) to display them. In this section we will outline the most basic steps from a
draw call to the final pixel on the display.
The pipeline (Figure 6.1) can be divided into different phases and stages — vertex speci-
fication stage, vertex processing phase, primitive processing, rasterization, fragment pro-
cessing, and finally the per-sample operations in the pixel processing phase. In the fol-
lowing paragraph we will go through each phase and stage step by step. A complete
description can be found in the OpenGL specification [Khronos Group, 2014].
At first the application prepares all vertex data streams (e.g. triangles meshes), sets up
the pipeline, and issues the necessary calls to draw the vertices (vertex specification
stage). During the vertex processing phase each individual vertex from the stream is
transformed and projected into clipping space using a vertex shader. Application defined
vertex attributes are modified, and the result stored in the output stream of vertices. In
addition the vertices (describing patches) can be tessellated and attributes interpolated
using the tessellation phase.
The next step is vertex post-processing. This includes the clipping stage which removes all
primitives that are outside of the view volume described by the camera (see Section 2.2).
Intersecting primitives are split up so that the complete primitive is inside the volume.
During this phase new primitives can be generated using a geometry shader.
The primitive processing phase collects and compacts all primitives into a single stream.
The output of the phase is a sequence that describes a set of simple rendering primitives
(e.g. triangles, lines, or points). At the end all triangles that are not facing towards the
camera will be removed by the face culling and the primitive positions are transformed
into window space by applying the perspective division and the viewport transform.
During the rasterization phase the sequence is rasterized based on the triangle coverage
onto a block of pixel (e.g. 8 x 4 pixel of the image plane). A new fragment is created for
each raster element of a primitive that is covered. Thereby, a fragment contains a position,
interpolated triangle attributes (e.g. a normal, a color, and texture coordinates — similar
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as described in Section 2.1.2 using the barycentric coordinates) as well as a depth value.
In the fragment processing phase the fragments can simply be shaded based on the
given input data (e.g. color, normal, and texture coordinates) using a fragment shader. It
is possible to modify the color and depth values of a fragment. The output stream contains
the color, depth, and a stencil value per fragment.
The values are used for the per sample operations in the pixel processing phase after-
wards. The most important part of the phase is the depth test to solve the visibility of
individual fragments for a rasterization algorithm. A fragment is simply discarded and
not stored in the final framebuffer if the depth comparison function (e.g. larger than,
less, or equal) with depth of other fragments at the same position fail. After all fragment
test operations where applied, the color values of each fragment can be blended. The
resulting color and depth of the final fragment are written to the framebuffer and later on
displayed on the screen.
The GPU executes the phases and stages of the described pipeline in parallel. The GPU
architecture described in Section 3.2.1 can be directly mapped to the pipeline stages. The
rasterization phase basically works on the previously described warps, each thread in a
warp can simply operate independently on a vertex, and fragments are executed in the
same fashion. As the workload of the phases can be different each multiprocessor can
execute a different phase of the rendering pipeline.

6.2.2 Screen space ray tracing

Several specialized algorithms for real-time rendering exist that extend rasterization with
ray tracing to generate soft shadows, reflections [Mara et al., 2014], and global illumi-
nation [Crassin et al., 2011]. Within these we can identify two main tracing approaches.
Voxel based tracing approaches [Crassin et al., 2011, Laine and Karras, 2010] approximate
the scene using a sparse voxel grid and operate as classic ray tracing in either world space
or camera space. In contrast, screen space approaches such as relief mapping [Policarpo
et al., 2005] or the tracing of height fields [Tevs et al., 2008] rely on ray marching along
a texture to solve the visibility.
For screen space ray tracing we render the scene at first into the depth buffer to obtain the
depth as a texture. In the second pass, for each pixel of the final image a ray is generated
and transformed into screen space (also known as texture space). In the next step we
have to travel along the ray using a fixed step size. With each marching step we have to
sample the depth from the depth buffer and compare it with the current depth of the ray.
If the depth of the ray is smaller we traverse further and create a new sample point. We
have found an intersection point if the sampled depth is in an ε range or we are outside of
the depth texture (x and y position of the sample point are not between 0 and 1). At this
point we would like to refer the reader to a comprehensive description of the algorithm
by McGuire and Mara [2014].
The main drawback of the algorithm is the oversampling and undersampling of the depth
buffer. Based on the number of marching steps and the step size we can issue too many
texture reads. This either reduces the overall performance or due to undersampling leaves
holes in the reconstruction. A hierarchical depth buffer [Uludag, 2014] can be used for fast
rejection of samples and reducing unnecessary texture reads. Furthermore, the algorithm
cannot cope with dis-occlusion if only a single depth layer is used. By introducing multiple
depth layers holes can simply be filled by tracing the additional layers Mara et al. [2013].
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We describe a acceleration structure (Chapter 7) and show how to apply it to screen space
ray tracing to speed-up the rendering of different effects, for example multi-view synthesis
and ray traced reflections. Another possible application for the acceleration structure is
the rendering of depth-of-field effects as well as ray tracing of rough glossy reflections.

6.2.3 Depth-of-field

Based on the foundations we described in Section 2.4 we would like to outline possible
approximations and rendering algorithms for depth-of-field in the context of real-time ren-
dering. Those techniques can be classified into object or image based approaches. Object
based approaches such as distributed ray tracing [Cook et al., 1984] use the underlying
geometry to solve visibility. In contrast, image based algorithms employ the color and
depth buffer. Notable artifacts of incorrect depth-of-field approaches are sharp edges and
leaking of sharp foreground objects onto blurred backgrounds.
Distributed ray tracing [Cook et al., 1984] (see Section 2.4) is the most common way to
solve depth-of-field using an object based ray tracing approach. As of today the technique
described is not feasible for real-time applications. The second object based approach
which is applicable to real-time rendering to a certain degree is the usage of the accu-
mulation buffer [Haeberli and Akeley, 1990]. The scene is rendered multiple times from
different positions on the lens. The resulting images are blended using the accumulation
buffer. With an infinite number of rendering passes the result converges to the quality
achieved by distributed ray tracing with an infinite number of samples. Less passes result
in artifacts such as ghosting. These techniques can be applied to real-time applications,
but with higher quality of the depth-of-field effect and size of the circle of confusion the
number of passes increases significantly. This is comparable with increasing the number
of samples when using distributed ray tracing.
The group of layered depth-of-field algorithms decompose the rendered image into sev-
eral layers based on the depth from the depth buffer. Each layer is blurred independently
using different approaches such as a Fourier Transform [Barsky et al., 2002], a pyramidal
image [Kraus and Strengert, 2007] or splatting [Lee et al., 2008]. Dis-occlusions can be
handled by interpolation of the reconstructed pixel neighborhood or adding additional
depth layers using depth-peeling [Lee et al., 2008]. A similar approach uses light fields
which are created by warping the rendered image to nearby views [Yu et al., 2010]. How-
ever, Selgrad et al. [2015] uses a multi-layer filtering which is unable to handle motion
blur at the same time.
Reverse-mapped z-buffer approaches are most common for real-time applications such as
games. The rendered color buffer is filtered with different filter kernels and sizes based
on the used approach. For each pixel the amount of blur is computed according to its
depth which directly corresponds to the diameter of the circle of confusion [Potmesil and
Chakravarty, 1981]. In contrast the forward mapped z-buffer depth-of-field approaches
are not widely used in real-time applications as they mostly render circles into the frame-
buffer and therefore perform a scatter operation.

6.2.4 Motion blur

Navarro et al. [2011] gives an excellent overview of current offline and real-time render-
ing algorithms for motion blur. He classified the problem in seven categories: analytic
methods, geometric substitution, texture clamping, Monte Carlo, post-processing, hybrid,
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and mechanical and optical methods. In this section we will focus on recent and real-time
capable approaches.
The accumulation buffer [Haeberli and Akeley, 1990] can be used to render motion blur
(see Section 6.2.3). Multiple images rendered at different points in time are averaged.
Similar to distributed ray tracing [Cook et al., 1984] the algorithm converges to the correct
result. Unfortunately, the rendering of several frames can be slow, and undersampling may
result in ghosting artifacts.
A lot of games and interactive media rely on post processing and other filter based ap-
proaches such as blurring the texture on moving objects with multiple or anisotropic
samples [Loviscach, 2005]. As the technique is simple and fast, artifacts such as sharp
silhouettes and texture seams of moving objects can be noticed. Geometric approaches
such as Tatarchuk et al. [2003] extrude or augment moving object geometry using convex
geometry. To reduce artifacts the approach relies on a pixel-perfect depth sorting.
McGuire et al. [2012] describe a motion blur filter for real-time applications. The 2D
post-process filter works on the standard framebuffer augmented with a velocity buffer.
The velocity buffer encodes the pixel offset and depth value to its corresponding position
of the previous frame. Guertin et al. [2014] performs motion blur as a post-processing
filter. They address issues of single-velocity approaches using a robust sampling and filter-
ing scheme. However, combining a motion with defocus blur filter requires per fragment
information and assumes that each pixel corresponds to a single fragment. This assump-
tion is no longer valid once the first filter has been applied. Multiple layers per fragment
for the depth and velocity buffer are needed.

Stochastic rasterization Akenine-Möller et al. [2007], Fatahalian et al. [2009], and
McGuire et al. [2010] have extended the standard rasterization algorithm to stochastic
sampling for defocus and motion blur.
Akenine-Möller et al. [2007] presented an algorithm that rasterizes time-continuous trian-
gles (TCT). Thereby, attributes of a TCT can vary in time t over the time span of a single
frame. As the rasterization of the time-continuous triangles is very expensive they used a
screen space acceleration structure that at first renders a tight object oriented box (OBB)
for each TCT. For each fragment inside the OBB a per-pixel evaluation of the time-depen-
dent edge functions is performed. In addition, they use Zmin/Zmax-culling to conserva-
tively reject triangles and fragments before performing actual sample evaluation. Further-
more, time-dependent textures were introduced to support motion blurred shadows. As
the attributes of a TCT vary and are sampled for an exact t the approach supports motion
blurred reflections as well as other time dependent shading effects.
McGuire et al. [2010] show a real-time capable and completely dynamic stochastic ras-
terizer. The algorithm uses a stochastic visibility evaluation to approximate motion and
defocus. For each triangle the encompassing geometry is created which conservatively
covers all pixels that the triangle affects over the time span of a frame. Thereby motion
as well as defocus is considered. Then the convex hull is rasterized. For each rasterized
fragment, a ray-triangle intersection test is performed using stochastically sampled rays to
determine the visibility. Thereby, the rays are sampled over the spatio-temporal domain.
Non-rejected samples are shaded and the depth of the intersection test is used to later on
determine the visibility between different triangles. For the depth test the conventional
depth-buffer is used.
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Sampling analysis and reconstruction filer Stochastic sampling methods such as dis-
tributed ray tracing [Cook et al., 1984] need a large number of samples to reduce the
image noise significantly. This results in an increase of ray traversal for visibility tests
and shading operations, especially for complex light situations and phenomena such as
defocus and motion blur. One possible improvement to reduce the number of shading
operations is to cache shaded samples [Ragan-Kelley et al., 2011].
Egan et al. [2009] analyzed the frequency of motion blurred scenes which include moving
objects, reflections, and shadows. Based on the analysis they compute adaptive space-time
sampling rates. In addition, they propose a sheared reconstruction algorithm that extends
filter support along the motion. This reduces the number of samples needed significantly.
Layered reconstruction filters [Lehtinen et al., 2011, Munkberg et al., 2014, Vaidyanathan
et al., 2015] generate a higher quality image from a sparsely sampled light field for motion
and defocus blur.
Hasselgren et al. [2015] presented performance improvements to the state-of-the-art lay-
ered reconstruction algorithms. In particular, they use hardware texture filters, merging
layers and sparse statistics to reduce computational complexity. The algorithm was opti-
mized for current GPUs which results in a performance improvement of 2× up to 5× and
still achieves a similar image quality compared to previous algorithms. The work makes
reconstruction filter applicable to real-time applications.
In Chapter 8 we show how to apply distributed ray tracing to solve visibility in the raster-
ization process and apply depth-of-field and motion blur.
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Chapter 7
Adaptive Acceleration Structure for
Screen-space Ray Tracing

Abstract

In this chapter we propose an efficient acceleration structure for real-time
screen-space ray tracing. The hybrid data structure represents the scene ge-
ometry by combining a bounding volume hierarchy with local planar approx-
imations. This enables fast empty space skipping while tracing and yields
exact intersection points for the planar approximation. In combination with
an occlusion-aware ray traversal our algorithm is capable to quickly trace even
multiple depth layers. Compared to prior work, our technique improves the
accuracy of the results, is more general, and allows for advanced image trans-
formations, as all pixels can cast rays to arbitrary directions. We demonstrate
real-time performance for several applications, including depth-of-field ren-
dering, stereo warping, and screen-space ray traced reflections.
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Figure 7.1: We perform fast screen-space ray tracing through single- and multi-layered
depth representations. Because we efficiently obtain valid hits from occluded geometry,
our approach can address many problems of traditional screen-space methods. Examples:
(a) Reference view color+depth buffers for the first (top) and second layer (bottom). (b)
Large camera motion produces extensive disocclusions (top, red), which are difficult to
inpaint by forward warping (bottom). (c) Our compressed depth representation lowers
the required ray-AABB intersection count (top, black corresponds to 0 and white to 9
intersections) and allows for an efficient reprojection with only two depth+color layers
(bottom). (d) Our ray-tracing approach generalizes well to other real-time applications,
including depth-of-field rendering (top) and light-field rendering (bottom).

7.1 Introduction

Many real-time rendering techniques operate in screen-space in order to be computa-
tionally efficient. This includes techniques for approximating realistic lighting, such as
screen-space ambient occlusion [Mittring, 2007], soft shadows [Guennebaud et al., 2006],
global illumination effects [Mara et al., 2014, Ritschel et al., 2009], and camera effects
such as depth-of-field (DoF) [Lee et al., 2009]. These screen-space techniques trade pre-
cision and quality for performance.
In fact, some of those algorithms use screen-space ray tracing, or rather ray marching
[Sousa et al., 2011]. Ray marching is attractive as no additional data structure needs to
be built, but tracing rays for long distances becomes prohibitively expensive quickly. So
precision is often sacrificed for performance by restricting the number of samples along
the ray to reduce texture lookups, which can miss geometry – even when combined with a
final binary-search refinement step. Classic ray marching methods, like DDA, are prone to
over and under-sampling, unless perspective is accounted for [McGuire and Mara, 2014].
Most screen-space ray tracing methods use only a single depth layer, as a naïve extension
to multiple layers is costly [Mara et al., 2013].
We address many of these shortcomings of screen-space ray tracing. Namely, we imple-
ment an efficient and scalable screen-space ray tracing algorithm that employs a dynami-
cally created acceleration data structure, which enables efficient empty space skipping. If
desired, our algorithm can trade accuracy for speed and can efficiently handle multi-lay-
ered screen-space representations to yield higher quality. The construction of the acceler-
ation structure is extremely fast and can easily be done on a per-frame basis allowing us
to also handle dynamic content.
Our method’s efficiency makes it not only useful for screen-space effects such as depth-of-
field, but also for reprojection tasks even into many views, as required for light field dis-
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plays, that previously mapped very poorly to GPUs. We demonstrate our method in several
classic applications (stereo warping, temporal upsampling, depth-of-field rendering, mul-
ti-view synthesis, and glossy as well as specular reflections).
Our contributions are:

• A novel data structure that stores the depth buffer in a compressed format—a mixture
of AABB and planar approxmations—that enables early ray traversal termination and
leads to an improved performance. The approximation can be further tuned for specific
applications (e.g., depth-of-field) providing a significant performance boost.

