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This paper presents finite element simulations of the crash behavior and the energy absorption

characteristics of thin S-shaped longitudinal members with variable cross-sections made of different

materials to investigate the design of optimized energy-absorbing members. Numerical studies are

carried out by simulation via the explicit finite element code LS-DYNA [1] to determine the desired

variables for the design of energy-absorbing members. The specific energy absorption (SEA), the weight

of the members and the peak force responses during the frontal impact are the main measurements of

the S-shaped members’ performance. Several types of inner stiffening members are also investigated to

determine the influence of the additional stiffness on the crash behavior.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

An increasing public awareness of safety issues and stronger
legislative requirements have increased the pressure on vehicle
manufacturers to improve their vehicles’ crashworthiness. The
crashworthiness of a vehicle depends on the structure’s ability to
absorb maximum kinetic energy while maintaining the integrity
of the occupant’s compartment. In order to ensure the vehicle’s
structural integrity and its ability to absorb crash energy with
minimal diminution of survivable space, it is important to study
the crash behavior of the front-end structure to reduce peak
forces and improve its energy absorption capacity.

Understanding the crashing behavior of the front-end struc-
ture is extremely important because it affects the overall profile
of the crash pulse, which is directly related to passenger injury.
The frontal safety performance of vehicles is mainly controlled by
the collapse behavior of the longitudinal frame members in the
front-end structure. Therefore, the longitudinal frame members
need to be optimized to perform more progressively and effi-
ciently when accidents happen under any conditions.

There are two main routes to optimize the crash performance
of the longitudinal frame member: the introduction of advanced
materials with better mechanical properties and geometric opti-
mization of the member (e.g., its wall thickness or cross-section).
Analyses of front frame rails including calculations of their
energy-absorbing characteristics have been extensively con-
ducted in past decades. Ohkami et al. [2] and Abe et al. [3] carried
out experimental and numerical studies on the collapse behavior

of S-shaped beams. Reinforcement of the cross-section has been
shown to increase the specific energy absorption of the S-shaped
longitudinal beam during impact. An experimental study was
carried out by Kim and Wierzbicki [4]. In their research, they
addressed the design aspect of a front side rail structure of an
automobile body and investigated several internal stiffeners to
strengthen the longitudinal tubes.

Zhang and Saigal [5] have also studied the effect of different
cross-section reinforcement strategies during impacts. They con-
cluded that a structural reinforcement increases the total energy
absorption. Tehrani and Nikahd [6,7] investigated different
arrangements of straight and oblique ribs on the S-shaped tube
in order to control the longitudinal and bending collapses. More
recent studies have shown that substitutions with better material
are generally more effective than structural modification in
improving automobile crashworthiness and in producing lighter
weight [7]. Aluminum alloys have been put forward to replace
low-strength steel structural components within automobiles.
The reason for using these alloys is that the design and manu-
facturing sectors are now trying to reduce the weight of auto-
mobiles while maintaining or improving the energy absorption
[8]. Cross-sectional dimensions and material properties are the
main considerations used to determine the stiffness, strength and
energy absorption of box-type structures. Kim et al. [9] applied
loads to hydro-aluminum foam-filled S-shaped tubes. From the
deformation pattern of the S-shaped tube, they concluded that
ultra-light metallic foam-filling is a good way to strengthen
S-frame members. Metallic foam-filler can not only provide the
advantage of weight efficiency, but also increases the efficiency of
the S-tube due to the contact between the skin and the foam filler.
Although this study was positive on the use of the foam-filled
S-tube, another study discovered that the addition of aluminum
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form-filled structures increased the energy absorption but also
led to an increase in peak forces. Therefore, the study concluded
that even though aluminum foam-fill is an efficient alternative
energy absorber, it does not increase the specific energy absorp-
tion of the structure due to the increased mass [5]. In addition to
aluminum, fiber-reinforced plastic composite materials are also
playing a new role in the automotive and aerospace sectors. This
material has shown promise in increasing strength, reducing
weight and lowering fuel consumption [10]. Finally, Elmarakbi
et al. [11] conducted extensive research using finite element
simulations of the thin wall tubes in the front-end structure using
both material and geometry optimization. They used the opti-
mized members to develop a new vehicle/pole energy absorbing
system to enhance vehicle safety.

