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Abstract

Today, the implementation of machine vision algorithms on embedded platforms or

in portable systems is growing rapidly due to the demand for machine vision in daily

human life. Among the applications of machine vision, human action and activity

recognition has become an active research area, and market demand for providing in-

tegrated smart security systems is growing rapidly. Among the available approaches,

embedded vision is in the top tier; however, current embedded platforms may not be

able to fully exploit the potential performance of machine vision algorithms, espe-

cially in terms of low power consumption. Complex algorithms can impose immense

computation and communication demands, especially action recognition algorithms,

which require various stages of preprocessing, processing and machine learning blocks

that need to operate concurrently. The market demands embedded platforms that

operate with a power consumption of only a few watts. Attempts have been mad to

improve the performance of traditional embedded approaches by adding more pow-

erful processors; this solution may solve the computation problem but increases the

power consumption. System-on-a-chip field-programmable gate arrays (SoC-FPGAs)

have emerged as a major architecture approach for improving power efficiency while

increasing computational performance. In a SoC-FPGA, an embedded processor and

an FPGA serving as an accelerator are fabricated in the same die to simultaneously

improve power consumption and performance. Still, current SoC-FPGA-based vision

implementations either shy away from supporting complex and adaptive vision algo-

rithms or operate at very limited resolutions due to the immense communication and

computation demands.

The aim of this research is to develop a SoC-based hardware acceleration workflow

for the realization of advanced vision algorithms. Hardware acceleration can improve

performance for highly complex mathematical calculations or repeated functions. The

vi



performance of a SoC system can thus be improved by using hardware acceleration

method to accelerate the element that incurs the highest performance overhead. The

outcome of this research could be used for the implementation of various vision al-

gorithms, such as face recognition, object detection or object tracking, on embedded

platforms.

The contributions of SoC-based hardware acceleration for hardware-software co-

design platforms include the following: (1) development of frameworks for complex

human action recognition in both 2D and 3D; (2) realization of a framework with four

main implemented IPs, namely, foreground and background subtraction (foreground

probability), human detection, 2D/3D point-of-interest detection and feature extrac-

tion, and OS-ELM as a machine learning algorithm for action identification; (3) use

of an FPGA-based hardware acceleration method to resolve system bottlenecks and

improve system performance; and (4) measurement and analysis of system specifica-

tions, such as the acceleration factor, power consumption, and resource utilization.

Experimental results show that the proposed SoC-based hardware acceleration

approach provides better performance in terms of the acceleration factor, resource

utilization and power consumption among all recent works. In addition, a comparison

of the accuracy of the framework that runs on the proposed embedded platform (SoC-

FPGA) with the accuracy of other PC-based frameworks shows that the proposed

approach outperforms most other approaches.
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Chapter 1

Introduction

1.1 Embedded Computer Vision

An embedded system is a computer system that is optimized and designed to operate

in scenarios in which space is limited and the power consumption is required to be

low. Such devices include mobile phones, digital cameras, dental scanner and smart

watches. In addition, the embedded approach allows a reduction in cost compared

with traditional PC-based systems. For example, the budget required to set up a

PC-based system for a computer vision application is approximately $1700. The pe-

ripherals required for this system consist of a camera, a lens, and a cable. Meanwhile,

for an embedded system with the same throughput, the cost would be $300 [1].

There are two main approaches available for implementing computer vision algo-

rithms. The first is the traditional approach, which consists of the integration of a

typical camera through a GigE or USB interface that is connected to a PC and a

software development kit (SDK) that is provided by the manufacturer for accessing

the image or video stream (Figure 1.1). The second approach is to develop an embed-

ded system, in which the entire system is integrated on a single board (Figure 1.2).

Some well-known single-board embedded vision platforms include the Raspberry Pi

(Odroid), Toradex and Advantech systems (Figure 1.3).

Among the applications of embedded systems, embedded computer vision is be-

coming an active and fast-growing area. Embedded computer vision is defined as

the implementation of visual understanding techniques in an embedded system for

gaining a better understanding of visual scenes. It has a wide variety of applications,
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Figure 1.1 – Traditional PC based vision system [2].

Figure 1.2 – Camera module for embedded vision [2].

such as autonomous vehicles, smart cameras [3] [4], industrial vision cameras, sensor

networks and security systems (surveillance systems).

Although significant research has been done on algorithms for computer and ma-

chine vision, the implementation of current algorithms in hardware is still in a fairly

early stage. It should also be considered that the complexity of vision algorithms, in

addition to the high communication requirements imposed by the need to read the

stream and display the results, makes the implementation of vision algorithms noto-

riously difficult. Moreover, in vision algorithms, the many parallel operations drive

the pixel computation complexity well into the range of many billions of operations

per second (GOPs), resulting in considerable power consumption. Meanwhile, one of

the major limitations of embedded platforms, especially portable systems, is power

consumption; generally, most embedded platforms are required to consume less than

1 W. The requirements of high performance, low power consumption and low cost
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pose massive challenges in architecting embedded vision platforms.

1.2 Advancements in Modern Computing

Advancements in modern computing have pursued the processing of as much infor-

mation as possible while maintaining or decreasing the execution time. Meanwhile,

the main goal of semiconductor manufacturers is to shrink the size of transistors in

order to pack more transistors onto a chip. Reducing the size of transistors not only

minimizes the area occupied on a chip but also allows more tasks to be performed

in a shorter time. As a result, devices can become more compact due to the smaller

sizes of the processing units and the peripheral components. The level of integra-

tion is expected to double every two years, according to the International Technology

Roadmap for Semiconductors (ITRS) [5] and Moores law. Very-large-scale integration

(VLSI) [6] is one common approach that allows manufacturers to create an integrated

circuit (IC) by combining billions of transistors into a single chip. This approach is

not restricted to the fabrication of central processing units (CPUs); it can also be used

to fabricate other electronic components. The traditional approach for increasing the

speed of operation is to increase the frequency of operation; however, the performance

improvement due to such an increase in frequency may not lead to a truly efficient

implementation.

Figure 1.3 – Single-board embedded vision [2].
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The typical limitations of design are the “power wall”, the “memory wall”, and the

“instruction-level parallelism wall”. An implementation with increased performance

incurs an increase in power consumption, causing it to encounter the power wall. The

second problem is related to the speed of memory operation. Increasing the clock rate

of the processor will not be effective if the memory operates at a slower clock rate.

The last limitation is related to the ability to find instructions that can be executed

in parallel. When the clock rate is increased, more instructions can be executed;

however, since there are always dependencies in each execution, finding instructions

in a program that can be run in parallel is a difficult task.

Recent integration techniques allow manufacturers to fabricate many electronic

components on a single chip, called a system-on-a-chip (SoC). With this approach, all

related parts and components for the execution of specific functions can fabricated into

a single chip [7]. The goal of integrating all components on a single chip is to achieve

faster operation. This approach can overcome the above mentioned limitations to

improve the performance of the system while keeping it running efficiently in terms

of power consumption and resource utilization. The SoC approach can be used to

fabricate multiple separate processing cores in the same die in order to speed up

operation or can be used to fabricate a single core with an accelerator in order to

improve processing and reduce power consumption.

1.3 Hardware Acceleration

The main approach for system-level design consists of separate approaches for the

development of hardware and software. At the software level, it includes tools such

as compilers that are optimized to speed up the execution of functions by generating

machine code that is executed with more parallel instructions. Customized libraries

such as Boost [8], OpenCL [9] and CUDA [10] generate machine code for parallel

instructions. Optimization at the software level is outside the scope of this thesis.
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However, at the hardware level, domain-specific approaches provide adequate solu-

tions for high-performance and low-power applications. Domain-specific approaches

provide customized hardware architectures that are customized for certain applica-

tions. Such a customized accelerator can operate at low power while offering better

performance for a specific function. As a result, rather than the function relying on

the CPU to execute an excess workload, it instead passes this workload to the ac-

celerator in order to achieve the desired performance and reduce the growing power

budget. Various hardware implementations can be used as accelerators. One such

implementation is a digital signal processor (DSP) [11] [12], which is an efficient tool

for processing streaming data. The architecture is optimized to process high-speed

data as it traverses the system. A second type of accelerator is a graphics processing

unit (GPU) [13] [14]. GPUs offer massive amounts of parallel computing potential,

which can be used to accelerate the portions of a computer vision pipeline in which

parallel processing is performed on pixel data. However, GPUs face challenges with

regard to power consumption and consequently cannot be considered for use in all

applications. Another approach is to develop a specialized processing chip called an

application-specific integrated circuit (ASIC) [15] to execute specific functions to ex-

pedite processing. However, the cost of this method is very high. An alternative

approach is to use a field-programmable gate array (FPGA) [16]. Instead of incur-

ring the high cost and long lead time of a custom ASIC to accelerate a system, a

designer can use an FPGA to implement a reprogrammable solution for hardware

acceleration. With millions of programmable gates, hundreds of I/O pins, and com-

pute performance in the trillions of multiply-accumulates/sec (tera-MACs), high-end

FPGAs offer the greatest potential for high performance in a vision system. Unlike

a CPU, which must time-slice or multi-thread tasks as they compete for compute

resources, an FPGA has the advantage of being able to simultaneously accelerate

multiple portions of a function pipeline.
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1.4 SoC-FPGA Hardware Acceleration

A traditional hardware acceleration system is implemented with two chips: an ac-

celerator and a host processor. As discussed above, depending on the type of ap-

plication, the accelerator could be an FPGA, a GPU or a DSP that functions as

a co-processor with the host processor. In this architecture, both streaming traffic

and algorithm-intrinsic traffic occupy the interconnect and system memory. The host

processor transfers the input stream to the shared memory; when the co-processor is

triggered, the contents of the shared memory are processed by the co-processor, and

the output of the algorithm is returned to the shared memory. In the final stage, the

host processor reads the content of the shared memory and transfers it to the output

port. All transactions are controlled and monitored by the host processor, which is

inefficient and leads to high overhead. A more efficient approach is to use a SoC-

FPGA [17] [18] [19] [20], which contains a processor and an FPGA fabricated on the

same chip. Among the available SoC-FPGAs provided by different vendors, Xilinx

SoC-FPGAs (Zynq-7000 SoC, Zynq UltraScale+ MPSoC) [21] and Intel (Altera) SoC-

FPGAs (Stratix 10 SoC, Arria 10 SoC, Arria V SoC, Cyclone V SoC) [18] are popular

because of their good performance and ease of utilization. These SoC-FPGAs include

an ARM-based hard processor system (HPS), consisting of a processor, peripherals,

and memory, that interfaces with the FPGA fabric via a high-bandwidth intercon-

nect backbone. It combines the performance and power savings of hard intellectual

property (IP) with the flexibility of programmable logic.

1.5 Motivation

As discussed above, because of the complexity of vision algorithms as well as the high

communication requirements for reading the stream and displaying the results, the

implementation of vision algorithms is difficult. We observe a gap between the mar-
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ket demand in terms of power, speed of operation, and complexity and what current

embedded computer vision solutions can deliver. At the algorithm level, researchers

focus on the development of advanced and complex adaptive vision algorithms for

the complex analysis that is required to employ machine learning principles for up-

dating the algorithm parameters. In addition, for most implementations, predefined

parameters (offline training) are used for machine learning algorithms, whereas at

present, it is becoming necessary for the implemented machine learning blocks to

be able to be trained online. Moreover, the availability of high-definition streams is

imposing high operational requirements in terms of computation and communication

for analyzing and updating the parameters of vision algorithms. Meanwhile, due

to recent improvements in 3D depth cameras, the machine vision industry has been

completely revolutionized. Depth cameras offer several advantages over traditional

intensity sensors; depth cameras can operate at low light levels, provide calibrated

scale estimates, produce color- and texture-invariant results, and resolve silhouette

ambiguities in poses. As a result, most recently proposed algorithms operate with

3D data and require additional communication and computation in order to fuse the

RGB and depth data.

In this research, we focus on a type of vision algorithm for which there is high

market demand and that is also an active research area among researchers: human

action and activity recognition. Most of the recently proposed algorithms for this

purpose require the computation of complex mathematical models and have high

communication interface requirements for streaming the data. Since one application

of human action recognition is in security systems, it would be desirable to develop

an embedded platform in which the entire system is integrated into a single board,

which could be mounted on a camera for use in an online security system or a smart

camera product.

The motivation for this dissertation is to investigate how to accelerate and imple-

ment a vision (action recognition) algorithm on an embedded platform. The proposed
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approach enables not only reliable system design but also efficient resource utilization

to achieve the optimal solution. The workflow of the design methods consists of the

following:

• Develop a framework for complex human action recognition in a 3D context.

• Profile and analyze the sophisticated software-level operation of each algorithm

and module.

• Design the corresponding hardware accelerator and optimize it for the mathe-

matical model of each component.

• Find an optimal solution by balancing the system performance, energy con-

sumption and resource allocation.

• Verify the operation of each component and the entire framework.

System performance, power consumption, and resource utilization are all important

factors in our embedded platform.

1.6 Research Purpose and Difficulties

The aim of this research to propose a framework for human action recognition that

can be synthesized and implemented on embedded platforms. An additional goal is

to develop an efficient accelerator for each module in order to speed up operation to

improve the performance of the system while considering constraints related to energy

consumption and on-chip resource utilization. As discussed above, complex mathe-

matical computations with extensive memory and communication interface needs are

required for vision algorithms, especially for action recognition. As previously dis-

cussed, hardware acceleration can enable significant improvements in the efficiency of

intensive mathematical calculations or repeated functions, such as the calculation of

complex algorithms and loops. The performance of a SoC system can be improved
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Figure 1.4 – The proposed framework.

by accelerating the element that incurs the highest calculation overhead. As a result,

it is necessary to identify the function in each module that makes the operation slow

and speed up that function with an appropriate accelerator circuit at the RTL level.

The proposed framework (Figure 1.4) was developed for complex human action

recognition or the Recognition of Actions “In the Wild” [22]. The parameters that

make recognition difficult are the following:

• Unknown camera motion

• Unknown camera viewpoint

• Lighting and shadow

• Undefined number of participants

For simple action recognition, the actions and motions of interest occur in a con-

strained environment, without the abovementioned variations. For better accuracy,

depth information is also included; however, the framework is capable of working

with both 2D and 3D streams. Since the camera viewpoint and camera motion af-

fect the results of point-of-interest detection, two stages of preprocessing are included

(foreground probability and human detection) to reject invalid points of interest.
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The Harris Corners 3D [22] [23] [24] and Hessian Corners 3D [25] [26] operators

are used as point-of-interest detection functions, and for later representation, the Bag

of Visual Words (BOW) approach is used as a feature descriptor. Finally, in the last

stage, an efficient machine learning algorithm that can recognizes the type of action

is required. The online sequential extreme learning machine (OS-ELM) [27] [28]

approach is a modified version of the ELM [29] [30] [31] [32] [33] approach that works

with chunks of data instead of passing whole frames of data. The advantages of this

method are, reduction resource utilization which is also more efficient for real-time

application. The Xilinx Zynq 7000 SoC-FPGA [34] is considered as the platform

for the implementation of the proposed framework. As represented in figure 1.5, all

modules are synthesized and implemented in the FPGA in order to accelerate their

operation.

The four major challenges hindering the embedded realization of the proposed

framework are as follows:

• The need for sufficient storage space to maintain and update the model.

• The use of appropriate bandwidth and access time to update the framework

parameters.

• Concurrent processing of and access to the modules aligned with the input

stream.

• An efficient interface for connecting to the camera that satisfies the bandwidth

requirement.

1.7 Organization of the Thesis

The remainder of this dissertation is organized as follows. Chapter 2 presents a brief

overview of the basic concepts related to embedded vision as well as computer and
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Figure 1.5 – The proposed framework implementation.
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machine visionThe proposed approach for hardware acceleration for foreground and

background identification (foreground probability) and the communication interface

used to capture the stream and pass it to the memory block are discussed in chapter

3. The second stage of preprocessing, for identifying humans in the data stream and

the appropriate circuit for speeding up operation, is discussed in chapter 4. Chapter 5

discusses point-of-interest detection, the feature descriptor modules, and the results of

support vector machine (SVM)-based action recognition. Finally, the approach for the

implementation of the OS-ELM approach in hardware, the operation of the prediction

and training blocks and how these two blocks can be synced, and a comparison with

the resource utilization and performance of the SVM method are discussed in chapter

6, followed by the presentation of conclusions and the suggestion of topics for future

work in chapter 7.
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Chapter 2

Background

2.1 System-on-a-Chip (SoC)

2.1.1 Evolution

A system-on-a-chip (SoC) is a fabricated integrated circuit (IC) that consists of several

preverified blocks called intellectual properties (IPs). These IP cores could be DSP

blocks; memory blocks, such as DMA or VDMA; interface blocks, such as USB, SPI

or I2C; embedded processor cores; or other digital or analog blocks. The first SoC

was developed for the Microma watch in 1974; it was developed on a single Intel 5810

complementary metal-oxide-semiconductor (CMOS) chip to function as a driver for a

liquid crystal display (LCD) to control the timing function [1]. With the development

of technology for transistor manufacturing, the number of transistors that can be

fabricated on a single chip has increased, allowing more components and blocks to be

fabricated in a single IC. Figure 2.1 presents the general SoC architecture, and Figure

2.2 presents the modern SoC on which we developed and synthesized our framework.

Recently developed SoCs provide many IPs, such as a central processing unit

(CPU) as the key block, a memory controller, memory storage blocks, and additional

processing units that can act as co-processors or accelerators, such as application

processing units (APUs), real-time processing units (RPUs) and graphics processing

units (GPUs). Cores such as the ARM Cortex-A53 [4] are commonly used as APUs,

and ARM Cortex-R5 [5] and ARM Mali-400 MP2 [6] cores can serve as RPUs and

GPUs, respectively . A SoC also has a system bus for communication among the

IPs. Several types of buses have been developed by different vendors; among them,
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Figure 2.1 – General SoC architecture [2].

the AXI [7] buses developed based on the ARM AMBA [8] [9] protocol are some of

the best known. Depending on the type of application, a SoC may also offer some

general-purpose input/output (GPIO) or high-speed connectivity, such as through

SATA3.1, PCI Express, SATA, PS-GTR interfaces, or general connectivity, such as

through GigE, CAN or UART interfaces. In addition to the abovementioned com-

ponents, recent SoCs often include reconfigurable logic blocks (SoC FPGAs). Such

a reconfigurable block allows designers to synthesize soft IP cores, as well, such as

soft core processors (MicroBlaze [10]), DSP functions, video codecs (H.265/H.264) or
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Figure 2.2 – Zynq-7000 SoC [3].

customized logic coded by the user. This provides more flexibility for designers to

use the same SoC for different applications.

2.1.2 Design Trends

The recent trends in SoC design are generally focused on the following items:

• Multi-Core Processor SoCs: Integrating more cores can increase the pro-

cessing capabilities of a SoC while also providing a more acceptable level of

power consumption. This approach is currently considered as a common solu-
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tion for modern design, especially for applications that require complex com-

putations. In this approach, it is not required that all cores be the same.

Fabricating cores such as APUs, RPUs and GPUs in the same die is common.

• Power Efficiency: As the density increases, the power consumption also in-

creases. To cope with this problem, some solutions have been proposed in which

idle cycles are introduced for some blocks to save power. Another approach is

to manage the clock distribution; instead of using multiple clock sources, the

system could operate on a single clock source, and the operation of each block

could be controlled based on a different phase of the clock.

