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RESEARCH ARTICLE
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Abstract

Necrotizing enterocolitis (NEC) remains the leading cause of gastrointestinal morbidity and

mortality in premature infants. Human and animal studies suggest a role for Paneth cells in

NEC pathogenesis. Paneth cells play critical roles in host-microbial interactions and epithe-

lial homeostasis. The ramifications of eliminating Paneth cell function on the immature host-

microbial axis remains incomplete. Paneth cell function was depleted in the immature

murine intestine using chemical and genetic models, which resulted in intestinal injury con-

sistent with NEC. Paneth cell depletion was confirmed using histology, electron microscopy,

flow cytometry, and real time RT-PCR. Cecal samples were analyzed at various time points

to determine the effects of Paneth cell depletion with and without Klebsiella gavage on the

microbiome. Deficient Paneth cell function induced significant compositional changes in the

cecal microbiome with a significant increase in Enterobacteriacae species. Further, the

bloom of Enterobacteriaceae species that occurs is phenotypically similar to what is seen in

human NEC. This further strengthens our understanding of the importance of Paneth cells

to intestinal homeostasis in the immature intestine.

Introduction

A key regulator of small bowel homeostasis and the intestinal microbiome is the Paneth cell

[1]. Paneth cells are granular secretory cells located at the base of the crypts of Lieberkühn.

These dense granules contain multiple antimicrobial peptides that are secreted constitutively

PLOS ONE | https://doi.org/10.1371/journal.pone.0204967 October 1, 2018 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Lueschow SR, Stumphy J, Gong H, Kern

SL, Elgin TG, Underwood MA, et al. (2018) Loss of

murine Paneth cell function alters the immature

intestinal microbiome and mimics changes seen in

neonatal necrotizing enterocolitis. PLoS ONE 13

(10): e0204967. https://doi.org/10.1371/journal.

pone.0204967

Editor: Shree Ram Singh, National Cancer Institute,

UNITED STATES

Received: August 10, 2018

Accepted: September 16, 2018

Published: October 1, 2018

Copyright: © 2018 Lueschow et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data underlying

this study have been uploaded to Dryad and are

accessible using the following doi: 10.5061/dryad.

1h5183k.

Funding: Support for this work was provided from

the National Institutes of Health (SJM: DK083677,

SJM: DK097335, MG: DK101608, MG: DK111473,

MHW: DK085525, and MHW: CA060533), The

March of Dimes (MG: 5-FY17-79), the Children’s

Miracle Network, the Stead Family Department of

http://orcid.org/0000-0002-4321-723X
https://doi.org/10.1371/journal.pone.0204967
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204967&domain=pdf&date_stamp=2018-10-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204967&domain=pdf&date_stamp=2018-10-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204967&domain=pdf&date_stamp=2018-10-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204967&domain=pdf&date_stamp=2018-10-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204967&domain=pdf&date_stamp=2018-10-01
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0204967&domain=pdf&date_stamp=2018-10-01
https://doi.org/10.1371/journal.pone.0204967
https://doi.org/10.1371/journal.pone.0204967
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5061/dryad.1h5183k
https://doi.org/10.5061/dryad.1h5183k


and in response to bacterial antigens to regulate the intestinal microbiome [2, 3]. The composi-

tion of the intestinal microbiota and its interaction with the host tissue is critical in the patho-

genesis of many disease processes such as inflammatory bowel disease (IBD) and necrotizing

enterocolitis (NEC) [4, 5].

NEC is primarily a disease of premature infants, affecting 4,000 premature infants every

year in the US and leading to the death of 1/3 of those infants [6, 7]. The pathophysiology of

NEC is postulated to result from bacterial translocation across the immature epithelial barrier,

leading to tissue invasion and destruction [8, 9], but the exact mechanisms remain unknown.

No single organism has been found to be causative of NEC [10, 11], although multiple studies

have associated bacterial dysbiosis and especially a bloom of Enterobacteriaceae prior to NEC

development [12–15]. This suggests that alterations of the intestinal microbiota are either

directly responsible or are an associated marker of NEC development.

Our lab and others have previously shown that infants who developed NEC had signifi-

cantly fewer Paneth cells than controls [16, 17]. The recent observations that 1) Paneth cell

numbers begin to increase in the immature infant small intestine at approximately 29 weeks

corrected gestational age [18], 2) Proteobacteria are the dominant fecal phylum between 28

and 33 weeks corrected gestational age [13], and 3) the peak incidence of NEC is 28–33 weeks

corrected gestational age [19] also suggest a potential role for Paneth cell dysfunction in NEC.

As Paneth cells directly affect the composition of intestinal bacteria, it is reasonable to hypoth-

esize that functional depletion of Paneth cells is involved in the dysbiosis observed before or

during NEC development. To address this, we utilized chemical and genetic techniques to

deplete Paneth cells in the immature intestine and then used Klebsiella gavage as our previ-

ously described NEC model [20–22] to investigate the role of Paneth cell function on the com-

position of the microbiome of the immature intestinal tract.

