20,563 research outputs found

    myomiR-dependent switching of BAF60 variant incorporation into Brg1 chromatin remodeling complexes during embryo myogenesis

    Get PDF
    Myogenesis involves the stable commitment of progenitor cells followed by the execution of myogenic differentiation, processes that are coordinated by myogenic regulatory factors, microRNAs and BAF chromatin remodeling complexes. BAF60a, BAF60b and BAF60c are structural subunits of the BAF complex that bind to the core ATPase Brg1 to provide functional specificity. BAF60c is essential for myogenesis; however, the mechanisms regulating the subunit composition of BAF/Brg1 complexes, in particular the incorporation of different BAF60 variants, are not understood. Here we reveal their dynamic expression during embryo myogenesis and uncover the concerted negative regulation of BAF60a and BAF60b by the muscle-specific microRNAs (myomiRs) miR-133 and miR-1/206 during somite differentiation. MicroRNA inhibition in chick embryos leads to increased BAF60a or BAF60b levels, a concomitant switch in BAF/Brg1 subunit composition and delayed myogenesis. The phenotypes are mimicked by sustained BAF60a or BAF60b expression and are rescued by morpholino knockdown of BAF60a or BAF60b. This suggests that myomiRs contribute to select BAF60c for incorporation into the Brg1 complex by specifically targeting the alternative variants BAF60a and BAF60b during embryo myogenesis, and reveals that interactions between tissue-specific non-coding RNAs and chromatin remodeling factors confer robustness to mesodermal lineage determination

    Sprouty2 mediated tuning of signalling is essential for somite myogenesis

    Get PDF
    Background: Negative regulators of signal transduction cascades play critical roles in controlling different aspects of normal embryonic development. Sprouty2 (Spry2) negatively regulates receptor tyrosine kinases (RTK) and FGF signalling and is important in differentiation, cell migration and proliferation. In vertebrate embryos, Spry2 is expressed in paraxial mesoderm and in forming somites. Expression is maintained in the myotome until late stages of somite differentiation. However, its role and mode of action during somite myogenesis is still unclear. Results: Here, we analysed chick Spry2 expression and showed that it overlaps with that of myogenic regulatory factors MyoD and Mgn. Targeted mis-expression of Spry2 led to inhibition of myogenesis, whilst its C-terminal domain led to an increased number of myogenic cells by stimulating cell proliferation. Conclusions: Spry2 is expressed in somite myotomes and its expression overlaps with myogenic regulatory factors. Overexpression and dominant-negative interference showed that Spry2 plays a crucial role in regulating chick myogenesis by fine tuning of FGF signaling through a negative feedback loop. We also propose that mir-23, mir-27 and mir-128 could be part of the negative feedback loop mechanism. Our analysis is the first to shed some light on in vivo Spry2 function during chick somite myogenesis

    Metabolic reprogramming promotes myogenesis during aging

    Get PDF
    Sarcopenia is the age-related progressive loss of skeletal muscle mass and strength finally leading to poor physical performance. Impaired myogenesis contributes to the pathogenesis of sarcopenia, while mitochondrial dysfunctions are thought to play a primary role in skeletal muscle loss during aging. Here we studied the link between myogenesis and metabolism. In particular, we analyzed the effect of the metabolic modulator trimetazidine (TMZ) on myogenesis in aging. We show that reprogramming the metabolism by TMZ treatment for 12 consecutive days stimulates myogenic gene expression in skeletal muscle of 22-month-old mice. Our data also reveal that TMZ increases the levels of mitochondrial proteins and stimulates the oxidative metabolism in aged muscles, this finding being in line with our previous observations in cachectic mice. Moreover, we show that, besides TMZ also other types of metabolic modulators (i.e., 5-Aminoimidazole-4-Carboxamide Ribofuranoside-AICAR) can stimulate differentiation of skeletal muscle progenitors in vitro. Overall, our results reveal that reprogramming the metabolism stimulates myogenesis while triggering mitochondrial proteins synthesis in vivo during aging. Together with the previously reported ability of TMZ to increase muscle strength in aged mice, these new data suggest an interesting non-invasive therapeutic strategy which could contribute to improving muscle quality and neuromuscular communication in the elderly, and counteracting sarcopenia