• A new algorithm for screen-space ray tracing that is particularly well suited for GPUs.
In contrast to state-of-the-art methods (e.g., ray marching [McGuire and Mara, 2014])
the ray traversal does not rely on a predefined or maximal number of steps and results
in an accurate intersection point (assuming each pixel is planar). Our efficient occlu-
sion handling allows tracing multiple depth layers of our acceleration structure without
individually tracing each ray against each layer.

• A real-time implementation of thin-lens-based depth-of-field rendering. We extend pre-
vious work by introducing a secondary sampling stage (possible thanks to our com-
pressed scene representation), which significantly reduces noise without sacrificing the
defocus blur quality.

• A reprojection application that enables arbitrary existing content to be rendered on
light-field displays with many views.

• Efficient multi-bounce specular and glossy reflections, utilizing our adaptive data struc-
ture on a (multi-layer) cube map representation of the scene.

7.2 Related work

7.2.1 Screen-space ray tracing and applications

In 1986 Fujimoto et al. [1986] proposed the 3D-DDA line traversal algorithm for quickly
tracing rays through a regular grid or octree. It inspired the improved 3D-DDA line traver-
sal algorithm by Amanatides and Woo [1987], which serves as the basis for many screen-s-
pace ray tracing methods [Ganestam and Doggett, 2014, McGuire and Mara, 2014, Sousa
et al., 2011].
The work by Sousa et al. [2011] was the state-of-the-art for many years. It linearly ray
marches a (reflection) ray in 3D, based on 3D-DDA, for a bounded distance. Each 3D point
is reprojected into the frame buffer and classified as a hit if it lies behind the depth at the
projected pixel. It does not do any space skipping, which was addressed by Ganestam and
Doggett [2014], where an additional BVH is created. Employing a linear 3D-DDA traversal
might lead to missed samples in screen-space. McGuire and Mara [2014] address this
with a perspective 3D-DDA, ensuring no screen-space samples are skipped. In contrast,
we build a screen-space acceleration structure on the fly that allows us to efficiently trace
rays without the need for stepping along a line in small increments with 3D-DDA.
A wide range of applications and techniques use screen space ray tracing to simulate ef-
fects like ambient occlusion, view interpolation, or reflections. Most of those methods
reuse shading information across frames to speed up computation, since this informa-
tion (e.g., complex material evaluation) is expensive to recompute [Nehab et al., 2007,
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Sitthi-amorn et al., 2008]. Herzog et al. [2010] combined shading reuse and spatio-tem-
poral upsampling with the focus on reduction of shading cost. In contrast, our method
focuses on a general acceleration data structure that allows for fast reprojection.
Another typical screen-space application is depth-of-field. These methods often employ ap-
proximations and application-specific algorithms, such as approximate cone tracing [Lee
et al., 2009], or bounding the ray footprint [Lee et al., 2010]. While our technique is more
general, we show that we also achieve better performance than these methods. Yu et al.
[2010] suggested to warp a frame buffer to create a full light field, which is then combined
to create depth-of-field effects. They use forward warping and simply splat larger pixels
into the target views to prevent holes. Our technique can also be used to create a light
field, but is much more efficient, as the run-time is independent on the number of views
generated.

7.2.2 Ray tracing data structures for GPUs

Many different data structures have been proposed for GPU-based ray tracing applications.
Bounding volume hierarchies (BVH) have been used extensively on GPUs. Lauterbach
et al. [2009] create LBVHs by linearizing primitives along a space filling curve, yield-
ing near optimal hierarchies and good overall performance for both construction and
traversal. This was improved upon with a hierarchical version [Pantaleoni and Luebke,
2010] and work queues [Garanzha et al., 2011]. Rasterized bounding volume hierarchies
(RBVH) [Novák and Dachsbacher, 2012], where leafs contain height fields that are ray
marched, allow for efficient but approximate ray casting. Similar to our method, it also
allows one to trade level of detail for computational efficiency. However, RBVH are not
geared towards screen-space ray tracing, as the construction of the data structure is too
slow.
Very recently, fast parallel construction of high-quality BVHs have been demonstrated on
GPUs [Karras and Aila, 2013], yielding about 90% of the ray tracing performance of offline
methods. K-d trees can also be constructed on GPUs [Zhou et al., 2008], even including
the surface area heuristic (SAH) [Wu et al., 2011]. However, construction is generally
more costly than for a BVH.
Voxelized scene representations have been used for various applications in real-time ren-
dering. Efficient sparse voxel octrees [Laine and Karras, 2010] offer excellent ray casting
performance, but can require non-negligible construction time and memory. Voxelized
scene representations have been used extensively when high resolution and accuracy is
less critical, for instance, in indirect illumination [Crassin et al., 2011].
Unlike these methods, our technique is geared specifically towards ray tracing through
layered 2.5D height fields, exploiting their structure for considerable performance gains
over standard ray tracing acceleration structures.

7.2.3 Ray tracing of relief and height fields on GPUs

Many techniques have been proposed since the early 1980’s to render height fields, usually
using ray tracing [Cohen and Shaked, 1993, Cohen-Or et al., 1996, Musgrave, 1988].
These methods generally differ in their choice of acceleration data structure. For instance,
the early work by Cohen and Shaked [1993] uses a quad-tree and is the original inspiration
for our method. Using ray tracing to render height fields and reliefs has also become
popular in GPU-based real-time rendering. Tracing rays by uniformly stepping through the

76



7.3. Data structure

height field in conjunction with a binary search is a common approach [Policarpo et al.,
2005]; Newton iterations is another [Wyman, 2005]. While these methods are simple
to implement, they can lead to missed intersection points. This can be fixed through
the use of safety zones [Baboud and Decoret, 2006, Donnelly, 2005], but at a higher
computational cost and using precomputed data structures.
These methods only support a single layer, the work by Policarpo and Oliveira [2006] adds
the ability to render layered height fields by packing four layers into a single texture in
order to trace through them simultaneously, speeding up rendering. For our use cases,
we argue that most of the time only the first layer is hit by a ray, and the other layers are
rarely needed. We therefore trace into deeper layers only if the first layer received no hit
(for fewer than 1% of pixels).
Tevs et al. [2008] accurately render height fields by creating a min-max mipmap hierar-
chy over the depth map on the fly, which allows ray tracing with empty space skipping.
This improves the pyramidal displacement mapping technique [Oh et al., 2006], sharing
the min-max mipmap acceleration data structure with previous work [Carr et al., 2006,
Guennebaud et al., 2006, Kolb and Rezk-Salama, 2005]. While this data structure—it cor-
responds to a fully sub-divided quad-tree—is attractive for height field rendering, it does
not directly support discontinuities and multiple layers. Traversal requires looping to step
into the correct hierarchy level, whereas our method uses simple bit patterns to yield the
correct level.
The min-max mipmaps [Tevs et al., 2008] have also been used to render volumetric shad-
ows [Chen et al., 2011], where epipolar rectification of the shadow map ensures that a ray
traverses along a row, reducing ray traversal to a 1D-problem. Unfortunately, we cannot
use this insight, as the construction is slow and the structure is only valid between a single
reference view and one novel view, reducing applicability.
Like many of the methods cited here, our method is related to layered depth images (LDIs)
[Shade et al., 1998]. Just like LDIs, our scene representation consists of possibly multiple
layers of depth plus color and we also support reprojection of the scene. However, LDIs
were geared exclusively toward scene reprojection, whereas our method is more general
enabling several different applications. Furthermore, the original splatting-based LDI ren-
dering technique was not very GPU-friendly, and has been superseded by much of the
work cited in this section.

7.3 Data structure

In this section, we first introduce our data structure for representing multiple layers of
scene geometry, and how it is constructed in real time. We then describe our approach for
ray traversal in Sec. 7.4.

7.3.1 Compressed depth representation

We start by rendering the reference view into a set of color+depth buffers [Shade et al.,
1998], which serves as an over-complete representation of the scene. This kind of ren-
dering workload can be implemented efficiently via depth peeling [Lee et al., 2010, Mara
et al., 2013, Policarpo and Oliveira, 2006]. We decided to use a simple k-buffer algorithm,
which turned out to be sufficient and fast enough. Our method, however, is not bound to
any particular approach and will work with any depth peeling method.
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Input Depth(a) Level I(b) Level II (Quality Loss)(c) Level II (High Quality)(d)

Figure 7.2: A toy example of quad-tree construction. (a) We start the construction with
two input depth layers (red/green) with per-pixel normal vectors (visualized via plane
rotation here). (b) Each 2 × 2 set of adjacent and non-overlapping cells is analyzed to
generate a parent that best describes them. Depending on the compression setting, slightly
misaligned children are replaced by a (c) single parent plane which then becomes a new
leaf node (tree branch has been pruned) or a (d) AABB parent node that encompasses the
children.

Next, for every layer from this 2.5D stack, we compute a quad-tree ray traversal accelera-
tion structure (see Figure 7.2). Each node in the quad-tree stores either a 3D axis-aligned
bounding-box (AABB) or, at leaf nodes, a 3D plane that represents the geometry. Note
that since the quad-tree is built from frame buffer image data, the screen-space 3D AABBs
actually correspond to frusta in world-space. The proposed data structure is related to
the min-max pyramids [Guennebaud et al., 2006], in a sense that we use non-overlapping
(in screen-space) bounding-volume hierarchies (BVH) to accelerate ray tracing through
efficient empty space skipping (AABB misses). However, in contrast to this previous work,
our quad-tree can be adaptively pruned, when the leaves represent the geometry by a
single plane.
This has two important consequences for ray traversal. First, since the plane nodes rep-
resent the underlying layer geometry, a ray-plane intersection test simultaneously deter-
mines if the ray hits both the node and the geometry. The bounds defined by such a plane
are tighter than by the enclosing AABB, which makes skipping empty space during the
traversal more efficient. This translates into significant performance gains due to reduc-
tion in both GPU memory bandwidth pressure and thread divergence. Furthermore, as
the ray-plane intersection test results in an exact intersection point, we do not need a “re-
finement” stage, such as binary search [Policarpo and Oliveira, 2006, Tevs et al., 2008],
to remove artifacts. The second feature of our data structure is that we can use it directly
to approximate and compress the screen-space geometry by controlling when and how a
node’s geometry is replaced with a proxy-plane. This allows us to trade off ray tracing
precision for performance.

7.3.2 Bottom level generation

The quad-tree is built in a bottom-up fashion. The depth of the decomposition could go
to dlog2 max(wid th, height)e levels. Both construction and ray tracing are done in NDC
(Normalized Device Coordinates) space mapped between [0, 1], where all potential scene
points (x , y, z) are inside of a unit cube. The bottom level of the quad-tree is initialized
directly from the depth buffer. Each pixel is represented as a plane with a normal vector
~N and plane origin Porigin. In practice, we only store the Z coordinate of Porigin, as its
2D coordinates are known from the node position in the quad-tree. In addition to ~N and
Porigin, we store a binary flag O, which indicates whether the plane is close to a depth dis-
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Algorithm 1: GLSL pseudo-code for generating the bottom level of our traversal
acceleration structure. λh and λd are set to 10−3 in our implementation.

input : depth ; /* depth bu�er data */
output: out ; /* node texture at level 0 */

1 D0,0...2,2← depth ; /* read 3x3 depth neighborhood */
2 /* discontinuity hint computed via Laplacian thresholding */
3 O← step (λd , getLaplacian (D))
4 /* compute forward and backward di�erentials */
5 d fx y ← vec2 (D2,1 − D1,1, D1,2 − D1,1)
6 d bx y ← vec2 (D1,1 − D0,1, D1,1 − D1,0)
7 /* enforce smoothness by picking the smallest derivative */
8 dx y ← mix (d fx y , d bx y , abs (d fx y) < abs (d bx y))
9 /* zero large derivatives that connect di�erent surfaces */

10 dx y ← step (λh, abs (dx y)) ·dx y

11 /* compute normal */

12 ~N ← normalize (cross (vec3 (Psize.x , 0, dx), vec3 (0, Psize.y , dy)))
13 /* compute plane's top-left corner z-coordinate */

14 P ← D1,1 − dot( ~Nx y/ ~Nz ,−0.5 · Psize))
15 out← outputPlane ( ~N , P, O); /* output a plane node */

continuity. We use this information during ray tracing to adaptively dilate the screen-space
bounding-box to mask tiny cracks between neighbors with different orientations.
Normal vectors can be obtained through deferred rendering (via a g-buffer) or computed
from depth data directly. All our examples use the latter approach, although g-buffer
normals should produce slightly better quality. For depth-derived normals special care
needs to be taken when generating Porigin for the bottom level of the quad-tree. By default,
the GPU rasterizer produces pixel samples that are located at the center of each pixel,
corresponding to a (0.5,0.5) shift. However, we represent the plane with the Z-coordinate
of its top-left corner, which we need to take into account. Therefore, to produce a valid Z
for the plane origin, we use regular plane-ray intersection, which in this case reduces to
an equation from line 14 in Algorithm 1.

