109,668 research outputs found

    Deterministic spin models with a glassy phase transition

    Full text link
    We consider the infinite-range deterministic spin models with Hamiltonian H=∑i,j=1NJi,jσiσjH=\sum_{i,j=1}^N J_{i,j}\sigma_i\sigma_j, where JJ is the quantization of a chaotic map of the torus. The mean field (TAP) equations are derived by summing the high temperature expansion. They predict a glassy phase transition at the critical temperature T∼0.8T\sim 0.8.Comment: 8 pages, no figures, RevTex forma

    Evidence of correlation in spin excitations of few-electron quantum dots

    Full text link
    We report inelastic light scattering measurements of spin and charge excitations in nanofabricated AlGaAs/GaAs quantum dots with few electrons. A narrow spin excitation peak is observed and assigned to the intershell triplet-to-singlet monopole mode of dots with four electrons. Configurationinteraction theory provides precise quantitative interpretations that uncover large correlation effects that are comparable to exchange Coulomb interactions.Comment: 4 pages, 4 figure

    Lack of monotonicity in spin glass correlation functions

    Full text link
    We study the response of a spin glass system with respect to the rescaling of its interaction random variables and investigate numerically the behaviour of the correlation functions with respect to the volume. While for a ferromagnet the local energy correlation functions increase monotonically with the scale and, by consequence, with respect to the volume of the system we find that in a general spin glass model those monotonicities are violated.Comment: 9 pages, 2 figure

    Molecular phases in coupled quantum dots

    Full text link
    We present excitation energy spectra of few-electron vertically coupled quantum dots for strong and intermediate inter-dot coupling. By applying a magnetic field, we induce ground state transitions and identify the corresponding quantum numbers by comparison with few-body calculations. In addition to atomic-like states, we find novel "molecular-like" phases. The isospin index characterizes the nature of the bond of the artificial molecule and this we control. Like spin in a single quantum dot, transitions in isospin leading to full polarization are observed with increasing magnetic field.Comment: PDF file only, 28 pages, 3 tables, 4 color figures, 2 appendices. To appear in Physical Review B, Scheduled 15 Feb 2004, Vol. 69, Issue

    Differential branching fraction and angular analysis of the decay B0→K∗0μ+μ−

    Get PDF
    The angular distribution and differential branching fraction of the decay B 0→ K ∗0 μ + μ − are studied using a data sample, collected by the LHCb experiment in pp collisions at s√=7 TeV, corresponding to an integrated luminosity of 1.0 fb−1. Several angular observables are measured in bins of the dimuon invariant mass squared, q 2. A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q20=4.9±0.9GeV2/c4 , where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions

    Smart Meter Privacy with Renewable Energy and a Finite Capacity Battery

    Full text link
    We address the smart meter (SM) privacy problem by considering the availability of a renewable energy source (RES) and a battery which can be exploited by a consumer to partially hide the consumption pattern from the utility provider (UP). Privacy is measured by the mutual information rate between the consumer's energy consumption and the renewable energy generation process, and the energy received from the grid, where the latter is known by the UP through the SM readings, and the former two are to be kept private. By expressing the information leakage as an additive quantity, we cast the problem as a stochastic control problem, and formulate the corresponding Bellman equations.Comment: To appear in IEEE SPAWC 201

    Dispersion for Schr\"odinger equation with periodic potential in 1D

    Full text link
    We extend a result on dispersion for solutions of the linear Schr\"odinger equation, proved by Firsova for operators with finitely many energy bands only, to the case of smooth potentials in 1D with infinitely many bands. The proof consists in an application of the method of stationary phase. Estimates for the phases, essentially the band functions, follow from work by Korotyaev. Most of the paper is devoted to bounds for the Bloch functions. For these bounds we need a detailed analysis of the quasimomentum function and the uniformization of the inverse of the quasimomentum functio

    Nonequilibrium spin-dependent phenomena in mesoscopic superconductor-normal metal tunnel structures

    Get PDF
    We analyze the broad range of spin-dependent nonequilibrium transport properties of hybrid systems composed of a normal region tunnel coupled to two superconductors with exchange fields induced by the proximity to thin ferromagnetic layers and highlight its functionalities. By calculating the quasiparticle distribution functions in the normal region we find that they are spin-dependent and strongly sensitive to the relative angle between exchange fields in the two superconductors. The impact of inelastic collisions on their properties is addressed. As a result, the electric current flowing through the system is found to be strongly dependent on the relative angle between exchange fields, giving rise to a huge value of magnetoresistance. Moreover, the current presents a complete spin-polarization in a wide range of bias voltages, even in the quasiequilibrium case. In the nonequilibrium limit we parametrize the distributions with an ``effective`` temperature, which turns out to be strongly spin-dependent, though quite sensitive to inelastic collisions. By tunnel coupling the normal region to an additional superconducting electrode we show that it is possible to implement a spin-polarized current source of both spin species, depending on the bias voltages applied.Comment: Published version: 12 pages, 14 figures; new text added and one figure modifie

    Exponential times in the one-dimensional Gross--Petaevskii equation with multiple well potential

    Full text link
    We consider the Gross-Petaevskii equation in 1 space dimension with a nn-well trapping potential. We prove, in the semiclassical limit, that the finite dimensional eigenspace associated to the lowest n eigenvalues of the linear operator is slightly deformed by the nonlinear term into an almost invariant manifold M. Precisely, one has that solutions starting on M, or close to it, will remain close to M for times exponentially long with the inverse of the size of the nonlinearity. As heuristically expected the effective equation on M is a perturbation of a discrete nonlinear Schroedinger equation. We deduce that when the size of the nonlinearity is large enough then tunneling among the wells essentially disappears: that is for almost all solutions starting close to M their restriction to each of the wells has norm approximatively constant over the considered time scale. In the particular case of a double well potential we give a more precise result showing persistence or destruction of the beating motions over exponentially long times. The proof is based on canonical perturbation theory; surprisingly enough, due to the Gauge invariance of the system, no non-resonance condition is required

    Quantitative determination of spin-dependent quasiparticle lifetimes and electronic correlations in hcp cobalt

    Get PDF
    We report on a quantitative investigation of the spin-dependent quasiparticle lifetimes and electron correlation effects in ferromagnetic hcp Co(0001) by means of spin and angle-resolved photoemission spectroscopy. The experimental spectra are compared in detail to state-of-the-art many-body calculations within the dynamical mean field theory and the three-body scattering approximation, including a full calculation of the one-step photoemission process. From this comparison we conclude that although strong local many-body Coulomb interactions are of major importance for the qualitative description of correlation effects in Co, more sophisticated many-body calculations are needed in order to improve the quantitative agreement between theory and experiment, in particular concerning the linewidths. The quality of the overall agreement obtained for Co indicates that the effect of non-local correlations becomes weaker with increasing atomic number
    • …
    corecore