The aim of this paper is to study the crash behavior and energy
absorption characteristics of S-shaped members and to provide
shape optimization for better crash responses. A detailed finite
element analysis using the explicit code LS-DYNA is carried out
using different materials and geometries of the S-shaped frame
members. The specific energy absorption (SEA) and the peak
crash force are considered in this paper as the main criteria for
optimization.

2. Finite element modeling of S-shaped longitudinal members

A model of a thin S-shaped longitudinal member was devel-
oped for analysis using the explicit finite element package,
LS-DYNA. The S-shaped member has length L¼1000 mm and
a perimeter of 534 mm with different cross-section shapes
including a square, rectangle, hexagon and octagon. A schematic
diagram of the finite element model with loading and boundary
conditions of the axial crush for the two S-shaped front members
using an impactor is shown in Fig. 1. Figs. 2 and 3 present a 3-D
view of the S-shapes members from the top and side views,
respectively.

For quasi-static loading of the tube, other studies have
assigned a velocity to move downward until the tube is deformed
using the DEFINE_CURVE keyword card. In this paper, it was
decided that a more realistic approach would be to assign an
initial velocity to the impactor using the initial velocity card
followed by the application of a mass to the impactor.

Two material types are used during the simulations. First, a
rigid material is applied to the base and impactor using Mat_Rigid
(MAT_20). This was done to prevent any deformation of these
parts, which could have an undesirable effect on the internal
energy and tube deflection results. For the material characteristics
of the S-shaped members, MAT_PIECEWISE_LINEAR_PLASTICITY
(MAT_24) is assigned to replicate the non-recoverable changes of
the tube under applied loads. This study focuses on two types of material, mild steel and aluminum, with mechanical properties as

described below [12].

2.1. Steel

The steel has a density r¼7830 kg/m3, a modulus of elasticity
E¼207 GPa, a Poisson’s ratio u¼0.28 and a yield stress sy¼

215 MPa. The effective plastic strain was taken as 0.0, 0.004,
0.03, 0.15, 0.3 and 0.4 with corresponding stress values of 215,
300, 390, 440, 460, and 400 MPa, respectively.

2.2. Aluminum grade 6063-T5

The aluminum has a density r¼27 kN/m3, a Young’s modulus
E¼68.9 GPa, a yield stress sy¼145 MPa and a Poisson’s ratio

 

S-shape longitudinal members  

Impactor  

Boundary condition:
Totally fixed points

Direction of
impact

Fig. 1. Finite element modeling with loading and boundary conditions of S-shaped

members under impact.

Fig. 2. 3-D view of S-shaped longitudinal members.
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Fig. 3. Configuration of an S-shaped longitudinal member in top and side views.
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u¼0.33. The effective plastic strain was taken as 0.0 and 0.08 with
corresponding stress values of 145 and 186 MPa, respectively.

To prevent the parts from passing through one another upon
impact, several contact cards are assigned to the model. Two
contact cards used in each simulation process are the CONTACT_
AUTOMATIC_NODES_TO_SURFACE and CONTACT_AUTOMATIC_
SINGLE_SURFACE. The automatic nodes-to-surface card is applied
for the contact between the members and the impactor. The
automatic single surface card is used for the contact between
the S-shaped tube members; both the slave and master values are
set to 0 as a single surface is assigned for the length of the
member. For contact between the tube and impactor, the tube is
assigned to be a slave part with the impactor as the master.
For the simulation of the axial impact on the S-shaped members,

the simulated parts are modeled as shell elements with a fully-
integrated shell element formula 16. 5 Gauss integration points
through thickness are used to model the shell tube, as progressive
plastic folding will occur during the collapse of tubular structures.

3. Numerical simulations

In order to obtain accurate and realistic results, the explicit finite
element software LS-DYNA was used to carry out simulations.
In this section, the effects of key parameters on the performance
of crash behavior and energy dissipation are discussed. These key
parameters include impact velocity, cross-sectional shape, material
type, thickness and added stiffeners.