    Wnt/Lef1 signaling acts via Pitx2 to regulate somite myogenesis

    Get PDF
    AbstractWnt signaling has been implicated in somite, limb, and branchial arch myogenesis but the mechanisms and roles are not clear. We now show that Wnt signaling via Lef1 acts to regulate the number of premyogenic cells in somites but does not regulate myogenic initiation in the limb bud or maintenance in the first or second branchial arch. We have also analysed the function and regulation of a putative downstream transcriptional target of canonical Wnt signaling, Pitx2. We show that loss-of-function of Pitx2 decreases the number of myogenic cells in the somite, whereas overexpression increases myocyte number particularly in the epaxial region of the myotome. Increased numbers of mitotic cells were observed following overexpression of Pitx2 or an activated form of Lef1, suggesting an effect on cell proliferation. In addition, we show that Pitx2 expression is regulated by canonical Wnt signaling in the epaxial somite and second branchial arch, but not in the limb or the first branchial arch. These results suggest that Wnt/Lef1 signaling regulates epaxial myogenesis via Pitx2 but that this link is uncoupled in other regions of the body, emphasizing the unique molecular networks that control the development of various muscles in vertebrates

    Extracellular matrix and integrins influence in the regulation of myogenic precursor cells behaviour

    Get PDF
    Tese de mestrado, Biologia (Biologia Molecular Humana), 2009, Universidade de Lisboa, Faculdade de CiênciasMyogenesis is the process by which undifferentiated dermomyotomal cells are specified for myogenesis, move towards the myotome where they differentiate into skeletal muscle cells that fuse into myotubes and later in development form myofibers which will constitute the skeletal muscles of the adult. The muscle precursor cells arise from the dermomyotome, an epithelial-like structure that is the source for skeletal muscle and dorsal dermis cells. Some cells, called satellite cells, go throughout part of this differentiation process but remain in a quiescent undifferentiated state (although committed to skeletal muscle fate). These cells are activated in the adult in case of muscle injury or enhanced exercise, for example. In this work we used a satellite cell-derived cell line, C2C12, and the mouse embryo to study the extracellular matrix (ECM) and integrins influence in myogenic determination and differentiation. Integrins are heterodimeric ECM receptors constituted by an α and a ß subunit that can induce, for example, migration or differentiation. The integrin ligand specificity is acquired by the combination of both subunits. Our studies have addressed that laminin-α6ß1 integrin interaction may be coordinating with Notch signaling the maintenance of undifferentiated dermomyotomal cells. By inhibiting Notch signaling, we observed precocious myogenic differentiation of dermomyotomal cells (by Myf5 expression) and the assembly of a laminin matrix around these cells. This result suggests that Myf5 induces laminin assembly. In vitro, fibronectin enhances C2C12 myoblasts alignment and migration. When we observed the myotubes of cells grown on fibronectin, we believe that the enhanced cell alignment imposed by fibronectin-α5ß1 integrin interaction will facilitate cell fusion. In vivo, we found that fibronectin is important for dermomyotome epithelial-integrity, especially through the polarization of N-cadherin, and that α5ß1 integrin signaling may also contribute to myogenic repression in the dermomyotome. These observations show that the ECM and integrins are of paramount importance in myoblast cell behaviour.Resumo alargado em português disponível no document

    Coordinated actions of microRNAs with other epigenetic factors regulate skeletal muscle development and adaptation

    Get PDF
    Epigenetics plays a pivotal role in regulating gene expression in development, in response to cellular stress or in disease states, in virtually all cell types. MicroRNAs (miRNAs) are short, non-coding RNA molecules that mediate RNA silencing and regulate gene expression. miRNAs were discovered in 1993 and have been extensively studied ever since. They can be expressed in a tissue-specific manner and play a crucial role in tissue development and many biological processes. miRNAs are responsible for changes in the cell epigenome because of their ability to modulate gene expression post-transcriptionally. Recently, numerous studies have shown that miRNAs and other epigenetic factors can regulate each other or cooperate in regulating several biological processes. On the one hand, the expression of some miRNAs is silenced by DNA methylation, and histone modifications have been demonstrated to modulate miRNA expression in many cell types or disease states. On the other hand, miRNAs can directly target epigenetic factors, such as DNA methyltransferases or histone deacetylases, thus regulating chromatin structure. Moreover, several studies have reported coordinated actions between miRNAs and other epigenetic mechanisms to reinforce the regulation of gene expression. This paper reviews multiple interactions between miRNAs and epigenetic factors in skeletal muscle development and in response to stimuli or disease

    A Novel Role of Cdk9/CyclinT2 complexes in skeletal muscle and Rhabdomyosarcoma cells