Our initial hypothesis for this study was that Paneth cell depletion would have acute effects

on the composition of the immature intestinal microbiome. Our results show that Paneth cell

depletion alters the composition of the cecal microbiome acutely and long term after the single

initial insult. Furthermore, our data show striking similarities in the composition of intestinal

bacteria following Paneth cell depletion-induced NEC to those seen in human infants prior to

NEC onset. These results may explain a key mechanism by which the intestinal microbiome is

altered prior to development of disease.

Materials and methods

Mice

Mice were bred at The University of Iowa under standard conditions according to protocols

approved by the Institutional Animal Care and Usage Committee (Approval 7091143). All mice

were dam-fed prior to experiments, and unless otherwise indicated, experiments were con-

ducted with postnatal day (P) 14–16 mice. On the day of experimentation, animals were sepa-

rated from their mothers and maintained in a temperature- and humidity-controlled chamber.

All mice were either wild type C57Bl/6J or on a C57Bl/6J background, and founders were pur-

chased from The Jackson Laboratory (Bar Harbor, ME). PC-DTR mice were generated by

inserting a HA-tagged human diphtheria toxin receptor into the Cryptdin-2 promoter on the

surface of Paneth cells. The construct of this vector was a generous gift from Dr. Jeff Gordon at

Washington University [23]. PC-DTR mice were generated in the University of Iowa Transgenic

Mouse Core via pronuclear injection into FVB founders and were crossed to a C57Bl/6J back-

ground as previously described [22]. Rosa mice (Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J)

were purchased from The Jackson Laboratory (Bar Harbor, ME) and were originally on a
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C57Bl/6J-129 crossed background. To move the strain to a complete C57Bl/6J background,

founders were cross bred with Wild type C57Bl/6J animals for 8 generations.

Bacteria

Unless otherwise noted, all studies were performed using Klebsiella pneumoniae 10031

(ATCC, Manassas, VA). Prior to gavage, all bacteria were grown to log-phase and optical den-

sity was performed to determine CFU quantity. All mice receiving bacteria were given 1x109

CFUs pathogen/g body weight via single gavage feed. Klebsiella Zea Mays is a wild type, GFP

labeled Klebsiella [24], and was a generous gift from Eric Triplett, University of Florida. To

determine bacterial transit time, Rosa mice were gavaged with 1x109 CFU/gbw of GFP-tagged

Klebsiella Zea Mays and were sacrificed at 30, 60, 90, 120, 180 and 240 minutes post-gavage.

The terminal ileum was harvested and examined for the presence of GFP-tagged Klebsiella.

Ileal effluents were collected by flushing PBS through the intestinal lumen. Spectrophotom-

etry was used to measure the total bacterial load in the ileal effluent.

Induction of Paneth cell depletion

Dithizone-induced Paneth cell depletion. P14-16 mice were given an intraperitoneal

injection with either 33 mg/kg dithizone (Sigma) dissolved in 20% NH4OH/EtOH solution, or

an equivalent volume of NH4HO/EtOH buffer alone [22]. Six hours after injection (time point

of greatest Paneth cell reduction[25]), mice were gastrically gavaged with 1×109 CFU bacteria/

kg body weight or an equivalent volume of sterile media (nutrient broth; ATCC) [21, 26].

Mice were monitored for 10 hours after gavage and then euthanized for tissue harvesting.

Mice were kept separate from their dams during the experiment.

Diphtheria toxin-induced Paneth cell depletion. P14-16 PC-DTR mice were given an

intraperitoneal injection with either 40 ng/g body weight diphtheria toxin (2 μg/μl solution) in

phosphate buffered saline (PBS), or an equivalent volume of (PBS) alone [22]. Twenty-four

hours after injection, mice were gavaged with 1×109 CFU pathogen/kg body weight or an

equivalent volume of sterile media (nutrient broth; ATCC). Mice were monitored for 10 hours

after gavage and then euthanized for tissue harvesting. Mice were kept separate from their

dams during the experiment.

Paneth cell quantification

Ileal sections were stained with Alcian Blue/Periodic Acid Schiff stain (Sigma-Aldrich) as pre-

viously shown [20]. To minimize sectioning variability, all sections were obtained from the

center of the intestinal sample and only areas with full villi were included. In each sample used

for measurement, at least 3 distinct areas were counted to minimize sectioning variances. Cells

were quantified with a 60x objective (600x total magnification) by a single blinded investigator.

Intestinal sections from at least five animals were analyzed for each experimental group and at

least 100 crypts were counted per animal. All data were obtained using a Nikon NiU micro-

scope using Nikon Elements software (Nikon). Paneth cell quantification by flow cytometry

was performed as described previously [27]. Briefly, ileal samples were removed and flushed

with cold PBS, opened lengthwise, and incubated in ice with PBS/30 mM, EDTA/1.5 mM,

DTT/10 μm, Y27632 for 20 min prior to transfer to buffer without DTT at 37˚C for 10 min.