• Reconfigurable Blocks: As mentioned above, some recent SoC components

(SoC FPGAs) include reconfigurable blocks to provide better flexibility for de-

signers. SoC-FPGAs have recently become popular in image and video process-

ing applications since most recent applications of this type have been developed

for portable systems, making SoC-FPGAs an excellent option for implementing

these algorithms.

2.1.3 Embedded Vision on a SoC

The algorithms that have been developed for machine vision applications consist of

the components represented in the following pipeline; however, depending on the type

of application, many of these components may be included or excluded. Because of

the complexity of the algorithms, the processors are often optimized for the compute-

intensive portions of the software workload. However, this approach is not applicable

for embedded vision systems or portable systems. Moreover, power limitations restrict

the deployment of machine vision algorithms in embedded systems, especially when

the input stream is of full-HD resolution. These restrictions could be overcome by

combining embedded processors with specialized hardware accelerators.

Some solutions have been developed in academia and industry and are provided
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with ADI ADSP-BF60x [7] and TI DaVinci [11]. In these platforms, the high-level

analytics are executed and controlled by a processor, while the computations for the

machine vision algorithms are performed by accelerators. However, these platforms

were developed for basic vision algorithms, such as vision filters, and advanced vision

algorithms, which, as mentioned above, consist of multiple blocks of much higher

complexity and irregularity of execution, have been left behind. In traditional ap-

proaches, custom hardware (accelerator) implementations are used for preprocessing,

and the remaining computations are executed on the host processor. Some processors

that support instruction-level parallelism (ILP) can speed up operation; however, the

communication bandwidth between the custom hardware and the processor restricts

the level of optimization. In recent solutions, an accelerator is integrated into the sys-

tem as a co-processor; as a result, the accelerator can access streaming data from the

system memory and system I/O and consequently lower the system traffic. Among

the available platforms for the realization of the custom hardware approach, SoC-

FPGA-based solutions are highly popular due to their balance between performance

and power efficiency. Although ASICs provide better power consumption, 5x-12x [12]

less than FPGAs, FPGAs are very efficient for both prototyping and real deployment

due to their much lower design and development costs.

2.2 AXI Interface

AXI is the communication interface protocol developed based on the ARM AMBA

[8] [9] [7] protocol for microcontrollers in 1996. The first version of AXI, AMBA 3.0,

was introduced in 2003. The second version, AMBA 4.0, was released in 2010 and is
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known as AXI4. AXI4 is the main bus interface protocol for Xilinx Zynq SoC-FPGAs.

The AXI4 protocol includes three types of interfaces:

• AXI4: Developed for high-performance memory-mapped communication.

• AXI4-Lite: Developed for simple, low-throughput memory-mapped commu-

nication.

• AXI4-Stream: Developed for high-speed streaming data.

An AXI interface operates in both master and slave modes, represented by IP cores

that exchange information with each other. Master and slave IPs can be connected

using a structure called an interconnect block. The AXI Interconnect IP includes AXI-

compliant master and slave interfaces and can be used to establish communications

between one or more AXI masters and slaves. AXI4 and AXI4-Lite interfaces consist

of the following five different channels:

• Read Address Channel

• Write Address Channel

• Read Data Channel

• Write Data Channel

• Write Response Channel

Transactions can pass in both directions between the master and slave simultane-

ously and can operate at different transfer sizes. An AXI4-Lite interface can transfer

only 1 data transaction, whereas the burst operation in an AXI interface can transfer

up to 256 data transactions. Figure 2.4 shows how an AXI4 read transaction uses the

read address and read data channels.

As represented in the figures 2.4 and 2.5 , an AXI4 interface provides separate

data and address channels for read and write operations. The advantage of using
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Figure 2.4 – AXI Architecture of Reads [13].

Figure 2.5 – AXI Architecture of Writes [13].

separate channels is that doing so enables simultaneous, bidirectional data transfer.

An AXI4 transaction requires a single address and can burst up to 256 words of

data. AXI interfaces provide a variety of features that allow a system to achieve

high data throughput. These features include data upsizing and downsizing, multiple

outstanding addresses, and out-of-order transaction processing. Also, AXI4 allows the

use of a different clock for each AXI master-slave pair. Moreover, the AXI protocol

allows the insertion of register slices to aid in timing closure.

The difference between AXI4-Lite and AXI4 is the bursting operation, which is

not supported in AXI4-Lite. An AXI4-Stream interface operates with a single channel
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Figure 2.6 – AXI Interconnnect [13].

for the transmission of streaming data. The operation of AXI4-Stream is modeled

after that of the write data channel of AXI4. Unlike AXI4 interfaces, AXI4-Stream

interfaces can burst an unlimited amount of data. The additional features of AXI-

Stream include the splitting, merging, interleaving, upsizing, and downsizing of the

stream. Notably, the ability to reorder the transferred streams, which is available in

AXI4 and AXI4-Stream, is not applicable in AXI4-Stream.

2.2.1 Xilinx AXI Infrastructure IP

A Xilinx SoC-FPGA provides common IPs that are used in most designs. In this

section, we briefly discuss the main IPs that are used in many AXI-based systems.

The AXI Interconnect IP is utilized to connect one or more AXI master devices to

one or more slave devices (Figure 2.6).

The AXI Interconnect module consists of slave and master submodules and other

functional blocks, such as registers, a FIFO block, a clock converter, and upsizers and

downsizers, which manage the transactions between the master and slave. The slave

accepts write and read transactions at the request of the master, and the crossbar

module controls the traffic on all channels between the various devices connected to

the slave and master interfaces. An AXI interconnect can operate in different modes
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Figure 2.7 – N-to-1 AXI Interconnect (left), 1-to-N AXI Interconnect (right) [13].

depending on the architecture of the design. The modes in which an AXI interconnect

can operate are as follows:

• Pass-Through

• Conversion Only

• N-to-1 Interconnect

• 1-to-N Interconnect

• N-to-M Interconnect

In the pass-through mode, the transaction passes only between one master IP and

one slave IP; as a result, no conversion is required. The second mode, the conversion-

only mode, again involves communication between one master IP and one slave IP;

the following types of conversion can be employed by the interconnect:

• Data width conversion

• Clock rate conversion

• AXI4-Lite slave adaptation
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Figure 2.8 – N-to-M Interconnect [13].

• AXI-3 slave adaptation

• Pipelining, such as a register slice or data channel FIFO

The third and fourth modes are used when multiple master devices are required

to communicate with one slave (N to 1) or when a single master is required to com-

municate with multiple slaves (1 to N). A typical example of the third mode is the

operation of a memory controller, and a typical example of the fourth mode is when

a processor is required to communicate with multiple peripherals. The arbiter and

decoder/router are required to control the operation of N-to-1 and 1-to-N commu-

nication. The last mode is used when multiple IPs are required to communicate

with each other. In this mode, the arbiter and decoder work together to control the

transaction(s).
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Figure 2.9 – Direct streaming.

2.3 Streaming Architectures

There are two main approaches available for the implementation of machine vision

algorithms on embedded platforms. The first approach is “direct streaming”. The

input stream arrives directly from the communication link; the vision algorithm is

directly employed, and the result is passed to the output interface. This approach

offers the simplest and most efficient processing; however, it requires the design of

components that can process frames in real time (Figure 2.9). In the second approach,

which is called “frame-buffer streaming”, the input stream is first stored in a memory

block (VDMA). The video processing block reads each frame from memory and, after
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Figure 2.10 – Frame-buffer streaming.

processing it, stores it again in another block of memory (VDMA). The display of

the results is controlled by another component that has access to this second block

of memory. Therefore, there is no additional overhead for the video processing block.

This approach offers more decoupling between the video rate and the processing

speed of the video components. However, it requires a sufficient memory bandwidth

for reading and writing frames from and to the memory (Figure 2.10).
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2.4 System Profiling

Recently, the utilization of embedded SoC systems has grown rapidly as processing

capabilities have increased. In addition, the market is demanding simpler and more

efficient designs. In an efficient design, the final product should have the optimal

partitioning of hardware and software. For this reason, tools such as profilers plays

an important role in determining which function or component is the bottleneck in a

system. Profilers assist designers in creating a proper balance between hardware and

software in a system.

Since most of a SoC consists of embedded processors and accelerators, such as

FPGAs and GPUs, finding the bottleneck function in the processor framework that

slows the operation is achieved by executing the same function with an accelerator,

and how the operation is optimized is essential. There are three main approaches

available for system profiling: software-based profiling (SBP), hardware-based profil-

ing (HBP), and FPGA-based profiling.

In SBP, function performance is evaluated using tools coded in the programming

language of the system. The profiler keeps track of all processes running in the

processor and helps the designer to identify the functions that make the operation

slow. Profilers in this category include IDE tools such as Visual Studio.

Tools of the second type (HBP) use the counters integrated in the chips. Most

common processors, such as Sun UltraSPARC processors, Intel Pentium processors,

and Advanced Micro Devices (AMD) processors use dedicated counters to measure

the execution of target functions. The advantages of this approach are that it does

not interfere with the operation of the processor and data are collected during run

time.

In the last approach, reconfigurable logic is used to measure performance. This

approach can generally be used to measure the performance of soft core processors,

such as MicroBlaze [10] and Nios II [14], which are synthesized on FPGAs, or hard
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core processors, such as ARM processors, which are fabricated in SoC-FPGAs. The

profiling components could be counters or timers that are synced with the processor

clock to measure the clock cycles required to compute a specific function.
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Chapter 3

System-On-a-Chip (SoC)-Based Hardware

Acceleration For Foreground And

Background Identification

3.1 Introduction

Embedded vision has experienced significant technological breakthroughs in recent

years by virtue of the development of enabling technologies for the implementation

of different and complex image and video processing algorithms with improved per-

formance, higher efficiency, and reduced cost. Among these technologies, hardware

acceleration has been critical to the development of such systems because it allows

certain functions to be performed more efficiently than is possible in software running

on a more general-purpose processor.

For the implementation of a vision algorithm, two main approaches are avail-

able. First, microprocessors (µPs) and digital signal processors (DSPs) offer all-

software solutions that can meet the requirements of most applications, along with

a complete set of development tools. Second, hardware acceleration, in the form of

field-programmable gate arrays (FPGAs) or graphics processing units (GPUs), can

perform specific tasks that are not suitable for µPs or DSPs. However, GPUs tend

to have high power consumption, making them challenging to deploy in embedded

environments.

Recent advances in silicon technology have brought to the market FPGA and mi-

croprocessor technology with sufficient resources to implement computationally de-
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manding algorithms. In the new generation of system-on-a-chip field-programmable

gate arrays (SoC-FPGAs), both a microprocessor and an FPGA are included on a

single chip. Such a device consumes less power and can be incorporated into smaller

systems, offering an attractive platform for embedded applications and making SoC-

FPGA technology well suited for embedded systems from the perspectives of perfor-

mance and cost.

With the recent increase in processing capabilities, machine vision algorithms are

being increasingly implemented in embedded systems. Embedded vision, defined as

the implementation and execution of visual analysis and computer vision algorithms

using embedded systems [1], is an active topic in the field of embedded platforms

that covers a variety of applications, such as autonomous vehicles, smart cameras

[2] [3], industrial vision cameras, sensor networks and security systems (surveillance

systems). The surveillance market alone is estimated to have more than tripled in

the past decade, from $11.5 billion in 2008 to $37.5 billion in 2015 [4].

Most embedded vision applications feature common top-level requirements. First,

a sequence is sampled at a number of spatio-temporal locations, and then, local feature

descriptors are extracted. As the next step, the local features are encoded into a

holistic descriptor, and finally, a discriminative classifier is used to identify likely

categories. The main challenge in embedded vision systems is the tradeoff between

power consumption and performance, where the power consumption becomes more

important when the device is battery powered.

Some vision algorithms have been developed for specific streams and environ-

ments. Thus, the structure of such an algorithm requires constant updating of the

parameters, and the quality of the output result is determined by the specific input

to the algorithm. The type of application that is most appropriate for this method is

vision filtering. Another type of algorithm that is currently of interest to researchers

is adaptive vision algorithms, which are defined in terms of a model that is updated

by tracking visual streams. Such algorithms are capable of executing complex tasks
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with different types of inputs and in different types of environments, but they require

considerable bandwidth and high-performance hardware. Most adaptive vision al-

gorithms are based on machine learning principles, such as support vector machines

(SVMs), extreme learning machines (ELMs) [5] [6] [7] and mixtures of Gaussians

(MoGs), which require training steps; this could be another task for development.

The emergence of commercial full-HD cameras and depth sensors and the market

desire for high-resolution processing have given rise to a need for a platform that

can capably perform complex computations requiring many billions of operations per

second (GOPS). As a result, high-resolution processing requires considerable power;

however, for an embedded platform powered by a battery, the power consumption

must be less than 1 W, which could pose a challenge for high-quality vision process-

ing applications. The main challenges facing the implementation of adaptive vision

algorithms on hardware, particularly when the input stream is of HD resolution, are

as follows:

• The use of a storage space that can maintain and update the model;

• The use of an appropriate bandwidth and access time to update the model

parameters;

• Concurrent processing and access to the model aligned with the input stream;

and

• An efficient interface for connecting to the camera that satisfies the bandwidth

requirement.

As mentioned above, traditional implementations are mainly restricted to filter-

ing operations such as illumination or color enhancement or edge extraction. In

most algorithms, these procedures require information only on the current frame

and consequently have fairly low data storage and bandwidth requirements. How-

ever, such traditional approaches are not applicable for tasks that require adaptive
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algorithms. New, efficient approaches are required that offer high performance in

a portable system that is battery powered and consumes little power to enable the

embedded deployment of adaptive vision algorithms. Memory traffic and strict align-

ment by considering an efficient buffering module are also required.

In vision algorithms, background and foreground identification is a common task

in video content analysis (VCA). Although many background identification methods

have been proposed in the last decade, algorithms with certain capabilities have still

not been well studied. These capabilities include the ability to distinguish between

foreground and background in imagery captured by a non-stationary camera, the

ability to achieve sufficient robustness in identifying shadows, the ability to work

with both 2D and 3D streams, the ability to be implemented in hardware and the

ability to use a hardware accelerator to improve performance.

This chapter introduces a systematic approach that uses layer-based background

subtraction in 2D/3D scenes to address the challenges of adaptive vision algorithms.

The first step of the system-level analysis consists of identifying the bandwidth re-

quirements and optimizing the architecture for bandwidth reduction. In addition,

in this work, a communication-centric architecture is used to separate the algorithm

data from the stream data, thereby allowing the algorithm data to be compressed for

transfer and simplifying the multiple interconnections of IP and heterogeneous nodes.

The proposed system and algorithms were implemented as part of a study on

human activity recognition on the Zynq-7000 SoC-FPGA platform. The system was

evaluated on complex and challenging 3D datasets for human action recognition [8] [9]

on a real-time 1080p, 30 Hz video stream. The proposed architecture is 300 faster

than an ARM Cortex-A9 for computing local binary patterns (LBPs), which is one

of the most computationally demanding functions; in addition, the architecture con-

sumes 156 mW of on-chip power.

Organization: We first review relevant related works and then further explain the
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background and motivation of our work. Our approach is discussed in more detail in

Section 3.4. In Section 3.5, we discuss the results of the implementation and evalua-

tion and how we validated our approach. Finally, in the last section, we present our

conclusions.

3.2 Related Work

Research in the area of embedded vision has focused on two subjects: the platform and

hardware, mostly with regard to the method of implementation, and the algorithm

implemented in the hardware and the mathematics behind it. This section reviews

these two subjects.

Constraints concerning budget and time to market are always the main restrictions

facing embedded vision applications, particularly for full-HD resolution. Using new

processors that were developed for fast processing is not an efficient solution, as

this approach may solve the processing problem but also increases the total cost.

Furthermore, for an embedded platform, the ability to customize a system after it

has been delivered to market for a specific application is essential. Therefore, an

efficient solution could be to combine processors with reconfigurable hardware to serve

as accelerators. The AVNET ZedBoard [10] and Cyclone V [11] are two well-known

platforms of this type. They can pass computationally intense kernels into hardware

accelerators, while the high-level execution is performed on a processor. Using a

reconfigurable device as an accelerator enables the system to change its application

by modifying the logic of the reconfigurable part.

Various techniques have been proposed for detecting dynamic regions of a scene;

a relatively simple approach is to compare two consecutive frames. The foreground

and background are defined by identifying the foreground object and comparing the

current frame against a background model. Most approaches require the model to

be updated when the scene changes. Consequently, an adaptive algorithm may be
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applied to different streams in different environments, such as different streams of a

surveillance security system or different frames of an action movie. The background

model must therefore be updated to accommodate scene changes. In [12] and [13],

the background model is updated using a Kalman filter, whereas the approach in [14]

uses a Wiener filter, and the method proposed in [15] uses a median filter.

Algorithms have been proposed in [16], [17], [18], [19], and [20] to identify the

background model using static methods. The work in [17] is based on the static

component of the color signal, whereas the optimized approach proposed in [18] is

robust against shadows, and the algorithms presented in [19] and [20] use Gaussians

to model the pixel information. Most work has focused on the MoG model, which

was proposed by Stauffer and Grimson [20]. However, the main problem with the

MoG approach is the tradeoff between the speed with which the model adapts to

background changes and its stability. In [21], an improved speed was demonstrated

without compromising model stability. Tuzel et al. [22] used recursive Bayesian es-

timation to estimate the probability distribution of the mean and covariance. This

approach yields a multi-layer model and estimates the number of required layers.

However, most of these approaches rely on color and intensity information and thus

fail to detect a foreground object when the foreground and background are of similar

color and pattern.

To address this problem, Heikkila et al. [23] proposed a robust approach based on

discriminative texture features that are encoded based on LBP histograms to capture

background statistics. The advantage of the LBP technique is that it analyzes local

pixel values, making it robust to local changes in illumination. However, if this tech-

nique is employed on a surface with large uniform regions, the output is not efficient;

for example, in an area of a scene that contains shadows or highlighting, the output

result is poor. Some studies, such as [24] and [15], have used a shadow removal tech-

nique as post-processing, whereas [15] used zero mean normalized cross-correlation to

identify shadow pixels. The photometric invariant color approach proposed by Hu et
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al. [24] was applied in the RGB space to find the intensity of the pixel changes.

The work discussed above demonstrates that foreground and background identi-

fication is an active area in VCA; many researchers have contributed to developing

adaptive algorithms with high processing rates. However, few researchers have focused

on developing a hardware circuit for implementing the entire process in an embedded

system to achieve a real-time system for embedded vision applications. Embedded

vision applications with a large frame size require a dedicated platform and efficient

architecture for their implementation. In [25] and [26], the implementation of the

MoG technique on a GPU is discussed, where the main constraint is the low-power

nature of the embedded system. Viable methods in the area of adaptive vision that

use a reconfigurable platform have been proposed in [27], [28], [29], and [30], but the

existing proposed architecture is not designed for full-HD resolution, and the recon-

figurable part is used only for the co-processor. This approach results in significant

synchronization overhead and unnecessary traffic for transferring the stream and op-

erational data throughout the system memory. Furthermore, the current proposed

architecture is not efficient for applications that require an adaptive vision algorithm.

Among the available foreground and background identification algorithms, the

MoG approach has been studied in greater depth than other approaches [31] [32]

[33] [34] [35]. The method proposed in [33] and [34] operates at a low resolution

(120 × 120); the architecture proposed in [31] and [32] achieves optimized utilization

by avoiding square root operations, thereby affecting the output results; and the

architecture proposed in [31] is targeted at a resolution of 640 × 480. The solution

proposed in [35] can operate at HD resolution and reduces the amount of traffic by

compressing the Gaussian parameters, but that work remains at the simulation level

and lacks actual real-time FPGA execution. The architecture proposed in [36] can

process video frames with dimensions of 1024 × 1024 at 38 fps and, when implemented

on a Virtex-II, can reach 39.8 fps. The architecture presented in [29] [25] follows the

method proposed in [36]; this architecture achieves improved memory throughput by
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employing a memory reduction scheme. The work reported in [37] is based on the

OpenCV MoG algorithm and permits processing of a frame size of 1920 × 1080 at

22 fps. The improved circuit of [37] has been discussed in [38].