7.3.3 Quad-tree generation and planar approximation

The remaining quad-tree levels are generated with our adaptive pruning algorithm demon-
strated in Figure 7.2 (see Algorithm 2). The idea behind the algorithm is simple. For each
output node we consider its 2× 2 children nodes, and if they can be approximated well
enough with a plane, we store the plane, otherwise we define the node as a regular AABB
and store its corresponding min/max Z values.
Successfully approximating a subtree by a plane node requires fulfilling three conditions:
(1) all the children have to be plane nodes, (2) the maximum angular difference between
proxy-plane and child plane normals has to be less than γnorm, and (3) the maximum
distance from child plane corners to the proxy-plane has to be less than γdist . Thresholds
γnorm and γdist can be fixed, or modulated adaptively to implement LOD-like functional-
ity. If the children do not meet these conditions, we output a parent node as AABB that
encompasses all of them.
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Chapter 7. Adaptive Acceleration Structure for Screen-space Ray Tracing

Algorithm 2: GLSL pseudo-code for construction and compression of a single level
of the quad-tree.

input : in ; /* node texture at level i (i > 0) */
output: out ; /* node texture at level i-1 */

1 Q0...3← in ; /* read 2x2 neighboring nodes */

2 if containOnlyPlanes (Q0...3) then
3 /* get plane normal vector, origin and �discontinuity� �ag */

4 ( ~N , P, O)0...3← getPlaneData (Q0...3)
5 /* set proxy plane normal to mean of children normals */

6 ~Nprox y ← normalize (mean ( ~N0...3))
7 /* compute angle di�erences via dot-product */

8 �oat d0...3← 1− dot ( ~Nprox y , ~N0...3)
9 /* Pprox y is least-square �t to child planes with �t errors stored in p0...3 */

10 (Pprox y , p0...3)← getPlaneOrigin ( ~Nprox y , ~N0...3, P0...3)
11 /* output plane if the proxy is close enough in terms of orientation and position */
12 if max (d0...3)< γnorm and max (p0...3)< γdist then
13 out← outputPlane ( ~Nprox y , Pprox y ,any (O0...3))
14 return
15 end
16 end
17 /* output AABB node that encompasses all children */
18 vec2 Z0...3← getMinMaxZ (Q0...3)
19 �oat minz ← min (Z0...3.x)
20 �oat maxz ← max (Z0...3.y)
21 out← outputAABB (minz , maxz)

An accurate planar approximation of children requires solving an optimization problem
with 4 unknowns ( ~Nprox y , Pprox y), which is too slow for real-time applications. We sim-
plify the problem by first estimating the normal ~Nprox y as the average of child normals,
and then finding the plane’s Z coordinate Pprox y that minimizes the distance of child plane
corners to the proxy plane with

arg min
Pprox y

3
∑

i=0

3
∑

j=0

�

Pprox y − pi j · ~Nprox y

~v · ~Nprox y

�2

,

where ~v is the view direction we optimize for and pi j is the j th corner of i th child plane
represented in the coordinate space of the proxy-plane. By default we set ~v = (0,0, 1) to

Scene Triangle count
Average construction

time [ms]

SPONZA 227k 0.646± 0.042
LIVINGROOM 456k 0.636± 0.006
SANMIGUEL 6550k 0.657± 0.042

Table 7.1: Average quad-tree construction and compression time changes with the output
quad-tree node count and is almost invariant to the scene complexity. See Sec. 7.5 for
configuration details.
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0163263

1 Pprox y +O ~Nx
~Ny

03263

0 minz maxz

Figure 7.3: Quad-tree 64-bit node layout. Top corresponds to the plane node (1x32-bit
float + 2x16-bit float) and bottom (2x32-bit float) to the AABB node.

maximize the reconstruction quality of the quad-tree for the reference view. In Table 7.1
we demonstrate the performance of the solver on the GPU. The entire construction algo-
rithm is very fast and does not depend on the geometric complexity of the underlying
scene.

7.3.4 Quad-tree node format

Each quad-tree node can store either an AABB or a 3D-plane. We managed to reduce the
node’s memory footprint by fitting both structures in just 64 bits (see Figure 7.3).
Interpretation of the node data is based on the value of the most significant bit of the
first word, which corresponds to the sign bit in single-precision floating-point number
representation. As both minz and Pprox y+O are always known to be positive, we choose to
flip the sign of Pprox y+O so we can disambiguate whether the node stores a plane or AABB
by simply inspecting the sign bit. When encoding the plane, we store two components of a
normal vector in half-float precision and recover the third one with ~Nz ←

Ç

1− ~N2
x − ~N2

y .

7.4 Ray traversal

The core of our ray tracing method is depicted in Figure 7.4 (see Algorithm 4 in Appendix C
for pseudo-code). At a high level, the algorithm performs a classic quad-tree ray traversal
[Cohen and Shaked, 1993] with several application-specific customizations. For now we
describe our method for a single layer and ignore disocclusions, which we detail in the
next section.
First, the node type determines the intersection procedure, and we test either for an inter-
section with the plane or the AABB. Second, to reduce branching and thread divergence,
we developed a method for efficient child selection in case of a node hit, and efficient suc-
cessor selection in case of a node miss. Both functions are numerically stable and resistant
to singularities. In case of a node hit, we compute the child position based on the parent
node quadrant in which the intersection point landed. In case of a node miss, we generate
the successor by evaluating which edge the ray hit when leaving the parent node (see Ray
#1 case in Figure 7.4).
Finally, similar to Frisken and Perry [2002], we observe that quad-tree node x- and y-coor-
dinates Q x and Q y encode the traversal stack up to the root node. By simply right bit-shift-
ing Q x and Q y by one, we can generate the parent coordinates of the current node. This
property allowed us to reduce the number of intersection tests significantly. After finding
the coordinates (Q∗x and Q∗y) for the successor at the same quad-tree level (e.g., P2 is the
successor of P1 in Figure 7.4), we could directly proceed to it, but this would provide inef-
ficient fixed-step traversal similar to 2D DDA line-drawing algorithms. After all, the direct
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#1

#2 P5 P6 P7 P8

P3 P4

P2P1
P0

#1

#2

Figure 7.4: A toy ray-tracing example. Using the data structure from Figure 7.2d (right
side shows XY-plane view) we cast two rays into the scene. Ray #1 misses leaf P0 but then
hits the AABB node encompassing leaves P1–P4. Based on the AABB intersection point
we derive the next intersection candidate (P1 leaf), which produces the final hit point.
Ray #2 initially misses top layer completely (no intersection with P1–P4 AABB), but hits
AABB encompassing P7–P8. The final hit point is computed via intersection with P8.

successor or one of its ancestors might be missed, so to maximize the benefit of empty
space skipping, we need to select the largest possible parent. This means that an optimal
strategy would involve (re-)starting the traversal from the root, which is inefficient (see
Figure 7.5 for a 1D example); ideally we would like to start from one level below the
last common ancestor. Because the node position encodes the full traversal path, we can
compute this point via simple bit manipulation. Specifically, the number of levels we need
to move up in the hierarchy is defined by the index of the most significant bit at which the
coordinates of the current and successor nodes differ. This maps to f indMSB(Q x ⊕Q∗x)
(where ⊕ is bit-wise XOR) and can be extended to f indMSB((Q x⊕Q∗x)|(Q y⊕Q∗y)) for 2D,
see Algorithm 3 in the appendix. The entire procedure maps very well to current GPUs
as all the instructions are hardware-accelerated. In fact, this stack-less traversal is 25%
faster than stack-based.

7.4.1 Disocclusion handling

Efficient handling of disocclusions in our 2.5D representation is a non-trivial task. A naïve
solution would trace the ray against each quad-tree and pick the nearest hit among all
hits. This, however, is slow and does not scale well with increasing number of layers.
Some methods [Policarpo and Oliveira, 2006] save on the ray traversal time by bundling
multiple layers and casting rays through all of them simultaneously. This works much
better, but still seems sub-optimal. Most screen-space applications, such as time-warping,
DoF rendering, and stereo-warping, have small reprojection requirements, i.e., relatively
few pixels end up being fetched from background layers. Our approach efficiently deals
with these scenarios by tracing rays individually and indicating not only a valid hit event,
but also if the ray has passed through the occlusion volume in the scene.
An occlusion volume describes the 3D space occluded by the data in a depth layer (similar
to a shadow volume). Since we do not know what might be hidden in the occlusion
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Figure 7.5: A 1D-view of ray traversal. Nodes representing planes (P) and AABBs (V) are
stored in a hierarchical data structure. Moving from node at position 011 to 010 is fast as
both nodes share most of the path from the root (red edges). In contrast, moving from 011
to 100 requires going all the way up to the root. Our algorithm computes the position of
the last common ancestor between two arbitrary nodes at a given quad-tree level without
the use of stack or loops, making it particularly friendly to GPU implementations.

volume of the foreground layer, rays that hit it, i.e., rays that would pass between occlusion
boundaries, need intersection information from the background layer. This is because after
reprojection, the background hit might end up being in the front of the foreground hit. To
handle this, we test for intersections with the primitive (plane and AABB) and its occlusion
volume. We never explicitly create this occlusion volume, but rather extrude a given node
during intersection testing.

Knowing if the result of tracing the foreground is final, or whether we still need to trace
the background, allows us to tremendously speed up the multi-layer tracing version of
our algorithm. We have measured the ray distribution across different layers in the DoF
rendering application, and even for large defocus blur, less than 1% of rays end up in
the background layer. Note that the decision-making process is cascaded by nature. For
example, adding a third layer will only impact rays that have missed both previous layers
or hit an occlusion volume in the second layer. Hence the performance of our method
scales well with the number of layers. In fact, for typical scenes, adding more than 3
layers has a negligible impact on ray tracing speed, and the overall system performance
is limited by initial depth peeling and quad-tree construction stages.

The occlusion volume logic is not useful for the single-layer depth+color case, where no
information about occluded geometry is available. Usually, the best thing one can do is to
inpaint the resulting hole with background data (see Figure 7.6). For this particular case,
we modify the tracing algorithm to provide a fast inpainting of disocclusions. Specifically,
instead of traversing through the occluded part of space, we stop the traversal and return
a valid hit at the intersection point with the occlusion volume. To make sure the point
belongs to the background image data, we perform the intersection test with a slightly
dilated occlusion volume. This effectively turns our algorithm into a fast height-field ren-
dering method, and despite the disocclusion information being hallucinated, as we show
in the next section, the method is still quite useful in the context of screen-space ray trac-
ing.
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Figure 7.6: Comparing view synthesis approaches for large camera motion. (a) Reference
view. (b) Mesh-based reprojection fills disocclusions by stretching background triangles.
(c) Height-field rendering methods Tevs et al. [2008] produce less appealing results due to
foreground preference during inpainting. (d) Our method tracing through a single depth
layer. Apart from the regular hits we get misses (red) and hits of occlusion volume (blue).
(e) In the fastest variant we fill both with the nearest background pixels. (f) Another
variant performs tracing through the second depth layer and recovers the majority of
misses. This can be repeated on subsequent layers to yield a full reconstruction.

7.5 Results

We now evaluate the performance and quality of our method for several screen-space
applications. All experiments were conducted on a PC running Windows 7 64-bit ver-
sion and the NVIDIA driver version 347.52. The system is equipped with an Intel Core
i7-3930K, 64GB of RAM, and an NVIDIA Geforce GTX 980 with 4GB of RAM. All images
were rendered at 1600× 900 resolution, unless specified otherwise. The test sequences
vary in the amount of camera motion and geometry complexity (see Table 7.1)—from
the relatively simple SPONZA to the detailed LIVINGROOM (see Figure 7.1) and the SAN-
MIGUEL scenes. The timings in this section exclude quad-tree construction, which is about
0.6ms per frame, unless otherwise noted; see Table 7.1 for detailed quad-tree construction
timings.

7.5.1 View synthesis

We compare our approach to efficient implementations of three classes of view synthe-
sis methods: mesh-based forward warping, height-field rendering and screen-space ray
tracing.
The mesh-based warping methods represent the reference view as a regular grid mesh
and rely on fixed-functionality GPU hardware to warp and rasterize it into a new view
[Bowles et al., 2012, Didyk et al., 2010]. These approaches generally trade mesh resolu-
tion for performance. To have a fair comparison with our method, which resolves details
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Method Scene
Average time [ms] Mrays

sTref Teye Ttotal

Mesh-based
SPONZA 0.59 1.47 3.56 N/A

warping
LIVINGROOM 0.76 1.37 3.53 N/A
SANMIGUEL 2.73 1.37 5.46 N/A

Height-field
SPONZA 0.59 3.5 7.7 405.75

tracing
LIVINGROOM 0.79 3.85 8.5 373.78
SANMIGUEL 2.75 4.33 11.4 332.41

DDA
SPONZA 0.523 6.06 12.71 237.56

single layer
LIVINGROOM 0.78 5.77 12.33 249.28
SANMIGUEL 2.75 6.01 14.78 239.48

DDA
SPONZA 1.13 8.26 17.65 174.06

two layers
LIVINGROOM 1.41 7.80 17.01 184.60
SANMIGUEL 5.51 8.22 21.93 175.05

Our
SPONZA 0.59 1.1 3.43 1309.69

single layer
LIVINGROOM 0.78 1.49 4.35 980.9
SANMIGUEL 2.74 1.7 6.78 846.56

Our
SPONZA 1.2 1.34 4.52 1076.22

two layers
LIVINGROOM 1.45 1.7 5.45 850.5
SANMIGUEL 5.52 2.02 10.24 709.8

Table 7.2: Performance comparison of our approach in stereo-warping application. We
render a central reference view (Tref) and warp it to the left and right eye. Teye is the
averaged time for a warp to a single eye and Ttotal corresponds to the total stereo frame
render time.

at sub-pixel resolution, we have set up a mesh with one vertex per input image pixel.
This simplifies the implementation as no mesh refining (snapping vertices to the nearest
depth-discontinuities) or reprojection point optimization is required.
In Tables 7.2 and 7.3 we evaluate the performance for spatial and temporal reprojections.
The performance of our approach is strongly correlated with the complexity of per-layer
quad-trees. For the SPONZA scene, which has relatively simple geometry and produces few
disocclusions, we are faster than mesh-based warping, regardless of the number of layers
used. However, with detailed geometry that has large background/foreground depth dif-
ferences, the speed advantage of our solution decreases. This is demonstrated in the
SANMIGUEL sequence, where large camera motion produces lots of disocclusions and oc-
clusion volume hits, which forces our method to shoot rays through the second layer for
a significant portion of the image. However, unlike mesh-based forward warping, our
method produces images with correctly resolved disocclusions (Figure 7.7) and allows
for arbitrary per-pixel reprojections, which enables single-pass light-field (Sec. 7.5.3) and
DoF rendering (Sec. 7.5.2).
Another class of view-synthesis methods is height-field rendering [Musgrave, 1988, Poli-
carpo and Oliveira, 2006], which aims to efficiently visualize an elevation map from an
arbitrary point of view. We have evaluated the performance of our approach with respect
to a recent GPU height-field rendering method [Tevs et al., 2008] that uses ray march-
ing in a min-max pyramid followed by a binary search intersection refining step. Their
ray traversal routine allows for fast arbitrary per-pixel reprojections, but does not support
tracing through multiple depth layers and therefore fails to resolve disocclusions correctly.
This makes it equivalent to a single-layer version of our approach. We have used the au-
thors’ GLSL implementation and selected their fastest iterative version of the algorithm.
To improve the speed further we have disabled bilinear patch interpolation. This normally
produces pixel level staircase artifacts common to voxelization algorithms, but due to rel-
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Method Scene
Average time [ms] Mrays

sTref Tsyn Tamt

Mesh-based
SPONZA 0.54 1.43± 0.07 1.2 N/A

warping
LIVINGROOM 0.78 1.4± 0.04 1.25 N/A
SANMIGUEL 2.75 2.23± 0.13 2.36 N/A

Height-field
SPONZA 0.54 2.33± 0.1 1.88 617.76

tracing
LIVINGROOM 0.79 2.2± 0.15 1.84 655.43
SANMIGUEL 2.76 3.07± 0.73 2.99 468.6

DDA
SPONZA 0.58 3.87± 3.67 3.05 371.70

single layer
LIVINGROOM 0.77 1.05± 0.4 0.98 1368.36
SANMIGUEL 2.71 3.11± 0.82 3.02 462.13

DDA
SPONZA 1.25 4.08± 3.80 3.37 352.5

two layers
LIVINGROOM 1.42 1.53± 0.99 1.5 940.56
SANMIGUEL 5.5 3.55± 0.92 4.03 404.95

Our
SPONZA 0.55 0.92± 0.24 0.83 1558.44

single layer
LIVINGROOM 0.78 0.89± 0.14 0.86 1608.93
SANMIGUEL 2.71 1.2± 0.29 1.57 1201.0

Our
SPONZA 1.15 1.13± 0.45 1.13 1269.84

two layers
LIVINGROOM 1.44 1.03± 0.73 1.13 1395.34
SANMIGUEL 5.55 2.18± 1.35 3.02 660.85

Table 7.3: Performance comparison of our approach for 15Hz to 60Hz conversion appli-
cation. The mean reference frame rendering time Tref together with new view synthesis
time Tsyn is used to compute amortized frame time Tamt for 60Hz rendering.

atively small zoom-in factors of our reprojection applications, we have not found this to
be an issue. Despite these optimizations, our approach is still 2.5× faster on average (see
Table 7.2 and 7.3). The performance improvement comes from our compressed depth-rep-
resentation and more efficient traversal algorithm. Both reduce the overall intersection
count and number of nodes visited, which directly maps to reduced texture fetch count
and shorter run-times.