Samples were shaken to dissociate crypts from villi and then centrifuged at 1000 rpm for 5

min. Pelleted cells were washed with PBS, and re-suspended in Hank’s Balanced Salt Solution

(HBSS)/0.3 U/ml dispase at 37˚C. 150 U/ml DNase I was added and the cellular suspension

was passed through 100, 70, and 40 μm cell strainers. Cells were pelleted at 1000 rpm for 5

min, washed with 10 ml 10% FBS, then re-suspended in 3 ml HBSS with 5% FBS. 100 μl of 10
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million/ml cells were fixed in 4% paraformaldehyde for 15 min, washed with PBS, and re-sus-

pended in saponin permeabilization buffer with Lyz-fluorescein isothiocyanate antibody (1:10,

Dako, Carpinteria, CA) at room temperature for 30 min. All flow analyses were performed

using Becton Dickinson LSR II Flow Cytometer (BD Biosciences, CA) and FlowJo software.

Nucleated cells were determined through the use of a bivariate side scatter area vs Hoechst

33258 area plot and doublets were excluded by plotting forward scatter width vs PerCP--

Cy5.5-A. PerCP-Cy5.5-A was used in place of forward scatter area to allow better separation

for distinguishing aggregates using the natural autofluorescence present in the cells. To con-

firm all doublets had been gated out a bivariate plot of forward scatter area vs forward scatter

width was used. FITC-A positive cells could then be distinguished from the non FITC-A

expressing cells when plotted vs forwards scatter area.

Serum collection

Prior to euthanization, blood was obtained from the facial vein as previously described [17].

Whole blood samples were placed on ice for one hour then centrifuged at 7000 RPM for 5

minutes to isolate serum. Cytokines were quantified using a Meso-Scale Discovery V-Plex

assay (Meso-scale, Gaithersburg, MD) according to the manufacturer’s instructions. Plates

were read on a Sector Imager 2400 at 620 nm.

Gene expression

For mRNA quantification, ileal samples were homogenized using a TissueLyser LT (Qiagen),

as previously described [21, 28, 29]. RNA was isolated using RNeasy Plus Mini Kit (Qiagen)

according to manufacturer’s directions. RNA concentration and quality were determined

using a NanoDrop 1000 Spectrophotometer (Thermo Fisher Scientific). Quantitative real-time

reverse transcription-polymerase chain reaction (qRT-PCR) was performed using Taqman

Fast Universal PCR Master Mix (2X) (Life Technologies) and Taqman Gene Expression Assays

for cryptdin, and lysozyme, (Life Technologies). qRT-PCR reactions were run in a C1000

Thermal Cycler (Eppendorf) and using the CFX96 Real-Time PCR Detection System

(BioRad). Fold change in gene expression was determined by normalizing gene expression to

ß-actin in each sample. The 2ΔΔ-CT method was used to compare gene expression levels

between samples. RNA-seq reads were aligned to the Ensembl top-level assembly with STAR

version 2.0.4b. Gene counts were derived from the number of uniquely aligned unambiguous

reads by Subread:featureCount version 1.4.5. Transcript counts were produced by Sailfish ver-

sion 0.6.3. Sequencing performance was assessed for total number of aligned reads; total num-

ber of uniquely aligned reads; genes and transcripts detected; ribosomal fraction known

junction saturation and read distribution over known gene models with RSeQC version 2.3.

All gene-level and transcript counts were then imported into the R/Bioconductor package

EdgeR and TMM normalization size factors were calculated to adjust samples for differences

in library size. Ribosomal features as well as any feature not expressed in at least the smallest

condition size minus one sample were excluded from further analysis and TMM size factors

were recalculated to created effective TMM size factors. The TMM size factors and the matrix

of counts were then imported into R/Bioconductor package Limma and weighted likelihoods

based on the observed mean-variance relationship of every gene/transcript and sample were

then calculated for all samples with the voomWithQualityWeights function. Performance of

the samples was assessed with a Spearman correlation matrix and multi-dimensional scaling

plots. Gene/transcript performance was assessed with plots of residual standard deviation of

every gene to their average log-count with a robustly fitted trend line of the residuals. General-

ized linear models were then created to test for gene/transcript level differential expression.

Paneth cell disruption mimics NEC microbiome
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Differentially expressed genes and transcripts were then filtered for FDR adjusted p-values less

than or equal to 0.05.

Microbiota analysis

Mice were sacrificed according to institutional guidelines at the University of Iowa. Ceca were

removed and placed in 1 mL of RNALater (Sigma Aldrich, St. Louis, MO) and stored overnight

at -4˚C. The ceca were then transferred to a clean tube and stored at -80˚C until processing.