In summary, most approaches target low resolutions and/or take shortcuts to

manage computational complexity. The inclusion of depth information has not been

discussed, but this approach could also improve performance, albeit at the cost of

increased processing requirements.

The methodology proposed in this work is intended to overcome the computa-

tional and communication challenges of embedded vision applications and improve

the output results by considering depth information. Our methodology employs an al-

gorithm/architecture co-design approach that uses photometric invariant color, depth

data and LBPs to distinguish backgrounds from foregrounds. It outperforms the cur-

rent approaches and is capable of using depth information. Furthermore, it addresses

the challenges of system-level integration.

3.3 Background

This section discusses the contextual information related to this study and method-

ologies that have been used to implement adaptive foreground and background iden-

tification algorithms in embedded vision systems.

Vision algorithms can be categorized into two classes: filter-based approaches,

such as Canny and Sobel edge detection, and adaptive methods such as MoG. Filter-

based approaches mostly focus on incoming frames, whereas adaptive methods work

across frames. Algorithms such as k-means are required to encode the features and

information of the previous frames and use them to update the background model.

This strategy requires a complex architecture and significant memory traffic, but it

can address complex tasks with high quality.

Our approach is based on a successful adaptive vision method that was initially
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Table 3.1 – Notations to be used in describing the proposed method

Notation Meaning

t Time

I Input image, average RGB value

Imin Minimum RGB vectors

Imax Maximum RGB vector

I = {I t}t=1...N Image sequence

D Input depth

D = {Dt}t=1...N Depth sequence

gc Gray level of center pixel

gp Gray level of neighboring pixels

LBP Primitive texture operator

S(x) Sign function

R Radius of a circle centered at (x, y)

n Noise parameter

ω Weight factor, the probability of a

mode belonging to the background or foreground

ωmax Maximum weight factor

l Number of layers to which a mode

can be applied
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proposed by Heikkila et al. [23] and Yao et al. [39], although in our methodology, depth

information is also considered. For a 3D scene, we apply the LBP approach while

incorporating photometric invariant color measurements. Through the integration of

photometric invariant color information and depth data, the framework overcomes the

limitations of the LBP approach when applied to a surface with no or poor texture

or to shadow boundary regions. Additionally, the framework utilizes adaptive weight

parameters that make the algorithm robust for complex streams such as wavering

tree branches. The proposed method also employs layer-based processing that can

handle background changes in a scene due to the addition or removal of stationary

objects, making the algorithm more efficient for moving objects or for a stream that

exhibits sudden background changes.

3.3.1 Local Binary Patterns

An LBP operator is a primitive texture operator that labels the pixels in an image by

thresholding the neighborhood of each pixel using the center value and considering

the result in terms of a binary value [39]. Consider a pixel, x, in an image, I, that

has a gray level of gc, and let gp represent the gray value of the neighboring pixels.

The LBP label for pixel x is defined as

LBPP (x) =
P−1∑
p=0

S(gp − gc + n)2p S(x) =

1 x ≥ 0

0 x < 0

(3.1)

xp = x+Rcos(2πp/P ) yp = y +Rsin(2πp/P ) (3.2)

where R is the radius of a circle centered at (x, y) and n is a noise parameter that is

used to make the LBP robust to noise. For instance, in a uniform area, the effect of

noise can reduce the accuracy of the output result; however, with a sufficiently high

value of n, the LBP operator will not be affected by noise-related fluctuations in the

pixel values.
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Figure 3.1 – Examples of the LBP operator.

In this study, we implement LBPs with a set of P binary values to reduce the

memory and computational requirements. The implementation results demonstrate

that LBPs have several advantages that make them useful for background modeling.

They are robust to grayscale variations and can tolerate global and local changes

in illumination. Additionally, LBP features can be computed very quickly, and such

calculations do not require the determination of many parameters, which is important

from a hardware implementation perspective. To improve the performance of the

system, the method can be implemented as a complete pipeline.

In this work, an input color image is converted into a grayscale image, and the LBP

operator is then applied to the resulting image for the input frame, using separate

3D data channels for the grayscale image and the depth data.

3.3.2 Photometric Invariant Color

The LBP descriptor is an excellent visual descriptor that can perform well in most

video processing applications. However, this type of background modeling is not effi-
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cient when applied to a surface that has a texture in common with the background,

such as a wall, a floor or clothes. In such a case, the method may fail to distinguish

the foreground object from the background. To cope with this problem, one common

solution is to use the normalized RGB color space to account for changes in illumi-

nation. However, this solution is not efficient in dark regions because dark pixels

have higher uncertainty than bright pixels. The solution in our framework is to use

photometric invariant color information in the RGB space, which is robust to illumi-

nation changes such as shadows and highlights. According to [40], when the value of

a pixel changes because of illumination changes, this change in value has a certain

distribution with respect to the origin of the RGB space. In this approach, informa-

tion on the angles of the differences of the foreground and background in RGB space

with respect to the origin as well as the minimal and maximal background pixels is

included in the learning procedure.

3.3.3 Background Modeling

To quantify the statistical information regarding a scene, including texture, color and

depth information, a mathematical model is required. Let I = {I t}t=1...N represent

an image sequence, and let D = {Dt}t=1...N represent the corresponding depth infor-

mation, where the superscripted t denotes the time. The mathematical model of the

background has the form of a matrix M = {M t(x)}x, which represents the statistical

background information at time t for all pixels x belonging to the image grid. The

model also consists of a list of modes that are defined based on the observed data,

where for each mode, nine components are defined:

M t(x) = {mt
k(x)k=1...K} (3.3)

mk = {I, Imax, Imin, D, LBPRGB, LBPDepth, ω, ωmax, `} (3.4)

in which I represents the average RGB value; Imax and Imin denote the estimated

maximum and minimum RGB vectors, respectively; the parameter D is the depth
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value; LBPRGB and LBPDepth denote the results of applying the LBP operator to

the RGB-space data and the depth data, respectively; ω denotes the probability of

the mode belonging to the background or the foreground; ωmax denotes the maximum

weight that has been achieved in the past; and the parameter ` denotes the number

of layers to which the mode can be applied, where 0 indicates that the mode is not

reliable for any layer.

3.3.4 Background Model Update

When a new frame arrives, the model must be updated. Once the values of It and Dt

have been obtained, LBPRGB and LBPDepth are computed. Then, it is necessary to

determine which mode is associated with the new input. By computing the proposed

distance measure (Equation 3.13), the closest mode is obtained, and all components

of the selected mode are updated by means of Equations 3.5-3.10. If the output of

the distance measure calculation is greater than a specific threshold and the number

of current active modes is not greater than the maximum number of modes (K), a

new mode may be created. In this case, all components are defined with their initial

values. Figure 3.2 illustrates the model update procedure.

I tmin = min(I t, (1 + δI t−1)) (3.5)

I tmax = max(I t, (1− δI t−1)) (3.6)

I t = (1− λ)I t−1 + λI t (3.7)

Dt = (1− α)Dt−1 + αDt (3.8)

LBP t
RGB = (1− λ)LBP t−1

RGB + λLBP t
RGB (3.9)

LBP t
Depth = (1− α)LBP t−1

Depth + αLBP t
Depth (3.10)

ωt =

(1− αω)ωt−1 + αω With αω = αω(1 + τωt−1
max) Mode = True

(1− αω)ωt−1 With αω = αω

1+τωt−1
max

Mode = False
(3.11)
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ωmax = max(ωt−1, ωt) (3.12)

The parameters α, αω, λ, τ and δ are learning rate values that are defined to

ensure that the process avoids the maximum. The result for the background model

is used to compute the distance measure, which is discussed in the next section.

3.3.5 Distance Measure

The proposed distance measure, which integrates texture, color and depth informa-

tion, is defined as

M = ω1Mtext(LBP
t−1
RGB, LBP

t
RGB)

+ ω2MDepth(LBP
t−1
Depth, LBP

t
Depth)

+ ω3MColor(I
t−1, I t)

ω1 + ω2 + ω3 = 1

(3.13)

where the ω parameters are weight values that indicate the contribution of each

component to the overall distance. The texture and depth distances are defined as

Mtext,depth = (LBP t−1, LBP t) = 1
P

P∑
p=1

M0/1(LBP t−1
p , LBP t

p) (3.14)

M0/1 =

0 |x− y| < T

1 otherwise

(3.15)

Based on the changes in pixel values [40] in response to changes in illumination along

the axis, the angle between two frames is used to measure the color distance.

Mcolor(I
t−1, I t) = Mangle(I

t−1, I t) +Mrange(I
t−1, I t) (3.16)

Mangle(I
t−1, I t) = 1− exp−τθ τ = 100 (3.17)

θ =

√
1− (

~I t−1.~I t

‖~I t‖ ‖~I t−1‖
)2 (3.18)

Mrange(I
t−1, I t) =

0 Î tmin < I t < Î tmax

1 otherwise

(3.19)
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Figure 3.2 – Background model update procedure.
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Figure 3.3 – SoC-FPGA block diagram showing video devices in the FPGA fabric

that accelerate vision algorithms.

Î tmin = min(µI t, I tmin) µ = 0.5 (3.20)

Î tmax = max(ηI t, I tmax) η = 0.5 (3.21)

The output of the distance measure calculation defines whether a pixel belongs to the

foreground or the background. If the value exceeds the defined threshold, the pixel is

considered to be foreground, whereas if it is below the threshold, it is considered to

be background. In the next section, the details of the implementation based on the

presented mathematical operations will be discussed.

3.4 Approach

The design procedure for an embedded vision system consists of system-level explo-

ration, computation and communication and, finally, system-level integration. The

block diagram of the developed SoC-FPGA circuits is shown in figure 3.3. Efficient

implementation is required for the placement of all dependencies and design options.

Therefore, it is efficient to start from the abstract level to analyze and resolve the
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Figure 3.4 – Algorithm specification model, including coarse-grained parallelism.

problems at hand. Such an approach is helpful for evaluating and adapting both the

algorithm and the architecture with respect to each other. Our design is constructed

in a modular manner and then merged to form a functional adaptive foreground and

background identification system. In the SoC-FPGA Zynq system, the processing

system (PS) transfers streams to the programmable logic (PL) part, where the actual

adaptive vision algorithm is implemented.

Figure 3.4 illustrates the abstract-level model of the algorithm using SpecC. A

stream is captured from the camera or storage memory and transferred to the logic

circuit; after processing, the result is passed to the HDMI interface. The model

represents the concurrent processing and pipeline stages as well as the interfaces

between blocks.

The pipeline stages consist of LBP computation, distance measure computation,

background model update and, finally, foreground detection, all of which operate on

each new stream.

The communication in the system consists of two main channels: the first channel

contains the model parameters, and the second channel consists of the stream infor-

mation. According to the SoC architecture, different protocols may be used. Because

the device targeted in this work is Zynq, the main protocol for data transfer is AMBA

AXI, which will be discussed in more detail later.

49



3.4.1 System Profile

An efficient solution is required to identify bottlenecks in the proposed system. Ta-

ble 3.2 presents the computational demand of the algorithm in units of the number

of operations per second (GOPS) and the communication demand for different res-

olutions. The specification model provides system-level profiling; in this work, we

consider the SoC model proposed by Dömer et al. [41]. According to the result of

the profiler, the background subtraction algorithm is computationally demanding,

and the computational complexity makes it prohibitively expensive for software im-

plementation; conversely, it is an excellent candidate for hardware implementation.

The result of the profiler for communication also shows that a high communication

volume is needed to update the algorithm parameters (Read/Write). One solution

to this problem of high computational and communication demand is to reduce the

resolution of the input stream, but considering the market demand for high accu-

racy, this is not a feasible solution. One effective solution could be to reduce the

precision (bit width) for data traffic, as most of the traffic attributes are considered

in the quality/bandwidth exploration of the algorithm parameters. The circuit illus-

trated in figure 3.5 can be used for precision adjustment. The multiscale structural

similarity index (MS-SSIM) [42] is used to evaluate the precision by considering the

structural similarity and comparing it against a ground truth. We investigate four

types of scenes, namely, simple, medium, moderate and complex: in the simple and

medium cases, the foreground changes; in the moderate cases, there are changes in

Table 3.2 – Computational and communication demands

Frame Size Computation (GOPS) Bandwidth (MB/s)

1920 × 1080 26.2 9460

1280 × 960 13.1 5830
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Figure 3.5 – Quality/bandwidth exploration for algorithm parameters.

both the foreground and background; and in the complex case, we consider videos

from human action datasets that include objects suddenly moving in or out of frame.

The experimental results show that the proposed architecture retains an MS-SSIM of

97% when the number of bits is reduced to 14 for all parameters of the model, except

for Mangle, for which the number of bits can only be reduced to 16.

3.4.2 Computational Optimization

As discussed previously, the proposed model has high computational demands, and

effective implementation requires different levels of optimization. The initial register-

transfer level (RTL) design consists of three pipeline stages with parallel updating

of the algorithm parameters, LBP computation and foreground detection. Further

optimization is achieved by employing (i) algorithm tuning, (ii) unrolled loop identifi-

cation, and (iii) deep pipelining techniques. Algorithm tuning modifies the proposed

architecture to be more compatible with the target system. By identifying an unrolled

loop, we can improve the utilization of the massive computational resources of the

FPGA, as is further discussed in Section 4.5. In the deep pipelining stage, the indi-

vidual coarse-level pipeline stages are further broken down into finer micro-pipeline
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stages, such as in the LBP computation stage.

3.4.3 Communication Optimization

Two main types of traffic are involved in the proposed algorithm: one related to the

input stream, (RGB+Depth)/Output, and the other related to the algorithm’s in-

trinsic parameters. Figure 3.6 illustrates how the traffic of the algorithm is separated

into two parts. The input stream traffic is related to the RGB and depth data of the

raw data stream that is transferred from the input interface, where the input interface

may be an RGB and depth-sensing camera [43] [44] or storage memory such as an SD

card. This streaming traffic is related to the I/O interface and is defined based on the

availability of the interface in the embedded platform, which is completely indepen-

dent of the algorithm selected to achieve the desired functionality. By contrast, the

algorithm-intrinsic data is related to the functionality of the algorithm. Even when

different algorithms produce the same output, their different internal data structures

may result in different degrees of algorithm-intrinsic traffic.

Some algorithms, such as mean shift [45] and MoG, require a complete history

of the last n frames of data, which requires significant bandwidth and, consequently,

high power consumption. By separating the input stream data and the algorithm-

intrinsic data, it can be ensured that the tradeoff between quality and bandwidth is

independent of the streaming pixels. To achieve this benefit, it is necessary to identify

the traffic in the specification; the proposed architecture can also work with separate

traffic.

For background identification, the streaming data consist of RGB pixels, depth

pixels, gray pixels, probability and the background/foreground mask. For the LBP

computation, it is necessary to transform the RGB stream into grayscale. Although

it is possible to have separate LBP operators for each of the channels, this approach

increases the processing requirements without affecting the accuracy. In this study,

the input stream is transferred by the first processor (PS1) to the shared memory
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Figure 3.6 – Input/Output stream traffic and algorithm-intrinsic traffic.

(L2 cache), and then, it is transferred to the two blocks of the VDMA to store the

RGB and depth data. The luminance value for each pixel is determined by the

circuit implemented based on Equation 3.22. The luminance values are stored in

8-bit blocks in the RAM. The minimum mathematical operation, based on a shift

operation instead of division, is considered in this transformation equation.

y =

[[ [
R G B

]
×


66

129

25

+ 128
]
>> 8

]
+ 16 (3.22)

3.4.4 Communication-centric Architecture

Given the optimization procedure discussed in Sections 3.4.2 and 3.4.3, in which

the architecture is optimized by separating the data into two domains, it is also
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necessary to define separate clock domains to operate the stream data and algorithm-

intrinsic data independently. The purpose of these separate clock domains is to

achieve data alignment between the streaming and algorithm-intrinsic traffic. Figure

3.7(a) presents a block diagram of the architecture; as previously discussed, it consists

of two clock domains: a computational domain set by the streaming data clocking the

adaptive vision kernel and a communication domain set by the interconnect for the

operational data. A separate data path is used to separate data access using individual

ports, whereas the streaming data are processed through internal and external ports.

For an external port, an efficient solution could be to use a dedicated system platform

port, such as a USB or SD interface, to read the stream and an HDMI interface to

visualize the stream. For an internal port, an AXI interface is used.

The SoC-FPGA that we use in this work is interfaced with an AMBA AXI version

4 to interconnect PS to PL and vice versa. The AXI interface consists of four 64/32-bit

high-performance AXI (HP AXI) slave interfaces, two 32-bit AXI master interfaces,

two 32-bit AXI slave interfaces, a 64-bit AXI accelerator coherency port (ACP) and

an extended multiplexed I/O (EMIO) interface.

In this study, we use 2 HP AXI interfaces for stream traffic to connect the proces-

sor to the vision kernel and video capture modules, which require memory-mapped

communication. To control each block, an AXI master interface is used to connect

the vision kernel to the processor. The development platform (Zynq-7000 ZC702

Evaluation Board [46]) that we use in this work has multiple common interfaces, such

as USB and SD memory readers and an HDMI driver (ADV7715).

To read and write back the vision kernel’s intrinsic parameters, a dedicated DMA

that is connected to the DDR3 is used. It operates in circular mode and automatically

restarts when a new frame enters. The advantage of this technique is that it eliminates

unnecessary synchronization with the processor.

Since the input stream and kernel operate in different clock domains, any misalign-

ment between the input pixel and kernel data affect the entire process. To address
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this problem, the initial alignment is synchronized when the first frame is received.

3.4.5 Loop Optimization

In the proposed vision algorithm (Section 3.3), the majority of the computational

load is associated with the LBP computation. Since the center pixel must be com-

pared with all pixels and the comparison results encoded in a binary representation

(Equation 3.1), the latency in this step is considerable.

By identifying an unrolled loop, such as the loop in algorithm 1, we can improve

the utilization of the massive computational resources of the FPGA.

The various types of loops can be classified as follows:

• Irrelevant: If the loop index is not used in any function of array I, the loop

index is considered irrelevant to array I.

• Independent: If the union of the data spaced on array A is completely sep-

arable along the loop index, the loop index is said to be independent of array

I.

• Dependent: If the union of the data spaced on array A is not separable along

the loop index, the loop index is said to be dependent on array I.

Algorithm 1 for the LBP computation consists of a single loop, and all variables

depend on the loop iterator, p. Although the results of each operation are dependent

on each other, the operation as a whole can be processed in parallel. An appropriate

circuit for algorithm 1 is illustrated in figure 3.7(b) and consists of a dv × dh × 8-bit

shift register that is accessible by each cell in parallel and a W × (dv−1)×8-bit block

of RAM. The values of the parameters dv and dh depend on the LBP model used,

with the values in this work being 8 and 7, respectively. W is related to the width

of the input frames. By using the proposed circuit depicted in figure 3.7(b), the LBP
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(a)

(b)

Figure 3.7 – (a) Architecture with two clock domains. (b) The LBP computation

circuit.
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Algorithm 1 LBP Computation

1: function LBP(Icenter )

2: ILBP ← 0

3: for p← 1 to PnLBP do

4: xp ← x+R× cos( 2πp
PnLBP

)

5: yp ← y +R× sin( 2πp
PnLBP

)

6: Ineighbor ← FuncShift(Icenter, xp, yp)

7: Idifference ← FuncDifference(Icenter, Ineighbor, n, 2
p)

8: ILBP ← ILBP + Idifference

9: end for

10: return ILBP

11: end function

descriptor of a pixel of interest can be computed in two clock cycles. The values of

the pixels of interest and their neighbors require only one clock cycle to update.