    Get PDF
    Cyclin dependent kinase 9 (Cdk9) is a member of the cyclin dependent kinase family. The regulatory units of Cdk9 are the T family Cyclins (T1, T2) and Cyclin K1. Cyclin T2 has two forms termed CycT2a and CycT2b that arise by an alternative splicing of the primary transcript. Previous studies underscored a crucial role for Cdk9 in association of Cyclin T2 during skeletal myogenesis. Upon induction of muscle differentiation, MyoD recruits Cdk9/CycT2 on musclespecific gene promoter sequences. This complex is able to phosphorylate the C-terminal domain of RNA polymerase II, enhancing Myod function and promoting myogenic differentiation. Rhabdomyosarcoma (RMS), one of the most common childhood solid tumor, arises from muscle precursor cells and fails to complete both the differentiation program both the irreversibly cell cycle exit, resulting in uncontrolled proliferation and incomplete myogenesis. In RMS, Cdk9 fails to phosphorylate MyoD and the ability of MyoD to arrest cell proliferation and to activate the myogenic program is repressed. The result of this study confirmed the involvement of Cdk9/ CyclinT2 complexes during the myogenesis. Both isoforms of Cyclin T2 are able to activate the myogenic program at different stages of differentiation but CycT2b have a predominant role of in particular during the latest stages. Moreover we demonstred that EZH2 is probably responsible to inhibition of Cdk9 in RMS cells and her overexpression contribuite to inhibition of myogenesis

    Posttranslational control of membrane-skeleton (ankyrin and alpha beta- spectrin) assembly in early myogenesis

    Get PDF
    Adult chicken skeletal muscle cells express polypeptides that are antigenically related to alpha-spectrin (Mr 240,000) and beta-spectrin (Mr 220,000-225,000), the major components of the erythrocyte membrane- skeleton, and to ankyrin (Mr 237,000; also termed goblin in chicken erythrocytes), which binds spectrin to the transmembrane anion transporter in erythrocytes. Comparative immunoblotting of SDS- solubilized extracts of presumptive myoblasts and fully differentiated myotubes cultured in vitro demonstrated that there is a dramatic accumulation of ankyrin and alpha- and beta-spectrin during myogenesis and a concomitant switch in the subunit composition of spectrin from alpha gamma to alpha beta. Analysis of early time points in myogenesis (12-96 h) revealed that these changes occur shortly after the main burst of cell fusion. To determine the temporal relationship between cell fusion and the accumulation of ankyrin and alpha- and beta- spectrin, we treated presumptive myoblasts with 2 mM EGTA, which resulted in the complete inhibition of cell fusion. The incorporation of [35S]methionine into total protein and, specifically, into alpha-, gamma-, and beta-spectrin remained the same in EGTA-treated and control cells. Analysis by immunoblotting of the amounts of ankyrin and alpha- and beta-spectrin in fusion-blocked cells revealed that there was no effect on accumulation for the first 19 h. However, there was then a dramatic cessation in their accumulation, and thereafter, the amount of each protein at steady state remained constant. Upon release from the EGTA block, the cells fused rapidly (less than 11 h), and the accumulation of ankyrin and alpha- and beta-spectrin was reinitiated after a lag period of 3-5 h at a rate similar to that in control cells. The inhibition in the accumulation of newly synthesized ankyrin, alpha- spectrin, and beta-spectrin in EGTA-treated myoblasts was not characteristic of all structural proteins, since the accumulation of the muscle-specific intermediate filament protein desmin was the same in control and fusion-blocked cells. These results show that in myogenesis, the synthesis of ankyrin and alpha- and beta-spectrin and their accumulation as a complex, although concurrent, are not coupled events. We hypothesize that the extent of assembly of these components of the membrane-skeleton in muscle cells is determined by a control mechanism(s) operative at the posttranslational level that is triggered near the time of cell fusion and the onset of terminal differentiation

    MicroRNA regulation of the paired-box transcription factor Pax3 confers robustness to developmental timing of myogenesis

    Get PDF
    Commitment of progenitors in the dermomyotome to myoblast fate is the first step in establishing the body musculature. Pax3 is a crucial transcription factor, important for skeletal muscle development and expressed in myogenic progenitors in the dermomyotome of developing somites and in migratory muscle progenitors that populate the limb buds. Down-regulation of Pax3 is essential to ignite the myogenic program, including up-regulation of myogenic regulators, Myf-5 and MyoD. MicroRNAs (miRNAs) confer robustness to developmental timing by posttranscriptional repression of genetic programs that are related to previous developmental stages or to alternative cell fates. Here we demonstrate that the muscle-specific miRNAs miR-1 and miR-206 directly target Pax3. Antagomir-mediated inhibition of miR-1/miR-206 led to delayed myogenic differentiation in developing somites, as shown by transient loss of myogenin expression. This correlated with increased Pax3 and was phenocopied using Pax3-specific target protectors. Loss of myogenin after antagomir injection was rescued by Pax3 knockdown using a splice morpholino, suggesting that miR-1/miR-206 control somite myogenesis primarily through interactions with Pax3. Our studies reveal an important role for miR-1/miR-206 in providing precision to the timing of somite myogenesis. We propose that posttranscriptional control of Pax3 downstream of miR-1/miR-206 is required to stabilize myoblast commitment and subsequent differentiation. Given that mutually exclusive expression of miRNAs and their targets is a prevailing theme in development, our findings suggest that miRNA may provide a general mechanism for the unequivocal commitment underlying stem cell differentiation
    corecore