Cecal samples were thawed and the ZR Fecal DNA MiniPrep kit (Zymo Research, Irvine, CA)

was used to extract DNA from the intact ceca. The extracted DNA was stored at -20˚C. Ampli-

fication and sequencing were performed as previously described [30, 31]. Bacterial 16s rRNA

amplification of the V4 domain was performed using the following primers: F515 (5’-NNN
NNNNNGTGTGCCAFCMGCCGCCGCGGTAA-3’) and R806 (5’-GGACTACHVGGGTWTC
TAAT-3’),with the forward primer modified to contain a unique 8 nucleotide linker

sequence (italicized poly-N section of the primer above) and a 2-nucleotide linker sequence

(bold, underlined portion) at the 5’ end. PCR reactions used 5–100 ng DNA template, 1X

GoTaq Green Master Mix (Promega, Madison, WI), 1 mmol/L MgCl2, and 2 pmol of each

primer. PCR was performed at 94 ˚C for the initial 3 minutes followed by 35 cycles of 94˚C for

45 s, 50˚C for 60 s, and 72˚C for 90 s, with a final extension of 72˚C for 10 minutes. PCR ampli-

cons were grouped at approximately equal amplification intensity ratios and were purified

using the Qiaquick PCR purification kit (Qiagen). The PCR amplicons were submitted to the

UC Davis Genome Center DNA Technologies Core for Illumina paired-end library prepara-

tion, cluster generation, and 250 bp paired-end Illumina MiSeq sequencing. Data from the

sequencing run was analyzed using the QIIME software package (University of Colorado,

Boulder, CO, version 1.9.1) [32]. Sequences were quality filtered and demultiplexed, and the

UCLUST (drive5.com, Tiburon, CA) was used to assign operational taxonomic units (OTUs)

to the sequences, based on a 97% pairwise identity [33, 34]. Secondary filtration of 0.005% was

used to remove low-abundance OTUs [33]. The filtered OTUs were taxonomically classified

based on the Ribosomal Database Project classifier (Michigan State University, East Lansing,

MI) [35] against a representative subset of the Greengenes 16s rRNA database (Second

Genome, South San Francisco, CA, gg_13_5 release) [36]. OTU sequence alignment was per-

formed using PyNAST (University of Colorado) [33, 37] and was used to construct a phyloge-

netic tree for β diversity analyses. β diversity was estimated by calculating unweighted and

abundance-weighted UniFrac distances [38]. Sample clustering was based on between-sample

distances.

Microscopic examination

Samples were deparaffinized and rehydrated. To unmask antigens, citrate buffer (pH 6.0) was

used in a Biocare Company Decloaking Unit at 110 degrees for 15 minutes followed by TBST

washing (5 minutes x 2) and blocking in 5% normal goat serum (Cell Signaling). Rabbit-Anti

HA (Abcam, Cambridge, MA), chicken-anti GFP (Aves Laboratories, Tigard, OR), anti-lyso-

zyme (Invitrogen, Waltham, MA) were used as primary antibodies at manufacturers recom-

mended concentrations. D1C2 antibody was developed through the Intestinal Stem Cell

Consortium (https://iscconsortium.org/). Sections were incubated with goat anti-rabbit Alexa

Fluor 488 at 1:2000 or goat anti-chicken Alexa Fluor 488 1:1000 (Invitrogen, Waltham, MA)

for 45 minutes at room temperature, washed 5 minutes x3 with PBS, and slides were mounted

with hard set fluorescence mounting medium (Vector Laboratories, Burlingame, CA). Images

were captured using confocal microscopy. For ultrastructural examination, 1–1.5 mm sections

of distal ileum ring fragments were obtained from all groups and fixed in 2.5% glutaraldehyde
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(in 0.1 M sodium cocadylate buffer [pH 7.4]) overnight at 4˚C. Following fixation, samples

were post-fixed with 1% osmium tetroxide for 1.5 h and then dehydration with ethanol and

embedded in Epon 12 (Ted Pella, Redding, CA). Ultrathin sections (70 nm) were post-stained

with uranyl acetate and lead citrate and viewed with a JEOL 1230 transmission electron micro-

scope (TEM) (Tokyo, Japan).

Statistical analysis

All experiments were performed in at least triplicate and all experiments had an n of 3–10 ani-

mals. Specific sample sizes are denoted in the Results. ANOVA and non-parametric Kruskal-

Wallis testing was performed to determine statistical significance using Graph Pad Prism v6.

Significance was set as P < 0.05 for all experiments.

Results

Dithizone significantly disrupts Paneth cell number and function in

C57Bl6 mice

Baseline quantification of Paneth cells numbers in C57Bl6 mice from P14 and P35 were

obtained by staining ileal sections with Alcian Blue-Periodic Acid Schiff stain and positive cells

were counted per crypt as previously described [20, 22, 29]. In P14 animals, there were

2.4 ± 0.3 Paneth cells per crypt. This ratio significantly increased over time to 7.3 ± 0.4 Paneth

cells per crypt at P35 (Fig 1A, n = 6 for all treatment groups, p< 0.0001). To quantify the effect

of dithizone-induced depletion on Paneth cells, P14 mice were treated with dithizone and

euthanized at 1, 6, 15, and 72 hours following treatment (Fig 1B). Paneth cell numbers signifi-

cantly decreased 1 hour after dithizone administration compared to controls (2.4 ± 0.3 vs

1.8 ± 0.3, n = 6 for all treatment groups, p = 0.004). Paneth cell counts remained significantly

less, but gradually increased over 72 hours following exposure (Fig 1B, 2.4 ± 0.3 vs 1.7 ± 0.2 at