3.4.6 System Integration

A traditional embedded vision system is implemented with two chips: an accelerator

and a host processor. Depending on the type of application, the accelerator could be

an FPGA, GPU or DSP that works as a co-processor for the host processor. In this

architecture, both the streaming traffic and the algorithm-intrinsic traffic occupy the

interconnect and system memory. The host processor transfers the input stream to

the shared memory; when the co-processor is triggered, the contents of the shared

memory are processed by the co-processor, and the output of the algorithm is returned

to the shared memory. In the final stage, the host processor reads the content of the

shared memory and transfers it to the output port. All transactions are controlled

and monitored by the host processor, which is inefficient and leads to high overhead.
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A more efficient approach is to use the new SoC-FPGA known as the Zynq-

7000, which contains a processor and an FPGA fabricated on the same chip. In this

architecture, the shared memory between the host processor and the accelerator (co-

processor) is an L2 cache with low latency. The ACP is the interface between the

AXI4-Stream interconnect and the host processor (ARM CPU). The ACP is a 64-bit

AXI slave interface on the snoop control unit (SCU), which provides an asynchronous

cache-coherent access point directly from the PL to the host processor subsystem. The

ACP provides a low-latency path between the PS and the accelerator implemented in

the PL. The host processor needs only to initialize the cache, after which the input

stream (RGB and depth data) is transferred in a completely independent manner to

the VDMA in the PL. As a result, more cycles remain available on the host processor

for higher-level processing.

3.5 Experimental Results

This section discusses the results of the implementation of the proposed architecture

on the Xilinx Zynq platform, including the performance, power consumption and

resource utilization, and compares these results with recent work.

3.5.1 Algorithm Implementation and Evaluation

The proposed hardware acceleration implementation of the background and fore-

ground identification algorithm was synthesized and implemented (Figure 3.8) on a

Zynq-7000 XC7Z020-CLG484 AP Xilinx SoC with a Vivado 2015.2 synthesizer. The

SoC has two ARM Cortex-A9 processor cores (PS part) and a PL Artix-7 FPGA

(PL part). The software for the processor is written in C, and the other modules

are written in VHDL. Both VDMA RGB and depth capabilities are offered by the

IPs that are provided in Xilinx Vivado. In addition, an embedded version of Linux,

PetaLinux [47] [48], which is customized for Xilinx SoCs, is used to control the op-
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Figure 3.8 – System illustration.

eration of the processor. As mentioned in Section 4.4, AMBA AXI version 4 is used

internally to interconnect the processor cores with the FPGA part. The platform is

also equipped with two off-chip memory interfaces, DDR3 and LPDDR2. The ARM

processor reads a raw stream from the SD card or the USB interface, and by sharing

it in the L2 cache, the stream is made accessible to the PL part for further process-

ing. The RGB and depth data are stored separately in two blocks of the VDMA for

further processing with the background subtraction kernel. After processing, the out-

put result is passed to the HDMI display chip (ADV7715). As discussed previously,

we adopted a communication-centric architecture that requires two clock sources; the

clock module gives rise to a 100 MHz clock that creates 120 MHz and 148 MHz signals

for communication and computation, respectively.

The kernel parameters receive and update the model parameters via a DMA that

connects to the DDR3 memory via the AXI stream and works in circular mode. For

all control signals, an AXI-Lite interface is used to configure and initialize all modules

and submodules in the PL part.

We compared the proposed algorithm with other previously proposed implementa-
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tions on Virtex-5 (XC5V1X50), Virtex-4 (XC4VFX12), and Virtex-II Pro (XC2PRO30)

Xilinx FPGAs. The synthesizer for the Virtex-4 and Virtex-5 FPGAs was created

using XST, whereas Synplify was used for the Virtex-II Pro. The evaluation was

performed based on each IC’s utilization of the available resources and a comparison

of the background identification results achieved on data used in previous studies. We

also tested the proposed system using datasets of 3D videos that were generated by

IR cameras or through stereo vision [43] [44]. The power consumption of the proposed

architecture and the acceleration factor are discussed in the next section.

3.5.2 Resource Utilization and Evaluation

Table 3.3 summarizes the resource utilization results and compares them with those of

previous studies. We tested our proposed system using most of the available datasets

and new datasets for human action recognition. Some of these datasets, such as the

Hollywood 3D [8] and HON4D [9] datasets, include depth data. We tested our hard-

ware on the KTH [49], Wallflower [14], Background Models Challenge (BMC) [50] [51]

and Weizman [52] datasets, which are invaluable because they provide benchmarks for

comparing computational approaches. Of these datasets, the Wallflower [14], HON4D

and Hollywood datasets focus on human action recognition.

We also tested our hardware using several typical and challenging scenarios from

highway and crowd datasets, namely, the PETS2009 [53], PETS2017 [54], MOT2015

[55], MOT2016 [56] and TUD [57] datasets, containing scenes from surveillance sys-

tems capturing human activities. The results show that the algorithm can appropri-

ately subtract the foreground from the background in both a highway environment

and a crowded environment (Figure 3.9).
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 3.9 – Results of the implemented algorithm on examples from various datasets:

(a) Ref [23], (b) Ref [8], (c)(d)(e)(f)(g) Ref [14], (h) Ref [55], (i)(j) Ref [53] and (k)(l)

Ref [54].
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Table 3.3 – Consumed FPGA resources

Target FPGA LUT Flip Flop Slice DSP-MULT

Virtex-II [58] 3394/27932 (12%) N.A. N.A. 7/136 (5%)

Virtex-4 [59] 6583/10944 (60%) 1131/10944 (10%) 3824/5472 N.A.

Virtex-4 [59] 6451/10944 (59%) 1132/10944 (10%) 3770/5472 N.A.

Virtex-5 [60] 1572/28800 (5%) 0/28800 N.A. N.A.

Virtex-5 [61] 1066/28800 (4%) 0/28800 346/7200 10/48 (21%)

Proposed System 1051/53200 (2%) 80/106400 (0.1%) 1131/159600 (1%) 1/220 (0.5%)

3.5.3 Qualitative Evaluation

We compared the results of our proposed method with those of other approaches:

GMM [20], codebook [40], LBP [23] and εLBP [62]. It should be noted that these

other approaches were tested on a PC platform, whereas our work was tested on an

embedded platform with limited memory space for defining float and double variables

as well as floating point operations. To fairly evaluate and compare the accuracy of

the different approaches, we used a qualitative evaluation formula. The output of this

formula (F-score) was taken as the accuracy. The formula is defined as

F =
2× TP

2× TP + FN + FP
(3.23)

where TP , FP , and FN are the numbers of true positives (correctly identified fore-

ground pixels), false positives (background pixels identified as foreground pixels),

and false negatives (foreground pixels identified as background pixels), respectively.

Among the datasets on which we tested our proposed method, some were originally

developed for other computer vision applications, such as tracking and action recog-

nition. Consequently, these datasets do not contain ground-truth information for

background subtraction that can be used for evaluation. Traditionally, the Wallflower

dataset [14] has been used for benchmarking. However, the BMC dataset [50] [51]

has also recently been used for benchmarking for complicated scenarios. The results
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of comparisons on these datasets are summarized in two tables. Table 3.4 compares

the proposed method with the other approaches on the Wallflower dataset [14]. Table

3.5 compares the results obtained on the BMC dataset [50]. Table 3.5 also presents

the range of F-scores obtained for each method.

Table 3.4 – Comparison of all methods on the Wallflower dataset [14]

Algorithm GMM [20] Codebook [40] LBP [23] εLBP [62] Proposed Method

Bootstrap 45% 66.5% 61.1% 76.6% 78.2%

Camouflage 97% 98.6% 89.7% 98.3% 98.8%

Light Switch 28% 31.8% 58.2% 51.8% 78.2%

Time of Day 91.8% 90.9% 76% 90.5% 92.1%

Waving Trees 89.3% 93.8% 73.8% 76.0% 94.5%

Table 3.5 – Comparison of all methods on the BMC dataset [50] [51]

Algorithm F-score

Naive Approach (NA) 55% - 85%

Gaussian Mixture Model (GMM1) [20] [63] 75%

Gaussian Mixture Model (GMM2) [64] [65] 93%

Bayesian Classification (BC) [66] 91.8%

Codewords and Codebooks (CB) [40] 94%

VuMeter (VM) [67] 80% - 85%

Proposed Method 86% - 91%

From Table 3.4, it can be seen that our proposed method outperforms the other

classical background subtraction algorithms on the Wallflower dataset [14]; however,

the results presented in Table 3.5 show that one of the Gaussian mixture model

methods (GMM2), Bayesian classification (BC) [66] and the codewords and code-

books (CB) approach [40] outperform our method. Nevertheless, it should be noted
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that our proposed method was tested and implemented on an embedded platform,

and the main concerns for an embedded platform are resource utilization and power

consumption.

3.5.4 Power Consumption

The power consumption of the proposed architecture was measured using a Xilinx X-

Power Analyzer after the implementation of the entire system on the Zynq platform.

For our approach, the on-chip power was measured to be 1.747 W, where 91% of the

total power is related to the dynamic power. The processor consumes the majority of

the power (1.529 W), whereas the remaining blocks consume 9% of the total power

(0.156 W). The total power consumption for the vision kernel is 9 mW. Although a

direct power comparison is difficult because of the different assumptions and stages of

the implementation, a comparison with recent work regarding background subtraction

presented in [35], which reported a value of 1.766 mW, shows that the proposed

architecture offers much higher power efficiency.

3.5.5 Acceleration Factor

An embedded system that uses a second chip on the platform as an accelerator can

be quantitatively evaluated in terms of the acceleration factor, which is defined based

on the time needed for the host processor to execute a single operation compared

with the execution of the same operation when processed by the accelerator. In this

work, as discussed previously, one of the most resource-consuming operations is the

LBP computation; therefore, we studied the acceleration factor for this operation for

a single frame. The measurement circuit is illustrated in figure 3.3. The circuit con-

sists of a timer that is coded in the PL block. For the first measurement, the ARM

processor transfers the contents of a single frame to the cache, and before the LBP

command is performed, it triggers the timer. For the second time measurement, the
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same operation is executed by the PL block. For a single frame at HD resolution,

we measured an acceleration factor of 300. This testing algorithm for measuring the

acceleration factor was proposed by Xilinx [68] for the evaluation of hardware accel-

eration. The results of a performance comparison between the proposed embedded

system and a software-based system are summarized in Table 3.6. The software im-

plementation was realized with 1 thread and 16 threads using Visual Studio 2013

with Boost 1.53.0. The results based on the performance metric show that 66.8%

of the operations are associated with the main function, and the remainder are per-

formed as part of the initialization to run the software on the operating system. The

main function consists of the following tasks: GetNextImage, InitBGS, Process, and

GetForegroundImage or GetMaskImage. Figure 3.10 summarizes each task and the

functions called in each task. According to the results of the profiler, 56% of the oper-

ations are dedicated to the read frame. This operation is more efficiently implemented

on the embedded platform using VDMA. In addition, individual sequences of all of

the tasks and functions for the Process task (ComputeLBP, DistanceMeasurement,

and UpdateBGS ), which need to be implemented sequentially, can be run in parallel.

Overall, our SoC-FPGA-based implementation achieves a speedup of up to 11.24x

over a software implementation with 1 thread. It also achieves a 9.04x speedup over

a software implementation with 16 threads.

Table 3.6 – Performance comparison with a 3.40 GHz CPU, in ms

Function 1 thd 16 thd SoC-FPGA

GetNextFrame 30 30 1.86

Process 12 4.3 0.96

GetForegroundImage 5 5 1.36

Total 47 39.3 4.18
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Figure 3.10 – Software performance metrics.

3.6 Conclusion

In this chapter, a SoC-FPGA-based video processing system is presented. The pro-

posed algorithm employs parallel processing and a pipelined architecture to perform

real-time foreground and background identification. In addition, a technique for traf-

fic separation is proposed to enable easy implementation and execution of the adaptive

algorithm on the embedded platform. The parameters of the algorithm can be mod-

ified and updated without interfering with the main operation. For example, the

threshold value for the distance measure can be changed while the entire process is

being performed. The system can be used with 2D and 3D data, and it can be ap-

plied to low-resolution videos. The experimental results for all tested datasets show

that the system can be used in the pre-processing step for most embedded vision

applications, such as face recognition, object tracking and human action and activity

recognition, to remove unimportant parts of a scene to enable better processing.

In addition, the proposed architecture is analyzed to identify the required number

of bits for the kernel to allow the system to operate at a high quality and bandwidth.

The results of the power consumption analysis show that the proposed architecture
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can be implemented for most embedded vision applications based on battery-powered

devices. Since the Zynq platform has two ARM processors, future work could inves-

tigate the use of both ARM processors in addition to the accelerator to improve

performance: one processor could manage the control signals, and the other proces-

sor could transfer raw data (frames) to the VDMA. However, this would increase the

total power consumption of the system. The motivation for this work was to develop

a system for human action recognition, and foreground and background identification

could be one of the first pre-processing stages for this task. By identifying the unim-

portant parts of a scene (background), we can extract better and more important

features, thereby improving the recognition accuracy.

3.7 Summary

This chapter presents the hardware acceleration of a real-time adaptive background

and foreground identification algorithm in a SoC, including the capture, processing

and display stages.

The foreground and background subtraction module is the one of the main com-

ponents of the human action and activity recognition framework; in this framework,

it is considered to constitute the first stage of pre-processing. The framework is

discussed in more detail in chapter 1. This module produces a mask image that de-

fines pixels with rich information. Foreground and background subtraction are com-

mon components in most machine vision frameworks and algorithms. Background

subtraction algorithms required high computational effort. Moreover, with the pop-

ularization of high-definition video, the amount of data available to be processed

has also increased substantially, posing massive computational and communication

demands, which make the implementation and operation of such algorithms in em-

bedded systems more challenging. Hardware acceleration through specialization has

thus received renewed interest in recent years; such acceleration has generally been
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implemented using two chips, with the image signal processing (ISP) being performed

by a DSP, a GPU or an FPGA and the video content analytics (VCA) being executed

by a processor. GPUs consume a substantial amount of power; thus, it is challenging

to deploy them in embedded environments. However, the new generation of SoC-

FPGAs, which are fabricated with both a microprocessor and an FPGA on a single

chip, consume less power and can be built into smaller systems, thereby offering an

attractive platform for embedded applications.

The algorithm discussed in this chapter can be performed in either 2D or 3D

space. The proposed module uses photometric invariant color, depth data and local

binary patterns (LBPs) to distinguish background from foreground. The system uses

minimal cell resources, an elastically pipelined architecture is used to compensate for

variations in processing time, and each pipeline stage is optimized to use the available

FPGA primitives. Additionally, the communication-centric architecture used in this

approach simplifies the implementation of embedded vision algorithms.

The next chapter discusses a human detection module that serves as the second

stage of preprocessing in order to restrict the main processing to areas in which hu-

mans are present. The output of the foreground and background subtraction module

provides the foreground probability that is used as one of the elements of the feature

vector for human detection.
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Chapter 4

System-on-Chip-Based Hardware

Acceleration for Human Detection in

2D/3D Scenes

4.1 Introduction

Human detection is very important for many embedded computer vision (ECV) ap-

plications, such as surveillance and security systems, that human action and activity

recognition. Most previously proposed methods follow four steps: first, a number

of spatiotemporal locations are sampled. Then, a local feature extractor extracts

features around points of interest, and local features are encoded into a single com-

prehensive descriptor. Finally, a discriminative classifier is employed to find the most

likely category. Since hardware resources (cells) are limited, the implementation of

all these steps is challenging and becomes more challenging when an algorithm is

required for real-time applications. Although the new generation of system-on-chip

(SoC) field gate programmable arrays (FPGA) has more resources, finding an effec-

tive balance between speed (real time) and stability is still difficult. To address this

problem, preprocessing is required to identify the point of interest in the frame and

reject unimportant parts, e.g., detecting the part of the scene in which humans are

present and removing the remaining parts.

This chapter presents an embedded computer vision system for human detection,

which is part of the overall framework for developing an embedded vision system for

recognizing human actions. We define two preprocessing steps for action recognition:
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the first is foreground and background identification (Figure 4.1), which was discussed

in chapter 3. Then, based on the results of this first step, the second module identifies

humans present in the scene. The feature extraction process and the classifier used

after the second preprocessing module to identify the type of action will be covered

in the next chapter. The proposed method for human detection takes advantage of

covariance mapping and an integral image in a sub-region of the entire 2D/3D im-

age feature space. The video content is fused from the spatial, temporal, and depth

domains to consider appearance, foreground, and depth data. The proposed imple-

mentation runs on the Xilinx SoC Zynq-7000 (XC7Z020). The Zynq-7000 integrates a

dual core ARM processor and an Artix-7 FPGA in a single device. The ARM proces-

sor has on-chip and external memory interfaces and supports peripheral connectivity.

The processor reads raw data from the USB interface or SD card storage and passes

it to the programmable logic. The detection algorithm that is implemented in the

programmable logic unit is applied to the raw data.

The remainder of this chapter is organized as follows. Previous work related to

human detection and the proposed algorithm are discussed in Sections 4.2 and 4.3,

respectively. The design of the video processing modules for the embedded video pro-

cessing algorithm is presented in Section 4.4, and the implementation and evaluation

results are discussed in Section 4.5. The conclusions are presented in Section 4.6.

4.2 Related Work

Human detection is the one of the key components of most computer vision appli-

cations. It is always a complicated problem because of human body articulation,

clothing color, and environmental conditions such as light, shadow and oscillation.

Most algorithms require a complete view of each human subject, and sometimes, when

part of the body is occluded by another object, such an algorithm fails to recognize

a human who is present in a scene.
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Human detection algorithms can be grouped into two categories. Algorithms of

the first type are called shape models. In such a model, the parts of the body are

represented by combinations of joints in a geometric model, and classifiers such as

AdaBoost are trained on these body parts and are then employed for human detection.

The main drawback of this approach is that it is not applicable to low-resolution

frames. In addition, this approach involves many mathematical operations, which

impedes its implementation speed.

Methods of the second type are called appearance methods. In such a method,

a scene is divided into sub-regions, and a separate detector is applied to each sub-

region. Most recent approaches, in the forms of both algorithms and system-level

implementations, attempt to use appearance-based methods [1] [2] [3]. Appearance

methods rely on extracted features that are encoded with feature descriptors and

employ classification methods to identify humans.

Among the available feature descriptors that have been proposed, local self-similarities

[4], contour-based methods [5] [6], gradient-based methods (HOG) [7] [8] and Haar-like

features are all commonly used for human detection. Among the available classifica-

tion algorithms, principal component analysis (PCA), support vector machine (SVM)

classifiers, and combined learning approaches such as AdaBoost are widely used for

human detection. Experimental results prove that among the available feature de-

scriptors, HOG descriptors tend to offer the best classification performance. Human

identification on the basis of shape texture information was discussed in [9] [10]. The

results of the studies presented in [11] [9] [10] indicate that an appearance-based

method with HOG descriptors outperforms the shape texture approach.

