3,475 research outputs found

    Stratified Transformer for {3D} Point Cloud Segmentation

    Get PDF

    Texture Segregation By Visual Cortex: Perceptual Grouping, Attention, and Learning

    Get PDF
    A neural model is proposed of how laminar interactions in the visual cortex may learn and recognize object texture and form boundaries. The model brings together five interacting processes: region-based texture classification, contour-based boundary grouping, surface filling-in, spatial attention, and object attention. The model shows how form boundaries can determine regions in which surface filling-in occurs; how surface filling-in interacts with spatial attention to generate a form-fitting distribution of spatial attention, or attentional shroud; how the strongest shroud can inhibit weaker shrouds; and how the winning shroud regulates learning of texture categories, and thus the allocation of object attention. The model can discriminate abutted textures with blurred boundaries and is sensitive to texture boundary attributes like discontinuities in orientation and texture flow curvature as well as to relative orientations of texture elements. The model quantitatively fits a large set of human psychophysical data on orientation-based textures. Object boundar output of the model is compared to computer vision algorithms using a set of human segmented photographic images. The model classifies textures and suppresses noise using a multiple scale oriented filterbank and a distributed Adaptive Resonance Theory (dART) classifier. The matched signal between the bottom-up texture inputs and top-down learned texture categories is utilized by oriented competitive and cooperative grouping processes to generate texture boundaries that control surface filling-in and spatial attention. Topdown modulatory attentional feedback from boundary and surface representations to early filtering stages results in enhanced texture boundaries and more efficient learning of texture within attended surface regions. Surface-based attention also provides a self-supervising training signal for learning new textures. Importance of the surface-based attentional feedback in texture learning and classification is tested using a set of textured images from the Brodatz micro-texture album. Benchmark studies vary from 95.1% to 98.6% with attention, and from 90.6% to 93.2% without attention.Air Force Office of Scientific Research (F49620-01-1-0397, F49620-01-1-0423); National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    A Review of Panoptic Segmentation for Mobile Mapping Point Clouds

    Full text link
    3D point cloud panoptic segmentation is the combined task to (i) assign each point to a semantic class and (ii) separate the points in each class into object instances. Recently there has been an increased interest in such comprehensive 3D scene understanding, building on the rapid advances of semantic segmentation due to the advent of deep 3D neural networks. Yet, to date there is very little work about panoptic segmentation of outdoor mobile-mapping data, and no systematic comparisons. The present paper tries to close that gap. It reviews the building blocks needed to assemble a panoptic segmentation pipeline and the related literature. Moreover, a modular pipeline is set up to perform comprehensive, systematic experiments to assess the state of panoptic segmentation in the context of street mapping. As a byproduct, we also provide the first public dataset for that task, by extending the NPM3D dataset to include instance labels. That dataset and our source code are publicly available. We discuss which adaptations are need to adapt current panoptic segmentation methods to outdoor scenes and large objects. Our study finds that for mobile mapping data, KPConv performs best but is slower, while PointNet++ is fastest but performs significantly worse. Sparse CNNs are in between. Regardless of the backbone, Instance segmentation by clustering embedding features is better than using shifted coordinates

    A review on deep learning techniques for 3D sensed data classification

    Get PDF
    Over the past decade deep learning has driven progress in 2D image understanding. Despite these advancements, techniques for automatic 3D sensed data understanding, such as point clouds, is comparatively immature. However, with a range of important applications from indoor robotics navigation to national scale remote sensing there is a high demand for algorithms that can learn to automatically understand and classify 3D sensed data. In this paper we review the current state-of-the-art deep learning architectures for processing unstructured Euclidean data. We begin by addressing the background concepts and traditional methodologies. We review the current main approaches including; RGB-D, multi-view, volumetric and fully end-to-end architecture designs. Datasets for each category are documented and explained. Finally, we give a detailed discussion about the future of deep learning for 3D sensed data, using literature to justify the areas where future research would be most valuable.Comment: 25 pages, 9 figures. Review pape
    • …
    corecore