6 hours, 1.8 ± 0.3 p = 0.005 at 15 hours and 1.9 ± 0.3, p = 0.02 at 72 hours respectively, n = 6

for all treatment groups, p< 0.019 for all points). To quantify any chronic effects of dithizone-

induced Paneth cell depletion, mice were treated with dithizone at P14 and returned to their

mothers (Fig 1B). Three weeks after treatment (P35), the mice were euthanized and their ilea

were harvested as above. At three weeks following dithizone administration, Paneth cell counts

remained significantly decreased compared to control mice (Fig 1B, 7.3 ± 0.4 vs 6.5 ± 0.7,

n = 6 for all treatment groups, p = 0.004). To further measure depletion of the Paneth cell func-

tion, tissue mRNA expression of the antimicrobial peptides lysozyme and cryptdin was quanti-

fied by real time rtPCR at the same time points as above. Both lysozyme and cryptdin were

significantly decreased by 1 hour following dithizone exposure and remained significantly

below control levels (Fig 1C, n = 5 for all treatment groups, p < 0.019 for all significant

points).

Dithizone and DTX induced Paneth cell depletion induces changes to the

composition of the cecal microbiome

Examination of the baseline cecal bacterial composition in P14 C57Bl6 mice revealed a biome

composed mainly of organisms from the Phyla Bacteroidetes, Proteobacteria, and Firmicutes
(Fig 2A). Compared to mice at age P14, mice at age P35 had significant increases in the num-

ber of Proteobacteria (p< 0.015) and Firmicutes (p< 0.0001) (n = 6 animals in each group, Fig

2A). To determine the acute effect of dithizone-induced Paneth cell depletion on the bacterial

composition of the ileum, cecal samples were obtained from 6 mice at 1, 15, and 72 hours after

dithizone exposure and 6 mice at equivalent time points receiving sham treatment. Paneth cell

Paneth cell disruption mimics NEC microbiome
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depletion induced bacterial compositional shifts but was not associated with any statistically

significant alterations in the microbial community between 1 and 72 hours following exposure

(Fig 2B).

To quantify any chronic effects of dithizone-induced Paneth cell depletion, mice were

treated with dithizone at P14 and returned to their mothers in the same small animal housing

room. Three weeks after treatment (P35), the mice were euthanized and their cecal samples

were collected and examined as above. Microbiome alterations following dithizone-induced

Paneth cell depletion, although not statistically significant in the short term, exhibit significant

changes at three weeks. Proteobacteria composed the most significant change in microbial

Fig 1. Dithizone significantly depletes Paneth cells in immature intestine. Paneth cells were quantified per crypt in

normal tissue. (A) Mice at age P35 have significantly more Paneth cells than at P14 (n = 6 for all treatment groups,

p< 0.0001). (B) Dithizone exposure significantly reduces Paneth cell counts acutely (20–30% reduction) and

chronically (11%) compared to age matched controls (n = 6 for all treatment groups, p< 0.019). (C) In addition to

reduction in cell counts, dithizone exposure also induces significant decreases in Paneth cell-specific genes (n = 5 for

all treatment groups, p< 0.019 for all significant points).

https://doi.org/10.1371/journal.pone.0204967.g001
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Fig 2. Dithizone induced-Paneth cell depletion causes initial non-significant disturbances to the cecal

microbiome composition that develop into lasting significant alterations. (A) The cecal microbial population

significantly changes during normal aging in C57BL6 mice (n = 6 animals in each group, p< 0.006 for all significant

points). (B) Dithizone-treated mice exhibited increased relative percentages of Bacteroidetes along with decreased

relative percentages of Firmicutes and Proteobacteria compared to the intestinal microbiota of controls; however, none

of the alterations reached statistical significance. (C) However, these non-significant population shifts in Bacteroidetes
(26% sham vs 32% dithizone) and Firmicutes (40% vs 48%) persist up to 3 weeks following Paneth cell disruption, and

the alterations in Proteobacteria become significantly different from sham controls (30% vs 14%, p< 0.0001). (n = 6 for

all treatment groups).

https://doi.org/10.1371/journal.pone.0204967.g002
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community composition three weeks after treatment as the phylum suffered a decline (30% vs

14%, p< 0.0001), compared to control mice of the same age (n = 6 for all treatment groups,

Fig 2C).

To determine if our findings were dependent on the type of Paneth cell depletion, we exam-

ined changes in cecal microbiome composition using our previously described mouse line

(PC-DTR) which has a human diphtheria toxin receptor bound to the Cryptdin-2 promotor on

the Paneth cell membrane [22]. Treatment of this mouse with diphtheria toxin (DTX) results in

Paneth cell-specific loss [22]. The cecal microbiota at P14 was compared between control C57Bl6

mice and control PC-DTR mice to evaluate for strain differences. The predominant organisms in

the PC-DTR mice were statistically equivalent to those in C57Bl6 mice and included Firmicutes,
Bacteroidetes, and Proteobacteria. To determine the effects of Paneth cell depletion on the micro-

bial community of PC-DTR mice, cecal samples were collected 1, 24 and 72 hours after DTX

exposure. Paneth cell depletion from DTX exposure in PC-DTR mice resulted in significant

acute alterations to the microbial composition, which trend back towards normal over time. The

most significant change was seen in the 24 hour post-treatment time point although minor dif-

ferences were also seen at 1 hr and 72 hrs post treatment. Importantly, the two models of Paneth

cell depletion, dithizone and DTX, induce distinct changes to the composition of the cecal micro-

biome (n = 6 for all treatment groups at all time points, Figs 2B and 3C).

