366,201 research outputs found

    Angular diameters, fluxes and extinction of compact planetary nebulae: further evidence for steeper extinction towards the Bulge

    Full text link
    We present values for angular diameter, flux and extinction for 70 Galactic planetary nebulae observed using narrow band filters. Angular diameters are derived using constant emissivity shell and photoionization line emission models. The mean of the results from these two models are presented as our best estimate. Contour plots of 36 fully resolved objects are included and the low intensity contours often reveal an elliptical structure that is not always apparent from FWHM measurements. Flux densities are determined, and for both H-alpha and O[III] there is little evidence of any systematic differences between observed and catalogued values. Observed H-alpha extinction values are determined using observed H-alpha and catalogued radio fluxes. H-alpha extinction values are also derived from catalogued H-alpha and H-beta flux values by means of an Rv dependent extinction law. Rv is then calculated in terms of observed extinction values and catalogued H-alpha and H-beta flux values. Comparing observed and catalogue extinction values for a subset of Bulge objects, observed values tend to be lower than catalogue values calculated with Rv = 3.1. For the same subset we calculate = 2.0, confirming that toward the Bulge interstellar extinction is steeper than Rv = 3.1. For the inner Galaxy a relation with the higher supernova rate is suggested, and that the low-density warm ionized medium is the site of the anomalous extinction. Lowvalues of extinction are also derived using dust models with a turnover radius of 0.08 microns.Comment: Accepted by MNRAS. 17 pages, 9 figures (including 36 contour plots of PNe), 5 Tables (including 2 large tables of angular diameters, fluxes and extinction

    Measuring Extinction Curves of Lensing Galaxies

    Full text link
    We critique the method of constructing extinction curves of lensing galaxies using multiply imaged QSOs. If one of the two QSO images is lightly reddened or if the dust along both sightlines has the same properties then the method works well and produces an extinction curve for the lensing galaxy. These cases are likely rare and hard to confirm. However, if the dust along each sightline has different properties then the resulting curve is no longer a measurement of extinction. Instead, it is a measurement of the difference between two extinction curves. This "lens difference curve'' does contain information about the dust properties, but extracting a meaningful extinction curve is not possible without additional, currently unknown information. As a quantitative example, we show that the combination of two Cardelli, Clayton, & Mathis (CCM) type extinction curves having different values of R(V) will produce a CCM extinction curve with a value of R(V) which is dependent on the individual R(V) values and the ratio of V band extinctions. The resulting lens difference curve is not an average of the dust along the two sightlines. We find that lens difference curves with any value of R(V), even negative values, can be produced by a combination of two reddened sightlines with different CCM extinction curves with R(V) values consistent with Milky Way dust (2.1 < R(V) < 5.6). This may explain extreme values of R(V) inferred by this method in previous studies. But lens difference curves with more normal values of R(V) are just as likely to be composed of two dust extinction curves with R(V) values different than that of the lens difference curve. While it is not possible to determine the individual extinction curves making up a lens difference curve, there is information about a galaxy's dust contained in the lens difference curves.Comment: 15 pages, 4 figues, ApJ in pres

    Peering through the veil: near-infrared photometry and extinction for the Galactic nuclear star cluster

    Full text link
    The aims of this work are to provide accurate photometry in multiple near-infrared broadband filters, to determine the power-law index of the extinction-law toward the central parsec of the Galaxy, to provide measurements of the absolute extinction toward the Galactic center, and finally to measure the spatial variability of extinction on arcsecond scales.We use adaptive optics observations of the central parsec of the Milky Way. Absolute values for the extinction in the H, Ks, and L'-bands as well as of the power-law indices of the H to Ks and Ks to L' extinction-laws are measured based on the well-known properties of red clump stars. Extinction maps are derived based on H-Ks and Ks-L' colors. We present Ks-band photometry for ~7700 stars (H and L' photometry for a subset). From a number of recently published values we compute a mean distance of the Galactic center of R_0=8.03+-0.15 kpc, which has an uncertainty of just 2%. Based on this R_0 and on the RC method, we derive absolute mean extinction values toward the central parsec of the Galaxy of A_H=4.48+-0.13 mag, A_Ks=2.54+-0.12$ mag, and A_L'=1.27+-0.18 mag. We estimate values of the power-law indices of the extinction-law of alpha_{H-Ks}=2.21+-0.24 and alpha_{Ks-L'}=1.34+-0.29. A Ks-band extinction map for the Galactic center is computed based on this extinction law and on stellar H-Ks colors. Mean extinction values in a circular region with 0.5" radius centered on Sagittarius A* are A_{H, SgrA*}=4.35+-0.12, A_{Ks, SgrA*}=2.46+-0.03, and A_{L', SgrA*}=1.23+-0.08.Comment: accepted for publication by Astronomy & Astrophysics; please contact RS for higher quality figure