Various approaches based on different descriptors and classifiers have been pro-

posed. In [12], Haar wavelet descriptors were used with a support vector machine

(SVM) classifier. The method proposed in [13] is based on a densely sampled his-

togram of gradients descriptor and an SVM classifier, whereas in [14], a histogram of

optical flows is used. The algorithms used in these approaches yield acceptable re-
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sults; however, their computation processes are too complicated to implement directly

using a simple FPGA circuit.

Image and video processing applications typically require considerable data pro-

cessing and sometimes complex mathematical operations, requiring a high-performance

CPU or even a multi-core system. However, recent portable vision applications, which

have strict requirements regarding power efficiency, cost, and stability, provide design-

ers with an embedded solution. At present, the options for implementing computer

vision algorithms on hardware include DSPs, FPGAs, mobile PC processors, and SoC

FPGAs. Of course, each of these implementations is highly application-dependent.

However, most embedded vision implementations for human detection involve the

following tasks: (a) image acquisition, to capture input frames; (b) preprocessing, to

reduce noise and generate a mask image to identify the region of interest (RoI); (c)

feature extraction and encoding; and (d) high-level processing or recognition analysis

for human detection and identification.

4.3 Algorithm

As previously mentioned, because of the resource limitations of embedded systems,

an algorithm that requires few mathematical operations is required. In our proposed

method, we use covariance mapping in each sub-region of the 2D/3D image feature

space. These sub-regions are defined by the foreground and background identification

module discussed in chapter 3.

4.3.1 Foreground Identification

The output of the foreground and background identification module specifies the area

of the screen that is rich in information. The operation of this module, as discussed

in the previous chapter, is based on the foreground probability and a threshold value.

By defining a specific threshold, unimportant parts can be identified and removed
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from the scene. Figure 4.1 presents the result of the first stage of preprocessing.

The output of this module is a foreground probability value that is used as one of

the elements of the feature vector, as discussed in Section 4.3.2, and restricts the

movement of the detection window to the area (ROI) defined by the mask image.

4.3.2 Covariance Descriptors

Efficient detection algorithms rely on feature selection. Good features should be infor-

mative and discriminative. However, in an embedded system application, hardware

resources are limited. Therefore, the detection algorithm should be computationally

efficient and require few resources. In this study, we use a covariance matrix to fuse

multiple features and employ an integral image technique to achieve fast computa-

tion with fewer resources. Consider pixel p in image I in a 3D space with dimension

W ×H. We can extract each pixel location p = (x, y, z), where z represents depth in-

formation. Let f represent the defined features for each point; thus, the total number

of feature vectors is W × H × f . The feature vector f is defined as follows:

f = { |∇Gx|, |∇Gy|,
√
∇G2

x +∇G2
y, arctan

|∇Gy|
|∇Gx|

|∇Dx|, |∇Dy|,
√
∇D2

x +∇D2
y, arctan

|∇Dy|
|∇Dx|

FP } (4.1)

where ∇Gx and ∇Gy are the first-order intensity derivatives of the horizontal and

vertical changes, respectively, and arctan |∇Gy |
|∇Gx| is the orientation of the edge. FP is

the foreground probability value for each point. The probability value is computed

using the foreground and background identification modules. ∇Dx and ∇Dy are

the first-order depth derivatives of the horizontal and vertical changes, respectively.

In the most of the previously proposed methods, the authors used the second-order

derivatives results to make the results more informative. However, since the primary

concern with the hardware implementation is the reduction of the computation oper-
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ation, we use the results of the foreground identification module, which identify the

ROI. Figure 4.1 shows the results of foreground and background identification of the

three input streams. There are three scenarios: only a human, only a car on a high-

way, and both a human and a car. This preprocessing step restricts the result of the

human detection operation to the area that has the maximum probability foreground

value. By identifying the ROI, the covariance matrix CR and mean vector µR can be

defined as follows:

CR =
1

|R| − 1

∑
x∈R

(f(x)− µ)((f(x)− µ)T

µR =
1

R

∑
x∈R

(f(x)) (4.2)

An integral image technique is used to improve the speed of the covariance computa-

tion. This technique involves intermediate image representation for fast computation

of the ROI. Each pixel of the ROI is the sum of all pixels inside the upper left corner

of the region of interest and the pixel of interest.

Integral Image =
∑

x<x′,y<y′

I(x, y) (4.3)

The (x, y) element in equation 4.2 can be rewritten as follows:

CR(x, y) =
1

|R| − 1

∑
x,y∈R

(f(x)− µ(x))((f(y)− µ(y))T (4.4)

By expanding the mean vector, equation 4.4 can be rewritten as follows:

CR(x, y) =
1

|R| − 1

[ ∑
x,y∈R

(f(x)f(y))

− 1

n

∑
x∈R

f(x)
1

n

∑
y∈R

f(y)

]
(4.5)
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(a) (b) (c)

Figure 4.1 – Input Stream (a), foreground probability (b) and mask image (c).

According to equation 4.5, we multiply two features (first term = Q) and the sum of

each feature (second term = P) to compute the covariance matrix.

P (x′, y′, i) =
∑

x<x′,y<y′

f(x, y, i) i = 1 . . . f (4.6)

Q(x′, y′, i, j) =
∑

x<x′,y<y′

f(x, y, i)f(x, y, j) i, j = 1 . . . f

(4.7)

Px,y =
[
P (x, y, 1) . . . P (x, y, f)

]T
(4.8)
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Figure 4.2 – Block diagram of the proposed human detection system.

Qx,y =


Qx,y,1,1 · · · Qx,y,1,f

...

Qx,y,f,1 · · · Qx,y,f,f

 (4.9)

The computation result in [15] shows that by constructing an integral image, the co-

variance of any ROI can be computed in O(d2) time. Considering the region bounded

by (1,1) and (x′, y′), the covariance could be defined as follows:

CR(1,1,x′,y′) =
1

|n| − 1

[
Qx′,y′ −

1

n
Px′,y′P

T
x′,y′

]
(4.10)

Since the covariance matrix is not a vector, we use the method proposed in [16]. This

method uses Riemannian geometry, which focuses on the space of symmetric positive

definite matrices. In this approach, the covariance matrix of the feature vector is
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mapped into Euclidean tangent space.

h : X→ x = h(X) h(x) = vecµl(logµl(X)) (4.11)

vecz(y) = upper(Z−
1
2 yZ−

1
2 ) (4.12)

log Z = Z
1
2 log(Z−

1
2 yZ−

1
2 )Z

1
2 (4.13)

log(Σ) = U log(D)UT → Σ = UDUT (4.14)

Here, x is a point in the vector space x∈ Rm , X is a point on the Riemannian

manifold X∈M , Σ is the eigenvalue decomposition of the symmetric matrix, log(D)

is a diagonal matrix, and upper refers to the upper triangular part of the matrix.

4.3.3 LogitBoost Algorithm

LogitBoost is a machine learning algorithm that applies established logistic regression

techniques to the AdaBoost method [17]. LogitBoost combines multiple weak classi-

fiers that return true or false. The output is used to construct strong classifiers. In

the detection step, we use the LogitBoost algorithm that was trained on the features

extracted from the ROI and then compare it with the input image feature to detect

a human.

4.4 Hardware Implementation

A block diagram of the SoC FPGA implementation of the human detection algorithm

is illustrated in Figure 4.2. The details of the implementation of each module is

discussed in this section. All the modules were written in VHDL and synthesized

with a Vivado 2015.2. The software executed by the ARM processor was written in

C and compiled with the Xilinx SDK 2015.2.
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Algorithm 2 LogitBoost

1: Fi,k ← 0

2: pi,k ← 1
K

3: k ← 0 · · ·K − 1

4: i ← 1 · · ·N

5: if yi = k then

6: ri,k = 1

7: else

8: ri,k = 0

9: end if

10: for m← 1 to M do

11: for k ← 0 to K − 1 do

12: ωi,k = pi,k(1− pi,k)

13: zi,k =
ri,k−pi,k

pi,k(1−pi,k)

14: Fi,k = Fi,k + K−1
k

(fi,k − 1
K

∑K−1
k=0 fi,k)

15: end for

16: pi,k =
expFi,k∑K−1

s=0 expFi,k

17: end for
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4.4.1 Input Frame

In this implementation, we use a depth camera (SoftKinect) [18] that can simultane-

ously generate RGB and depth data. This camera also includes a UV map generator

that can merge depth and RGB data without calibration. The camera connects di-

rectly to the USB interface on the Xilinx board. We also use videos stored on an SD

card. The processor system (PS) unit transfers the RGB and depth data to the two

block VDMAs, which are accessible by the programmable logic (PL) unit.

4.4.2 The AMBA AXI Interface

The SoC-FPGA that we use in this work is interfaced with an AMBA AXI version

4 to interconnect the processor with programmable logic and vice versa. The AXI

interface consists of four 64/32-bit high-performance AXI (HP AXI) slave interfaces,

two 32-bit AXI master interfaces, two 32-bit AXI slave interfaces, a 64-bit AXI ac-

celerator coherency port (ACP) and an extended multiplexed I/O (EMIO) interface.

In this study, we use 2 HP AXI interfaces for stream traffic that connect the proces-

sor to the video processing and video capture modules that require memory-mapped

communication. To control each block, an AXI master interface is used to connect

the modules to the processor.

4.4.3 Video Processing

The raw data is first converted from RGB to grayscale, and the RGB results of

each pixel are stored in a line buffer (depth, 32 bits) that contains 24 bits of RGB

data and 8 bits of luminance data. The luminance calculation requires a clock cycle.

The output of the RGB to grayscale function is transferred to the LBP module to

identify the foreground probability. The details of the hardware implementation with

an LBP with six neighbors are discussed in [19] and chapter three. If pixels do not

satisfy the probability threshold, they will be masked (False), and pixels that satisfy

88



× 

= 

+1 -2 0 +2 -10-1 0 +1

× 

= 

-1 0 0 0 +1-2-1 +2 +1

…..

…..

VDMA Gray VDMA Depth

Figure 4.3 – RTL level first-order derivatives computation.

the threshold are unmasked (True). The masked image is stored in the RAM block

used to identify the ROI. To determine the first-order derivatives, we use three lines

of a 3-stage shift register that contains the pixels of interest with eight neighbors

and a Sobel operator applied to all nine pixels to determine the gradient in both

the horizontal and vertical directions (Figure 4.3). To calculate a square root, we

use the square and square root operations implemented in the arithmetic unit of

the VIVADO IP generator, which requires a single clock cycle for execution. To

avoid a resource-heavy division operation for determining θ, we use the quantized

gradient orientation. By defining the quantization number d, the threshold is given
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by Qd = tan−1((112 − 32d) × π). Consequently, the value of the quantized gradient

orientation is determined as follows:

Qd+1 ≤ arctan
|∇Gy|
|∇Gx|

≤ Qd

tanQd+1 ≤
|∇Gy|
|∇Gx|

≤ tanQd (4.15)

|∇Gx| × tanQd+1 ≤ |∇Gy| ≤ |∇Gx| × tanQd

The feature vector results for pixels encoded by the covariance matrix were explained

in Section 4.3.2, and as discussed, we used the feature of the integral image technique

to improve the computation speed (equations 4.3, 4.4 and 4.5).

The results of the covariance matrix stored in the RAM block are used for human

detection by the LogitBoost classifiers, which are pre-generated by offline learning.

The weak classifiers are generated by the features that appear frequently in human

body data, called positive samples, and features that appear infrequently in the im-

ages, called negative samples. FN, which is the feature vector in the ROI, is obtained

from N-th training times. The strong classifier can be generated using the results of

the weak classifiers as follows:

SClassifier = {WClassifier 1,WClassifier 2, · · · ,WClassifier n} (4.16)

The last step uses a detection window in the input image to compare the features of

the input image with the trained value to detect a human. Here, we use the results of

the ROI, which is determined using the foreground probability results. Rather than

moving the detection window in the whole scene, it is only moved within the region

defined by the masked image.
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Figure 4.4 – The masked image and ROI.

Figure 4.5 – System illustration (left) and the result of human detection (right).

4.5 Implementation Results and Evaluation

The human detection process described in Section 4.3 was implemented on a Xilinx

XC7Z020 board equipped with an XC7Z020-1CLG484C device. Table 4.1 summarizes

the results of the implementation and compares them to those of previous implemen-

tations. We tested the proposed system with two modern datasets with depth data

that are used for human action and activity recognition, i.e., Hollywood [20] and

HON4D [21]. We tested our hardware using the NICTA [22] pedestrian database for

benchmarking. The results of the comparison yielded an 83.4 % detection rate. By
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(a) (b) (c)

Figure 4.6 – Input Stream (a), foreground probability (b) and the result of human

detection (c).

including depth information, the algorithm could distinguish between shadows and

humans in the scenes (Figure 4.6). Table 4.2 summarizes the results of the perfor-

mance analysis for the proposed implementation on hardware- and software-based

systems. The software-based implementation was compiled with visual studio 2013

with boost 1.53.0 and was tested in 1-thread and 16-thread environments. Com-

paring the software- and hardware-based implementations shows that our proposed

system achieves speed improvements of up to 20.5x in 1-thread and 6.72x in 16-thread

environments.

Table 4.1 – Utilized Resources

Target FPGA LUT Flip Flop DSP48E BRAM

Altera Stratix II [23] 37940 66990 120 N.A

Altera Cyclone IV [24] 34403 N.A N.A 348

Spartan 3 [25] 28616 N.A N.A 100

Virtex 5 [26] 17383 2070 N.A 36

Proposed System (Zynq) 30235 15017 80 126
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Table 4.2 – Performance analysis; Software-based implementation on Intel CPU (3.40

GHz) and SoC FPGA

Module 1-Thread 16-Thread SoC FPGA

Foreground Probability 40ms 14ms 1.91ms

Human Detection 77ms 24.30ms 3.79ms

Total 117ms 38.3ms 5.7ms

4.6 Conclusion

In this chapter, an SoC FPGA-based video processing system is presented. The

proposed algorithm employs parallel processing and pipeline architecture to perform

human detection. The system can be used with both 2D and 3D data, and it works

with low-resolution video data. The experimental results for all tested datasets indi-

cate that the proposed method can be used as a preprocessing stage in human action

recognition algorithms to remove unimportant parts of a scene.

4.7 Summary

A system-on-a-chip field-programmable gate array (SoC-FPGA)-based video process-

ing platform for human detection in complex scenes is discussed. This chapter de-

tails the hardware-based implementation of a human detection algorithm for 2D/3D

scenes, including the capture, video processing, and display stages. The proposed

method is implemented by extending a previously proposed method that uses fea-

tures extracted from the Riemannian manifold of region covariance matrices com-

puted from 2D data. The proposed method considers both 2D and depth data (3D).

The LogitBoost classifier is employed to detect humans. The proposed implementa-

tion uses minimal resources and employs a pipeline technique for better performance
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and operation.
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Chapter 5

System-Level Design for Human Action

Recognition in 3D Scenes

5.1 Introduction

Significant technological breakthroughs in embedded vision have been achieved in

recent years due to the development of technologies that enable the implementation

of various complex image and video content analysis (VCA) algorithms with improved

performance, higher efficiency, and reduced cost.

Among the applications of computer vision, human action and activity recognition

is expected to become increasingly important and receive increasing attention due to

its wide applicability. Rapid advancements in camera technology and memory storage

capabilities have made high-resolution videos readily available to everyone and for

various types of applications. The applications involving human action recognition

can be divided in two main subcategories: applications in which real-time operation

and recognition are essential and applications in which real-time operation is not

mandatory. Among applications of the second type, video indexing is currently a

common application for which operations can be performed offline. Applications

in the first category include smart security and severance systems, care for elderly

people and assistance for sick people. In these applications, real-time operations are

essential.

The complexity of human action recognition algorithms is very high, and such

algorithms typically involve suboperations that require massive resources for com-
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putation and communication. These suboperations include image acquisition, image

pre-processing, feature extraction and classification. Most of the currently proposed

methods rely on software-based implementations. This means that all processing and

classification operations are executed in a loop of sequential operations. Even if there

are multiple cores available for processing, the operations must still be executed se-

quentially. The drawback of this method of implementation is its inherent delay in

making fast and correct decisions, which might be critical depending on the type of

application.

To cope with this problem, it is necessary to make the operations as parallel as

possible in order to speed up their execution. Hardware acceleration has played a key

role in the development of such systems by allowing some functions to be performed

more efficiently than is possible with software running on a general-purpose processor.

To utilize a hardware accelerator, the tasks must be divided between the host

processor and the accelerator device. Signal processing tasks, which require massive

computational operations, are assigned to accelerators such as digital signal processors

(DSP), graphics processing units (GPU) or field-programmable gate arrays (FPGAs),

while video content analysis and control operations are assigned to the host processor.

The problem of the operation speed can be addressed by executing operations with

parallel instruction code and utilizing a GPU; however, for applications in which

integration and portability are important, such as smart security cameras, GPUs

are not an efficient solution. In addition, the high power consumption of GPUs is

another drawback for battery-powered devices. Another solution is to utilize a DSP as

an accelerator; however, DSPs are efficient only for specific mathematical functions.

Using an FPGA as an accelerator can provide both lower power consumption and the

capability of parallel operations; however, for better integration, a new generation

of SoC-FPGAs fabricated with both a microprocessor and FPGA on a single chip

has been introduced. These SoC-FPGAs consume less power and can be integrated

into smaller systems, thereby offering an attractive platform for embedded computer
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vision applications.

This chapter presents a hardware acceleration scheme for a VCA application, i.e.,

human action and activity recognition in a SoC, including the capture, processing and

display stages. The framework, as discussed before, consists of the following submod-

ules: foreground probability estimation (foreground and background subtraction),

human detection, and interest point detection via support vector machine (SVM)

classification. The remainder of this chapter is organized as follows. In Section 5.2,

we discuss the algorithms proposed for human action activity recognition and the

advantages and disadvantages of each method. Additionally, we present related work

on the implementation of vision algorithms in embedded systems. In Section 5.3,

we introduce our framework and provide a mathematical description of the proposed

framework. Our method of implementing the proposed algorithm is discussed in Sec-

tion 5.4, and the resources utilized and the evaluation of the implementation are

discussed in Section 5.5. Finally, in the last section, we present our conclusions.

5.2 Related Work

Human action recognition has recently become an active topic in the area of com-

puter vision. Many algorithms have been proposed in recent years, and these methods

can be classified as model-based or appearance-based methods. In the model-based

methods, the pose of the human body is recovered from the input stream and the

type of action is defined based on pose estimations. This approach is based on bio-

logically plausible methods. Although the performance of this approach is acceptable

and provides useful information, because variability exists in human motion, high-

dimensional models, which are extremely challenging to implement in hardware, are

required.

Appearance-based methods represent human action based on image features and

motion information extracted from 2D and 3D image sequences. The advantages
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of this approach are that it relies on only motion characteristics and it does not

require a specific model for implementation. Moreover, the mathematical models of

the appearance-based methods are easier to implement than those of the model-based

methods. Separable-linear filters or spatio-temporal Harris corners are two popular

examples of interest point detection. Descriptors are used to encode interest points

in several ways, such as SIFT, SURF, FREAK, BRIEF, ORB, pixel gradients, and

Jet descriptors. Background identification can also be included in terms of context

by taking advantage of this approach to remove unimportant parts of an image.

Currently, embedded vision platforms are composed of DSPs, FPGAs, GPU, mo-

bile PC processors, and SoC-FPGAs. Each of these implementations is highly appli-

cation dependent; however, most embedded vision applications share some common

modules:

Capture: The input stream that is captured by 2D/3D sensors and then transferred

to memory. For applications that are not real time or that can work offline, the input

stream can be transferred from stored memory, such as an SD card.