Dithizone and DTX induce Paneth cell depletion through different

mechanisms

Since our complementary Paneth cell depletion models produced different phenotypes in the

cecal microbiome, we wanted to further examine potential mechanistic causes for these differ-

ences. To rigorously evaluate our quantification of Paneth cell loss, we examined Paneth cell

counts using flow cytometry for lysozyme. Similar to our data using immunohistochemistry,

this methodology showed that Dithizone reduced lysozyme containing Paneth cells by 33%

while DTX reduced them by 60% (n = 3, p = 0.4 for dithizone and 0.007 for DTX, Fig 4A). One

difficulty of Paneth cell biology is that there are currently no cell surface markers commercially

available. However, the Wong lab has recently developed a novel antibody (D1C2) that recog-

nizes the cell surface of Paneth cells and was generated as an Intestinal Stem Cell Consortium

funded project (https://iscconsortium.org/). Using this reagent, we examined the effect on

crypts of animals treated with dithizone or DTX compared to sham controls (Fig 4B). As pre-

dicted, DTX eliminated both lysozyme and D1C2 staining in the small intestinal crypts. How-

ever, while dithizone treatment reduced lysozyme staining, it had no effect on D1C2 staining

patterns. As DTX only affects cells that contain a human diphtheria toxin receptor (only

Paneth cells in the PC-DTR mice), this suggests that while DTX induces cellular necrosis [23],

dithizone may induce Paneth cell dysfunction through an alternative mechanism. Examination

of serum cytokines also supports a different mechanism (Fig 4C). DTX treatment significantly

increases serum Interleukin (IL) 6 and10, as well as, KC-GRO (murine equivalent of IL-8), and

tumor necrosis factor (TNF) compared to sham controls (n = 5 for all groups, p< 0.007 for all

groups). Dithizone, on the other hand, had no significant effect on serum cytokine levels.

Recent studies have elucidated secretory autophagy as a mechanism of Paneth cell granule

release [39–41]. Mice lacking a normal autophagy pathway have decreased Paneth cell lyso-

zyme granule secretion and defects in bacterial clearance [42]. To see if dithizone played a role

in autophagy genes, small intestinal samples were examined by RNAseq for dithizone-induced

changes (Fig 5A). Dithizone treatment induces significant changes in several autophagy genes,

including increases in Atg10, Atg4a, and Atg12, as well as decreasing the beclin1 regulator

Ambra1. Because autophagy is a complex system, we next examined our tissue samples under
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electron microscopy. While samples treated with DTX showed signs of necrosis such as cyto-

plasm disorganization and disruption of plasma and nuclear membranes, samples treated with

dithizone showed characteristics of autophagy including autophagosomes (Fig 5B). This fur-

ther suggests that the mechanisms of Paneth cell depletion in dithizone and DTX treatments

are dissimilar.

Both methods of Paneth cell depletion-induced NEC result in an

Enterobacteriaceae bloom

Our laboratory has previously shown that Paneth cell depletion followed by enteral exposure

to Klebsiella induces NEC-like small intestinal injury [22]; however, these experiments did not

evaluate the effect of injury induction on the microbiome. In the dithizone-Klebsiella model

and in the PC-DTR mice exposed to DTX and Klebsiella, there was a significant increase in the

number of Bacteroidetes and a significant compensatory decrease in the relative percentage of

Fig 3. Paneth cell-depletion induced changes in the microbiome are not dependent on dithizone. Normal cecal

microbiomes were compared between P14 non-treated wild type C57Bl6 mice and PC-DTR mice (on C57Bl6

background). (A) PC-DTR mice had no significant differences in taxa compared to wild type mice of the same age

n = 6 for each treatment. (B) Paneth cell depletion using DTX induces significant changes in the microbiota

composition by 24 hours in Deferribacteres (7% in Sham vs 28% in DTX treated, p = 0.0004) and in Proteobacteria
(46% in Sham vs 27% in DTX treated, p = 0.001), but these significant changes disappear and shift back towards

normal floral composition after 72 hours.

https://doi.org/10.1371/journal.pone.0204967.g003
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Proteobacteria (Fig 6A). Interestingly, both methods induced a significant bloom of Enterobac-
teriaceae despite an overall decrease in Proteobacteria in the NEC models at the Phyla level

(Fig 6B). This bloom was not seen in the control mice or the mice exposed to Paneth cell deple-

tion without bacterial gavage in either the dithizone or the DTX model. The Enterobacteriaceae
bloom was matched by a significant decrease in Helicobacteraceae, also part of the Proteobac-
teria phylum.

