6 research outputs found

    Choose your tools carefully: a comparative evaluation of deterministic vs. stochastic and binary vs. analog neuron models for implementing emerging computing paradigms

    Get PDF
    Neuromorphic computing, commonly understood as a computing approach built upon neurons, synapses, and their dynamics, as opposed to Boolean gates, is gaining large mindshare due to its direct application in solving current and future computing technological problems, such as smart sensing, smart devices, self-hosted and self-contained devices, artificial intelligence (AI) applications, etc. In a largely software-defined implementation of neuromorphic computing, it is possible to throw enormous computational power or optimize models and networks depending on the specific nature of the computational tasks. However, a hardware-based approach needs the identification of well-suited neuronal and synaptic models to obtain high functional and energy efficiency, which is a prime concern in size, weight, and power (SWaP) constrained environments. In this work, we perform a study on the characteristics of hardware neuron models (namely, inference errors, generalizability and robustness, practical implementability, and memory capacity) that have been proposed and demonstrated using a plethora of emerging nano-materials technology-based physical devices, to quantify the performance of such neurons on certain classes of problems that are of great importance in real-time signal processing like tasks in the context of reservoir computing. We find that the answer on which neuron to use for what applications depends on the particulars of the application requirements and constraints themselves, i.e., we need not only a hammer but all sorts of tools in our tool chest for high efficiency and quality neuromorphic computing

    Wearables in medicine

    Get PDF
    Wearables as medical technologies are becoming an integral part of personal analytics, measuring physical status, recording physiological parameters, or informing schedule for medication. These continuously evolving technology platforms do not only promise to help people pursue a healthier life style, but also provide continuous medical data for actively tracking metabolic status, diagnosis, and treatment. Advances in the miniaturization of flexible electronics, electrochemical biosensors, microfluidics, and artificial intelligence algorithms have led to wearable devices that can generate real-time medical data within the Internet of things. These flexible devices can be configured to make conformal contact with epidermal, ocular, intracochlear, and dental interfaces to collect biochemical or electrophysiological signals. This article discusses consumer trends in wearable electronics, commercial and emerging devices, and fabrication methods. It also reviews real-time monitoring of vital signs using biosensors, stimuli-responsive materials for drug delivery, and closed-loop theranostic systems. It covers future challenges in augmented, virtual, and mixed reality, communication modes, energy management, displays, conformity, and data safety. The development of patient-oriented wearable technologies and their incorporation in randomized clinical trials will facilitate the design of safe and effective approaches

    High-Density Solid-State Memory Devices and Technologies

    Get PDF
    This Special Issue aims to examine high-density solid-state memory devices and technologies from various standpoints in an attempt to foster their continuous success in the future. Considering that broadening of the range of applications will likely offer different types of solid-state memories their chance in the spotlight, the Special Issue is not focused on a specific storage solution but rather embraces all the most relevant solid-state memory devices and technologies currently on stage. Even the subjects dealt with in this Special Issue are widespread, ranging from process and design issues/innovations to the experimental and theoretical analysis of the operation and from the performance and reliability of memory devices and arrays to the exploitation of solid-state memories to pursue new computing paradigms

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within
    corecore