Table 1
SEA and peak force of steel and aluminum S-shaped longitudinal members with different cross-sections.

Aluminum Steel

Weight (kg) SEA (kJ/kg) Peak force (kN) Weight (kg) SEA (kJ/kg ) Peak force (kN)

Hexagon 4.707 0.873 46.887 13.651 1.052 130.473

Octagon 4.707 0.870 46.057 13.651 1.038 124.289

Rectangle 4.728 0.715 30.894 13.712 0.876 90.565

Square 4.716 0.804 36.061 13.675 0.962 104.450
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Fig. 4. SEA vs. displacement for steel and aluminum with different cross-sections.
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Fig. 5. Peak force vs. displacement for steel and aluminum with different cross-sections.
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3.1. Influence of the cross-section of the S-shaped member

In this section, the effects from different cross-sectional (CS)
shapes of the S-shaped members are addressed. Four diffe-
rent cross-sections were proposed, including square, rectangle,
hexagon and octagon sections with perimeters of 534 mm and
thicknesses of 3 mm. The impactor hits the S-shaped member
with a high speed of 2000 mm/s and a ramping time of 0.05 s.
Two different materials, steel and aluminum, are considered in
this section. The specific energy absorption (SEA) is the main
criterion used to assess the weight efficiency. The peak force is
also used to define the optimum shape.

A summary of the results is presented in Table 1 and
Figs. 4 and 5. The weight, SEA and peak force for different
cross-sections for both steel and aluminum materials are clearly
presented. It is shown for both materials that the S-shaped
member with the hexagonal cross-section produces the best

values of the specific energy absorption (SEA). Although aluminum
has a 17% lower SEA value than steel, it produces a 65% savings
in the total weight, which is considered to be a large benefit
compared to the SEA criterion. In all models, the force increases
up to the peak value and then decays dramatically. In addition,
the peak force in the aluminum case is reduced by 65% compared
to the steel material.

3.2. Influence of inner stiffeners for different cross-sections of the

S-shaped members

The influence of adding Type 1 inner stiffeners (IS) to S-shaped
members is presented in this section and is shown in Fig. 6. The
thickness of the inner stiffeners is taken as 3 mm, and they are
made of the same materials as the S-shaped members.

The summary of the results are presented in Table 2 and
Figs. 7 and 8. The weight, SEA and peak force for different cross-
sections for both steel and aluminum materials are clearly
presented. It is shown for both materials that the S-shaped
member with an octagonal cross-section produces the best values
of the specific energy absorption (SEA). The aluminum has 14.8%
lower SEA values than steel, but it produces a 65% savings in the
total weight, which is considered to be a large benefit compared
to the SEA reduction. In addition, the peak force in the aluminum
cases were reduced by 64% compared to the steel material. It is
also noted that adding inner stiffeners enhanced the SEA, but the
weight and peak force are increased. For octagonal aluminum, the
SEA is enhanced by 22.5% but the weight and peak force are
increased by 60% and 65%, respectively. Similarly, the SEA in steel
samples is enhanced by 23%, but the weight and peak force are
increased by 60% and 66%, respectively.

It is worth noting that the hexagonal cross-section presents
better results without the inner stiffeners. However, the addition
of inner stiffeners makes the octagon shapes the most optimal
cross-section overall.

SquarewithIS Rectangular withIS    

Hexagon CS with IS  Octagon withIS

Fig. 6. Different cross-sections of an S-shaped member with inner stiffeners

(Type 1).

Table 2
SEA and peak force of steel and aluminum S-shaped longitudinal members with different cross-sections having inner stiffeners.