The Enterobacteriaceae bloom seen following Paneth cell depletion-induced

NEC is independent of gavaged Klebsiella pneumonia
Since Klebsiella belongs to the Enterobacteriaceae family (Proteobacteria phylum), we lastly

wanted to determine if the bloom of Enterobacteriaceae seen in our model was simply a result

Fig 4. Dithizone and DTX work through different mechanisms to disrupt Paneth cells. (A) Dithizone treatment reduces

lysozyme containing Paneth cells by 33% while DTX treatment reduces Paneth cells by 60% using flow cytometry for anti-

lysozyme (n = 3 per group). (B) Examination of Paneth cell histology by lysozyme following treatment with dithizone or DTX

shows a loss of lysozyme stained cells compared to controls. However, examination of Paneth cell histology using the novel D1C2

antibody that appears to target Paneth cells shows a loss of cells following DTX, but not following dithizone (n = 3 per group,

representative samples shown). (C) Serum levels of IL-10, IL-6, TNF and KC-GRO 16 hours following treatment with DTX show

significantly increased levels compared to sham controls (n = 5, p< 0.0069 for all cytokines) while dithizone does not cause any

significant changes.

https://doi.org/10.1371/journal.pone.0204967.g004

Paneth cell disruption mimics NEC microbiome

PLOS ONE | https://doi.org/10.1371/journal.pone.0204967 October 1, 2018 11 / 18

https://doi.org/10.1371/journal.pone.0204967.g004
https://doi.org/10.1371/journal.pone.0204967


Fig 5. Dithizone induces autophagy-like changes in Paneth cells. (A) Treatment with dithizone induces a significant increase

in Atg10 (p = 0.03), Atg4a (p = 0.0004), and Atg12 (p = 0.000006), as well as a significant decrease in the beclin1 regulator Ambra1
(p = 0.0003). (n = 5 for each group). (B) Cellular examination using transmission electron microscopy shows presence of

autophagosomes (red arrows) in animals treated with dithizone, but not in those treated with DTX or in sham controls. (n = 3 per

group). EM sections were evaluated by a single blinded investigator.

https://doi.org/10.1371/journal.pone.0204967.g005

Fig 6. Paneth cell depletion-induced NEC results in Enterobacteriaceae blooms similar to patterns seen in human

patients. (A) Paneth cell depletion followed by Klebsiella exposure induces significant alterations to the cecal bacterial

population in both dithizone and DTX models (n = 6 for all treatments at all time points, all significant p values

are< 0.05). (B) Furthermore, Paneth cell depletion induced NEC induces significant blooms of Enterobacteriaceae
which has been reported in human disease. This bloom corresponds with a significant decrease in Helicobacteraceae.

https://doi.org/10.1371/journal.pone.0204967.g006

Paneth cell disruption mimics NEC microbiome

PLOS ONE | https://doi.org/10.1371/journal.pone.0204967 October 1, 2018 12 / 18

https://doi.org/10.1371/journal.pone.0204967.g005
https://doi.org/10.1371/journal.pone.0204967.g006
https://doi.org/10.1371/journal.pone.0204967


of the gavaged bacteria in our NEC model. Timed samples from Rosa mice gavaged with GFP-

labeled Klebsiella were harvested and evaluated. Tagged Klebsiella were present in the ileum as

early as 30 minutes after gavage and absent from the small intestine by 5 hours (Fig 7A). Addi-

tionally, spectrophotometry was used to measure the bacterial load present in the ileal effluent

(Fig 7B). Overall, bacterial content in the small intestine increased sharply between 1 and 1.5

hours after Klebsiella gavage, and then gradually returned to baseline levels within 4 hours

after bacteria administration. The bloom of Enterobacteriaceae present following induction of

clinical NEC via Paneth cell depletion was seen more than 8 hours after Klebsiella gavage, well

after the administered Klebsiella was shown to have passed through the small intestine.

Discussion

The host-bacterial axis that exists between humans and their intestinal microbes is critical to

maintenance of health. Neonates are exposed to an environment teeming with bacteria at birth

leading to sequential colonization by waves of bacteria in predictable patterns [13, 43]. This

bacterial maturation is influenced by many factors including, gestation at birth, antibiotic

exposure, and diet [4, 30]. A key regulator of homeostasis is the Paneth cell [1]. Loss of Paneth

cells and alterations of the intestinal microbiome have both been associated with development

of NEC. However, it is unclear if depletion of Paneth cells is causative of the dysbiosis seen

prior to NEC or merely an associated finding. Our data clearly show that Paneth cell depletion

induces time-dependent changes in the microbiota of the immature small intestine. Alter-

ations in the relative percentages of different phyla occur as early as 60 minutes after Paneth

cell depletion, and significant alterations of the biome persist up to three weeks after Paneth

cell depletion compared to age-matched controls. Importantly, we also show depletion of

Paneth cells followed by exposure to Klebsiella not only induces intestinal injury that resembles

human NEC [22], but also induces alterations in the intestinal microbiome that mimic what is

seen in human infants who develop NEC particularly when looking at the Enterobacteriaceae
family [14]. This further strengthens the link between Paneth cell depletion and development

of NEC-like pathophysiology.