Low-level processing: Basic enhancement, such as noise reduction and lens distor-

tion, is employed.

Interest point detection and Feature descriptor: Interest points, such as edges,

corners, and blobs, are detected and encoded by feature descriptors.

Segmentation (optional): Segmentation depends on the type of application and

is commonly used for biomedical imaging.

High-level processing: High-level processing provides the recognition result.

5.3 Algorithm

When streamed in a constrained environment or background, extracted features are

likely to select robust features that are highly correlated with the event of inter-

est. However, in most video streams, in which the environment and camera position
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Figure 5.1 – Input stream (left), foreground probability (middle) and mask image

(right).

Figure 5.2 – The results of human detection in three environments.

change, feature points are sparse. To address this problem, our methodology detects

interest points in a region defined by two preprocessing steps, i.e., foreground and

background identification and human detection. The output of these preprocessing

steps identifies a region with rich information, and regions that do not meet the

minimum probability are filtered out. The mathematical operations and hardware

implementation of these two preprocessing steps have been presented in chapter 3

and 4 (Figures 5.1 & 5.2). Next, the detected points are encoded using a well-known

technique, i.e., bag of visual words (BOW). Finally, SVM is employed to recognize

the type of action.

5.3.1 Interest Point Detection

The results of the abovementioned preprocessing steps used to identify the ROI can

also be used to extract interest points in the spatio-temporal domain. Here, we use ex-
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tended detection algorithms based on the Harris corners method proposed by Laptev

and Lindeberg [1] and the Hessian points method proposed by William et al. [2].

Harris Corners: The Harris corners method, which was extended into the spatio-

temporal domain by Laptev and Lindeberg [1], is widely used for interest point de-

tection in time-based applications. Hadfield et al. [3] [4] included depth data, which

was determined based on equation 5.1. The interest point operator works in the

spatio-temporal domain with strong intensity variations along three axes.

Iz =
Ix
Dx

+
Iy
Dy

+
It
Dt

(5.1)

µ = g(σ2, τ 2) ∗


IxIx IxIy IxIt IxIz

IxIy IyIy IyIt IyIz

IxIt IyIt ItIt ItIz

IxIz IyIz ItIz IzIz

 (5.2)

H = det(µ)− k trace3(µ) (5.3)

Hessian Points: Williams et al. [2] defined a Hessian matrix as an extension of

the method proposed by Beaudet [5]. The Hessian matrix was determined based on

second-order intensity derivatives, where the strength of the interest point is defined

by equation 5.4. The gradients along the z-axis, as defined in the Harris operator,

are calculated using the relationship between the stream intensity and the depth.

µ′ = g(σ2, τ 2) ∗


Ixx Ixy Ixt Ixz

Ixy Iyy Iyt Iyz

Ixt Iyt Itt Itz

Ixz Iyz Itz Izz

 (5.4)

5.3.2 Feature Descriptors

The results of interest point detection must be encoded by feature descriptors to gen-

erate temporal and spatial translation invariants. One successful feature descriptor,
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i.e., BOW, was extended by Hadfield [3] [4] to recognize action in a 3D scene. BOW

comprises a concatenation of a histogram of oriented gradients (HOG), a histogram-

oriented flow (HOF), and histogram-oriented depth gradients (HODG).

ρ(x, y, t) = {HOG(I(x, y, t)), HOF (I(x, y, t)), HODG(D(x, y, t))} (5.5)

5.3.3 Classification

We use multi-class SVM with a kernel radial basis function (RBF) to classify the

type of action. Equations 5.6 and 5.7 represent the decision function and kernel,

respectively.

sgn(ωTφ(x) + b) = sgn(
ι∑
i=1

yiαiK(xi, x) + b) (5.6)

K(xi, xj) = exp(−γ‖xi − xj‖2) (5.7)

5.4 Hardware Implementation

To design an embedded vision system, the exploration, computation, and communi-

cation functions are designed separately before integration. A block diagram of the

developed SoC-FPGA circuit is shown in figure 5.3. Our design is built modular-

wise and then merged to allow functional human activity recognition. In the SoC-

FPGA Zynq system, the processing system (PS) is used to transfer the stream to the

programmable-logic (PL) component, where the actual recognition algorithm is im-

plemented. The architecture captures a data stream from a camera or stored memory

and transfers it to a logic circuit. Then, after processing the result passed to an HDMI

interface, the model represents concurrent processing, pipeline stages, and interface

between blocks.
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Figure 5.3 – SoC FPGA block diagram showing video devices in the FPGA fabric,

which accelerates vision algorithms.

5.4.1 Communication

The proposed architecture separates data into two domains, and it is necessary to de-

fine separate clock domains to work with the stream data and the intrinsic-algorithm

data independently. The separate clock domains provide data alignment between

the streaming and algorithm-intrinsic traffic. We employ a communication-centric

architecture to resolve this problem, which also provides a framework for algorithm-

intrinsic data access. The first clock domain is the computation domain, which is

set by streaming data clocking the vision kernel. The second is the communication

domain, which is set by the interconnection of operational data. Separate data paths

are used to separate data access using individual ports, where streaming data uses the

internal and external ports. For the external port, an efficient solution is obtained by

utilizing the systems own port platform (i.e., a USB or SD interface) to read a data

stream and an HDMI interface to illustrate the stream. For the internal port, the

AXI interface is used. The SoC-FPGA we use in this study is interfaced with AMBA

AXI version 4 to connect the PS and PL. In this study, we use two HP AXI interfaces

for stream traffic. They connect the processor to the vision-kernel and video-capture
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Figure 5.4 – The masked image and ROI window.

modules, which require memory-mapped communication. To control each block, an

AXI lite interface is used to connect the vision kernel to the processor. The develop-

ment platform has multiple common interfaces, such as USB and SD memory readers

and an HDMI driver (ADV7715). A dedicated DMA connected to the DDR3 is used

to read-back and write-back vision-kernel-intrinsic parameters. The DMA operates in

circular mode and automatically restarts when a new frame is input. The advantage

of this technique is that it eliminates unnecessary synchronization with the processor.

Since the input stream and kernel operate in different clock domains, any misalign-

ment between an input pixel and the kernel data affects the entire process; therefore,

the initial alignment is synced when the first frame is input to address this problem.

5.4.2 Computation

The output of foreground and background identification and human detection de-

termines the ROI (Figure 5.4) that can be used for interest point detection in the

spatio-temporal domain (equations 5.2 and 5.5). The Harris corners method relies

on the values of the intensity gradients along the spatial and temporal dimensions

and the gradient of the depth stream. The Hessian point method relies on the values

of the second-order intensity derivatives. The values of the intensity gradients along
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Figure 5.5 – RTL representation interest point detection, Harris Corners 3D.

108



× 

= 

+1
-2

0
+2

-1
0

-1
0

+1

V
D

M
A

 
G

ra
y

-1
0

0
0

+1
-2

-1
+2

+1

× 

= 

+1
-2

0
+2

-1
0

-1
0

+1

V
D

M
A

 
D

e
p

th

-1
0

0
0

+1
-2

-1
+2

+1

× 

= 

+1
-2

0
+2

-1
0

-1
0

+1

V
D

M
A

 
G

ra
y 

[t
+

1
]-1

0
0

0
+1

-2
-1

+2
+1

V
D

M
A

 
G

ra
y 

[t
-1

]

V
D

M
A

 
D

e
p

th
 [

t+
1

]

V
D

M
A

 
D

e
p

th
 [

t-
1

]

÷ 

÷ 

÷ 

…
..

× 

V
D

M
A

 
G

ra
y

…
..

…
..

…
..

…
..

…
..

Figure 5.6 – RTL representation interest point detection, Hessian Corners 3D
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the x- and y-axes are obtained by the circuit shown in figures 5.3, 5.5 and 5.6. The

implemented circuit consists of a 3 × 3 × 8-bit shift register that is accessible by

each cell in parallel and a w × 2 × 8-bit block of RAM that stores the results of

each cell multiplied by each cell of a 3 × 3 × 8-bit Sobel operator (Figure 5.6). By

serializing the multiplication, one multiplier can be saved. The result of the square

root is extracted by an arithmetic unit, IP, and the quantized gradient orientation is

used to avoid resource-expensive division to determine θ.

The values of the intensity and depth gradients in the temporal domain are ob-

tained by storing the results of three consecutive frames. The value of Iz (equation

5.2) depends on the values of the intensity gradients Ix, Iy, and It, and the gradient

depths Dx, Dy, and Dt can be determined after the values of It and Dt are obtained.

The value of the intensity variation in equation 5.2 is computed via the IP arithmetic

unit.

The convolution of a first-order Sobel filter kernel with another first-order Sobel

filter gives the kernel for a second-order filter, which is given as follows.

Kxx = (Ksobel
x ∗Ksobel

x ) Kxy = (Ksobel
x ∗Ksobel

y )

Kxz = (Ksobel
x ∗Ksobel

z ) Kxt = (Ksobel
x ∗Ksobel

t )
(5.8)

The circuit shown in figure 5.6, which consists of 5 × 5 × 8-bit shift registers that

are accessible by each cell in parallel and a w × 4 × 8-bit block of RAM, can be

used to determine the second-order derivatives. To make the circuit applicable in

the border of the image, the dimensions of the image are extended to ((w + 4) ×

(h + 4)) by adding dummy values along the image borders. The determinant of the

matrix is computed via an arithmetic unit. After employing the Harris and Hessian

operators on the interest points, the points that meet the minimum threshold are

considered salient points. Then, the result of the saliency information is encoded by

a feature descriptor. As explained in Section 5.3, a BOW is used in this study. For

the BOW, it is necessary to compute the HOG, HODG, and HOF, and because the

values of the HOG and HODG are computed in the ROI during preprocessing, the
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only remaining operation is to filter out the interest points that are not considered

for the saliency map. This filtering can be performed using a mask filter generated

during the comparison of the results of the outputs of the Harris and Hessian operators

according to the threshold and computing the HOF. In this study, to implement the

HOF, we use the method proposed by Gultekin and Saranli [6]. Here, consider E(x,

y) as the brightest pixel in the coordinate (x, y). This can be determined as follows:

Exu+ Eyv + Et = 0, (5.9)

where u = dx
dt

and v = dy
dt

are the scalar horizontal and vertical components of the

optical flow vectors, respectively. Equations 5.10 and 5.11 compute u and v, and the

values of Ex, Ey, and Et are computed by first-order differentiation of eight pixels.

The average values of the u and v optical flows are estimated using a 3 × 3 weight

matrix. The circuit shown in 5.7 used to compute HOF.

un+1 = un − Ex
Exun + Eyvn + Et
α2 + E2

x + E2
y

(5.10)

vn+1 = vn − Ex
Exun + Eyvn + Et
α2 + E2

x + E2
y

(5.11)

Ex =

−1
4

1
4

−1
4

1
4

× It−1 +

−1
4

1
4

−1
4

1
4

× It (5.12)
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 1
4

1
4

−1
4
− 1

4

× It−1 +

 1
4

1
4

−1
4
−1

4

× It (5.13)

Et =

−1
4
−1

4

−1
4
−1

4

× It−1 +

1
4

1
4

1
4

1
4

× It (5.14)

u, v =


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 (5.15)
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Figure 5.7 – RTL representation HOF computation.
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5.4.3 Classification

In this work, to implement SVM, we use the methodology proposed in [7]. Algorithm

5.1 represents the steps of the SVM classifier. It accepts input as a vector, and the

output defines the type of action. The classifier consists of a few steps and loops

Algorithm 3 SVM

1: V = { Vector to classify }

2: for xi ← 1 to V do

3: ci ← theclassofx

4: ki ← K(xi, x)

5: for All c class do

6: if ci 6= cj then

7: d = index of the decision

8: Sd = Sd + yd,i × αd,i × ki
9: end if

10: end for

11: end for

12: for All decision d do

13: if Sd − bd > 0 then

14: Vi = Vi + 1

15: else if

16: thenVj = Vj + 1

17: end if

18: end for

19: cn with the highest Vn is selected.

that are repeated for each input vector. The first loop, which is called the main

loop has an additional inner loop, called the sum loop, and the second loop in the

main sequence is called caparison loop. The main loop consumes the most time, and
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it has some inner loops and performs complicated mathematical operations, such as

multiplication and exponentiation. To parallelize the operation to improve the speed,

the shared data S are duplicated and then merged at the end of the process. As a

result, each duplicated shared data S can run in parallel with others. The iteration

of the sum loop is defined based on the number of classes; therefore, it is independent

and can run in parallel. By contrast, the sum loop depends on the vote counter,

which can be run in parallel by initially duplicating and then merging at the end of

each iteration. These modifications enable the SVM to be run partially in parallel.

Some of the constant parameters, such as wi and the bias b, can be loaded by the

processor.

5.5 Implementation Results and Evaluation

The proposed human action recognition methodology was implemented with a Xilinx

XC7Z020 development board equipped with a Zynq SoC XC7Z020-1CLG484C. The

clocks for the system were a 140 MHz for the FPGA and 866 MHz for the ARM

processor. All the modules for the programmable logic part were written by VHDL

and synthesized by Xilinx Vivado 2015.2. The ARM processor software was written in

C and developed in Xilinx SDK 2015.2. We tested the proposed system on two modern

datasets with depth data that are used for human action and activity recognition,

i.e., Hollywood [3] and HON4D [8]. The results are presented in tables 5.1, 5.2 and

5.3. It should be considered The highest accuracy was reached on a PC with floating-

point variables and operations, whereas in this work, we used fixed-point variables.

Additionally, we compared our results with other methods on a challenging dataset [9]

and summarized the correctly classified rates in table 5.4.
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Table 5.1 – FPGA Consumed Resources

Target FPGA LUT Flip Flop DSP48E BRAM

Virtex-II [10]1 40960 40960 N.A 160

Kintex-7 [11] 123708 N.A 320 265

Virtex-6 [11] 197025 N.A 168 247

Proposed System (Zynq) 36962 42115 108 96

1 Consumed resources considered based on summation of all implementation.

Table 5.2 – Average precision per class on the 3D action dataset [4]

Action 4D Ha Proposed Method 4D He Proposed Method

NoAction 12.9 12.9 12.2 13.0

Run 22.4 23.2 15.9 17.3

Punch 4.8 5.0 2.9 4.6

Kick 4.3 4.5 4.2 4.5

Shoot 17.2 19.0 18.9 19.1

Eat 5.3 5.3 3.6 5.5

Drive 69.3 73.0 25.6 27.0

UsePhone 8.0 8.4 14.7 15.6

Kiss 10.0 10.8 8.5 9.1

Hug 4.4 4.6 3.5 8.6

StandUp 7.6 7.9 7.0 7.7

SitDown 4.2 5.5 4.5 5.0

Swim 5.5 7.2 7.8 8.4

Dance 10.5 14.6 4.2 4.9

Average 13.3 14.4 9.8 10.7

115



Table 5.3 – The performance of our method on MSR Action 3D dataset [8] compared

to previous approaches.

Method Accuracy %

HON4D + Ddisc [8] 88.89

HON4D [8] 85.85

Jiang et al. [12] 88.20

Jiang et al. [13] 86.50

Yang et al. [14] 85.52

Dollar [15] + BOW 72.40

STIP [16] + BOW 69.57

Vieira et al. [17] 78.20

Klaser et al. [18] 81.43

Proposed Method 87.20

5.6 Conclusion

In this study, we have presented a SoC-FPGA-based video processing system. The

proposed algorithm employs parallel processing and pipeline architecture to perform

real-time human action recognition. The experimental results for all tested datasets

indicate that the proposed method improves the average precision compared to con-

ventional methods. In the future, we will focus on improving the hardware architec-

ture by using both cores of the ARM processor. In addition, we plan to implement

more complex feature descriptors.
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Table 5.4 – The performance of our method on challenging human action recognition

dataset [9], compared to previous approaches.

Method Accuracy %

SVM on local features [9] 71.7

Cascade of filters on volumetric features [19] 62.9

SVM on MHI [20] 63.5

SVM 2K on MHI & MMHI [21] 65.3

SVM on HWT of MHI & Hist. of MHI [22] 70.9

SVM on MGD & Hist. of MHI [23] 80.3

SVM on spatio-temporal feature [15] 81.2

Learning on spatial-temporal words [24] 81.5

KNN on NZMS [25] 86.0

Proposed Method 88.4

5.7 Summary

This chapter discusses a system-on-a-chip field-programmable gate array (SoC-FPGA)-

based real-time video processing platform for human action recognition. It presents

the details of a hardware implementation for real-time human action recognition in

3D scenes, including capture, processing, and display. The proposed platform was

implemented by adding a two-stage preprocessing step to improve the saliency map

results and utilizing the inherent parallelism of FPGAs. Appropriate circuits for

the parallelized execution of Harris and Hessian interest point detection and support

vector machine classifiers are discussed.
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Chapter 6

System-on-a-Chip (SoC)-based Hardware

Acceleration for an Online Sequential

Extreme Learning Machine (OS-ELM)

6.1 Introduction

Neural networks (NNs) are a powerful class of machine learning algorithms that are

used in a wide range of applications. The complexity of these algorithm depends on

the number of samples. As a result, for applications that require high accuracy, the

number of computational operations required is also quite high. Consequently, when

such an application is embedded, as in the case of an embedded vision, automotive or

security (surveillance) system that must operate in real time, concerns such as power

management, computational efficiency, and efficient resource (cell) utilization become

more important.

One of the active research areas related to NNs concerns extreme learning ma-

chines (ELMs), which are well known for their computational efficiency and their good

performance for high-volume data processing. The ELM approach is based on the

theory of random vector functional link (RVFL) networks [1]; however, ELMs gen-

erally outperform RVFL networks [2]. An ELM is a single-hidden-layer feed-forward

neural classifier in which the hidden layer does not need to consist of identical neu-

rons. Figure 6.1 depicts the structure of an ELM, which consists of a random hidden

layer with nonlinear feature mapping to the output. Its advantages include a low

training complexity, a fast learning speed, the ability to use different types of activa-
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tion functions and a well-known representation ability. Currently, many researchers

are attempting to develop machine learning algorithms with better learning rates and

improved performance; however, few researchers have focused on developing a hard-

ware implementation to execute such an algorithm in its entirety. This has motivated

considerable research on developing systems for utilizing parallel computing platforms

such as field-programmable gate arrays (FPGAs) [3] [4] [5] and graphics processing

units (GPUs) [6] or specialized multi-core microprocessors, whose architectures are

optimized for multiple computational operations.

Implementations of ELMs on GPU platforms have recently been discussed [7];

however, GPUs face challenges with regard to power consumption [8] and are con-

sequently difficult to deploy in embedded environments. Hence, a new generation

of system-on-a-chip (SoC) FPGA-based devices has emerged as an attractive plat-

form for embedded applications. Such devices include both a microprocessor and an

FPGA on a single chip [9] [10], consume less power and can be integrated into smaller

systems.

In this work, we propose a specialized SoC hardware implementation and de-

sign approach for embedded online sequential ELM (OS-ELM) classification. The

OS-ELM approach is based on the ELM approach but is optimized for efficiency in

real-time applications such as human action recognition, in which classification must

be performed every time a new frame arrives. In addition, for use in embedded plat-

forms, the proposed system must consume little power and must often operate with

limited available resources. The presented design was developed as part of a research

program on the development of embedded systems for human action recognition; re-

lated studies concerning the pre-processing and feature extraction stages have been

discussed in previous chapters, whereas in this chapter, we mainly focus on the final

step, namely, classification. Although in the previous chapter, classification via the

SVM approach was presented, the structure of SVM classifiers and their limitations

with regard to real-time operation make the OS-ELM approach a more efficient solu-
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tion for classification. We also discuss how to reduce the hardware complexity of the

OS-ELM classifier by utilizing the processor and the FPGA together and improving

both the area and power requirements through an efficient matrix decomposition for

ELM/OS-ELM training. Moreover, the proposed design attempts to improve the ef-

ficiency of matrix multiplication by dividing the necessary operations into subtasks

to enable pipelined operation and the use of ping-pong memory.