Finally, we compare against a recent screen-space GPU ray tracing method that supports
tracing through multiple depth layers McGuire and Mara [2014]. The traversal algorithm
is based on the idea of perspective-correct DDA line rasterization, which minimizes the
number of duplicated intersection tests and texture fetches. The method does not require
pre-computation or any ancillary data structure. However, due to ray marching nature
and fixed traversal step size, its performance tends to degrade proportionally to the ray
hit distance. To reduce the variance of the performance the authors introduce an upper
bound on per ray marching step count. In our experiments we used a minimum value
at which the DDA method produced results that are artifact-free and equivalent to ours.
Specifically, we set the maximum step count to 200 and 500 for stereo-warping and tem-
poral upsampling applications respectively. For stereo-warping, where the reprojection is
relatively small and constant, our method is from 4× to 6× faster (Table 7.2). The DDA
method becomes more competitive for temporal-upsampling (Table 7.3), which has dif-
ferent (rotation + translation) and varying reprojection requirements. Moving away from
the reference frame increases the reprojection magnitude, which maps to longer epipolar
lines (rays) and results in high timings variance for SPONZA and SANMIGUEL scenes. The
variance for the LIVINGROOM case remains relatively small because of the slow camera
motion that produces small differences between adjacent reference frames.
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

Figure 7.7: Time-warping for large camera translation. (a) Mesh-based forward warp-
ing produces visible background stretching artifacts. (b) We use information from the
background layers, avoiding these artifacts.

7.5.2 Depth-of-field rendering

Screen-space ray tracing is often used to simulate complex lens effects. Cook et al. [1984]
showed that rendering phenomena like motion blur, depth-of-field (DoF), and shadow
penumbras is feasible via lens sampling and proper ray distribution. We followed this
methodology, and implemented a naïve DoF algorithm that samples the lens aperture
[Shirley and Chiu, 1997] and traces a fixed number of rays per pixel according to the
thin-lens model. The per-pixel ray batches are then accumulated to form the final image.
As we show in Figure 7.9, the knowledge of occluded regions in the scene is critical for
high-quality DoF simulation. This is especially the case for defocus blur at large depth
discontinuities, where rays travel into occluded parts of the scene geometry. Our method
addresses this by tracing through multiple layers. Performance-wise, the DoF rendering
workload represents the opposite scenario to Sec. 7.5.1. Here, most of the rays are short,
incoherent and few of them end up in background layers. As shown in Table 7.4, our
scheme breaks the 2.16 billion Rays-Per-Second (RPS) barrier for a single-layer rendering
and 1.96 billion RPS for two layers. Interestingly, the DoF workloads are also handled
relatively well by the DDA method [McGuire and Mara, 2014]. Setting maximum ray
marching step count to 25 produces optimum performance with rendering quality equiva-
lent to ours. While our approach has a significant advantage in terms of RPS, the absolute
FPS statistics suggest that this improvement is to some extent consumed by the accelera-
tion structure build overhead.
Unfortunately, random lens sampling with just a few rays produces visible noise in the
final image. To reduce the noise, we have implemented a secondary sampling stage that
exploits the characteristics of our quad-tree data structure. Specifically, after hitting the
plane leaf-node, we generate additional rays in close proximity to the primary ray (using
the same random distribution), but instead of tracing them through the scene, we assume
their visibility and simply intersect them with the primary ray hit plane. Some intersection
points might land “in the air”, therefore we lower their color sample contribution to the
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Method Npri/Nsec
Tref Tdof Mrays

s FPS
[ms] [ms]

DDA 4/1 0.56 4.74 1215.18 188.4
single layer 8/1 0.54 8.15 1412.11 114.85

DDA 4/1 1.25 6.56 876.97 127.87
two layers 8/1 1.23 9.34 1233.4 94.60

Our
4/1 0.54 2.8 2055.67 251.13

single layer
8/1 0.54 5.32 2167.05 152.67
4/4 0.56 3.47 1657.07 214.5
8/4 0.54 6.63 1737.55 127.73

Our
4/1 1.22 3.21 1792.72 197.08

two layers
8/1 1.21 5.85 1967.21 129.71
4/4 1.24 3.84 1496.88 174.58
8/4 1.22 7.22 1594.46 109.51

Table 7.4: Impact of the aperture sampling configuration on performance of depth-of-
field rendering in SPONZA sequence. Each test case is configured to cast Npri rays and
accumulate them with Nsec color samples per ray. Tref denotes the rendering time for the
reference layer(s) and Tdof is the DoF image rendering time. Additionally, we provide the
ray tracing speed and the overall application FPS (including quad-tree construction time).

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 7.8: Depth-of-field rendering noise reduction through over-sampling. (a) Integra-
tion of only 8rpp (rays per pixel) produces noisy result. (b) 32rpp improves the quality,
but is 3.9x more costly to compute. (c) 4rpp combined with 7 additional samples per ray
produces in-between quality while being 25% faster than 8rpp alone. (d) Finally, 8rpp
combined with 3 extra samples per ray produces results as in (b) while being only 20%
slower than (a).

final pixel estimate by weighting them by e−(zi−zb)2/σ2
, where zi is the intersection z value

and zb is the depth buffer value at the intersection point. Figure 7.8 shows the impact this
has on DoF rendering noise levels. The proposed sampling strategy only approximates
the physically-correct solution, but as we show in Table 7.4, it allows us to significantly
reduce the ray tracing overhead without sacrificing the defocus blur quality.

7.5.3 Image retargeting for multi-view displays

Glasses-free 3DTVs, particularly those using parallax barriers [Ives, 1903] or lenticular
arrays [Lippmann, 1908], require multiple views of the same scene. Unfortunately, ren-
dering and transmission of dozens of views is expensive both in terms of computation and
bandwidth/storage requirements. One way to address this problem is to send/compute
only a small subset of all views, so called reference views, and use these to synthesize miss-
ing in-between views. Unlike existing 3DTVs, near-eye light-field displays [Lanman and
Luebke, 2013] require rendering from hundreds to thousands of individual scene views.
In the original paper, the authors describe two rendering approaches for their display. The
first one relies on GPU ray tracing (with NVIDIA OptiX) to produce accurate elemental im-
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 7.9: Depth-of-field rendering using the thin-lens model. (a) With a single depth
layer we cannot resolve defocus blur at large depth discontinuities (e.g., the edge of the
candle). (b) Our method produces correct image by tracing rays through two layers, (c)
or by tracing through only a single depth layer but hallucinating background through in-
painting (see Sec. 7.4.1), which approximates (b) and is faster than (a). (d) 5× difference
between (b) and (c).

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b) (c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 7.10: Impact of quad-tree compression on stereo-warping. (a) AABB intersection
count visualization for a close to lossless compression of corresponding depth layers of
the reference cyclopean view. (b) Aggressive compression of the quad-tree speeds up ray
tracing by 12%. (c,d) Despite the difference in approximation quality between (a) and
(b), the resulting stereo image pairs are visually indistinguishable.

age array for the display. The other one is a much simpler, where frames from the left and
right eye are placed on a virtual plane and sampled to produce an image for micro-lens
array. While efficient, this approach significantly under-utilizes the capabilities of a near-
eye light-field display, as it cannot reproduce large disparities or accommodation effects
this way. Here we implement the first approach: specifically, given color+depth buffers
for the left and right eye, we generate a complete elemental image set with our ray tracing
approach (see Figure 7.1d). This preserves the disparity range of the original stereo con-
tent and also enables the eyes to accommodate. Our results are visually indistinguishable
from the OptiX solution, and depending on the scene and ray tracer configuration, it takes
from 1.1ms to 3ms to reproject the image into an image array for a single eye, about three
times faster than OptiX.

7.5.4 Ray-traced reflections

Many ray tracing algorithms exist to create plausible glossy reflections. As mentioned
earlier, screen-space ray tracing is commonly used for this, e.g., the algorithm of Sousa
et al. [2011] or its more accurate recent variants [Mara et al., 2013, McGuire and Mara,
2014] that can also handle multiple layers to solve disocclusions. As reflections are likely
to come from outside the current viewport/screen-space, methods exist to enable this.
Umenhoffer et al. [2007] create a cube map at the center of a reflective object, includ-
ing the respective depth maps and possibly multiple layers. Reflections are rendered by
screen-space ray tracing in one or more of the cube map faces. We take a similar approach,
but speed up ray tracing using our adaptive data structure for each cube map face.
To show the applicability of our proposed data structure and ray traversal algorithm to
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

Figure 7.11: (a) Single depth+color layer ray-traced specular reflections (without self-
-reflections). Our per cube map face acceleration data structure is static and build in the
first frame in 5.277ms. It takes 1.518ms to render the scene view and 1.062ms to trace
the reflections, resulting in 387 average FPS. The two layer version takes 2.55ms to trace,
yielding 234 average FPS. Note that since our algorithm effectively reprojects the cube
map during tracing, we can use the same cubemap to render correct reflections for both
objects. (b) Ray-traced rough reflection according to the Blinn-Phong BRDF with up to
three bounces. Here, the front object has a specular coefficient of N = 1000, the object in
the back is essentially specular (N = 100000).

non-screen-space effects, we use ray tracing to generate specular (Figure 7.11a) and glossy
reflections (Figure 7.11b) including multiple bounces and self-reflections on non-planar
reflective objects as described by Cook et al. [1984]. This can lead to more incoherent ray
tracing workloads, especially when applying small reflection exponents to simulate rough
surfaces. We generate a cube map (6× 1024× 1024 pixels big) at the camera location,
and create our adaptive data structure for each face of the cube map. Note that in theory
we could support other environment map representations, but only if they do not lead to
curved lines. In our implementation, we simply render the scene six times, once to each
cube map face. More efficient solutions, such as viewport multi-casting exist, but this is
not the focus of our work. The primary intersection point is computed using rasterization,
rendering the reflective objects only. For each intersection point we sample a new direction
for the reflection vector by sampling the normalized Blinn-Phong BRDF at this position. If
we hit a reflective surface, we generate a new ray until the maximum number of bounces
is reached. At a diffuse surface we discontinue tracing.
The core ray traversal algorithm requires very few modifications for supporting tracing in
the cube map. We begin by determining the frustum (cube face) the ray originates from.
Then we trace the ray in the corresponding acceleration structure. If no valid hit was
found, we transition to a new face based on which of the frustum planes of the current
view the ray hits. If the ray hits the far plane of any view (ray is leaving the scene) we
terminate the trace. We show the performance of our ray tracing approach for various
scenarios in Figure 7.11, 7.12 and Table 7.5.

7.6 Discussion

7.6.1 Depth compression impact on performance and quality

By increasing γnorm and γdist the quad-tree construction algorithm coarsens—with grad-
ually increasing tolerance—smoothly-varying geometry in the scene, which in the limit
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

Figure 7.12: A comparison with a standard cube-map-based reflections. (a) Cube map
rendered at position of the object in the far back produces incorrect reflections for the
object in the front that is far from its center of projection. (b) Our method can address this
scenario and produce correct reflection by reprojecting the data stored in the acceleration
structure.

Method Np/Ns/Nb
Tcm Tref Trr FPS
[ms] [ms] [ms]

Our
1/8/1 2.38 0.34 1.974 197.31

single layer
3/8/1 2.39 0.41 6.96 98.68
3/4/3 2.33 0.366 10.25 75.03
3/8/3 2.35 0.388 12.38 64.64

Our
1/8/1 5.15 0.415 4.91 92.21

two layers
3/8/1 5.20 0.37 13.5 51.40
3/4/3 5.19 0.34 22.96 34.64
3/8/3 5.27 0.34 24.75 32.52

Table 7.5: Rendering performance of complex multi-bounce glossy reflections. Both sin-
gle- and two-layer based algorithm is configured to cast Np primary rays, followed by Ns
extra samples per ray. Each primary ray is allowed to bounce Nb times. Tcm, Tre f , and
Tr r denote the cube map, input frame, and reflection rendering times respectively. Last
column shows the average application FPS.

produces a scene filled up with billboard-like objects. However, since we optimize the
quad-tree for the reference view, and all the screen-space applications we demonstrate re-
quire relatively small parallax shift and ray direction changes, even such a coarse geometry
approximation can produce sound results (see Figure 7.10).
In our experiments we set γnorm = cos(3◦) and γdist = 10−5, which provided a 5-10%
performance gain (with respect to lossless settings) without introducing any visible repro-
jection artifacts. The compression thresholds can be further tuned to exploit the nature
of perspective projection—the hit precision requirements fall with the distance to the ob-
ject. We have implemented a distance-adaptive compression by linearly increasing γnorm
and γdist thresholds with the node’s mean depth value, which resulted in, on average, a
10% performance gain for view-synthesis applications and 15% for DoF rendering. Fig-
ure 7.13 and 7.14 include more detailed evaluation, where we show the impact of γnorm,
γdist and depth-adaptive quantization on performance and quality of the stereo warping
application.
In Figure C.1 we compare the depth reconstruction quality of our method against a gold-
standard GPU ray tracer—NVIDIA OptiX [Parker et al., 2010]. Even though we only use
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Figure 7.13: Impact of γnorm and γdist on the quality and performance. (left) Frame
render time in msec. (right) Frame PSNR in dB. (red) Fixed γnorm = cos(3◦) while loga-
rithmically decreasing γdist = 10−5 to γdist = 10−1. (blue) Fixed γdist = 10−5 while γnorm
varies between [cos(3◦), cos(25◦)].
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Figure 7.14: Impact of depth-adaptive quantization on quality and performance. The
compression values γnorm and γdist vary between [cos(3◦), cos(25◦)] and [10−5, 10−1] re-
spectively. (left) Frame render time in msec. (right) Frame PSNR in dB. Depth-adaptive
quantization disabled (red) and enabled (blue).

two depth layers in this example, our approach correctly evaluates the depth at all pixels
(except where three layers would be required), while being 3× faster than general-pur-
pose ray tracer. Note that our approach allows us to inpaint the remaining holes, so that
no artifacts appear. Alternatively, one can simply use more layers.

7.6.2 Limitations

While the single-layer (with background inpainting) variant of our method has good al-
l-around characteristics, the performance of the multi-layer version decreases with the
number of ray misses and occlusion volume hits. This is because large disocclusions gen-
erate long ray traversal paths, which slows down the tracing process, making our method
not as efficient for large-displacement view synthesis. In our current multi-layer traver-
sal implementation, when moving up close to geometry, some rays can pass through tiny
cracks between unaligned plane nodes that should otherwise form a continuous surface.
This could be fixed by generating more precise input normal vectors (use g-buffers instead
of depth-based normal reconstruction) or by combining several neighboring planes to im-
plement a more complex bi-linear patch intersection test. Finally, we consider only opaque
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geometry and diffuse lighting models. However, support of multi-sample rendering and
deferred shading is feasible and can be added as a straightforward extension.