Paneth cells represent an important component of our intestinal innate immunity, prevent-

ing translocation and overgrowth of potential pathogenic bacteria [44]. Constitutive and acute

secretion of antimicrobial peptides contained in Paneth cell granules helps to keep the small

intestinal crypts semi-sterile and modulate the intestinal microbiome [2]. However, preterm

infants have underdeveloped Paneth cells and an abnormal microbiome [13, 18]. Our lab has

shown that Paneth cells in the immature intestine can be depleted by many factors including

inflammation [29] and intrauterine growth restriction [45]. These mechanisms may further

decrease an already underdeveloped innate immune system. Thus, understanding the role that

Paneth cells play in host physiology in the immature intestine is critical for physicians to prop-

erly manage premature infants.

The findings from the above studies support the idea that Paneth cell physiology is impor-

tant to the host/microbiome axis in the immature intestine. Our data show that depletion of

Paneth cells causes alteration in the microbiome composition acutely in the 72 hours following

exposure and continues through the next several weeks of life despite no new interventions. It

is also interesting to note that our two complimentary models of Paneth cell depletion using

dithizone or DTX, induce significant but different changes in the microbiome (Figs 2 and 3).

While initial exposure to dithizone expands the predominance of Bacteroidetes and diminishes

the relative amount of Firmicutes, treatment with DTX induces an expansion of Firmicutes and

a decrease in Proteobacteria. In considering why these two treatments induce different compo-

sitional changes in the biome, we first considered their mechanisms of action. Dithizone is a
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heavy metal chelator and acts on Paneth cells by binding to their abundant zinc stores, which

potentially deprives bacteria of this essential micronutrient [25, 46]. However, our previous

work has shown that dithizone treatment does not induce significant differences in host serum

zinc levels [22]. Although DTX clearly induces cellular necrosis, the mechanism of dithizone is

less clear. The mechanism by which dithizone facilitates gut injury has been argued to be via

cellular necrosis [25, 46]. Our data contradict this notion and alternatively suggest dithizone

does not induce Paneth cell necrosis, but perhaps utilizes autophagy pathways. This is an inter-

esting finding as disrupted Paneth cell secretion through altered autophagy pathways has been

suggested to be involved in some forms of Crohn’s disease [39, 42]. While further mechanistic

data is outside the scope of this manuscript, this gap in knowledge should be further

examined.

Importantly, our data show that both models of Paneth cell depletion induced NEC show

significant blooms of the Enterobacteriaceae family, part of the Proteobacteria phylum regard-

less of the fact that in both scenarios the proportion of Proteobacteria decreased. This bloom

was not seen in any of the control mice or in the dithizone-only or DTX-only cohorts. Multiple

human NEC studies have demonstrated increased numbers of Enterobacteriaceae prior to

development of NEC [12–15]. Thus, our model of Paneth cell depletion followed by bacterial

dysbiosis not only induces a phenotype that is similar to what is seen in human NEC [22], but

also induces alterations in the intestinal microbial community that are similar to those seen

prior to the onset of NEC. Differences in the overall composition of the microbiome may be

due to the difference in the magnitude of inflammation induced (Fig 4C).

Recognizing that administration of Klebsiella, a genus in the Enterobacteriaceae family, to

the treatment mice could potentially confound our results, we performed additional studies to

determine if the Enterobacteriaceae bloom included the gavaged Klebsiella. Overall, bacterial

Fig 7. Enterobacteriaceae blooms seen in Paneth cell depletion-induced NEC are independent of gavaged bacteria. To determine if

the bloom of Enterobacteriaceae was due to the Klebsiella gavage, tomato mice with constitutively expressed red fluorescent protein

were gavaged with GFP labeled Klebsiella. Small intestinal samples were harvested and examined for presence of GFP-tagged Klebsiella.

(A) As seen above, Klebsiella was gone from the small intestine by 5 hours, well before the bloom was seen in dithizone or DTX models

(n = 3 animals at each time point, representative microscopy shown). (B) To determine bacterial load, cecal samples were measured by

spectrophotometry. Bacterial levels returned to pre-gavage levels within 4 hours of gavage (n = 3).

https://doi.org/10.1371/journal.pone.0204967.g007
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load, determined by spectrophotometry, showed that small intestine bacteria levels rose dra-

matically between 1 and 1.5 hours following Klebsiella gavage. Bacterial levels returned to base-

line within 4 hours after gavage. Ileal samples from Rosa mice gavaged with GFP-labeled

Klebsiella demonstrated that GFP-labeled Klebsiella was no longer present in the small intes-

tine by 5 hours post-gavage. These results confirm that the administered Klebsiella pneumonia
exited the small intestine before the bloom of Enterobacteriaceae was seen in the dithizone and

DTX NEC models.

In summary, our data clearly show that Paneth cell depletion in the immature small intes-

tine induces significant alterations of the composition of the intestinal microbiota. Our data

also show that Paneth cell depletion followed by Klebsiella-induced dysbiosis in mice induces a

similar phenotype to what is seen in the microbiota of human infants who develop NEC.

These results provide support to the idea that Paneth cell depletion or dysfunction may play a

key role in development of intestinal disease, especially NEC. However, further investigation is

needed to determine if dysbiosis is a causative factor or a result of progression to NEC-like

injury.
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