8,864,471 research outputs found

    Systems practice at the United Kingdom's Open University

    Get PDF
    This chapter relates the emerging focus on systems practice within the Systems Discipline at the Open University. Recent innovations have occurred in the changing environment of the University (Lane 1999), the higher education sector (Ison 1999) and the systems community more generally (Maiteny and Ison 2000)

    Anisotropic field dependence of the magnetic transition in Cu2Te2O5Br2

    Full text link
    We present the results of measurements of the thermal conductivity of Cu2Te2O5Br2, a compound where tetrahedra of Cu^{2+} ions carrying S=1/2 spins form chains along the c-axis of the tetragonal crystal structure. The thermal conductivity kappa was measured along both the c- and the a-direction as a function of temperature between 3 and 300 K and in external magnetic fields H up to 69 kOe, oriented both parallel and perpendicular to the c-axis. Distinct features of kappa(T) were observed in the vicinity of T_N=11.4 K in zero magnetic field. These features are unaltered in external fields which are parallel to the c-axis, but are more pronounced when a field is applied perpendicularly to the c-axis. The transition temperature increases upon enhancing the external field, but only if the field is oriented along the a-axis.Comment: 5 pages, 3 figure

    Electron Scattering on 3He - a Playground to Test Nuclear Dynamics

    Full text link
    The big spectrum of electron induced processes on 3He is illustrated by several examples based on Faddeev calculations with modern nucleon-nucleon and three-nucleon forces as well as exchange currents. The kinematical region is restricted to a mostly nonrelativistic one where the three-nucleon c.m. energy is below the pion production threshold and the three-momentum of the virtual photon is sufficiently below the nucleon mass. Comparisons with available data are shown and cases of agreement and disagreement are found. It is argued that new and precise data are needed to systematically check the present day dynamical ingredients.Comment: 27 pages, 24 figure

    Masses and couplings of vector mesons from the pion electromagnetic, weak, and \pi\gamma transition form factors

    Full text link
    We analyse the pion electromagnetic, charged-current, and πγ\pi\gamma transition form factors at timelike momentum transfers qq, q2=s1.4q^2=s\le 1.4 GeV2^2, using a dispersion approach. We discuss in detail the propagator matrix of the photon-vector-meson system and define certain reduced amplitudes, or vertex functions, describing the coupling of this system to final states. We then apply the derived analytic expressions to the analysis of the recent e+eπ+πe^+e^-\to \pi^+\pi^-, τππ0ντ\tau^-\to \pi^-\pi^0\nu_\tau, and e+eπ0γe^+e^-\to \pi^0\gamma data. We find the reduced amplitudes for the coupling of the photon and vector mesons to two pseudoscalars to be constant, independent of ss, in the range considered, indicating a "freezing" of the amplitudes for s1s\le 1 GeV. The fit to the form factor data leads to the following values of the Breit-Wigner resonance masses m_{\rho^-}=775.3\pm 0.8 MeV, m_{\rho^0}=773.7\pm 0.6 MeV and m_\omega=782.43\pm 0.05 MeV, where the errors are only statistical.Comment: revtex, 23 page

    Bragg spectroscopy of discrete axial quasiparticle modes in a cigar-shaped degenerate Bose gas

    Full text link
    We propose an experiment in which long wavelength discrete axial quasiparticle modes can be imprinted in a 3D cigar-shaped Bose-Einstein condensate by using two-photon Bragg scattering experiments, similar to the experiment at the Weizmann Institute [J. Steinhauer {\em et al.}, Phys. Rev. Lett. {\bf 90}, 060404 (2003)] where short wavelength axial phonons with different number of radial modes have been observed. We provide values of the momentum, energy and time duration of the two-photon Bragg pulse and also the two-body interaction strength which are needed in the Bragg scattering experiments in order to observe the long wavelength discrete axial modes. These discrete axial modes can be observed when the system is dilute and the time duration of the Bragg pulse is long enough.Comment: 5 pages, 3 figures, title, abstract, results changed, references added. to appear in The European Physical Journal

    Four-fermion production at gamma gamma colliders: 2. Radiative corrections in double-pole approximation