7.7 Conclusion

We have presented a novel screen-space ray tracing method tailored for single- and mul-
ti-layered depth representations. We have demonstrated its performance and benefits in
several screen-space rendering applications. We achieve real-time performance by combin-
ing a compact and steerable traversal acceleration structure with an efficient ray tracing
algorithm, reaching the level of specialized state-of-the-art approaches for many applica-
tions. While our method is not a replacement for general purpose ray tracing frameworks,
such as NVIDIA OptiX, it can be thought of as an efficient alternative for problems requiring
2.5D ray tracing capabilities. In the future, we would like to extend this work to support
acceleration of volumetric rendering effects and investigate the application to approxi-
mate global illumination. We also plan to work on improving the quad-tree compression
algorithm, which currently only considers geometric distortions. Accounting for under-
lying material properties, such as texture contrast or specular highlights, could further
improve the performance and quality of our approach.
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Chapter 8
Decoupled Space and Time Sampling
of Motion and Defocus Blur for Unified
Rendering of Transparent and Opaque
Objects

Abstract

We propose a unified rendering approach that jointly handles motion and de-
focus blur for transparent and opaque objects at interactive frame rates. Our
key idea is to create a sampled representation of all parts of the scene ge-
ometry that are potentially visible at any point in time for the duration of a
frame in an initial rasterization step. We store the resulting temporally-vary-
ing fragments (t-fragments) in a bounding volume hierarchy which is rebuild
every frame using a fast spatial median construction algorithm. This makes
our approach suitable for interactive applications with dynamic scenes and an-
imations. Next, we perform spatial sampling to determine all t-fragments that
intersect with a specific viewing ray at any point in time. Viewing rays are sam-
pled according to the lens uv-sampling for depth-of-field effects. In a final tem-
poral sampling step, we evaluate the pre-determined viewing ray/t-fragment
intersections for one or multiple points in time. This allows us to incorporate
all standard shading effects including transparency. We describe the overall
framework, present our GPU implementation, and evaluate our rendering ap-
proach with respect to scalability, quality, and performance.
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Figure 8.1: Decoupling spatial and temporal sampling allows us to produce physi-
cally-based, plausible defocus and motion blur at interactive frame rates (rendered at
1024×576 pixel resolution, 4 dof-samples, 8 motion blur sample per dof-sample in 222ms
on a GTX TITAN X).

8.1 Introduction

Defocus and motion blur are integral components to render photorealistic images. They
are often used in movies or games to highlight an important situation or object for story-
telling purposes. Distribution ray tracing [Cook et al., 1984] is a widely employed unified
technique to render these phenomena in production quality applications. In contrast, re-
al-time systems cannot until now use a unified algorithm to solve both effects and instead
provide separate solutions for defocus and motion blur: Depth-of-field can be solved via
approximate ray tracing [Lee et al., 2009, Widmer et al., 2015], warping light fields [Yu
et al., 2010], or applying a multi-layer filter [Selgrad et al., 2015]. Most modern algo-
rithms use multiple layers to handle disocclusions. Motion blur is mostly implemented
using filter kernels as post-processing effects [Guertin et al., 2014]. This can reach a vi-
sual quality similar to distribution ray tracing without sacrificing performance. However,
these approaches cannot handle defocus and motion blur at the same time, especially if a
pixel consists of fragments with different depth, i.e. if it is a combination of opaque and
transparent fragments.
Stochastic rasterization [Akenine-Möller et al., 2007, Fatahalian et al., 2009] extends the
rasterization algorithm and hardware with stochastic sampling to enable defocus and mo-
tion blur from the camera and object perspective as well as motion blurred shadow maps
[Nilsson et al., 2012]. McGuire et al. [2010] presented a hybrid algorithm for rendering
approximate defocus and motion blur with stochastic visibility evaluation within a modern
GPU architecture.
We present a unified rendering pipeline for interactive defocus and motion blur rendering
for transparent and opaque fragments (see Figure 8.1). We decouple the visibility test,
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used to generate depth-of-field in ray tracing, from motion sampling and employ shading
after the visibility was determined. This reduces ray traversal and shading cost, as only
visible fragments will be shaded, without quality loss compared to other real-time or inter-
active algorithms. In addition, late shading allows to use a deferred shading approach in
combination with correct alpha blending of blurred and transparent fragments to produce
physically plausible results. Our contributions are:

• Decoupling time sampling and visibility test, decomposing the traditional 5D sampling
into a 4D spatial (x y, uv) and 1D temporal (t) sampling step.

• An intermediate scene representation using temporally-varying fragments (t-fragments)
that represent the spatially sampled scene for temporal sampling.

• A disocclusion map that approximates the motion differences between two depth layers
in order to identify potentially visible t-fragments for a correct trace result, including
a simple edge filter to reduce depth-of-field artifacts at disocclusions. Each pixel in
the disocclusion map marks whether it is a source of disocclusion or not. Using this
information we modify the depth layers.

• A intersection test for temporally-varying axis-aligned bounding boxes (t-AABBs).
• A unified sorting and late shading pass using t-fragments as shading primitives that

enables physically plausible transparency with defocus and motion blur at interactive
frame rates.

8.2 Related work

Fundamentally, our proposed algorithm shares similarities with defocus and motion blur
rendering for micropolygons by Hou et al. [2010]. They construct an acceleration struc-
ture using object aligned bounding boxes in 3D space for both the start time t0 and end
time t1 of a frame. Assuming linear motion, each pair of bounding boxes forms a 4D hy-
per-trapezoid in space-time that tightly bounds the object for the entire time interval. A
bounding volume hierarchy (BVH) is constructed with the SAH-based BVH construction
algorithm of Wald [2007] for bounds at t = 0.5. During traversal, rays are associated with
a time stamp and intersected with the corresponding interpolated bounds.
In contrast to Hou et al. [2010] we operate on fragments rather than micropolygons. As
rasterization can generate several million fragments, a key to better ray traversal perfor-
mance is fast and aggressive culling without introducing artifacts. At the same time, we
aim at interactive rebuilds of the acceleration structure. We also directly intersect 4D
hyper-trapezoids to collect fragments for the whole frame.

8.2.1 Defocus and motion blur

Algorithms computing defocus and motion blur fall roughly into two categories: Ray trac-
ing based approaches approximate the effect in a physically based manner while real-time
approaches try to create a perceptually plausible effect.

Ray Tracing Cook et al. [1984] present a unified framework for simulating defocus and
motion blur with distribution ray tracing (DRT). They use stochastic sampling to create
phenomena such as depth-of-field, motion blur, and shadow penumbras. All effects are
simulated by simultaneously sampling in space and time. Images created by DRT exhibit
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a certain level of noise due to the stochastic sampling. Thus, they are usually post-pro-
cessed using filtering or reconstruction techniques. While early approaches filtered the
final rendered images, the state-of-the-art is reconstructing surface lightfields for sample
points along each ray [Hasselgren et al., 2015, Lehtinen et al., 2011, Munkberg et al.,
2014]. While initially designed for DRT, these reconstruction filtering approaches can be
used for all rendering algorithms that provide samples using a stochastic process. In order
to reduce the noise prior to filtering without increasing the computational costs, samples
should be generated where they improve the rendered image the most. Vaidyanathan
et al. [2012] propose an adaptive sampling approach that is based on frequency informa-
tion obtained through shaders together with the amount of defocus and motion blur in a
certain area of the rendered output. They spend more samples in areas of high frequency
while smooth areas are filtered more aggressively.
Belcour et al. [2013] improve on this by estimating the covariance along rays instead of
combining frequency information from different sources in screen space. Tracing covari-
ance has, however, problems with partial occlusion and transparency. Also, this method
becomes less efficient in regions that contain both motion blur and defocus.
A slightly different approach was presented by Gribel et al. [2011]. In order to calculate
motion blur, they sample line segments in 4D space-time rather than points in 3D space.
The visibility along each line segment is solved analytically. However, adding defocus blur
would require multiple line segments or tracing finite patches.

Real-Time Rendering A broad overview of existing techniques to solve motion blur is
given by Navarro et al. [2011]. In general, real-time approaches usually fall into two
categories. Guertin et al. [2014], for example, perform motion blur as a post-processing
filter. There are, however, issues with combining this approach with real-time defocus
as both filters require per fragment information and therefore assume that each pixel
corresponds to a single fragment. This assumption is no longer true once the first filter
has been applied. Selgrad et al. [2015] on the other hand use multi-layer filtering which
is unable to handle motion blur at the same time.
In contrast, to these techniques, we only sample in 4D (x y, uv) space to solve visibility for
depth-of-field. The time domain is later sampled on the resulting t-fragments, reducing
the ray tracing overhead.

8.2.2 Stochastic rasterization

As we rely on rasterization for line-segment generation we share some similarities with
stochastic rasterization from Akenine-Möller et al. [2007]. Since the edges of time-con-
tinuous triangles (TCT) are bi-linear patches rather than planes, their final rendering cal-
culation is very expensive. Therefore, Akenine-Möller et al. [2007] use a screen space
acceleration structure that is created on-the-fly by rendering an OBB around each TCT.
In addition, they use Zmax-culling to conservatively reject triangles and fragments before
performing actual sample evaluation.
Based on this, Fatahalian et al. [2009] partition time into intervals to keep track of moving
micropolygons using different approaches for cases with no motion, slow motion and fast
motion. Hou et al. [2010] further improve on this by presenting a unified approach for
all cases that usually produces higher quality images. Finally, Laine et al. [2011] improve
over Fatahalian et al. [2009] with a better sampling pattern defined in dual space.
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For better depth test performance, Boulos et al. [2010] define the tz-pyramid. It stores
not only Zmax for a certain instance in time but also builds a hierarchy over time, based
on the maximum z-values in each node of the z-pyramid.
McGuire et al. [2010] propose a hybrid algorithm based on stochastic rasterization that
can do motion blur and defocus at the same time, running on conventional GPUs. While
the authors use motion blur and defocus as examples, their focus is on implementing
stochastic rasterization on GPUs in general.
To improve performance, Clarberg and Munkberg [2014] propose a deferred shading ap-
proach. They first create a per-pixel list of primitives that contribute to each pixel. In a
separate shading pass, the primitives are shaded and the colors are averaged. In this set-
ting, the per-pixel list already accounts for motion blur and defocus. In order to increase
the stochastic rendering performance in general, Wu et al. [2015] implement efficient
sample culling for motion blur and defocus.

8.2.3 Acceleration structure

Acceleration structures are a key component for fast and efficient ray tracing. Most widely
used structures are bounding volume hierarchies (BVHs) and kd-trees, which can be ex-
tended to support motion blur. Cook et al. [1984] introduce stochastic sampling to solve
distribution effects but leave the question of an efficient acceleration structure open.
Glassner [1988] proposes an acceleration structure that is based on an octree over objects.
Each node is split until it contains only a single object or a maximum split level is reached.
Each partial object contained entirely in a single octree node is then bound by 4D k-DOPs.

kd-Tree Olsson [2007] extended kd-trees by adding a temporal split in the time do-
main. The increasing number of object references introduce a significant memory over-
head, which limits its practical applicability.

BVH The fastest BVH construction algorithm on the GPU is currently the LBVH [Lauter-
bach et al., 2009] with optimizations from Karras [2012]. It uses Morton codes for the
center of each primitive and applies Radix sort to create a linear list of primitives. This
linear list is then used to construct the final bounding volume hierarchy. While being ex-
tremely fast to create, its efficiency during rendering is up to 85% lower when compared
to SAH based construction. Grünschloß et al. [2011] propose a 4D space-time extension
to the spatial split BVH algorithm [Stich et al., 2009] called MSBVH. It is mainly suited for
irregularly tesselated polygonal scenes and the high construction time renders it mainly
relevant for production rendering settings.

8.3 Architecture

Our unified rendering pipeline is focused on combining transparent and opaque fragments
with defocus and motion blur. We thus decouple spatial and temporal sampling to reduce
the rasterization effort. We also separate visibility and shading by employing late shading
after the motion sampling. This allows us to perform correct alpha blending of blurred and
transparent fragments. Accurate reflection of the environment for all fragments is accom-
plished as the reflection vector is computed for the position of the fragment in time. Also,

99



Chapter 8. Decoupled Space and Time Sampling of Motion and Defocus Blur for Unified
Rendering of Transparent and Opaque Objects

nt=0

nt=1

post=1

post=0

centerNDC

sizeNDC + albedoRGBA

Figure 8.2: All components of a t-fragment in NDC space.
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Figure 8.3: Overview of our rendering pipeline consisting of rasterization (generation of
t-fragments), tracing (spatial and temporal sampling) and shading (lighting and trans-
parency handling). Note that all of these steps are running on the GPU.

our unified rendering pipeline can easily be combined with tile-based deferred rendering
to reduce shading overhead.
A central concept is the temporally-varying fragment or t-fragment (see Figure 8.2). With-
out loss of generality, we define the duration of a frame as [0,1] and we assume that
the motion of fragments is linear within frames [McGuire et al., 2010]. Given a regular
fragment created at t ∈ [0, 1], a t-fragment represents the oriented line connecting the
fragment’s positions at t = 0 and t = 1 in normalized device coordinate (NDC) space.
The t-fragment contains all shading information (time dependent normals, albedo and
transparency) and implicitly the size of its footprint. Using the linear motion assumption,
we can interpolate these attributes linearly and we derive a capsule with an ε radius as
ideal object oriented bounding volume for each t-fragment.

8.3.1 Overview

Our algorithm consists of three main steps (see Figure 8.3): The first step is the rasteriza-
tion that creates the disocclusion map and the t-fragments. The second step includes the
depth-of-field raytracing to resolve general visibility and the motion blur time sampling to
determine time-dependent visibility. The last step is the final shading and tone-mapping.
The initial pass in the rasterization renders all opaque objects to create the disocclusion
map, as well as the first and second layer depth buffer. The disocclusion map (see Figure
8.4 (c)) marks possible disocclusions resulting from camera and object motion or depth-of-
field. We create a new depth buffer by combining the first and second layer using the
disocclusion map. This buffer is used for early fragment culling during the rasterization
of the t-fragments in the next pass. Since a t-fragment expands over several pixels with
high overlap depending on the amount of motion, a fragment linked-list is not a suitable
data structure. Thus, we separate opaque and transparent fragments into two different
unordered arrays.
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In the ray tracing step we construct two bounding volume hierarchies using the unordered
arrays. The hierarchies have two different bounding volumes, namely capsules at leaf
nodes and temporally-varying axis-aligned bounding boxes (t-AABBs) for the inner nodes
to resolve visibility by ray tracing. We implemented a naïve depth-of-field algorithm that
samples the lens aperture [Shirley and Chiu, 1997] and trace a fixed number of rays per
pixel according to the thin-lens model. This yields a set of t-fragments per viewing ray
containing all t-fragments intersected at some point in time t ∈ [0,1]. In the motion
sampling pass, we instantiate each capsule for one or multiple t ∈ [0, 1] as a small sphere
with radius ε at the interpolated location. Fragments are created for all instances that
intersect with the viewing ray, sorted according to their depth, and shaded with correct
alpha blending for transparency.

