4,738 research outputs found

    The superhydrophobicity of polymer surfaces: Recent developments

    Get PDF
    Superhydrophobicity is the extreme water repellence of highly textured surfaces. The field of superhydrophobicity research has reached a stage where huge numbers of candidate treatments have been proposed and jumps have been made in theoretically describing them. There now seems to be a move to more practical concerns and to considering the demands of individual applications instead of more general cases. With these developments, polymeric surfaces with their huge variety of properties have come to the fore and are fast becoming the material of choice for designing, developing, and producing superhydrophobic surfaces. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1203–1217, 201

    An introduction to superhydrophobicity

    Get PDF
    This paper is derived from a training session prepared for COST P21. It is intended as an introduction to superhydrophobicity to scientists who may not work in this area of physics or to students. Superhydrophobicity is an effect where roughness and hydrophobicity combine to generate unusually hydrophobic surfaces, causing water to bounce and roll off as if it were mercury and is used by plants and animals to repel water, stay clean and sometimes even to breathe. The effect is also known as The Lotus EffectÂź and Ultrahydrophobicity. In this paper we introduce many of the theories used, some of the methods used to generate surfaces and then describe some of the implications of the effect

    Perpetual superhydrophobicity

    Get PDF
    A liquid droplet placed on a geometrically textured surface may take on a “suspended” state, in which the liquid wets only the top of the surface structure, while the remaining geometrical features are occupied by vapor. This superhydrophobic Cassie–Baxter state is characterized by its composite interface which is intrinsically fragile and, if subjected to certain external perturbations, may collapse into the fully wet, so-called Wenzel state. Restoring the superhydrophobic Cassie–Baxter state requires a supply of free energy to the system in order to again nucleate the vapor. Here, we use microscopic classical density functional theory in order to study the Cassie–Baxter to Wenzel and the reverse transition in widely spaced, parallel arrays of rectangular nanogrooves patterned on a hydrophobic flat surface. We demonstrate that if the width of the grooves falls below a threshold value of ca. 7 nm, which depends on the surface chemistry, the Wenzel state becomes thermodynamically unstable even at very large positive pressures, thus realizing a “perpetual” superhydrophobic Cassie–Baxter state by passive means. Building upon this finding, we demonstrate that hierarchical structures can achieve perpetual superhydrophobicity even for micron-sized geometrical textures

    Is superhydrophobicity robust with respect to disorder?

    Full text link
    We consider theoretically the Cassie-Baxter and Wenzel states describing the wetting contact angles for rough substrates. More precisely, we consider different types of periodic geometries such as square protrusions and disks in 2D, grooves and nanoparticles in 3D and derive explicitly the contact angle formulas. We also show how to introduce the concept of surface disorder within the problem and, inspired by biomimetism, study its effect on superhydrophobicity. Our results, quite generally, prove that introducing disorder, at fixed given roughness, will lower the contact angle: a disordered substrate will have a lower contact angle than a corresponding periodic substrate. We also show that there are some choices of disorder for which the loss of superhydrophobicity can be made small, making superhydrophobicity robust

    Unraveling the Salvinia paradox: design principles for submerged superhydrophobicity

    Get PDF
    The complex structure of the Salvinia molesta is investigated via rare event molecular dynamics simulations. Results show that a hydrophilic/hydrophobic patterning together with a re-entrant geometry control the free energy barriers for bubble nucleation and for the Cassie-Wenzel transition. This natural paradigm is translated into simple macroscopic design criteria for engineering robust superhydrophobicity in submerged applications

    Function-led design of multifunctional stimuli-responsive superhydrophobic surface based on hierarchical graphene-titania nanocoating

    Full text link
    Multifunctional smart superhydrophobic surface with full-spectrum tunable wettability control is fabricated through the self-assembly of the graphene and titania nanofilm double-layer coating. Advanced microfluidic manipulative functions, including directional water transport, adhesion & spreading controls, droplet storage & transfer, and droplet sensing array, can be readily realized on this smart surface. An in-depth mechanism study regarding the underlying secrets of the tunable wettability and the UV-induced superhydrophilic conversion of anatase titania are also presented

    Nano-scale superhydrophobicity: suppression of protein adsorption and promotion of flow-induced detachment

    Get PDF
    Wall adsorption is a common problem in microfluidic devices, particularly when proteins are used. Here we show how superhydrophobic surfaces can be used to reduce protein adsorption and to promote desorption. Hydrophobic surfaces, both smooth and having high surface roughness of varying length scales (to generate superhydrophobicity), were incubated in protein solution. The samples were then exposed to flow shear in a device designed to simulate a microfluidic environment. Results show that a similar amount of protein adsorbed onto smooth and nanometer-scale rough surfaces, although a greater amount was found to adsorb onto superhydrophobic surfaces with micrometer scale roughness. Exposure to flow shear removed a considerably larger proportion of adsorbed protein from the superhydrophobic surfaces than from the smooth ones, with almost all of the protein being removed from some nanoscale surfaces. This type of surface may therefore be useful in environments, such as microfluidics, where protein sticking is a problem and fluid flow is present. Possible mechanisms that explain the behaviour are discussed, including decreased contact between protein and surface and greater shear stress due to interfacial slip between the superhydrophobic surface and the liquid
    • 

    corecore