The proposed system and algorithms have been implemented on a SoC FPGA

(Zynq 7000) platform as part of a research program on human activity recognition.

The system was evaluated on two complex and challenging 3D human action recogni-

tion datasets, i.e., Hollywood [11] [12] and HON4D [13], with resolutions of 800×600

and 1280×720. The results of the OS-ELM and ELM implementations demonstrate

that the hardware reduction of the OS-ELM implementation reduces the utilization

of FPGA logic resources by 19-46%. Moreover, the proposed architecture is 200x

times faster than an ARM Cortex-A9 for the matrix inversion computation, which

is one of the most computationally demanding functions, and consumes 157 mW of

on-chip power.

This chapter is organized as follows. Section 6.2 provides some background on

ELM/OS-ELM classifiers and discusses related work. Section 6.3 details the proposed

hardware architecture for ELM/OS-ELM processing and the hardware optimization

method. Section 6.4 presents the results of experimental performance evaluations

and a comparison with related works. The performance of the proposed algorithm

on human action recognition datasets is discussed in Section 6.5. Finally, conclusions

are drawn in Section 6.6.

6.2 Related Work

The fixed training time, possibility of parallel operation and temporal requirements

of ELM classifiers make them good candidates for hardware implementation. Be-
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cause of the specific structure of NNs designed for applications that require online

training and classification, general processors are not efficient for the implementation

of such NNs. To address this problem, various hardware accelerators based on FP-

GAs, GPUs, VLSI/ASICs or SoC FPGAs have recently been proposed to improve the

performance of NN designs. Early NN implementations utilized parallel computing

architectures, such as SIMD [14] [15] or MIMD [16] [17] [18]. In [19] [20], parallel im-

plementations of the learning process were discussed. Neuro-computers are another

class of platforms designed based on computing devices such as digital signal proces-

sors (DSPs) [21] [22] [23] or neuro-processors, as discussed in [24] [25]. VLSI/ASIC

(analog or digital) implementations represent another approach, although analog im-

plementations have disadvantages in terms of precision and data storage and also

lack flexibility, whereas digital implementations [26] [27] offer better accuracy and

can handle standard neural computations. Due to the difficulty of design and the

cost of production, the VLSI/ASIC approach is not popular; however, in a recent

work [28], a compact low-power chip was used to execute the ELM algorithm. Sev-

eral works have attempted to improve the speed of classification by means of the data

acceleration offered by GPUs [6] [29] [30] [29]; however, as discussed above, the power

consumption of GPUs poses a challenge for embedded platforms. Among these ap-

proaches, configurable hardware devices such as FPGAs and complex programmable

logic devices (CPLDs) have been attracting increasing attention from researchers be-

cause of their good performance, high energy efficiency, rapid development cycle and

simple coding. In addition, the reprogrammable nature of FPGAs/CPLDs allows the

current design to be easily mapped to an improved device without any modification.

Several interesting hardware implementations have been reported for various ap-

plications [31] [32] [33] [34]. Among these, the algorithm developed by Decherchi et

al. [33] reduces the complexity of a trained ELM for implementation. A silicon-based

ELM implementation has been discussed by Basu et al. [31]. In [33], an FPGA im-

plementation was discussed in which the training-phase calculations were performed
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Figure 6.1 – ELM architecture.

on a PC. The works presented in [4] [5] discussed both the practical and theoretical

implementation of ELMs in FPGAs using a finite state machine (FSM) approach,

and finally, a recent work on OS-ELM implementation was presented in [5].

6.2.1 Extreme Learning Machine (ELM)

The ELM approach is mainly based on a learning theory for single-hidden-layer feed-

forward neural networks (SLFNs) in which the hidden layer need not consist of iden-

tical neurons. Traditionally, gradient-descent-based methods have been used for feed-

forward NNs, in which all parameters must be tuned, necessitating a long processing

time. By contrast, an ELM contains only one hidden layer in which all of the layer

parameters, weights and biases are randomly defined. Inverse operations can be used

to determine the output weights that link the hidden layer to the output layer.

In this section, we briefly discuss the fundamental theory of ELMs. Further details

can be found in [35] [36] [37] [38] [39].

Let us consider a training dataset X consisting of N arbitrary distinct sample

pairs (xj, yj), j = 1 . . . N , where xj = [xj1, xj2, . . . , xjn]T ∈ Rn is the jth input vector

and yj = [yj1, yj2, . . . , yjm]T ∈ Rm is the jth target vector. Then, an SLFN with L

nodes in the hidden layer, an activation function ϕ(x) and an output function f(x)
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can be defined as follows:

fL(x) =
L∑
i=1

ωiϕi(x) = ϕ(x)ω (6.1)

yj =
L∑
i=1

ωiϕ(ai.xj + bi), j = 1, . . . , N (6.2)

where ωi is the weight vector connecting the ith hidden node to the output nodes and

ϕ(x) = [ϕ1(x), . . . , ϕL] is the “nonlinear feature mapping” of the ELM. The vector

ϕi(x) is the output of the ith hidden node, where ai = [ai1, ai2, . . . , ain]T is the set of

weights connecting the input layer to this hidden node and bi = [bi1, bi2, . . . , bin]T is

the bias term. The ELM training process consists of two steps. First, the hidden node

parameters (a, b) are randomly defined to map the input data into the feature space.

The mapping function could be any activation function [35]; however, the sigmoid

function is commonly used.

ϕi(x) = g(ai, bi, x) (6.3)

g(a, b, x) =
1

1 + e−a.x+b
(6.4)

The second step is to find the values of the weights ωi that connect the hidden nodes

to the output nodes, which are obtained by minimizing the convex cost:

min
ω∈RL×m

‖ϕω − y‖2 (6.5)

ϕ =


ϕ(x1)

...

ϕ(xN)


N×L

=


ϕ1(x1) · · · ϕL(x1)

...
. . .

...

ϕ1(xN) · · · ϕL(xN)


N×L

(6.6)

ω =


ωT1
...

ωTL


L×m

=


ω11 · · · ω1m

...
. . .

...

ω
L1
· · · ω

Lm


L×m

(6.7)

y =


yT1
...

yTN


N×m

=


y11 · · · y1m

...
. . .

...

y
N1
· · · y

Nm


N×m

(6.8)
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where y and ϕ are the training data and the hidden layer output matrix, respectively,

and ‖.‖ is the Euclidean norm. Each row of the matrix ϕ represents the hidden layer

feature mapping with respect to the ith input xi, and each column of ϕ represents

the output of the ith hidden node with respect to the inputs x1, x2, · · · , xN . To solve

equation 6.5, suppose that the number of hidden neurons is equal to the number of

samples; then, the matrix ϕ is square and invertible. By inverting the matrix ϕ, the

output ω can be obtained. However, in practice, the number of samples will typically

be greater than the number of hidden nodes; in this case, the matrix ϕ is not square,

and equation 6.5 is not solvable. To resolve this problem, since a and b are fixed,

equation 6.5 can be regarded as a linear system and thus can be rewritten as

ω = ϕ†y (6.9)

where ϕ† is the Moore–Penrose pseudoinverse of the matrix ϕ, which can be obtained

as follows:

ϕ† = (ϕTϕ)−1ϕT → If ϕTϕ is nonsingular (6.10)

ϕ† = ϕT (ϕϕT )−1 → If ϕϕT is nonsingular (6.11)

Since the training process requires only three calculation steps, the training time can

be extremely fast, which is necessary for applications that require real-time training.

6.2.2 ELM Computations

As discussed with regard to equation 6.9, to obtain the matrix ϕ†, matrix inversion,

transposition and multiplication are required. Among these three operations, the

inversion operation is the most challenging. Various approaches to matrix decompo-

sition have been proposed, among which the Cholesky, LU and QR methods are the

most common. The Cholesky and LU methods are mainly used for positive and non-

singular square matrices, whereas the QR method can be used for any kind of matrix.

In the QR method, a given square matrix ϕ is decomposed into an orthogonal matrix
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Q and a triangular matrix R, ϕ = QR; then, the inverse matrix can be computed

as ϕ−1 = (Q.R)−1 = R−1.Qt. For a nonsquare matrix, the pseudo-inverse of ϕ can

be found as ϕ† = R−1.Qt. Various approaches have been proposed for computing

QR decompositions, including the Gram-Schmidt, Householder transformation and

Givens rotation methods. Among them, the method of Givens rotations is the most

popular because of its stability, whereas the Gram-Schmidt method is not efficient

when run on hardware [40]. In the modified Gram-Schmidt (MGS) model, the stabil-

ity problem is solved. In addition, compared with the original algorithm, it requires

a square root operation in the last step; as a result, it requires fewer operations and

less resources [41].

ϕ = [ϕ1|ϕ2| · · · |ϕn] (6.12)

u1 = ϕ1 (6.13)

u2 = ϕ2 −
〈ϕ2, u1〉
〈u1, u1〉

u1 (6.14)

un = ϕn −
〈ϕn, u1〉
〈u1, u1〉

u1 − . . .
〈ϕn, un−1〉
〈un−1, un−1〉

un−1 (6.15)

e1 =
u1

‖ u1 ‖
e2 =

u2

‖ u2 ‖
. . . . . . . . . en =

un
‖ un ‖

(6.16)

ϕ = [e1|e2| · · · |en]︸ ︷︷ ︸
Q


ϕ1 · e1 ϕ2 · e1 . . . ϕn · e1

0 ϕ2 · e2 . . . ϕn · e2

...
...

. . .
...

0 0 . . . ϕn · en


︸ ︷︷ ︸

R

(6.17)

ϕ−1 = (Q.R)−1 = R−1.Qt If ϕ is a square matrix (6.18)

ϕ† = (Q.R)−1 = R−1.Qt If ϕ is a non-square matrix (6.19)

6.2.3 Online Sequential ELM (OS-ELM)

Recently, in many artificial intelligence applications, online learning algorithms have

begun to be used for time-sensitive tasks, such as deep brain simulation (DBS) and
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human activity and action recognition. In such applications, not all of the training

data are available before the training process begins. One well-known and efficient

online machine learning algorithm is the OS-ELM algorithm [42] [43], which is a

variation of the ELM approach in which data may be received in a one-by-one or

chunk-by-chunk manner, where the chunks may be of fixed or varying sizes. The

OS-ELM algorithm consists of two phases: the initialization phase and the sequential

learning phase.

Initialization

In this phase, the initial hidden layer output matrix needs to be defined based on

the initial chunk of training data. Let us consider a small chunk X0 of the training

dataset X.

X0 = {(xi, yi)}N0
i=1 (6.20)

X0 = {(xi, yi)|xi ∈ Rn, yi ∈ Rm, i = 1 . . . N0} (6.21)

ϕ0 =


ϕ(x1)

...

ϕ(xN0
)


N0×L

=


ϕ1(x1) · · · ϕL(x1)

...
. . .

...

ϕ1(xN0
) · · · ϕL(xN0

)


N0×L

(6.22)

min
ω∈RL×m

‖ϕ0ω0 − y0‖2 (6.23)

ϕ†0 = (ϕT0 ϕ0)−1ϕT0 η0 = ϕT0 ϕ0 (6.24)

ω0 = ϕ†0y0 = η−1
0 ϕT0 y0 (6.25)

Sequential Learning Phase

When a new chunk of data is received, all parameters must be updated. Let us

consider another data chunk, denoted by X1.

X1 = {(xi, yi)}N0+N1
i=N0+1 (6.26)
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X1 = {(xi, yi)|xi ∈ Rn, yi ∈ Rm, i = (N0 + 1) . . . (N0 +N1)} (6.27)

ϕ1 =


ϕ(x

N0+1
)

...

ϕ(x
N0+N1

)


N1×L

=


ϕ1(x

N0+1
) · · · ϕL(x

N0+N1
)

...
. . .

...

ϕ1(x
N0+N1

) · · · ϕL(x
N0+N1

)


N1×L

(6.28)

min
ω∈RL×m

∥∥∥∥
ϕ0

ϕ1

ω1 −

y0

y1

∥∥∥∥2

(6.29)

ω1 = η−1
1

ϕ0

ϕ1

T y0

y1

 η1 =

ϕ0

ϕ1

T ϕ0

ϕ1

 (6.30)

η1 =

ϕ0

ϕ1

T ϕ0

ϕ1

 =
[
ϕT0 ϕT1

]ϕ0

ϕ1

 = η0 + ϕT1 ϕ1 (6.31)

ϕ0

ϕ1

T y0

y1

 = ϕT0 T0 + ϕT1 T1

= η0η
−1
0 ϕT0 y0 + ϕT1 y1

= η0ω0 + ϕT1 y1

= (η1 − ϕT1 ϕ1)ω0 + ϕT1 y1

= η1ω0 − ϕT1 ϕ1ω0 + ϕT1 y1

(6.32)

By substituting equation 6.32 into equation 6.30, the output is obtained as follows:

ω1 = η−1
1 (η1ω0 − ϕT1 ϕ1ω0 + ϕT1 y1)

= ω0 + η−1
1 ϕT1 (y1 − ϕ1ω0)

(6.33)

where η1 is given by

η1 = η0 + ϕT1 ϕ1 (6.34)

The general formulas are given by

Xk+1 = {(xi, yi)}
∑k+1

j=0 Nj

i=(Σk
j=0Nj)+1

(6.35)
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ηk+1 = ηk + ϕTk+1ϕk+1 (6.36)

η−1
k+1 = η−1

k − η
−1
k ϕTk+1(I + ϕk+1η

−1
k ϕTk+1)−1ϕk+1η

−1
k (6.37)

By considering η−1
k+1 with pk+1, we obtain

pk+1 = pk − pkϕTk+1(I + ϕk+1pkϕ
T
k+1)−1ϕk+1pk (6.38)

ωk+1 = ωk + pk+1ϕ
T
k+1(yk+1 − ϕk+1ωk) (6.39)

6.3 System Architecture

As mentioned before, most recently emerging real-world applications are time-sensitive

and require the algorithm parameters to be updated when new data arrive. As a re-

sult, both the training and prediction blocks must work simultaneously. Since each

block has a different mathematical model with a different latency, each block oper-

ates in a different clock domain. In this work, the proposed hardware architecture is

conceived as an IP core that can be integrated into a complex design as an additional

peripheral or can operate as a standalone module. The proposed implementation was

synthesized and run on a Xilinx Zynq SoC 7000. The advantage of the Xilinx Zynq

SoC is that it combines dual-core ARM processors (PS unit) and a programmable

logic block (PL unit) in a single chip. The hardware structure and external data

interface are based on the following five main blocks (Figure 6.2).

• Training module: This module performs OS-ELM training to obtain the

weight parameters using the QR decomposition method. It consists of two

submodules, one for the initialization phase and one for the sequential learning

phase.

• Prediction module: This module classifies the input stream based on the

weights and biases obtained by the training module. The prediction module
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Figure 6.2 – Block diagram of the proposed system.

consist of four submodules: a pre-computation submodule, a control-input sub-

module, a neuron computation submodule and an output submodule.

• Memory: The memory consists of DMA and a shared memory L2 cache to

store the OS-ELM parameters.

• Communication: The AMBA AXI version 4 protocol is the main interface for

the communication of the target IP with other peripherals or processors. The

AXI interface consists of four 64-/32-bit high-performance AXI (HP AXI) slave

interfaces, two 32-bit AXI master interfaces, two 32-bit AXI slave interfaces, a

64-bit AXI accelerator coherency port (ACP) and an extended multiplexed I/O

(EMIO) interface.

• Clock domain synchronization: Since the training and prediction modules

operate in different clock domains, synchronization between them is required.

In a traditional accelerator system, separate chips, such as DSPs, FPGAs and GPUs,

work along with the host processor as co-processors. The host processor manages

the control signals and transfers data to the shared memory. Each co-processor is

triggered by the host processor to execute its operation on the shared data. The
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output of the algorithm is then sent back to the shared memory. In the final stage,

the host processor reads the content of the shared memory and transfers it to the

output port. All transactions are controlled and monitored by the host processor.

However, this approach is inefficient and leads to high overhead. In the new archi-

tecture used in this study, the shared memory between the host processor and the

accelerator is an L2 cache with low latency. An ACP serves as the interface between

the AXI4-Stream interconnect and the host processor (ARM CPU). The ACP is a

64-bit AXI slave interface on the snoop control unit (SCU), which provides an asyn-

chronous cache-coherent access point directly from the PL unit to the host processor

subsystem. The ACP provides a low-latency path between the PS unit and the ac-

celerator implemented in the PL unit. The host processor needs only to initialize the

cache, after which the input data are transferred in a completely independent manner

to the DMA in the PL unit. As a result, more cycles remain available on the host

processor for higher-level processing.

6.3.1 Training Module

The proposed OS-ELM implementation operates in two clock domains. The first

clock domain is used to train the OS-ELM. As mentioned before, the training process

consists of two phases: the initialization phase and the sequential learning phase. In

the initialization phase, after the input data are transferred from the shared memory

to the DMA, the circuit illustrated in figure 6.3 is used to execute the MGS algorithm

to find the matrices Q and R. The circuit consists of three shift registers that store

the results of the operations ui, < ui.ui > and < ui.ϕn >. Each cell of the shift

registers is updated in parallel, which saves clock cycles for further operations. After

the update, the content of each cell is passed to the temporary register for division

and subtraction. The obtained result ui is sent back to the second shift register to

compute ui+1. MUX1 is used to control the input to the second shift register since

during the initialization phase, it is necessary for ϕ1 to be passed directly to SHR2.
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MUX2 controls the input for the subtraction operation. 〈ϕn,u1〉
〈u1,u1〉u1 is subtracted from

ϕn first, and the remaining terms are then subtracted (equation 6.15). The circuit

depicted in figure 6.3 generates {u1, u2, ..., un} as output, which can be used to find

[e1|e2|...|en]. A square root operation is required to find ei, and it is implemented

by an arithmetic unit IP in Vivado. The arithmetic unit generates each element of

the matrix Q as its output. The matrix Q is transferred to the shared L2 memory

cache, and the host processor computes the matrix R and, finally, ϕ†. The second

phase is the sequential learning phase. When new observation data arrive, it is

necessary to recompute the hidden layer output matrix ϕ and the output weight

matrix ω. Equations 6.35 to 6.39 represent this procedure. By considering equations

6.38 and 6.39, we find that multiple matrix operations may affect the performance of

the algorithm in terms of speed and latency. Consequently, the performance of the

algorithm could be improved by improving the computation of equations 6.38 and

6.39. For a more thorough analysis and understanding, we rewrite equations 6.38 and

6.39 using equations 6.41 and 6.42 below.

A = ϕk+1 B = pk C = pk+1 D = ωk E = yk+1 (6.40)

C = B −BAT (I + ABAT )−1AB (6.41)

F = D + CAT (E − AD) (6.42)

Equations 6.41 and 6.42 can be divided into suboperations Tx for pipelining as follows:

C =

T7

B −
T5−6

BAT

T1

(I + ABAT

T1

T2

T3

)−1

T4

AB
T1

(6.43)

F =

T10

D +

T9

CAT

T8

(E − AD
T1

)

T2

(6.44)
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By dividing each equation in this way, the matrix operations can be pipelined at

different levels for high throughput. At the subsystem level, equations 6.43 and 6.44

consist of three functional blocks responsible for the execution of different operations:

multiplication, summation and inversion. Ping-pong memory is introduced between

the blocks to parallelize these functions (Figure 6.4).