8.3.2 Generation of t-fragments

To generate t-fragments, we rasterize the scene at t = 1. This will remove artifacts caused
by objects appearing during the rendered frame while potentially loosing disappearing
objects. Applying a guard band can reduce the artifacts further. In general, any time
between 0 and 1 can be chosen in this step. In order to save resources in later stages of
the pipeline, we propose a number of additional steps that allow us to reduce the number
of t-fragments while at the same time ensuring approximate correctness of the output
images.

Disocclusion Map The purpose of the disocclusion map is to efficiently cull t-fragments
which will not contribute to the final image (see Figure 8.4). We first perform depth only
rendering of all front-facing opaque primitives at t = 1 to extract the first and second depth
layers. Without disocclusion we would only store opaque t-fragments which correspond
to the first depth layer and transparent t-fragments in front of the first layer. However, we
have to store all t-fragments which are not visible at t = 1 but might become visible due
to motion in the frame or depth-of-field rays that “look behind” edges. We detect these
disocclusions on a per pixel basis and set the values of the first layer depth map to the
respective values of the second layer depth map at these locations.
To detect disocclusions caused by motion we compute a velocity map (motion field) for
the first opaque layer. Next we compute forward differences of the velocity map in x and
y direction. Motion disocclusions can only occur at pixels that have a positive velocity
difference. By looking at the depth of the neighboring (right and top) pixels in relation
to the current pixel’s depth we can decide in which direction the disocclusion needs to be
resolved. The velocity difference value corresponds to the severity of the disocclusion and
is converted to pixel units. Each pixel now carries information on whether and how big of
a disocclusion occurs, thus specifying a rectangular area of disocclusion around the pixel.
Such a region is specified with parameters l, r, t, and b for the extent of the disocclusion
in left, right, top, and bottom direction respectively. Pseudocode for motion disocclusion
map initialization is shown in Algorithm 6 in the appendix. To obtain the binary occlusion
map the disocclusion area information from each pixel needs to be collected. This is done
by pixels iteratively spreading their disocclusion information over the entire buffer. In the
first iteration each pixel will spread its disocclusion information to its direct neighbors and
with each iteration the distance that the information is spread will be doubled until the
disocclusion information has spread over the entire occlusion map (see pseudocode for

101



Chapter 8. Decoupled Space and Time Sampling of Motion and Defocus Blur for Unified
Rendering of Transparent and Opaque Objects

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 8.4: Disocclusion map construction: Given the velocity of fragments, we generate
an (a) occlusion buffer by propagating the velocity differences to neighboring pixels. Next,
depth edges are detected and stored in the (b) Laplacian buffer. We combine both buffers
to the (c) disocclusion map, which is used to generate the (d) modified depth buffer. This
depth buffer is used for early fragment culling. Initially the depth of the first depth layer
is used. At pixel positions marked by the disocclusion map the depth value of the second
depth layer is used.

disocclusion spreading Algorithm 5).

Correct depth-of-field rendering requires access to geometry that is occluded in the tradi-
tional pinhole camera setting. In an effort to balance efficiency and accuracy, we allow
for a limited amount of disocclusion in the depth-of-field case. We detect depth disconti-
nuities by thresholding the response of a Laplacian filter on the depth map and store the
resulting value in a binary Laplacian map.

In the final step we simply combine the binary occlusion map and the Laplacian map with
a simple OR operation to yield our novel disocclusion map. Each pixel in the disocclusion
map marks whether it is a source of disocclusion or not. Using this information we modify
the first layer depth map. For every pixel marked in the disocclusion map we set the depth
value back to the second layer. Otherwise we use the first depth layer’s value. Figure D.2
shows the difference between using one and two layers.

Generation In a final rasterization pass we create the actual t-fragments. We again start
by rendering the scene at t = 1 but use the now read-only modified depth buffer to enable
early fragment culling (at t = 1) in hardware. For all fragments that pass the depth test
we create a corresponding t-fragment and store it in an unordered array.
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8.3.3 Ray tracing acceleration structure

To accelerate collecting t-fragments for depth-of-field samples we construct a temporally-
varying bounding volume hierarchy (BVH). Since t-fragments are stored in NDC space, the
BVH is built in NDC space as well. Viewports with an aspect ratio 6= 1 cause an anisotropic
scaling of t-fragment coordinates in NDC space. To avoid this distortion we store positions
in an anisotropic NDC space, preserving the viewport’s aspect ratio in the x- and y-dimen-
sion. In this undistorted space, we can bound a t-fragment with a moving sphere for cheap
intersection testing. We define the radius ε of the sphere as the radius of the circumsphere
of a cube with the side length of a pixel in anisotropic NDC space. Projecting t-fragment
motion into 3D-space results in a capsule as the bounding volume, which is defined by
the two t-fragment positions points and a (constant) radius. Thus, no additional memory
is needed for t-fragment bounds.
We use a fast bottom-up approach for hierarchy construction inspired by LBVH [Lauter-
bach et al., 2009]. First, all capsules are sorted according to the Morton code of their
mid-point in NDC space. We then generate the topology of the hierarchy from this sorted
list with the fast construction algorithm of Karras [2012]. t-Fragments with identical Mor-
ton code belong to the same leaf node. The resulting topology corresponds to a BVH
constructed with a spatial-median split strategy. As t-fragments are roughly uniformly
distributed in x and y direction, this yields a good quality BVH.
Next, we compute bounds for the leaves and inner nodes. We first tried to use tight irreg-
ular capsules with different radii at the end points as node bounds. This requires comput-
ing tight bounding spheres for a leaf’s t-fragment bounding spheres at t ∈ {0,1}, which is
non-trivial for more than two spheres. For inner nodes computation of irregular capsules
from children bounds is simple but bounding efficiency proved to be suboptimal and de-
creased with each level up the hierarchy. Furthermore, intersecting an irregular capsule is
non-trivial and expensive. Thus we decided to use temporally-varying axis aligned bound-
ing boxes (t-AABBs) for node bounds. t-AABBs are defined by a pair aabbt=0 and aabbt=1
of AABBs for t ∈ {0,1}. For leaf nodes computing tight AABBs for t-fragment bounding
spheres at t ∈ {0,1} is fast and simple, as is propagating t-AABBs up the hierarchy. At the
same time bounding efficiency is higher than for irregular capsules.

Intersection Intersecting a t-AABB with a ray at t ∈ [0,1] only requires to linearly inter-
polate aabbt=0 and aabbt=1 and intersect the interpolated AABB (see Figure 8.5, left). We
are instead interested in intersecting a ray against the temporal projection of a t-AABB into
3D-space. One possible approach for this is to construct a shaft for aabbt=0 and aabbt=1
Haines and Wallace [1994], and intersect the ray with the resulting polyhedron. Since
an efficient implementation requires to store a significant amount of precomputed data
per node, we propose a slightly conservative but simpler t-AABB intersection test, which
needs no additional memory.
The key idea is to transform the t-AABB into a local ray space where the intersection test
can be reduced to a two dimensional problem. For this, we first construct an arbitrary
3D orthonormal basis B from the ray direction (e.g. [Frisvad, 2012, Hughes and Möller,
1999]) once before traversal of the BVH. Using B and the ray origin, we perform an affine
transformation of the t-AABB into local ray space, where the ray origin is at (0,0, 0) and the
ray direction corresponds to the z-axis. At this point we can ignore the local z-dimension
and reduce the intersection test to a 2-dimensional problem in the local x-y-plane. We
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t = 0 t = 1

t = 0

t = 1

Figure 8.5: Intersection of a ray with a t-AABB. The t-AABB is transformed into a local
ray coordinate system, which reduces the intersection test to a 2D problem. The AABBs
at t ∈ {0, 1} are conservatively replaced with axis aligned rectangles. Now intersection
time intervals are computed separately for projections on both local coordinate axes. A
non-empty intersection of the time intervals indicates an intersection of the t-AABB.

could perform a point-in-convex-hull test but extraction of the convex hull is too costly to
be performed frequently during traversal. Instead, we test for inclusion of the local origin
in the temporally varying projection of the t-AABB on the local x-y-plane. To simplify this
test we conservatively replace the projections of aabbt=0 and aabbt=1 with tight temporally
varying axis aligned bounding rectangles. This allows us to further reduce the problem
to two one dimensional intersection problems, where we simply have to compute the
time intervals for which the local origin is separately contained in the projection of the
bounding rectangle onto the local x- and y-axis. If the intersection of both time intervals
is non-empty, we intersect the temporally varying axis aligned bounding rectangle and
conservatively assume that the t-AABB has been intersected (see Figure 8.5, right). The
intersection test is exact if the basis vectors of B are parallel to the NDC coordinate axes.
Important for the efficiency of our approach is the fact, that we do not have to actually
transform all eight corners of aabbt=0 and aabbt=1 to compute the projections on the local
x- and y-axis. Analyzing the signs of the components of the basis vectors of B we can derive
two extreme points for each projection axis, and aabbt=0 and aabbt=1 separately which
suffice to compute the projection bounds, and thus greatly reduce computational cost.
The ray tracer uses a simple stack based ray traversal algorithm. Rays are less coherent for
depth-of-field rays. This can cause different rays to find leafs at different points in time. To
improve SIMD efficiency in such situations we employ the two-phase while-while traversal
from Aila and Laine [2009].

8.3.4 Motion sampling and shading

After collecting all t-fragments we sample in time to generate a final fragment. Given a
time sampleτ ∈ [0,1]we first find the closest intersection with an opaque t-fragment by in-
tersecting the given ray with the time sampled bounding circumspheres of all t-fragments
at t = τ (see Figure 8.6 and Figure 8.7 in the supplemental material for details). The
sphere test is used for fast early rejection. In case of a hit, a tight 3D cube with side length
of a pixel in anisotropic NDC is used for the final intersection. The distance of the clos-
est opaque hit point yields the maximum distance for sampling transparent motion: We
collect a fixed number (up to 16 in practice) of intersected transparent t-fragments in a
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Figure 8.6: (Left) A set of t-fragments and their
linear movement between t = 0 and t = 1.
Three of the t-fragments are potentially visible
for the given viewing ray. (Right) To sample the
t-fragments at a specific time t = 0.25, we cre-
ate spherical candidate fragments and check for
intersection with the viewing ray.
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Figure 8.7: The t-fragments for
t = 0.25 (see Figure 8.6) visual-
ized according to their world-space
distance from the viewing ray over
time.

similar way to opaque t-fragments. These fragments are sorted back-to-front for shading
using an odd-even mergesort sorting network. To reduce memory overhead, we only store
the fragment IDs of the opaque and transparent t-fragments plus the sampled time needed
to reconstruct the intersection point.
In the shading pass we interpolate the time varying fragment attributes, in our case the po-
sition and normal, and shade the fragment according to the material parameters. We first
shade the opaque fragment. Afterwards we successively shade the back-to-front sorted
transparent t-fragments and blend them together.

8.4 Evaluation

We evaluate our approach using a system equipped with an Intel Core i7-3930K, 64GB of
RAM, and an NVIDIA Geforce GTX TITAN X with 12GB of RAM. Unless otherwise noted,
timings are measured at a resolution of 1024×576 pixels (1120×672 pixels including the
96 pixels guard band). We use different test scenes and animations with varying amount
of camera and object motion, number of transparent layers, and geometric complexity
(see Figure 8.8). Besides the SPONZA scene we use the CHALET and SAN MIGUEL scenes,
which have higher geometric complexity. The CHALET scene contains many transparent
objects (small detailed leafs of the trees, windows, and the balconies), thus creating many
transparent fragments and disocclusions to be handled by our algorithm.

8.4.1 Memory consumption

In addition to the memory used by the scene itself, we need buffers for the temporary
data which are allocated in advance and must handle the peak usage. The early fragment
culling using our disocclusion map significantly reduces the number of opaque fragments
without losing quality. The size of the unordered array for storing the t-fragments depends
on the resolution and amount of disocclusion. A t-fragment consists of 64 bytes: the
positions and normals for t ∈ {0,1} as well as the unique albedo. A fixed amount of
memory is consumed by the temporary result buffers of the depth-of-field tracing. A ray
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SPONZA Chalet San Miguel
262K: 2ms + 0.75ms 4,750k: 2ms + 5.5ms 6,650k: 2ms + 4.7ms

Figure 8.8: Scenes used for the evaluation, including triangle count, average disocclusion
map and t-fragment generation time.

Fragments
Scenes

Sponza Chalet San Miguel

Unordered array
OPAQUE 46.0 275.0

TRANSPARENT 46.0 183.0

FLBVH

OPAQUE - TREE 252.6 758.0
OPAQUE - TMP CONSTRUCTION 63.0 190.6

TRANSPARENT - TREE 252.6 505.3
TRANSPARENT - TMP CONSTRUCTION 63.0 127.1

Tracing result JOINT STRUCTURE 991.6

Motion sampling result
OPAQUE 31.5

TRANSPARENT 51.9 260.5

Table 8.1: Maximum memory consumption for each scene in Mbyte at a resolution of
1024× 576 (plus guard band) pixels. The amount needed depends primarily on the res-
olution, the amount of disocclusion, depth complexity, and the number of transparent
objects.

consists of 16 bytes (the lens sample (u, v) and the two head pointers for the two linked
lists) plus 8 bytes for each t-fragment it collects and stored in a linked list (the t-fragment
id and the pointer to the next t-fragment). We use a batchsize of one million rays and
limit the number of t-fragments per ray to 128. As seen in Figure D.3, this has no impact
on the maximum motion vector. A motion sample uses at least 16 bytes (sampled timer,
distance ray t, t-fragment id, head pointer to the linked list for transparent t-fragments).
If the sample contains transparent fragments an additional 68 bytes (t-fragment ids) for
at most 16 transparent layers are needed. To limit the memory consumption, we use a
batch size of two million motion samples. In addition we assume that only 10% of the
samples in a batch contain transparent fragments in case of the Sponza and 50% for the
Chalet and San Miguel scene.
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8.4.2 Construction time

For performance reasons and since the t-fragments are not consistent between frames, we
need to rebuild the BVH for every frame from scratch. Figure 8.9 shows the BVH construc-
tion time for our test scenes. The construction time for the opaque and transparent BVH
for the Sponza scene is mostly constant over the camera path. The scene has only a small
number of transparent fragments and the disocclusions between the depth layers are not
large enough to generate a significantly higher amount of additional opaque fragments.
In contrast, the highly detailed leafs of the trees in the Chalet and San Miguel scenes
with many transparent fragments create more disocclusions, resulting in more t-fragments
and therefore in an increased construction time (see Figure 8.8). As the camera motion
increases the amount of disocclusion increases and thereby the number of fragments (see
Figure 8.10).

8.4.3 Motion sampling

First, we compare our algorithm using motion sampling only against a time sampled ray
tracing approach. The ray is associated with a time sample t i during ray traversal and
intersected against our proposed BVH at time t i . Instead we trace between t = 0 and
t = 1 and collect all possible t-fragments that can be intersected during that time and
sample in time afterwards. The main benefit is to reduce ray traversal costs while creating
additional motion samples. Both approaches work on t-fragments.

