104,432 research outputs found

    Expression in Escherichia coli of a cloned DNA sequence encoding the pre-S2 region of hepatitis B virus

    Get PDF
    A DNA sequence encoding the entire pre-S2 region (amino acids 120-174; serotype ayw) of human hepatitis B virus envelope protein has been inserted into the lacZ gene of the plasmid pSKS105 yielding a recombinant, pWS3. Lac+ colonies of the Escherichia coli M182 (lacIOPZYA), isolated after transformation with pWS3, produced a pre-S2 peptide-ß-galactosidase fusion protein. This fusion protein, which comprised as much as 3% of the total bacterial protein, was purified to >90% homogeneity by affinity chromatography on p-aminophenyl-ß-D-thiogalactoside-Sepharose. It is immunoprecipitable with rabbit antibodies to a synthetic peptide corresponding to amino acids 120-145 of the pre-S2 region of serotype adw [pre-S(120-145)] or with antibodies to hepatitis B virus. pre-S(120-145) completely blocked the binding of either antibody to the pre-S2 peptide-ß-galactosidase fusion protein. These results indicate that there are antigenic determinants on the fusion protein that are closely related to, if not identical to, determinants on synthetic pre-S(120-145) and on pre-S2 sequences of native hepatitis B virus particles. Thus, bacteria transformed with pWS3 can provide an abundant source of pre-S2-ß-galactosidase fusion protein, which may prove useful either as a diagnostic reagent possessing marker enzyme activity suitable for ELISA tests or as an immunogen with potential to contribute to active prophylaxis of hepatitis B

    Mycobacterium tuberculosis antigen 85B and ESAT-6 expressed as a recombinant fusion protein in Mycobacterium smegmatis elicits cell-mediated immune response in a murine vaccination model

    Get PDF
    This is the post-print version of the final paper published in Molecular Immunology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2012 Elsevier B.V.In this study, we investigated the potential molecular and immunological differences of a recombinant fusion protein (Hybrid-1), comprising of the immunodominant antigens Ag85B and ESAT-6 from Mycobacterium tuberculosis, derived from two different expression systems, namely Mycobacterium smegmatis and Escherichia coli. The fusion protein was successfully expressed and purified from both bacterial hosts and analyzed for any host-dependent post-translational modifications that might affect the immunogenicity of the protein. We investigated the immunogenicity of Hybrid-1 expressed in the two host species in a murine vaccination model, together with a reference standard Hybrid-1 (expressed in E. coli) from the Statens Serum Institut. No evidence of any post-translation modification was found in the M. smegmatis-derived Hybrid-1 fusion protein, nor were there any significant differences in the T-cell responses obtained to the three antigens analyzed. In conclusion, the Hybrid-1 fusion protein was successfully expressed in a homologous expression system using M. smegmatis and this system is worth considering as a primary source for vaccination trials, as it provided protein of excellent yield, stability and free from lipopolysaccharide.European TB-VAC consortium and Brunel University

    Controlled release of human growth hormone fused with a human hybrid Fc fragment through a nanoporous polymer membrane

    Get PDF
    Nanotechnology has been applied to the development of more effective and compatible drug delivery systems for therapeutic proteins. Human growth hormone (hGH) was fused with a hybrid Fc fragment containing partial Fc domains of human IgD and IgG(4) to produce a long-acting fusion protein. The fusion protein, hGH-hyFc, resulted in the increase of the hydrodynamic diameter (ca. 11 nm) compared with the diameter (ca. 5 nm) of the recombinant hGH. A diblock copolymer membrane with nanopores (average diameter of 14.3 nm) exhibited a constant release rate of hGH-hyFc. The hGH-hyFc protein released in a controlled manner for one month was found to trigger the phosphorylation of Janus kinase 2 (JAK2) in human B lymphocyte and to exhibit an almost identical circular dichroism spectrum to that of the original hGH-hyFc, suggesting that the released fusion protein should maintain the functional and structural integrity of hGH. Thus, the nanoporous release device could be a potential delivery system for the long-term controlled release of therapeutic proteins fused with the hybrid Fc fragment.X111313sciescopu

