130,148 research outputs found

    Genetic Regulation of NKT Cell Function

    Get PDF
    NKT cells are specialized T cells that play important roles in the host immune response to bacteria and viruses. NKT cells produce a wide variety of cytokines and chemokines after being activated by glycolipids such as Ξ±-galactosylceramide (Ξ±GalCer). Previous work suggested that the ability of NKT cells to be activated by aGalCer mapped to a genetic region encompassing a gene family (Slam genes) that is known to be important in NKT cell development, but the exact gene in this region which regulates NKT cells is unknown. This study utilizes a panel of C57BL/6 (B6) mice containing different regions of chromosome 1 derived from 129X1/SvJ mice (B6.129 congenics) to identify candidate genes regulating NKT cell function by positionally mapping the genes within this locus. We assessed NKT cell function in B6.129c2 (C2), B6.129c3 (C3), and B6.129c4 (C4) mice, which contain 129 intervals ranging from 0.1-1 megabase pairs (Mbp). To assess NKT cell function, we injected mice with Ξ±GalCer, which specifically activates NKT cells. Flow cytometry was utilized to determine NKT cell IL-4, TNF, and IFN-g expression on a per cell basis and ELISA assays were conducted to observe the overall magnitude of the NKT cell response. There was a significant reduction in the TNF, IL-4, and IFNΞ³ production in all congenic mice as compared to B6 controls. These data suggested that the NKT cell response to Ξ±GalCer mapped to a 0.1 Mbp region on chromosome 1 (the C3 interval), which excluded Slam genes as potential genes regulating these NKT cell functions. Possible candidate genes of interest in this locus are ApoA2, which encodes a protein involved in lipid transport, and Fcer1g, which encodes a protein that has recently been implicated in the development of different NKT cell subsets

    Cell wall arabinan is essential for guard cell function

    Get PDF
    Stomatal guard cells play a key role in the ability of plants to survive on dry land, because their movements regulate the exchange of gases and water vapor between the external environment and the interior of the plant. The walls of these cells are exceptionally strong and must undergo large and reversible deformation during stomatal opening and closing. The molecular basis of the unique strength and flexibility of guard cell walls is unknown. We show that degradation of cell wall arabinan prevents either stomatal opening or closing. This locking of guard cell wall movements can be reversed if homogalacturonan is subsequently removed from the wall. We suggest that arabinans maintain flexibility in the cell wall by preventing homogalacturonan polymers from forming tight associations

    Polyunsaturated fatty acid-derived lipid mediators and T cell function

    Get PDF
    Copyright Β© 2014 Nicolaou, Mauro, Urquhart and Marelli-Berg . This is an open- access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

    Selective inhibition of T suppressor-cell function by a monosaccharide

    Get PDF
    Interactions between regulatory T lymphocytes and other cells are assumed to occur at the level of the cell surface. T cells which suppress the generation of specifically effector cells have been described as having antigenic, idiotypic, allotypic and I-region specificity1βˆ’4. Other T suppressor cells generated by in vitro cultivation with or without mitogenic stimulation5,6 have suppressive activity for T and B cells but no specificity can be assigned to them. These T suppressor cells (Ts) inhibit various lymphoid functionsβ€”this either reflects their polyclonal origin or indicates that the structures recognized by the Ts receptors must be common for many cell types. Carbohydrates on cell membrane-inserted glycoproteins or glycolipids might function as specific ligands for recognition by cellular receptors or soluble factors. Almost all cell-surface proteins of mammalian cells are glycosylated. There is evidence for lectin-like carbohydrate binding proteins not only in plants7 but also in toxins8, viruses9, prokaryotic cells10 and even mammalian cells, including T cells11. A functional role for these lectin-like proteins has been described for slime moulds and suggested for the selective association of embryonic cells12,13. We report here that addition of a monosaccharide can counteract the effect of T suppressor cells during the generation of alloreactive cytotoxic T cells (CTLs) in vitro

    Polyunsaturated fatty acid-derived lipid mediators and T cell function

    Get PDF
    Copyright Β© 2014 Nicolaou, Mauro, Urquhart and Marelli-Berg . This is an open- access article distributed under the terms of the Creative Commons Attribution License (CC BY) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms

    Loss of murine Paneth cell function alters the immature intestinal microbiome and mimics changes seen in neonatal necrotizing enterocolitis

    Get PDF
    Necrotizing enterocolitis (NEC) remains the leading cause of gastrointestinal morbidity and mortality in premature infants. Human and animal studies suggest a role for Paneth cells in NEC pathogenesis. Paneth cells play critical roles in host-microbial interactions and epithelial homeostasis. The ramifications of eliminating Paneth cell function on the immature host-microbial axis remains incomplete. Paneth cell function was depleted in the immature murine intestine using chemical and genetic models, which resulted in intestinal injury consistent with NEC. Paneth cell depletion was confirmed using histology, electron microscopy, flow cytometry, and real time RT-PCR. Cecal samples were analyzed at various time points to determine the effects of Paneth cell depletion with and without Klebsiella gavage on the microbiome. Deficient Paneth cell function induced significant compositional changes in the cecal microbiome with a significant increase in Enterobacteriacae species. Further, the bloom of Enterobacteriaceae species that occurs is phenotypically similar to what is seen in human NEC. This further strengthens our understanding of the importance of Paneth cells to intestinal homeostasis in the immature intestine

    Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics'

    Get PDF
    We combined large-scale mRNA expression analysis and gene mapping to identify genes and loci that control hematopoietic stem cell (HSC) function. We measured mRNA expression levels in purified HSCs isolated from a panel of densely genotyped recombinant inbred mouse strains. We mapped quantitative trait loci (QTLs) associated with variation in expression of thousands of transcripts. By comparing the physical transcript position with the location of the controlling QTL, we identified polymorphic cis-acting stem cell genes. We also identified multiple trans-acting control loci that modify expression of large numbers of genes. These groups of coregulated transcripts identify pathways that specify variation in stem cells. We illustrate this concept with the identification of candidate genes involved with HSC turnover. We compared expression QTLs in HSCs and brain from the same mice and identified both shared and tissue-specific QTLs. Our data are accessible through WebQTL, a web-based interface that allows custom genetic linkage analysis and identification of coregulated transcripts.
    • …
    corecore