Performance Figure 8.11 shows timings for construction of the BVH, ray tracing (one
ray per pixel), and motion sampling using 4 and 32 samples (top for the Sponza scene and
bottom for Chalet). As stated in Section 8.4.2, BVH construction time is nearly constant
over the animation. Performance peaks occur around frame 250 and 500 in Sponza as the
camera motion between two frames becomes larger. As a consequence our approach has
to collect and process more t-fragments.
The same behavior is also visible in the comparison between the time sampled ray tracing
and our decoupled motion sampling. Our approach is slower with 4 samples but scales
better with higher number of motion samples. Most GPU threads are reading the same
data during the motion sample stage and can offset the higher ray traversal costs.

107



Chapter 8. Decoupled Space and Time Sampling of Motion and Defocus Blur for Unified
Rendering of Transparent and Opaque Objects

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  100  200  300  400  500  600

T
im

e
 i
n
 [

m
s]

Frame

BVH construction
Ray tracing

Motion sampling

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0  100  200  300  400  500  600

T
im

e
 i
n
 [

m
s]

Frame

BVH construction
Ray tracing

Motion sampling

 0

 100

 200

 300

 400

 500

 600

 0  100  200  300  400  500  600

T
im

e
 i
n
 [

m
s]

Frame

Ours (4 MS)
Ours (32 MS)

Time sampled tracing (4 MS)
Time sampled tracing (32 MS)

 50

 100

 150

 200

 250

 300

 50  100  150  200  250  300  350  400  450

T
im

e
 i
n
 [

m
s]

Frame

BVH construction
Ray tracing

Motion sampling

 50

 100

 150

 200

 250

 300

 50  100  150  200  250  300  350  400  450

T
im

e
 i
n
 [

m
s]

Frame

BVH construction
Ray tracing

Motion sampling

 200

 400

 600

 800

 1000

 1200

 1400

 50  100  150  200  250  300  350  400  450

T
im

e
 i
n
 [

m
s]

Frame

Ours (4 MS)
Ours (32 MS)

Time sampled tracing (4 MS)
Time sampled tracing (32 MS)

Figure 8.11: The figure shows timings for the BVH construction, ray tracing, and motion
sampling passes using (left) 4 motion samples and (middle) 32 motion samples, respec-
tively. Top row plots give timings for the Sponza and in the bottom the Chalet scene. The
(right) figure compares overall run-time of our approach with time sampled ray tracing.

The Chalet scene shows similar performance behavior. Overall, performance is slower
than in the Sponza scene as more t-fragments are generated (see Figure 8.10) due to the
camera motion and more complex geometry, especially the leafs and transparent objects.

Quality Figure 8.12 illustrates a qualitative comparison between our approach and the
time sampled ray tracing. The close-up views (Figure 8.12 (a) and (b)) have no notice-
able differences. The difference image (Figure 8.13) shows small discrepancy due to the
conservative intersection test during our tracing and motion sampling steps. Small errors
(in Figure 8.13 one pixel in size) are visible at edges due to inaccuracies introduced by
the ε radius approximation used in the intersection test.

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 8.12: Quality comparison of motion blur sampling with (a) 32spp for our approach
compared to time sampled motion blur tracing (b), respectively. The discrepancy com-
pared to the references ((c) with 32spp and (d) 256spp) rendered with Blender and Cy-
cles resulting from different shading models in particular for the transparent object. The
noise on the wall in the detail images ((a) and (c)) looks similar. The reference images
were rendered in 1.5 and 11.5 minutes respectively, using an Intel Core i7-4870HQ.

Scalability Figure 8.14 shows the scalability of our motion sampling approach with re-
spect to resolution. While increasing resolution, more coherent primary rays are generated
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Figure 8.13: Absolute differences of the
grayscale images in Figure 8.12 with 32
samples between our approach and time
sampled tracing.
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tion samples.
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Figure 8.15: The figure shows the timings for the main passes BVH construction, ray
tracing, and motion sampling using (left) 4 depth-of-field times 1 motion samples and
(middle) 4 depth-of-field times 8 motion samples for the San Miguel scene. The (right)
figure compares the overall run-time of our approach with time sampled ray tracing.

per ray batch. These follow similar paths in the acceleration structure during ray traver-
sal which results in better cache utilization and execution flow. A similar cache effect
can be observed for motion sampling. Therefore, the performance efficiently scales with
increasing number of rays and increasing resolution.

8.4.4 Depth-of-Field

We implemented a simple depth-of-field algorithm that samples the lens aperture [Shirley
and Chiu, 1997] and traces a fixed number of rays per pixel according to the thin-lens
model.

Performance The detailed timings for our approach using 4 depth-of-field samples show
(see Figure 8.15 (left) and (middle)) that the time for the ray tracing pass is the dominant
part in this scenario. The number of incoherent depth-of-field rays (e.g. in case of a large
lens radius) reduces cache efficiency and execution flow coherence during ray traversal.
The motion sampling pass cannot compensate the tracing overhead as neighboring rays
collect less similar t-fragments. Small performance peaks during the motion sampling pass
arise when more transparent fragments are generated and shaded. The cost of the BVH
construction is negligible. Compared to time sampled ray tracing (Figure 8.15 (right))
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with similar sample set-up, our approach is slower during fast motion as the number of
collected t-fragments increases which explains the variation in rendering performance. On
the other hand it still shows better scalability with increasing number of motion samples.

Quality Figure 8.16 shows that our approach does not achieve the same quality com-
pared to time sampled ray tracing in the absence of motion. Full 5D sampling (combined
spatial and temporal) reduces noise significantly as for each sample new lens positions
are generated (see Figure 8.17).

8.5 Discussion and limitations

Since our technique relies on hardware rasterization, co-planar triangles at t = 1 are
culled by the hardware. This will lead to artifacts or missing samples in the motion blur
and depth-of-field reconstruction. Conservative rasterization can reduce the number of
missing triangles but not fully solve the issue. A general problem for real-time motion
blur algorithms are fast moving objects that are not visible for t = 1 as they pop into the
next frame. A guard band can reduce this artifact but cannot handle objects coming from
behind the camera.

While our approach cannot compete with specialized defocus or motion blur algorithms
for real-time applications (e.g. [Guertin et al., 2014]) in terms of performance, it uses a
physically plausible approach with opaque and transparent fragments in a unified pipeline.
This results in a higher rendering quality. Note that these specialized approaches do not
fit into our pipeline and can thus not be easily implemented.

Shadows are an integral component when rendering photorealistic images. In the case
of renderings with motion blur, hard shadow edges can disturb the visual appearance of
the image. While we have not implemented motion blurred shadows, our approach can
be combined with time-dependent shadow maps (TSM) as proposed by Akenine-Möller
et al. [2007]. Multiple shadow maps have to be rendered where each layer represents a
time slice. In the shading pass a texture lookup is performed using the time sample of the
fragment to evaluate the visibility.

Since generating depth-of-field rays is expensive in our approach, it does not perform
optimal with large depth-of-field, i.e. extensive blur. However, the other parts of our
pipeline, in particular the disocclusion map, the t-fragments and the BVH construction
can be combined with a non decoupled space-time sampling to jointly handle motion
blur, transparency and defocus.

If late shading becomes the bottleneck, a shading cache [Ragan-Kelley et al., 2011] could
be used but it will lead to artifacts for fast moving objects with reflective materials.

The noise can be reduced by reusing the set of collected t-fragments. A new ray with a
small jittered lens position has to be created which is very similar to the original ray. For the
new ray we only have to do the motion sampling pass. The results may differ as we cannot
resolve all changes in the depth-of-field case and missing disocclusions may generate small
artifacts. Geometric aliasing introduced by the rasterization of the t-fragments can be
reduced by using MSAA and a conservative rasterizer.
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8.6 Conclusion

We presented a rendering approach that unifies the handling of order independent trans-
parency, motion blur and defocus in the context of rasterization. Our key idea is to split
the sampling phase into independent parts for spatial and temporal sampling. Though
gathering moving fragments, which are potentially relevant for a pixel, before time-sam-
pling causes some overhead, this overhead can be quickly amortized with cheap motion
samples. Rendering many of those cheap motion samples reduces the noise introduced
by motion blur significantly, strongly improving visual quality. In addition our technique
is capable of tracing depth-of-field rays with multiple cheap motion samples for improved
visual quality.
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure 8.16: Quality comparison of our approach (a) using 4 Dof samples times 8 motion
samples with time sampled ray tracing (b) using 32 samples. Differences of the Blender
references ((c) 32spp and (d) 256spp) to our approach are due to proper 5D sampling.
Cycles jitters lens as well as time samples. The reference images were rendered in 2.0 and
14.5 minutes respectively.
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Figure 8.17: Absolute differences of the grayscaled images in Figure 8.16 with 4 depth-of-
field sample times 8 motions samples between our approach and time sampled tracing.
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Chapter 9
Conclusion

General-purpose computing on graphics processing units becomes more important every
year. Besides the classic tasks such as rendering, deep learning, scientific and financial
computing are the driving forces for innovations. As the problem size increases, the need
for large scale visualization of these complex systems arises. This thesis presented a small
step towards interactive visualization in a GPU cluster environment.
The thesis extended the state-of-the-art for efficient screen space ray tracing and hybrid
rendering for real-time applications. We have shown an increase in image quality by com-
bining ray tracing and rasterization over different applications such as ray traced reflec-
tions, depth-of-field, and motion blur rendering. The acceleration structure in particular
could be important for virtual reality systems. These systems need to render frames at
90Hz to 120Hz to alleviate motion sickness. If the frame rate drops one can extrapolate
the novel view using multi-view synthesis — which was the driving application of our
acceleration structure. One insight of the thesis is the importance of an efficient accelera-
tion structure even for hybrid rendering algorithms. In addition, an aggressive culling of
non visible objects as presented in Chapter 8 is very beneficial. One can generalize those
insights and apply them to computer science. The biggest performance increase comes
from data you do not process.

9.1 Summary

The allocator we presented in Chaper 4 reduces the synchronization overhead for dynamic
memory allocations on many-core architectures significantly (Challenge 4 in Section 1.2).
Small and frequent parallel allocations from different threads are efficiently merged. In
addition we derive a set of constraints to speed-up the dynamic allocation. These can be
applied to a wide range of algorithms working within the constraints. A combination of
voting function with a fast lock-free allocation inside an own chunk of memory can handle
the allocation request efficiently. Thereby our memory allocator outperforms any other
GPU based allocator available and we were able to speed up dynamic memory allocation
by several orders of magnitude.
Interactive applications and visualization play an important role not only for the graphics
community but also for bioinformatics, scientific computing, and large scale data visual-
ization. These areas often use compute clusters with either a CPU only configuration or
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a combination of CPU and GPU to solve computation-intensive tasks. Unfortunately, in-
teractive applications suffer from high network latency, limited network bandwidth, and
imbalanced workload (Challenge 3 in Section 1.2). This can result in a slow response
time of the overall system, unacceptable for any interactive applications. We developed
a framework that employs dynamic load balancing and fair scheduling to decrease re-
sponse time. The proposed scheduling scheme minimizes the average execution time of
computational tasks such as the tile-based ray tracing (Section 5.5.2). We show that the
applied load balancing capabilities can handle irregular workload such as work generated
by production quality rendering system. This allows us to render complex effects almost
at interactive frame rates. The proposed system scales nearly linearly with the number of
compute devices except for a minimal communication overhead.
The second part of the thesis shed some light on efficient ray tracing for real-time render-
ing. Screen space ray tracing is an integral part of modern rendering systems [Rasheva,
2015]. The approach is used to render effects such as refraction, glossy reflection, and
ambient occlusion [Mara et al., 2013]. We propose an adaptive acceleration structure
that is capable of speeding up screen-space ray tracing (Challenge 1 in Section 1.2). The
acceleration structure represents the visible scene geometry as a combination of bounding
boxes and planar approximations. The planar approximation of the depth buffer allows
us to skip empty space and compute exact intersection points. This reduces the oversam-
pling and undersampling of the depth buffer and leads to a better performance and an
increased image quality. Dis-occlusions can be handled by a second color and depth layer.
A special flag in the acceleration structure indicates a possible dis-occlusion. To solve the
dis-occlusion we only trace an additional ray against the second layer if we encounter
the flag. We applied the acceleration structure to several different applications, including
depth-of-field rendering using an approximation of distributed rendering, multi-view syn-
thesis for light field displays, stereo warping, and screen-space ray traced reflections at
real-time frame rates.
After optimizing screen space ray tracing, we examined state-of-the-art rendering systems.
A major drawback is the complexity of defocus and motion blur rendering systems when
incorporating opaque and transparent geometry. As distributed ray tracing is a general so-
lution to this problem we try to incorporate the algorithm in a unified rendering approach.
Thereby, we achieved physically correct results at interactive frame rates for motion blur
(Challenge 2 in Section 1.2). Rasterization which solves the visibility at a coarse level and
distributed ray tracing are combined. The scene geometry that is potentially visible at any
point in time for the duration of a frame is rendered in a rasterization step and stored
in temporally varying fragments. A decoupled space and time sampling method allows
us to reuse fragments during the sampling step. We gather all moving fragments, which
are relevant for a pixel. Afterwards we evaluate the time sample on a subset to avoid the
expansive tracing operations. Rendering many of those cheap motion samples reduces the
noise introduced by motion blur significantly and improves the visual quality. In addition
the approach is capable of tracing depth-of-field rays with multiple cheap motion samples
for improved visual quality.

9.2 Discussion and limitations

The dynamic memory allocator can be used in various algorithms used in computer graph-
ics such as ray generation (see Section 1.2) and the construction of an acceleration struc-
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ture for ray tracing (e.g. Vinkler and Havran [2014]). The proposed solution outperforms
any other approach only if all constraints are fulfilled by the algorithm. Therefore, the
allocator cannot be used as an all-round solution. For example, it is often necessary to
free memory during the execution at any point in time. Over recent years dynamic mem-
ory allocation approaches for GPUs were improved and new specialized algorithms have
been proposed. Many new allocation strategies [Vinkler and Havran, 2014] incorporate
the merging step to increase SIMD efficiency but do not use the warp local superblock to
speed-up the allocator. Unfortunately, the benefits of general purpose allocators on GPUs
in other research areas outside computer graphics such as applications in high perfor-
mance and scientific computing is questionable as most algorithms work on pre-allocated
data blocks using fixed-size block allocations.

A natural step to perform interactive path tracing is to distribute the computation on
multiple GPUs or large GPU compute clusters. We generalized the question to any inter-
active application in an heterogeneous compute environment. The main challenges such
an application poses to the system is the efficient distribution of tasks. Thereby, most in-
teractive applications suffer from irregular workload. We have shown how to schedule
the workload efficiently and use task/work stealing to reduce the overall computation
time. Unfortunately, work stealing increases the network traffic. Migrated tasks have to
fetch the needed resources (e.g. scene geometry) again if the data is not available on the
new compute node. To mitigate the effect we cached data and reduce the network traf-
fic significantly. Another drawback of interactive applications in a cluster environment is
the network latency. For camera animations we only send small data packages containing
the updated view transformation and get back a small image tile from the compute nodes.
This resulted in hundreds and thousands of small data packages which have to be handled
in less than 66 milliseconds. We have shown the feasibility of such a complex system. Still
there is a lot of engineering on the network layer to do to increase the performance.