    Full text link
    The O(alpha) electroweak radiative corrections to gamma gamma --> WW --> 4f within the electroweak Standard Model are calculated in double-pole approximation (DPA). Virtual corrections are treated in DPA, leading to a classification into factorizable and non-factorizable contributions, and real-photonic corrections are based on complete lowest-order matrix elements for gamma gamma --> 4f + gamma. Soft and collinear singularities appearing in the virtual and real corrections are combined alternatively in two different ways, namely by using the dipole subtraction method or by applying phase-space slicing. The radiative corrections are implemented in a Monte Carlo generator called COFFERgammagamma, which optionally includes anomalous triple and quartic gauge-boson couplings in addition and performs a convolution over realistic spectra of the photon beams. A detailed survey of numerical results comprises O(alpha) corrections to integrated cross sections as well as to angular, energy, and invariant-mass distributions. Particular attention is paid to the issue of collinear-safety in the observables.Comment: 42 pages, latex, 34 postscript figure

    Eikonal representation in the momentum-transfer space

    Get PDF
    By means of empirical fits to the differential cross section data on pp and p(bar)p elastic scattering, above 10 GeV (center-of-mass energy), we determine the eikonal in the momentum - transfer space (q^2- space). We make use of a numerical method and a novel semi-analytical method, through which the uncertainties from the fit parameters can be propagated up to the eikonal in the q2q^2- space. A systematic study of the effect of the experimental information at large values of the momentum transfer is developed and discussed in detail. We present statistical evidence that the imaginary part of the eikonal changes sign in the q^2- space and that the position of the zero decreases as the energy increases; after the position of the zero, the eikonal presents a minimum and then goes to zero through negative values. We discuss the applicability of our results in the phenomenological context, outlining some connections with nonperturbative QCD. A short review and a critical discussion on the main results concerning "model-independent" analyses are also presented.Comment: 18 pages, 17 figures, 4 tables, svjour.cls. Revised discussion on the proton's electromagnetic form factor and references added. To appear in Eur. Phys. J.

    Accumulation of chromium metastable atoms into an Optical Trap

    Full text link
    We report the fast accumulation of a large number of metastable 52Cr atoms in a mixed trap, formed by the superposition of a strongly confining optical trap and a quadrupolar magnetic trap. The steady state is reached after about 400 ms, providing a cloud of more than one million metastable atoms at a temperature of about 100 microK, with a peak density of 10^{18} atoms.m^{-3}. We have optimized the loading procedure, and measured the light shift of the 5D4 state by analyzing how the trapped atoms respond to a parametric excitation. We compare this result to a theoretical evaluation based on the available spectroscopic data for chromium atoms.Comment: 7 pages, 5 Figure

    Creating Ioffe-Pritchard micro-traps from permanent magnetic film with in-plane magnetization

    Full text link
    We present designs for Ioffe-Pritchard type magnetic traps using planar patterns of hard magnetic material. Two samples with different pattern designs were produced by spark erosion of 40 μ\mum thick FePt foil. The pattern on the first sample yields calculated axial and radial trap frequencies of 51 Hz and 6.8 kHz, respectively. For the second sample the calculated frequencies are 34 Hz and 11 kHz. The structures were used successfully as a magneto-optical trap for 87^{87}Rb and loaded as a magnetic trap. A third design, based on lithographically patterned 250 nm thick FePt film on a Si substrate, yields an array of 19 traps with calculated axial and radial trap frequencies of 1.5 kHz and 110 kHz, respectively.Comment: 8 pages, 5 figures Revised and accepted for EPJD, improved picture

    Mixing of Pentaquark and Molecular States

    Full text link
    There are experimental evidences for the existence of narrow states Θ+\Theta^+ and Θc\Theta_c with the same quantum numbers of uuddsˉuudd\bar s and uuddcˉuudd\bar c pentaquarks and also NK()NK^{(*)} and ND()ND^{(*)} molecular states. Their masses deviate from many theoretical estimates of the pure pentaquark and molecular states. In this work we study the possibility that the observed Θ+\Theta^+ and Θc\Theta_c are mixtures of pure pentaquark and molecular states. The mixing parameters are in general related to non-perturbative QCD which are not calculable at present. We determine them by fitting data from known states and then generalize the mechanism to Θb\Theta_b to predict its mass and width. The mixing mechanism can also naturally explain the narrow width for Θ+\Theta^+ and Θc\Theta_c through destructive interferences, even if the pure pentaquark and molecular states have much larger decay widths. We also briefly discuss the properties of the partner eigenstates of Θ+\Theta^+ and Θc\Theta_c and the possibility of experimentally observe them. Moreover, probable consequences of multi-state mixing are also addressed.Comment: 23 pages, 4 figures. Published version in EPJ
    corecore