Vectorization is employed for each matrix operation within each of the functional

blocks to facilitate a pipelined multiply-and-accumulate architecture. Operations

of this type can be performed using either fixed-point or floating-point variables; for

floating-point variables in particular, decimal point alignment, rounding and exponent

normalization are required, and these additional operations add extra clock cycles.

Consider the implementation of w = x1y1+x2y2+x3y3 such that all of the variables are

fixed-point variables. With the application of a multiply-and-accumulate architecture,

each operation can be implemented by one DSP for pipelined calculations. However,

for floating-point operations, as mentioned above, additional clock cycles are required,

which leads to a significant degradation in efficiency. Therefore, in this work, we define

all variables as fixed-point variables for better performance. This architecture works

by vectorizing the operations and defining an intermediate variable z = x1y1 + x2y2.

This means that instead of calculating one individual w or z, it can more efficiently

Figure 6.4 – Sequential phase computation equations pipelined architecture
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Figure 6.5 – Pipelined architecture for vectorized floating-point/fixed-point multiply-

and-add operations

calculate a vector of both (Figure 6.5):

z1 = x1,1y1,1 + x1,2y1,2

z2 = x2,1y2,1 + x2,2y2,2

z3 = x3,1y3,1 + x3,2y3,2

· · · · · · · · ·

w1 = z1 + x1,3y1,3

w2 = z2 + x2,3y2,3

w3 = z3 + x3,3y3,3

The output of the multiply-and-accumulate module can then be passed to the pre-

viously discussed QR decomposition block for matrix inversion. The performance

validation will be discussed in the Section 6.4.
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Figure 6.6 – Prediction circuit.

6.3.2 Prediction Module

After training, once all parameters have been obtained, the circuit depicted in figure

6.6, which operates in the second clock domain, is used for prediction. This circuit

consists of four main submodules: the pre-computation submodule, the control-input

submodule, the neuron computation submodule and the output submodule. The first

stage consists of multiple shift registers, each of which generates a vector for the ith

neuron:

[(ai.x1 + bi), (ai.x2 + bi), . . . , (ai.xN + bi)]. (6.45)

The input to each neuron is selected by a MUX, and the output of each neuron is

computed as ϕi = g(ai, bi, xj=1...N) and is passed to the output stage to compute

yj =
∑L

i=1 ωiϕ(ai.xj + bi), j = 1, . . . , N .

6.3.3 Clock Domain Synchronization

When a signal is transferred between circuits in unrelated or asynchronous clock

domains, it is necessary to synchronize this signal to the new clock domain before it
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can be used. Since the training and prediction modules operate in two different clock

domains and the updated algorithm parameters ω and ϕ need to be passed to the

prediction circuit, synchronization between the two blocks is required. One common

solution is to use a FIFO approach; however, a FIFO scheme requires considerable

resources for implementation. Our solution is to use both control and data paths. As

represented in figure 6.7, the control path is flop-synchronized, whereas a synced-in

control signal is used to synchronize the data path. A controlled synchronizer MUX

is used to allow the data path to cross between the clock domains. The first flip-flop

in the new clock domain acts as a synchronization register. In asynchronous signal

transfer, to minimize failures due to metastability, a sequence of flip-flops in the

destination clock domain is used to resynchronize the signal to the new clock domain.

These flip-flops provide additional time for a potentially metastable signal to resolve

to a known value before the signal is used in the rest of the circuit. The timing slack

in the synchronization register-to-register paths is the time available for a metastable

signal to settle and is known as the available metastability settling time.

Figure 6.7 – Pipelined architecture for vectorized floating-point/fixed-point multiply-

and-add operations
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6.4 Performance Analysis and Evaluation

This section discusses the results of the implementation of the proposed architecture

on the Xilinx Zynq platform. For the performance evaluation, we used a housing

dataset that is commonly used to evaluate machine learning algorithms; it is available

on the ELM website [44]. The housing dataset consists of 13 fields and 500 samples.

Half of the dataset was used for training, and the rest was reserved for prediction

(validation).

The performance of the proposed system was evaluated from four perspectives:

accuracy, hardware performance, system profile and hardware resources. In terms of

accuracy, the performances of several fundamental components, such as the matrix

decomposition operation, were compared with those of a PC-based implementation.

In addition, the number of bits required to achieve acceptable accuracy was consid-

ered. With regard to hardware performance, we investigated the performance of the

system in terms of power consumption and the maximum frequency of operation.

For an efficient embedded design that uses an accelerator to achieve better perfor-

mance, the different contributions from hardware and software must be considered.

It is necessary to identify how hardware acceleration can improve the performance for

a task that could be run by a processor as software. This is why profiling tools and

algorithms have become so important, because they allow one to determine which

part of an application constitutes the software bottleneck and how the performance

can be improved through acceleration. With regard to the system profile, the perfor-

mance of the proposed system was characterized in terms of the acceleration factor,

and finally, the utilized hardware resources were assessed.

6.4.1 Accuracy Analysis

As mentioned, the matrix decomposition operation is the fundamental component

that defines the performance and accuracy of the OS-ELM implementation. There-
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Figure 6.8 – Histogram of errors for 10,000 random 32 × 32 matrices.

fore, the matrix inversion operation must be carefully validated to ensure that the

numerical errors are within an acceptable range. The matrix inversion output was

compared with the output of the MATLAB inv() function, and for validation, the

square root of the mean square error of the matrix elements was selected as the per-

formance metric. This performance metric is defined as shown in equation 6.46, where

the x(i,j) are the elements of the inverted matrix and the y(i,j) are the reference matrix

elements.

Error =

√
ΣiΣj|x(i,j) − y(i,j)|2

ΣiΣj|x(i,j)|2
(6.46)

The histogram plotted in figure 6.8 illustrates the matrix inversion performance. The

function was tested on 10,000 random matrices, and the output of the module showed

small errors close to zero. In some tests, the output of the module had larger errors;

however, these errors remained within 0.01% of the data magnitude.

The second step of the accuracy analysis was to evaluate the performance of the

OS-ELM algorithm with different numbers of hidden cells and different numbers of

bits. In this scenario, the hardware implementation was evaluated through a direct

comparison with an implementation of the OS-ELM algorithm that was coded in
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Figure 6.9 – Mean absolute validation error (MAE) versus bit length.

C++ in Visual Studio, with all variables treated as floating-point variables. The

mean absolute error (MAE) is commonly used to evaluate the performance of an

algorithm; it is obtained by applying a training dataset and then evaluating the

results of the trained algorithm on a validation dataset. The algorithm was tested

with 10, 20, 30 and 40 cells and with 8, 16, 24 and 32 bits. The evaluation results are

presented in figure 6.9. According to this figure, better accuracy can be achieved by

increasing the numbers of cells and bits. Since the Zynq SoC has a 32-bit architecture,

acceptable accuracy could be achieved in our implementation by considering 32-bit

variables with 30-40 hidden cells.

6.4.2 Hardware Performance Analysis

The hardware performance of the proposed architecture was evaluated in terms of

the maximum clock frequency, the number of clock cycles required for computation

and the power consumption.

For a thorough evaluation, we again considered variables with different numbers

of bits. The number of clock cycles increases as the numbers of bits and hidden
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cells increase. Figures 6.10 and 6.11 present the number of clock cycles required for

computation as a function of the number of bits and as a function of the number of

hidden cells, respectively. To compare the proposed architecture with other recently

published OS-ELM/ELM implementations [5], we also include the results of three

other implementations in figures 6.10 and 6.11. All of the previous implementations

and the proposed architecture were tested on the same dataset.

The maximum operation frequency of the synthesized circuit depends on param-

eters such as the numbers of hidden cells and variable bits; as the number of bits

increases, more clock cycles are required for multiplication, and the the number of

DSP blocks utilized also increases. Figure 6.12 presents the results for the maximum

frequency of operation.

The total power consumption analysis was divided into analyses of static and

dynamic power. The power consumption was measured using the Xilinx X-Power

Analyzer. The proposed architecture consumes 1.423 W of on-chip power, where

92% of the total power is related to the dynamic power consumption, the processor

consumes the majority of the power (88%, or 1.152 W), and the remaining blocks

consume the remaining 12% (0.157 W) of the total power.

Although a direct power comparison is difficult because of the different assump-

tions and structures of different implementations, for a recent OS-ELM/ELM imple-

mentation presented in [5], an average value of 1.575 W was reported for 32 bits and 40

hidden cells. A comparison with this result indicates that the proposed architecture

offers much better power efficiency.

6.4.3 System Profile

The performance of the system was also characterized in terms of the acceleration

factor. An embedded system that uses a second chip on the platform as an accelerator

can be quantitatively evaluated in terms of an acceleration factor defined based on

the time required for the host processor to execute a single operation compared with
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the time required for the execution of the same operation when processed by the

accelerator. In this work, as discussed previously, one of the most resource-consuming

operations is the matrix decomposition computation that is performed to obtain the
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hidden layer output ϕ; therefore, we investigated the acceleration factor for this

operation for a single chunk of training data. The measurement circuit is illustrated

in figure 6.2. The circuit includes a timer that is coded in the PL block. For the first

measurement, the ARM processor transfers the contents of a single chunk of training

data to the cache, and before the matrix inversion operation is performed, it triggers

the timer. For the second measurement, the same operation is executed by the PL

block. We measured an acceleration factor of 200x. This test algorithm for measuring

the acceleration factor was proposed by Xilinx [45] for evaluating the effectiveness of

hardware acceleration.

6.4.4 Hardware Resources

The resource utilization of both the training and prediction modules was evaluated

(Table 6.1). Based on the internal blocks of the device, the analysis resources include

look-up tables (LUTs), block RAM (BRAM) and DSP blocks (DSP48E). The resource

utilization varies based on the bit length of the variables and the number of hidden
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cells. The levels of LUT, BRAM and DSP48E utilization increase as the bit length

increases; however, the trend for DSP48E utilization is different than that for LUT

and BRAM utilization. The resource utilization analysis reveals that the levels of

LUT and BRAM utilization increase in proportion to the bit length, whereas since

the input to a DSP48E block has a fixed bit length (Figure 6.13), the level of DSP48E

resource utilization remains constant until another unit is needed, at which time the

resource consumption doubles. This means that when a greater bit length is necessary,

more DSP48E blocks are added and synthesized to compose an arithmetic unit with

a longer bit length. On the other hand, the utilization of DSP blocks is independent

of the number of hidden cells; since the transfer of data from memory to the training

and prediction modules is serial in nature, no additional resources are required as

the number of hidden cells increases. By contrast, the RAM utilization grows as the

number of hidden cells increases, but not proportionally. Instead, the increase in

RAM utilization with an increasing number of hidden cells follows the same trend

as the increase in DSP block utilization with increasing bit length. The Xilinx SoC

FPGA has a new BRAM architecture. Each block of RAM has independent control

over its address depth and can store up to 36 kbits (Figure 6.14). It can also be

configured as either two independent 18 kb RAMs or one 36 kb RAM. In this case,

Figure 6.13 – DSP48E
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Figure 6.14 – Block RAM logic diagram

when the bit length surpasses the maximum, additional RAM blocks are needed to

increase the bit length.

6.5 OS-ELMs and Real-Time Applications

In the previous section, we compared the performance of the proposed design with the

performances of other recent proposals. However, a direct comparison of the results

of our implementation with those of other works is difficult because previous works

have considered different test datasets, different numbers of hidden layers, and differ-

ent types of variables (fixed point or floating point). In addition, different solutions

have been defined for different applications. As mentioned previously, the research

presented in this study is mainly focused on embedded systems for human action

recognition, which requires the system to be capable of both training and prediction.

In this work, we tested our algorithm on two recent challenging datasets: 3D Holly-

wood [12] and HON4D [13]. The data format for this implementation consisted of

Table 6.2 – FPGA resources consumed for OS-ELM/ELM implementations

Algorithm Target FPGA LUT DSP48E BRAM

ELM Zynq 7000 (XCZ020) 15488/53200 (29%) 81/220 (36%) 96×36kB/140×36kB (68.5%)

OS-ELM Zynq 7000 (XCZ020) 12488/53200 (23%) 64/220 (29%) 52×36kB/140×36kB (37.1%)

Percentage of resource reduction -19% -21% -46%
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fixed-point variables with a 64-bit width. The classification accuracy was 12.2% for

the 3D Hollywood dataset and 72.40% for the HON4D dataset. For comparison, the

highest accuracies that have been achieved on these datasets are 13.3% for the 3D

Hollywood dataset and 88.89% for the HON4D dataset. However, these highest ac-

curacies were achieved on a PC with floating-point variables and operations, whereas

in this work, we used fixed-point variables. Table 1 shows the resources utilized for

the implementations of the ELM and OS-ELM algorithms. The results presented in

table 6.2 show that chunk-by-chunk training can effectively improve the utilization of

resources, especially memory.

6.6 Conclusion

In this work, a SoC FPGA-based OS-ELM algorithm is presented. Appropriate cir-

cuits are proposed and evaluated for both training and prediction in an embedded

system with fixed-point variables of different bit widths and with different numbers

of hidden cells. The proposed architecture efficiently utilizes both processor and ac-

celerator resources (FPGA) to achieve better performance and accuracy. Analyses of

accuracy and the acceleration factor prove that the proposed architecture for matrix

inversion enables effective computation by means of programmable logic. In addition,

the proposed architecture for matrix inversion and QR decomposition can be utilized

as a separate IP for other applications, such as communication. Furthermore, the

power consumption results show that the proposed architecture is appropriate for

battery-powered portable systems.

The results of testing the algorithm for application in action recognition show

that it achieves acceptable accuracy for real-time applications and the real-world

challenges faced in computer vision and video processing.

Future work could include testing the proposed system with more datasets and

evaluating the performance of the proposed circuits under different conditions, includ-
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ing the use of floating-point variables and different numbers of hidden cells. Finally,

the proposed architecture could be implemented for applications in which NNs are

used for classification (object detection), regression and recognition (action recogni-

tion).

6.7 Summary

Machine learning algorithms, such as those for object classification in images, video

content analysis (VCA), and human action recognition, are used to extract mean-

ingful information from data recorded by image sensors and cameras. Among the

existing machine learning algorithms, extreme learning machines (ELMs) and online

sequential ELMs (OS-ELMs) are well known for their computational efficiency and

performance when processing large datasets. The latter approach was derived from

the ELM approach and is optimized for real-time application. However, OS-ELM clas-

sifiers are computationally demanding, and the existing state-of-the-art computing

platforms are not efficient enough for embedded systems, especially for applications

with strict requirements in terms of low power consumption, high throughput, and

low latency. This chapter presents the implementation of an ELM/OS-ELM in a cus-

tomized system-on-a-chip field-programmable gate array (SoC FPGA)-based archi-

tecture to ensure efficient hardware acceleration. The acceleration process comprises

parallel extraction, deep pipelining and efficient shared memory communication.
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Chapter 7

Conclusions

7.1 Summary of the Thesis

This dissertation has described a SoC-based hardware acceleration implementation

for use in accelerating computer vision algorithms in a SoC-FPGA system. As part

of the design approach, four core components were developed for the implementation

of a human action recognition algorithm.

Chapters 1 and 2 discussed the SoC concept and the advantages of using a SoC-

FPGA accelerator in combination with other devices. The fundamental components,

such as internal communication interfaces (AXI interfaces), needed to provide com-

munication between each of the synthesized modules were covered. In addition, the

proposed framework for human action and activity recognition, which was imple-

mented on a Xilinx Zynq SoC FPGA, was discussed. The evaluation method used to

measure the acceleration performance in terms of the acceleration factor was discussed

in chapter 2.

In chapter 3, the first component of the framework constituting the first stage of

pre-processing was discussed. The foreground and background subtraction module

with adaptive updating based on photometric invariant color, depth data and texture

information extracted by employing LBP operators was presented. The operation of

the algorithm was sped up by implementing time-consuming functions, such as the

LBP operations, on an FPGA. Various levels of optimization were also considered,

such as reducing the number of bits required for variables, loop optimization and

a communication-centric architecture. The implementation and evaluation results
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showed that the proposed implementation achieved an acceleration factor of 300x for

the LBP computations for a single frame and that the total power consumption for

the whole algorithm was 156 mW.

In chapter 4, the second module of the framework was discussed. A human de-

tection algorithm was proposed based on information extracted from both RGB and

depth data and features encoded with a covariance descriptor. The implementation

and evaluation results showed that the proposed implementation achieved better re-

source utilization compared with other implementations.

In chapter 5, two algorithms for interest point detection in 3D scenes were dis-

cussed: the Harris Corners and Hessian Points operators. An efficient solution for

encoding features with the BOW approach was discussed. The implementation results

were compared with other state-of-the-art implementations, and the comparisons re-

vealed that the proposed framework outperformed the other approaches in terms of

accuracy and resource utilization.

In chapter 6, a different method of classification was discussed as an alternative

to the SVM method covered in chapter 5. An ELM is a single-hidden-layer neural

network that provides fast training and prediction operations. OS-ELM is a variant

of the ELM approach in which training can be performed frame by frame instead

of requiring all frames simultaneously. The advantages of this approach are that it

provides an ideal classifier for real-time application while utilizing fewer resources.

The evaluation results in terms of the accuracy of the algorithm showed that the

proposed approach outperformed the other approaches considered for comparison;

moreover, between ELM and OS-ELM implementations, the resource utilization of

the OS-ELM implementation was 46% lower.

The main challenges addressed in this dissertation in order to architect an efficient

solution were as follows: (1) satisfying the immense computational demands of vision

algorithms; (2) achieving the ability to execute different vision and machine learning

algorithms on single platforms; and (3) integrating the entire process, from capturing
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the input frames from an image sensor or video to preprocessing, processing and

displaying the results, into a single platform. To properly address the challenges

of embedded vision and pave the way toward the embedded realization of advanced

vision processing, this dissertation has addressed the following design tasks:

• Developing and implementing core components (IPs) for advanced machine vi-

sion algorithms.

• Developing a framework based on the developed core components for advanced

machine vision applications: human activity and action recognition.

• Profiling and analyzing the sophisticated software-level operations of each algo-

rithm and component.

• Designing the corresponding hardware accelerator and optimizing it for the

mathematical model of each component.

• Finding an optimal solution by balancing the system performance, energy con-

sumption and resource allocation.

• Verifying the operation of each component and the entire framework.

• Each of the core components, namely, foreground and background subtraction,

human detection, interest point and feature detection, and OS-ELM classifica-

tion, could be utilized in other machine vision frameworks.

7.2 Future Work

This dissertation introduces new areas of research and exploration regarding SoC-

FPGA acceleration in embedded vision that could be pursued in both academia and

industry. The results of this research prove that remarkable opportunities are avail-

able for architecting and programming at the function level, enabling a shift from
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optimizing individual applications to identifying and concentrating on common func-

tions that are used in many applications and algorithms. Since this research has

mainly focused on recognizing human actions by means of a visual sensor, a possible

future extension of this approach could be to fuse data from visual and inertial sensors

to improve the accuracy of the results.

In addition, a valuable avenue of study could be to compare the training times

required for OS-ELM classifiers and other state-of-the-art machine learning algo-

rithms such as DNNs and CNNs and to evaluate their performances. The proposed

framework could be utilized for other image processing applications, such as face

recognition or gesture recognition. Performance and accuracy evaluations for such

applications are also highly recommended. Furthermore, the performance of the pro-

posed framework with different interest point detectors and feature descriptors should

be investigated.
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