To achieve a similar image quality for interactive and real-time application as provided by
production quality renderers important effects such as reflections, refraction, and detailed
shadows can be rendered using screen space ray tracing. We proposed an adaptive accel-
erations structure based on the planar approximation of the depth buffer which increased
the performance of screen space ray tracing significantly and allowed us to implement
distributed ray tracing for depth-of-field and ray tracing of rough reflections for real-time
applications. The approximation of the scene depth using planes could lead to tiny holes
and cracks. Using a patch based approximation of the depth may reduce the small cracks
and increase the image quality [Tevs et al., 2008]. As the acceleration structure only cap-
tures the visible geometry it is only suited for screen space effects. The open research
question that still remains is how to construct a full 3D acceleration structure for dynamic
geometry at real-time frame rates. A possible research direction would be the extension
of sparse voxel octrees [Laine and Karras, 2010] in combination with an efficient approx-
imation of the geometry and lazy construction.

To increase the image quality further and incorporate motion blur we traced against cap-
sules instead of planar approximation. We used the capsules to describe the movement of
a rasterized fragment between two frames. Based on the soup of capsules we constructed
an LBVH and used full ray tracing to collect all fragments that are visible at any time. Two
problems arise here. With fast camera motion we render t-fragments with a sizeable pixel
footprint and therefore a large bounding volume. The number of collected t-fragments
per ray increases significantly, so does the number of complex intersection tests. As a con-
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sequence the performance of the algorithm depends on the velocity of the camera — this
currently renders the algorithm as impractical for applications such as games compared to
post-processing. Unfortunately, this problem is still unsolved. The second problem is the
number of t-fragments after the rasterization pass. We proposed the dis-occlusion map to
cull non-visible t-fragments using the early-z test. This resulted in a performance increase
as the number of fragments were reduced significantly. The dis-occlusion map combines
the occlusion with a buffer propagating the velocity differences and a Laplacian buffer.
Instead of the Laplacian buffer a better solution might be to compute the COC for each
pixel and propagate the value to the neighboring pixels — similar to the occlusion map.
This could result in a better fragment culling in case of depth-of-field. Since our technique
relies on hardware rasterization, co-planar triangles are culled by the hardware. This will
lead to artifacts or missing samples in the motion blur and depth-of-field reconstruction.
The general problem for real-time motion blur algorithms are fast moving objects that are
not visible as they pop into the next frame. A guard band can reduce this artifact but
cannot handle objects coming from behind the camera.

9.3 Future work

We discussed some future research directions directly related to the presented algorithms
and contributions in the previous section. To increase the image quality and performance
further, the application of depth-of-field and motion blur reconstruction filter [Hasselgren
et al., 2015, Lehtinen et al., 2011] for real-time applications may be a possible extension
to the decoupled space and time sampling for motion blur and depth-of-field presented
in Chapter 8. A potential issue is the memory consumption of the algorithms as a large
amount of rays have to be stored temporally. A possible extension to screen space ray
tracing in combination with our proposed acceleration structure would be the integration
of packet ray tracing [Gunther et al., 2007]. In certain applications the ray traversal is
quite coherent until one reaches a higher mipmap level. One could bundle rays with a
similar direction into packages and only trace those packages. Depth-of-field effects with
a small aperture and multi-view synthesis algorithms could benefit from this as the number
of reduced texture reads and intersection tests may outperform the additional complexity.
Further, one could extend the planar approximation of the acceleration structure and take
the underlying material properties, such as texture contrast or specular highlights into
account. This could further improve the performance and quality of our approach.
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Appendix A
Fast Dynamic Memory Allocator for
Massively Parallel Architectures

void __g loba l__ kerne l ( void ) {
Warp∗ warp = Warp : : s t a r t ( ) ;

while ( cond i t ion ) {
void∗ p t r = warp−>a l l o c ( s i z e ) ;

/∗ . . . some code . . . ∗/

warp−>t idyUp () ;
}

warp−>end () ;
}

Listing A.1: Simple usage example with first strategy for garbage collection (Section
4.3.4).

void __g loba l__ kerne l ( void ) {
Warp∗ warp = 0;

i f ( threadIdx . x % 5 == 0)
warp = Warp : : s t a r t ( ) ;

/∗ . . . some code . . . ∗/

void∗ p t r = warp−>a l l o c ( s i z e ) ;

/∗ . . . some code . . . ∗/

i f ( threadIdx . x == 5)
warp−>end () ;

}

Listing A.2: Example of a misusage: not all threads request a warpheader but try to
allocate memory.
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Appendix B
Dynamic Load Balancing and Fair
Scheduling for GPU Clusters

bool CRenderSceneJob : : r e t r i e v e ()
{
[ . . . ]

// temp b u f f e r f o r an image t i l e
f l o a t ∗ p t r = new f l o a t [ numPixels ∗ 4 ] ;
clMemcpyDtoH(m_rndFunc , ( uchar ∗) ptr , m_imagePtr , numPixels ∗ s i z e o f ( f l o a t ) ∗

4) ;

// t r a n s f e r rows of the r e s u l t to the output image
[ . . . ]

de l e t e [ ] p t r ;

// f r e e job a l l o c a t i o n
c l F r ee ( m_imagePtr ) ;

re turn t rue ;
}

Listing B.1: The retrieve() method copies the result of the job into the image buffer of
the application.
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bool CRenderSceneJob : : d i spa tch ( unsigned i n t id )
{
// T i l e buf fer , job a l l o c a t i o n
m_imagePtr = c lMa l loc ( numPixels ∗ s i z e o f ( f l o a t 4 ) ) ;

// Bind module and c rea t e func t ion handle
CUKernel∗ module = t a sk . getModule () ;
m_rndFunc = c lFunc t ion (module , " render " ) ;

// Create g l o b a l s and bind a memory block
cons tVa r i ab l e = clModuleGetGlobal (module ,

m_rndFunc , " c_camConf " , s i z e o f ( CCameraConfig ) ) ;

clMemcpyHtoD(m_rndFunc , cons tVar iab le ,
( uchar ∗)&numSamples , s i z e o f ( CCameraConfig ) ) ;

// Set kerne l parameter
clParamIn (m_rndFunc , id ) ;
clParamIn (m_rndFunc , ta sk . getGeometry () ) ;
clParamIn (m_rndFunc , ta sk . ge tMate r i a l ( ) ) ;
clParamIn (m_rndFunc , ta sk . getBVHPtr () ) ;

clParamInOut (m_rndFunc , m_imagePtr ) ;

//
clFuncSetCacheConfig (m_rndFunc ,

CU_FUNC_CACHE_PREFER_SHARED) ;

// Launch con f i gu ra t i on
clFuncSetBlockShape (m_rndFunc ,

m_blockDimX , m_blockDimY , 1) ;

clLaunch (m_rndFunc , m_gridDimX , m_gridDimY) ;

re turn t rue ;
}

Listing B.2: The dispatch() method enqueues a CUDA module to the job specific command
buffer, binds the CUDA kernel, allocates a buffer for the image tile and creates the launch
configuration.
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Adaptive Acceleration Structure for
Screen-space Ray Tracing

C.1 Additional figures

(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure C.1: A comparison of depth reconstruction quality. (a) A new view synthesized
with our method (using two depth-layers). The full-image took 6.5ms to render. The
synthesized depth for (b) two-layer and a (c) single-layer configuration. (d) The reference
was generated with NVIDIA OptiX in about 20ms. In both cases we report combined
construction and tracing times.
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Algorithm 3: GLSL pseudo-code for finding coordinates of the next node that inter-
sects with the ray in screen-space.

Function getNextNode (Ray R, ivec2 Q x y , int Q level)

/* get node exit corner coordinate */
1 vec2 B← (Q x y+ step (0, R.dir.x y))/2Q level

2 /* get distances to node edges that intersect at Bx y */
3 vec2 D← (B − R.origin.x y)/R.dir.x y
4 /* compute position shift */
5 ivec2 Sx y ← sign (R.dir.x y)∗ step (D.x y, D.y x)

6 return Q x y + Sx y ; /* return new position */
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C.2 Pseudo code

Algorithm 4: GLSL pseudo-code for ray traversal through a single depth layer. For
brevity, we assume the quad-tree MIPMAP has power-of-two size.

input : T0···n−1 ; /* texture MIPMAP storing depth quad-tree */
input : R ; /* ray structure storing direction and origin */
output: bool rayHit ; /* trace result */
output: bool occlusionHit ; /* did we hit an occlusion volume? */
output: �oat d ; /* hit-point distance along the ray */
output: vec4 plane ; /* hit-plane data */

1 int Q level ← n− 1 ; /* current quad-tree level, start at the root */

2 ivec2 Q x y ←
�

R.origin.x y ∗ sizeo f (T0)/2Q level
�

3 while insideBounds (pos, TQ level
) do

4 vec2 Qdata ← TQ level
(Q x y) ; /* read the node data */

5 if nodeStoresPlane (Qdata) then
6 plane← getPlaneData (Qdata)
7 FandN ← getFarNearOfNode (R,Q x y ,Q level)
8 ~N ← plane.x yz ; /* plane normal */
9 P0← vec3 (Q x y/2

Q level , plane.w) ; /* and origin */
10 /* compute ray-plane intersection */

11 d ← dot (P0 − R.origin, ~N)/dot (R.dir, ~N)
12 if dot (R.dir, ~N)> 0 then /* plane is front-facing the ray */
13 if d < FandN .near then occlusionHit← true ;
14 if d ≥ FandN .near and d < FandN . f ar then
15 rayHit← true
16 plane← vec4 ( ~N ,dot (P0, ~N))
17 return
18 end
19 else /* plane is back-facing the ray */
20 if d ≥ FandN .near then occlusionHit← true ;
21 end
22 else
23 (hitAABB, hitOV )← rayIntersectAABB (R,Qdata)
24 if hitAABB then
25 if hitAABB.near = hitOV. f ar then
26 occlusionHit← true
27 end
28 /* progress down to the next child */
29 ip← R.dir.x y ∗ hitAABB.near + R.origin.x y
30 Q x y ←Q x y ∗ 2+ step(0, ip− (Q x y + 0.5)/2Q level )
31 Q level ←Q level − 1
32 continue
33 else
34 if hitOV then occlusionHit← true ;
35 end
36 end
37 /* plane or AABB miss, progress to the next node */
38 /* current node successor position at Q level */
39 Q∗x y ← getNextNode (R,Q x y ,Q level)
40 /* compute how many levels up we need to go */
41 int levelShi f t ← �ndMSB ((Q x ⊕Q∗x) | (Q y ⊕Q∗y))
42 /* prevent the traversal from going above the quad-tree root */
43 Q∗level ← min (Q level + levelShi f t, n− 1)
44 /* update the node location and level to new values */

45 Q x y ← bQ∗x y/2
(Q∗level−Q level )c

46 Q level ←Q∗level
47 end

48 rayHit← false
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Appendix D
Decoupled Space and Time Sampling
of Motion and Defocus Blur for Unified
Rendering of Transparent and Opaque
Objects

D.1 Additional graphs and figures
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Figure D.1: Number of opaque and transparent fragments generated using the disocclu-
sion map for early fragment culling.
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c)(c) (d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)(d)

Figure D.2: Comparison of using a two depth layer (a) without minimum z-separation,
two depth layers with correct z-separation (b) and infinite depth (c) against Blender ref-
erence (d) for multiple disocclusions. While there are still some artifact remaining when
using the second layer, they are hardly noticeable during animation.
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(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a)(a) (b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)(b)

Figure D.3: Comparison of our approach (a) against Blender reference (b) for very large
motion vectors.
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Figure D.4: The t-fragments for t = 0.25 (see Figure 8.6) visualized according to their
world-space distance from the viewing ray over time.
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D.2 Algorithms

Algorithm 5: Pseudocode for spreading of disocclusions caused by motion. Input is
a disocclusion map which is initialized with Algorithm 6.

in : dim ; // image dimensions
inout: disMap ; // disocclusion map

1 // Spread disocclusions
2 numLevels← dlog2(max(dim.x , dim.y))e
3 level← 1
4 m← 1
5 srcMap← disMap
6 dstMap← empty
7 while level≤ numLevels do
8 // Relevant extents and o�sets for horizontal and vertical neighbors
9 hvNeighbors← {(r, (−m, 0)), (l, (m, 0)), (t, (0,−m)), (b, (0, m))}

10 // Relevant extents and o�sets for diagonal neighbors
11 diagNeighbors← {(r t, (−m,−m)), (l t, (m,−m)), (r b, (−m, m)), (l b, (m, m))}
12 foreach p = (x , y) ∈ {0, ...,dim.x} × {0, ...,dim.y} do
13 spread← srcMap(p)
14 // Spread disocclusion from horizontal and vertical neighbors
15 foreach (e, o) ∈ hvNeighbors do
16 spread.e←max(spread.e, srcMap(p+ o).e−m)
17 end
18 // Spread disocclusion from diagonal neighbors
19 foreach (e, o) ∈ diagNeighbors do
20 if all(srcMap(p+ o).e− (m, m)> (0, 0)) then
21 spread.e←max(spread.e, srcMap(p+ o).e− (m, m))
22 end
23 dstMap(p)← spread
24 end
25 level← level+ 1
26 m←m · 2
27 swap(srcMap, dstMap)
28 end
29 disMap← srcMap
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Algorithm 6: Pseudocode for initialization of the disocclusion map for disocclusions
caused by motion.

in : dim ; // image dimensions
in : dMap ; // �rst layer depth map
in : vMap ; // �rst layer velocity map
out: disMap ; // disocclusion map

1 (vDxMap, vDyMap)← forward_di�erences(vMap)
2 // Initialize the disocclusion map
3 foreach (x , y) ∈ {0, ...,dim.x} × {0, ...,dim.y} do
4 currentD← dMap(x , y)
5 rightD← dMap(x + 1, y)
6 topD← dMap(x , y + 1)
7 vDx← vDxMap(x , y)
8 vDy← vDyMap(x , y)
9 // Compute disocclusion extents at vertical edges

10 disocclusionX.(l, r, t, b)← (0, 0,0, 0)
11 if vDx.x > 0 then
12 if currentD> rightD then
13 disocclusionX.r ← vDx.x
14 if vDx.y > 0 then
15 disocclusionX.t ← vDx.y
16 else
17 disocclusionX.b←−vDx.y
18 else
19 disocclusionX.l ← vDx.x
20 if vDx.y < 0 then
21 disocclusionX.t ←−vDx.y
22 else
23 disocclusionX.b← vDx.y
24 end
25 end
26 // Compute disocclusion extents at horizontal edges
27 disocclusionY.(l, r, t, b)← (0, 0,0, 0)
28 if vDy.y > 0 then
29 if currentD> topD then
30 disocclusionY.t ← vDy.y
31 if vDy.x > 0 then
32 disocclusionY.r ← vDy.x
33 else
34 disocclusionY.l ←−vDy.x
35 else
36 disocclusionY.b← vDy.y
37 if vDy.x < 0 then
38 disocclusionY.r ←−vDy.x
39 else
40 disocclusionY.l ← vDy.x
41 end
42 end
43 disMap(x , y)←max(disocclusionX, disocclusionY)
44 end
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