    An albumin-derived peptide scaffold capable of binding and catalysis

    Get PDF
    We have identified a 101-amino-acid polypeptide derived from the sequence surrounding the IIA binding site of human albumin. The polypeptide contains residues that make contact with ligands as warfarin in the parent protein, and eight cysteine residues to form disulfide bridges, which stabilize the polypeptide structure. Seventy-four amino acids are located in six [alpha]-helical regions, with the remaining amino acids forming six connecting coil/loop regions. Codon usage optimization was used to express a GST fusion protein in E. coli in yields as high as 4 mg/l. This fusion protein retains its structural integrity and aldolase activity, the ability to direct the stereochemical outcome of a diketone reduction, and its binding capacity to warfarin and efavirenz. Notably, this newly cloned polypeptide represents a valuable starting point for the construction of libraries of binders and catalysts with improved proficiency

    Generation of fusion protein EGFRvIII-HBcAg and its anti-tumor effect in vivo

    Get PDF
    The epidermal growth factor receptor variant III (EGFRvIII) is the most common variation of EGFR. Because it shows a high frequency in several different types of tumor and has not been detected in normal tissues, it is an ideal target for tumor specific therapy. In this study, we prepared EGFRvIII-HBcAg fusion protein. After immunization with fusion protein, HBcAg or PBS, the titers of antibody in BALB/c mice immunized with fusion protein reached 2.75 × 105. Western blot analysis demonstrated that the fusion protein had specific antigenicity against anti-EGFRvIII antibody. Further observation showed fusion protein induced a high frequency of IFN-γ-secreting lymphocytes. CD4+T cells rather than CD8+T cells were associated with the production of IFN-γ. Using Renca-vIII(+) cell as specific stimulator, we observed remarkable cytotoxic activity in splenocytes from mice immunized with fusion protein. Mice were challenged with Renca-vIII(+) cells after five times immunization. In fusion protein group, three of ten mice failed to develop tumor and all survived at the end of the research. The weight of tumors in fusion protein were obviously lighter than that in other two groups (t = 4.73, P = 0.044;t = 6.89, P = 0.040). These findings demonstrated that EGFRvIII-HBcAg fusion protein triggered protective responses against tumor expressing EGFRvIII

    OPA1 mutation and late-onset cardiomyopathy: mitochondrial dysfunction and mtDNA instability.

    Get PDF
    BackgroundMitochondrial fusion protein mutations are a cause of inherited neuropathies such as Charcot-Marie-Tooth disease and dominant optic atrophy. Previously we reported that the fusion protein optic atrophy 1 (OPA1) is decreased in heart failure.Methods and resultsWe investigated cardiac function, mitochondrial function, and mtDNA stability in a mouse model of the disease with OPA1 mutation. The homozygous mutation is embryonic lethal. Heterozygous OPA(+/-) mice exhibit reduced mtDNA copy number and decreased expression of nuclear antioxidant genes at 3 to 4 months. Although initial cardiac function was normal, at 12 months the OPA1(+/-) mouse hearts had decreased fractional shortening, cardiac output, and myocyte contraction. This coincided with the onset of blindness. In addition to small fragmented mitochondria, aged OPA1(+/-) mice had impaired cardiac mitochondrial function compared with wild-type littermates.ConclusionsOPA1 mutation leads to deficiency in antioxidant transcripts, increased reactive oxygen species, mitochondrial dysfunction, and late-onset cardiomyopathy

    Pharmacokinetics and Brain Uptake of an IgG-TNF Decoy Receptor Fusion Protein Following Intravenous, Intraperitoneal, and Subcutaneous Administration in Mice