    Low-extinction windows in the inner Galactic Bulge

    Get PDF
    We built K band extinction maps in the area of two candidate low-extinction windows in the inner Bulge: W0.2-2.1 at (l,b) = (0.25o,-2.15o), and W359.4-3.1 at (l,b) = (359.40o,-3.10o). We employed JHKs photometry from the 2MASS Point Source Catalog. Extinction values were determined by fitting the upper giant branch found in the present 2MASS Ks x J-Ks diagrams to a de-reddened bulge stellar population reference giant branch. We tested the method on the well known Baade's and Sgr I windows: the 2MASS mean extinction values in these fields agreed well with those of previous studies. We confirm the existence of low-extinction windows in the regions studied, as local minima in the A_K maps reaching A_K values about 2 standard deviations below the mean values found in the neighbouring areas. Schlegel et al.'s (1998) FIR extinction maps, which integrate dust contributions throughout the Galaxy, are structurally similar to those derived with 2MASS photometry in the two studied windows. We thus conclude that the dust clouds affecting the 2MASS and FIR maps in these directions are basically the same and are located on foreground of the bulk of bulge stars. However, the A_K absolute values differ significantly. In particular, the FIR extinction values for W359.4-3.1 are a factor ~1.45 larger than those derived from the 2MASS photometry. Possible explanations of this effect are discussed. The lower Galactic latitudes of the low-extinction windows W359.4-3.1 and W0.2-2.1, as compared to Baade's Window, make them promising targets for detailed studies of more central bulge regions.Comment: 8 pages, 10 figures, LaTeX, aa.cls. To appear in Astron. & Astroph., in pres

    Aerosol studies in mid-latitude coastal environments in Australia

    Get PDF
    The results of the evaluation of several inversion procedures that were used to select one which provides the most accurate atmospheric extinction profiles for small aerosol extinction coefficients (that often predominate in the maritime airmass) are presented. Height profiles of atmospheric extinction calculated by a two component atmospheric solution to the LIDAR equation will be compared with corresponding in-situ extinction profiles based on the size distribution profiles obtained in Western Australia. Values of the aerosol backscatter to extinction ratio obtained from multi-angle LIDAR measurements will be used in this solution

    Total to Selective Extinction Ratios and Visual Extinctions from Ultraviolet Data

    Full text link
    We present determinations of the total to selective extinction ratio R_V and visual extinction A_V values for Milky Way stars using ultraviolet color excesses. We extend the analysis of Gnacinski and Sikorski (1999) by using non-equal weights derived from observational errors. We present a detailed discussion of various statistical errors. In addition, we estimate the level of systematic errors by considering different normalization of the extinction curve adopted by Wegner (2002). Our catalog of 782 R_V and A_V values and their errors is available in the electronic form on the World Wide Web.Comment: 20 pages, 7 figures, submitted to Acta Astronomic

    Dust properties along anomalous extinction sightlines. II. Studying extinction curves with dust models

    Full text link
    The large majority of extinction sight lines in our Galaxy obey a simple relation depending on one parameter, the total-to-selective extinction coefficient, Rv. Different values of Rv are able to match the whole extinction curve through different environments so characterizing normal extinction curves. In this paper more than sixty curves with large ultraviolet deviations from their best-fit one parameter curve are analyzed. These curves are fitted with dust models to shed light into the properties of the grains, the processes affecting them, and their relations with the environmental characteristics. The extinction curve models are reckoned by following recent prescriptions on grain size distributions able to describe one parameter curves for Rv values from 3.1 to 5.5. Such models, here extended down to Rv=2.0, allow us to compare the resulting properties of our deviating curves with the same as normal curves in a self-consistent framework, and thus to recover the relative trends overcoming the modeling uncertainties. Such curves represent the larger and homogeneous sample of anomalous curves studied so far with dust models. Results show that the ultraviolet deviations are driven by a larger amount of small grains than predicted for lines of sight where extinction depends on one parameter only. Moreover, the dust-to-gas ratios of anomalous curves are lower than the same values for no deviating lines of sight. Shocks and grain-grain collisions should both destroy dust grains, so reducing the amount of the dust trapped into the grains, and modify the size distribution of the dust, so increasing the small-to-large grain size ratio. Therefore, the extinction properties derived should arise along sight lines where shocks and high velocity flows perturb the physical state of the interstellar medium living their signature on the dust properties. (Abridged version)Comment: 31 pages,12 figures; accepted for publication in A&

    Stochastic evolution of four species in cyclic competition

    Full text link
    We study the stochastic evolution of four species in cyclic competition in a well mixed environment. In systems composed of a finite number NN of particles these simple interaction rules result in a rich variety of extinction scenarios, from single species domination to coexistence between non-interacting species. Using exact results and numerical simulations we discuss the temporal evolution of the system for different values of NN, for different values of the reaction rates, as well as for different initial conditions. As expected, the stochastic evolution is found to closely follow the mean-field result for large NN, with notable deviations appearing in proximity of extinction events. Different ways of characterizing and predicting extinction events are discussed.Comment: 19 pages, 6 figures, submitted to J. Stat. Mec
    corecore