Aluminum Steel

Weight (kg) SEA (kJ/kg ) Peak force (kN) Weight (kg) SEA (kJ/kg) Peak force (kN)

Hexagon with IS 7.641 0.999 72.951 22.160 1.192 204.549

Octagon with IS 7.553 1.122 75.863 21.903 1.317 206.826

Rectangle with IS 7.209 0.899 56.968 20.906 1.046 162.013

Square with IS 7.073 1.006 65.177 20.511 1.135 181.596

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 50 100 150 200 250 300

hexagon (A) 

octagon (A) 

rectangular (A) 

square (A) 

hexagon (S) 

octagon (S) 

rectangular (S) 

square (S) 

Displacement (mm) 

SE
A

 ( 
kJ

/k
g 

) 

Fig. 7. SEA vs. displacement for steel and aluminum with different cross-sections having inner stiffeners.

A. Elmarakbi et al. / Thin-Walled Structures 68 (2013) 65–7468



Author's personal copy

0

20

40

60

80

100

120

140

160

180

200

220

0 50 100 150 200 250 300

hexagon (A) 

octagon (A) 

rectangular (A) 

square (A) 

hexagon (S) 

octagon (S) 

rectangular (S) 

square (S) 

Displacement (mm) 

Fo
rc

e 
(k

N
)

Fig. 8. Peak force vs. displacement for steel and aluminum with different cross-sections having inner stiffeners.
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Fig. 9. Different inner stiffening members for the octagon cross-sections of the S-shaped member.

Table 3
SEA and peak force of steel and aluminum S-shaped longitudinal members with octagonal cross-sections having different types of inner stiffeners.

Aluminum Steel

Weight (kg) SEA (kJ/kg) Peak force (kN) Weight (kg) SEA (kJ/kg) Peak force (kN)

Type 1 7.553 1.122 75.863 21.903 1.317 206.826

Type 2 10.377 1.167 102.522 30.093 1.377 291.236

Type 3 10.420 1.153 102.582 30.218 1.342 290.480

Type 4 7.575 0.968 70.173 21.967 1.149 196.872

Type 5 7.531 1.006 71.565 21.841 1.234 199.913

Type 6 7.799 1.161 77.019 22.617 1.424 222.823

Type 7 7.765 1.222 78.629 22.520 1.549 226.610

Type 8 10.399 1.167 101.740 30.157 1.411 295.186

Type 9 10.666 1.034 93.882 30.933 1.248 273.731

Type 10 10.623 1.326 109.508 30.808 1.656 327.886
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Fig. 10. SEA vs. displacement for aluminum members with octagonal cross-sections having different inner stiffeners.
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Fig. 11. Peak force vs. displacement for aluminum members with octagonal cross-sections having different inner stiffeners.
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Fig. 12. SEA vs. displacement for steel members with octagonal cross-sections having different inner stiffeners.
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Fig. 13. Peak force vs. displacement for steel members with octagonal cross-sections having different inner stiffeners.
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Fig. 14. Crashed steel octagonal S-shaped members for different types of inner stiffeners at time 0.1 s.
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3.3. Influence of different inner stiffeners in S-shaped members with

octagonal cross-section

Nine different combinations of inner stiffening members are
used to modify and optimize the performance of the octagon
S-shaped longitudinal member, as shown in Fig. 9. All of the inner
stiffening types are made of the same material with thicknesses of
3 mm.

A summary of the results for the octagonal cross-section with
different types of stiffeners for both steel and aluminum materials

are clearly presented in Table 3. The SEA and peak force
vs. displacement histories are depicted in Figs. 10 and 11 for
aluminum and 12 and 13 for steel, respectively.

It is shown in both materials that the S-shaped member with
Type 7 inner stiffeners produces the best values of specific energy
absorption (SEA). The aluminum has a 21% lower SEA value
compared to steel, but it produces a 65% savings in the total
weight, which is considered to be a large benefit compared to the
SEA criterion. In addition, the peak force in the aluminum case is
reduced by 65.3% compared to the steel material. It is also noted

Time: 0.15s Time: 0.20s

Fig. 15. Crashed steel Octagonal S-shaped members with Type 7 inner stiffeners at 0.05, 0.1, 0.15 and 0.20 s.

Table 4
SEA and peak force of steel and aluminum S-shaped longitudinal members with octagonal cross-sections having Type 7 inner stiffeners.