    Get PDF
    Tumor necrosis factor (TNF)-α is a proinflammatory cytokine active in the brain. Etanercept, the TNF decoy receptor (TNFR), does not cross the blood–brain barrier (BBB). The TNFR was re-engineered for BBB penetration as a fusion protein with a chimeric monoclonal antibody (mAb) against the mouse transferrin receptor (TfR), and this fusion protein is designated cTfRMAb-TNFR. The cTfRMAb domain of the fusion protein acts as a molecular Trojan horse and mediates transport via the endogenous BBB TfR. To support future chronic treatment of mouse models of neural disease with daily administration of the cTfRMAb-TNFR fusion protein, a series of pharmacokinetics and brain uptake studies in the mouse was performed. The cTfRMAb-TNFR fusion protein was radiolabeled and injected into mice via the intravenous, intraperitoneal (IP), or subcutaneous (SQ) routes of administration at doses ranging from 0.35 to 10 mg/kg. The distribution of the fusion protein into plasma following the IP or SQ routes was enhanced by increasing the injection dose from 3 to 10 mg/kg. The fusion protein demonstrated long circulation times with high metabolic stability following the IP or SQ routes of injection. The IP or SQ routes produced concentrations of the cTfRMAb-TNFR fusion protein in the brain that exceed by 20- to 50-fold the concentration of TNFα in pathologic conditions of the brain. The SQ injection is the preferred route of administration, as the level of cTfRMAb fusion protein produced in the brain is comparable to that generated with intravenous injection, and at a much lower plasma area under the concentration curve of the fusion protein as compared to IP administration

    Identification of a Phosphorylation Site for Calcium/Calmodulindependent Protein Kinase II in the NR2B Subunit of the N-Methyl-D-aspartate Receptor

    Get PDF
    The N-methyl-D-aspartate (NMDA) subtype of excitatory glutamate receptors plays critical roles in embryonic and adult synaptic plasticity in the central nervous system. The receptor is a heteromultimer of core subunits, NR1, and one or more regulatory subunits, NR2A-D. Protein phosphorylation can regulate NMDA receptor function (Lieberman, D. N., and Mody, I. (1994) Nature 369, 235-239; Wang, Y. T., and Salter, M. W. (1994) Nature 369, 233-235; Wang, L.-Y., Orser, B. A., Brautigan, D. L., and MacDonald, J. F. (1994) Nature 369, 230-232). Here we identify a major phosphorylation site on subunit NR2B that is phosphorylated by Ca2+/calmodulin-dependent protein kinase II (CaM kinase II), an abundant protein kinase located at postsynaptic sites in glutamatergic synapses. For the initial identification of the site, we constructed a recombinant fusion protein containing 334 amino acids of the C terminus of the NR2B subunit and phosphorylated it with CaM kinase II in vitro. By peptide mapping, automated sequencing, and mass spectrometry, we identified the major site of phosphorylation on the fusion protein as Ser-383, corresponding to Ser-1303 of full-length NR2B. The Km for phosphorylation of this site in the fusion protein was ~50 nM, much lower than that of other known substrates for CaM kinase II, suggesting that the receptor is a high affinity substrate. We show that serine 1303 in the full-length NR2B and/or the cognate site in NR2A is a major site of phosphorylation of the receptor both in the postsynaptic density fraction and in living hippocampal neurons

    Reprogramming Hansenula polymorpha for penicillin production: expression of the Penicillium chrysogenum pcl gene

    Get PDF
    We aim to introduce the penicillin biosynthetic pathway into the methylotrophic yeast Hansenula polymorpha. To allow simultaneous expression of the multiple genes of the penicillin biosynthetic pathway, additional markers were required. To this end, we constructed a novel host–vector system based on methionine auxotrophy and the H. polymorpha MET6 gene, which encodes a putative cystathionine β-lyase. With this new host–vector system, the Penicillium chrysogenum pcl gene, encoding peroxisomal phenylacetyl-CoA ligase (PCL), was expressed in H. polymorpha. PCL has a potential C-terminal peroxisomal targeting signal type 1 (PTS1). Our data demonstrate that a green fluorescent protein–PCL fusion protein has a dual location in the heterologous host in the cytosol and in peroxisomes. Mutation of the PTS1 of PCL (SKI-COOH) to SKL-COOH restored sorting of the fusion protein to peroxisomes only. Additionally, we demonstrate that peroxisomal PCL–SKL produced in H. polymorpha displays normal enzymatic activities.
    corecore