8,901 research outputs found

    Crashworthiness assessment considering the dynamic damage and failure of a dual phase automotive steel

    No full text
    Analyzing crash worthiness of the automotive parts has been posing a great challenge in the sheet metal and automotive industry since several decades. The present contribution will focus on one of the most urging challenges of the crash worthiness simulations, namely, an enhanced constitutive formulation to predict the failure and cracking of structural parts made from high strength steel sheets under impact. A hybrid extended Modified Bai Wierzbicki damage plasticity model is devised to this end. The material model calibrated using the experimental data covering high strain rate deformation, damage and failure successfully predicted the instability and subsequent response of the crash box under impact. Simulation results provide the deformation shape and deformation energy in order to predict and evaluate the vehicle crashworthiness. The simulations further helped in discovering the irrefutable impact of strain rate and stress state on the impact response of the auto-body structure. The strain rate is found to adequately affect the energy absorption capacity of the crash box structure both in terms of impact load and fold formation whereas the complex stress state has a direct association to the development of instability within the structure and early damage appearance within the folds

    New Multiphase CP and DP 1000 MPa strength level grades for improved performance after hot forming

    Get PDF
    Pure martensitic steels have after hot forming limited performance in terms of rest ductility which limits the application in crash relevant parts. New steel grades were designed in the EU project HOTFORM including the corresponding process routes. These steel grades have ferritic-martensitic dual phase (DP) and martensitic-bainitic complex phase (CP) microstructures after hot forming process. The laboratory tests show an improved formability after hot forming. The basic concepts of the new alloys are explained. Furthermore, for validation of upscaling purposes a semi-industrial test is carried out and the results are discussed. The main application is for vehicle safety. This is evaluated by comparing the crash performance of these hot formed grades with cold rolled DP1000 and CP1000 for crash cans in a drop tower test.The research leading to these results was carried out in the framework of HOTFORM project with a financial grant of the Research Programme RFCS (Research Funds for Coal and Steel) under grant agreement (RFSR-CT-2015-00017)

    Cluster-Based Optimization of Cellular Materials and Structures for Crashworthiness

    Get PDF
    The objective of this work is to establish a cluster-based optimization method for the optimal design of cellular materials and structures for crashworthiness, which involves the use of nonlinear, dynamic finite element models. The proposed method uses a cluster-based structural optimization approach consisting of four steps: conceptual design generation, clustering, metamodel-based global optimization, and cellular material design. The conceptual design is generated using structural optimization methods. K-means clustering is applied to the conceptual design to reduce the dimensional of the design space as well as define the internal architectures of the multimaterial structure. With reduced dimension space, global optimization aims to improve the crashworthiness of the structure can be performed efficiently. The cellular material design incorporates two homogenization methods, namely, energy-based homogenization for linear and nonlinear elastic material models and mean-field homogenization for (fully) nonlinear material models. The proposed methodology is demonstrated using three designs for crashworthiness that include linear, geometrically nonlinear, and nonlinear models

    Key issues in application of composites to transport aircraft

    Get PDF
    The application of composite materials to transport aircraft was identified and reviewed including the major contributing disciplines of design, manufacturing, and processing. Factors considered include: crashworthiness considerations (structural integrity, postcrash fires, and structural fusing), electrical/avionics subsystems integration, lightning, and P-static protection design; manufacturing development, evaluation, selection, and refining of tooling and curing procedures; and major joint design considerations. Development of the DC-10 rudder, DC-10 vertical stabilizer, and the DC-9 wing study project was reviewed. The Federal Aviation Administration interface and the effect on component design of compliance with Federal Aviation Regulation 25 Composite Guidelines are discussed

    Metallic tube type energy absorbers: a synopsis

    Get PDF
    This paper presents an overview of energy absorbers in the form of tubes in which the material used is predominantly mild steel and/or aluminium. A brief summary is also made of frusta type energy absorbers. The common modes of deformation such as lateral and axial compression, indentation and inversion are reviewed. Theoretical, numerical and experimental methods which help to understand the behaviour of such devices under various loading conditions are outlined. Although other forms of energy absorbing materials and structures exist such as composites and honeycombs, this is deemed outside the scope of this review. However, a brief description will be given on these materials. It is hoped that this work will provide a useful platform for researchers and design engineers to gain a useful insight into the progress made over the last few decades in the field of tube type energy absorbers

    The prisoners' dilemma: A game theoretic approach to vehicle safety

    Get PDF
    This paper assessed the policy implications of the changing demand for passenger vehicles in Australia and debunked the myth that bigger vehicles are safer. In particular, we examined the increasing demand for small cars and four-wheel drive using the classic prisoners' dilemma framework in game theory. We found that the current emphasis on occupant protection may result in a pareto inferior outcome whereas a shift in the emphasis towards non-aggressiveness of a vehicle would result in a pareto superior outcome. Among the pure strategy equilibria, the one with only small cars provides the lowest overall level of road trauma. Furthermore, we found no mixed strategy equilibrium that would produce a lower level of trauma than the pure strategy equilibria, implying that mixing vehicle type would definitely increase road trauma. In a mixed fleet, however, medium cars produced the least trauma and thus were the safest type of passenger vehicle

    Progressive Crushing of Polymer Matrix Composite Tubular Structures: Review

    Get PDF
    The present paper reviews crushing process of fibre-reinforced polymer (FRPs) composites tubular structures. Working with anisotropic material requires consideration of specific parameter definition in order to tailor a well-engineered composite structure. These parameters include geometry design, strain rate sensitivity, material properties, laminate design, interlaminar fracture toughness and off-axis loading conditions which are reviewed in this paper to create a comprehensive data base for researchers, engineers and scientists in the field. Each of these parameters influences the structural integrity and progressive crushing behaviour. In this extensive review each of these parameters is introduced, explained and evaluated. Construction of a well-engineered composite structure and triggering mechanism to strain rate sensitivity and testing conditions followed by failure mechanisms are extensively reviewed. Furthermore, this paper has mainly focused on experimental analysis that has been carried out on different types of FRP composites in the past two decades

    Crash Analysis and Energy Absorption Characteristics of S-shaped Longitudinal Members

    Get PDF
    This paper presents finite element simulations of the crash behavior and the energy absorption characteristics of thin S-shaped longitudinal members with variable cross-sections made of different materials to investigate the design of optimized energy-absorbing members. Numerical studies are carried out by simulation via the explicit finite element code LS-DYNA [1] to determine the desired variables for the design of energy-absorbing members. The specific energy absorption (SEA), the weight of the members and the peak force responses during the frontal impact are the main measurements of the S-shaped members' performance. Several types of inner stiffening members are also investigated to determine the influence of the additional stiffness on the crash behavior

    Pultruded composite tubes for crashworthiness

    Get PDF
    C
    corecore