Aluminum Steel

Weight (kg) SEA (kJ/kg ) Peak force (kN) Weight (kg) SEA (kJ/kg ) Peak force (kN)

t¼3 mm 7.765 1.222 78.629 22.520 1.549 226.610

t¼6 mm 15.531 1.615 185.030 45.040 1.890 551.223

t¼9 mm 23.296 1.829 605.125 67.558 2.126 1832.680

t¼12 mm 31.062 1.964 842.652 90.080 2.309 2586.770

t¼15 mm 38.826 2.068 1085.370 112.599 2.582 3363.690
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that adding the inner stiffeners (Type 10) enhances the SEA by 8%
and 4.6% for aluminum and steel, respectively; however, the
weight and the peak force are increased by 36.8% and 39% for
aluminum and by 36.8% and 44.7% for steel, respectively.

The crashed steel octagonal S-shaped members for different
types of inner stiffeners are shown in Figs. 12, 13 and 14 at time
0.1 s. Fig. 15 shows the crashed steel octagonal S-shaped mem-
bers with Type 7 inner stiffeners at 0.05, 0.1, 0.15 and 0.20 s. The
bending collapse dominates the response, and a single local axial
fold is observed near the fixed, or impact, end. The bending
resistance of aluminum members is low, which explains the small
magnitude of the peak force.

3.4. Influence of different thicknesses for S-shaped members with

octagonal cross-sections

In this section, the influence of different thicknesses on the
octagonal cross-section with Type7 stiffeners is discussed. The
different thicknesses of the thin-wall members used in the study
are 6, 9, 12 and 15 mm.

A summary of the results for octagonal cross-section with Type
7 inner stiffeners for both steel and aluminum materials is clearly
presented in Table 4. The SEA and peak force vs. displacement
histories for different thicknesses of the S-shaped member are
depicted in Figs. 16 and 17, respectively.

It is shown for both materials that the S-shaped member with
a thickness of 3 mm produces the best results if the weight and

peak force are considered. It is clearly shown that increasing the
thickness will increase the SEA; however, the rate of SEA
enhancement is very low compared to the huge increase in the
weight and peak force. Using a 6-mm thickness will enhance the
SEA for aluminum by 24%; however, it will cause a huge weight
increase by doubling the weight of the member and increasing
the peak force by 235%. Similarly, a 6-mm thickness in the steel
member will double the weight and increase the peak force by
245%. In summary, increasing the thickness will enhance the SEA
only very slightly when compared to the weight increase and the
large added peak force. Therefore, the thickness of 3 mm was
considered most suitable in this study.

4. Conclusions

This study was aimed at modifying the design of the frontal
S-shaped longitudinal members to enhance the energy absorption
ability and to minimize the peak force response. Several cross-
sections with and without additional inner stiffening members
were investigated in this study. In addition, the material type
and the member thickness were also considered. The numerical
simulations were carried out using the explicit finite element
code LS-DYNA. From the results discussion presented in this
paper for frontal impact of S-shaped longitudinal members, it is
worth noting that the most desirable S-shaped member enhanced
the specific energy absorption (SEA) while also reducing the

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

3.00 

0 50 100 150 200 250 300 

t = 3 (A) 

t = 6 (A) 

t = 9 (A) 

t = 12 (A) 

t = 15 (A) 

t = 3 (S) 

t = 6 (S) 

t = 9 (S) 

t = 12 (S) 

t = 15 (S) 

Displacement (mm) 

SE
A

 ( 
kJ

/k
g 

) 

Fig. 16. SEA vs. displacement for aluminum and steel members with octagonal cross-sections having Type 7 inner stiffeners for different thicknesses of the S-shaped
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weight and peak force response during frontal impact. The results
showed that an octagonal cross-section with Type 7 inner stiffen-
ers (two vertical diagonal inner members) provide a good combi-
nation of structural reinforcements to increase the bending
resistance of the members, and desirable results were produced
including an SEA of 1.222 kJ/kg for aluminum and 1.59 kJ/kg for
steel with peak forces of 78.629 kN and 226.610 kN, respectively.
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