143,246 research outputs found

    Effects of nutrient enrichment on seagrass population dynamics: evidence and synthesis from the biomass-density relationships

    Get PDF
    The available data from experimental and descriptive studies on seagrass biomass and density responses to nutrient enrichment were analysed to assess the intraspecific mechanisms operating within seagrass populations and whether biomass-density relationships can provide relevant metrics for monitoring seagrasses. The response of shoot biomass and density to nutrient enrichment was dependent on the type of study; the short-term positive response of biomass and density in experimental studies reveals context-specific nutrient limitation of seagrasses. The long-term negative response of descriptive studies probably results from ecosystem-scale events related to nutrient enrichment such as increased turbidity, algal blooms, epiphyte loads and anoxia. Most seagrass species analysed lie in the nonthinning part of the theoretical biomass-density curves. A simultaneous increase in biomass and decrease in density, evidence of self-thinning, were only observed in 4 of 28 studies. The analysis of both the static and the dynamic biomass-density relationships revealed that the slopes increase under nutrient enrichment. Surprisingly, the species-specific slopes (log B-log D) were higher than one, revealing that the B/D ratio, that is, the average shoot biomass, increases with density in all seagrass species analysed. Nutrient enrichment further enhanced this effect as biomass-density slopes increased to even higher values. The main drivers behind the increasing biomass-density slopes under nutrient enrichment were the increase in shoot biomass at densities above a species-specific threshold and/or its decrease below that threshold. Synthesis. Contrasting short- and long-term responses of both biomass and density of seagrasses to nutrient enrichment suggest that the former, positive ones result from nutrient limitation, whereas the later, negative ones are mediated by whole ecosystem responses. In general, shoot biomass of seagrasses increases with density, and nutrient enrichment enhances this effect. Experimental testing of facilitation processes related to clonal integration in seagrasses needs to be done to reveal whether they determine the low incidence of self-thinning and the intriguing biomass-density relationships of seagrass species. The increasing slopes and decreasing intercepts of the species-specific dynamic biomass-density relationships of seagrasses and the decreasing coefficients of variation of both biomass and density constitute relevant, easy-to-collect metrics that may be used in environmental monitoring.EU project ECO-LAGUNES [SOE1/P2/F153]; COST Action [ES0906]; FCT [SFRH/BPD/37368/2007, SFRH/BPD/75307/2010]; NSERC PGSD; Killam Trustinfo:eu-repo/semantics/publishedVersio

    Effects of deposit-feeding bivalve (Macomona liliana) density on intertidal sediment stability

    Get PDF
    Effects of macrofaunal feeding and bioturbation on intertidal sediment stability (u*crit) were investigated by manipulating density (0-3 x ambient) of the facultative deposit-feeding wedge shell (Macomona liliana) on the Tuapiro sandflat in Tauranga Harbour, New Zealand. Sediment stability increased up to 200% with decreasing M. liliana density and this was correlated with greater sediment microalgal biomass and mucilage content. The change in stability occurred despite homogeneity of grain size amongst experimental treatments, highlighting the importance of macrofaunal-microbial relationships in determining estuarine sediment erodibility

    Predicting Spatial Distributions of Demersal Fishes off Central California

    Get PDF
    Seafloor maps are often used in species distribution modeling (SDM), where maps are paired with fish observations to create models predicting habitat suitability, species density, or species biomass. Problems with the current use of SDM include limited understanding of species relationships with benthic morphology, lack of practical model testing, and deficiency of information on the effects of map resolution on population estimates. A drop camera was used to gather observations of fishes along Central California and paired with remotely sensed bathymetry to create predictive models and maps of species density and biomass. I found that relationships with remotely sensed habitat variables are strong enough to create robust models. However, predictive maps at 10m resolution only gave a broad-scale picture of density distributions. Predictive maps consistently overpredicted species density, but often underpredicted peaks in density. Map resolution had a large effect on biomass predictions, where total predicted biomass was found to increase with increasing resolution. In conclusion, predictive maps seem to capture general patterns of species distributions; however, often peaks or hot spots in density are not captured. Predictive maps are very useful for understanding general patterns of species distributions, but one should be cautious when using them to obtain density of biomass estimates, especially when using estimates to inform management

    Quantitative composition and distribution of the macrobenthic invertebrate fauna of the Continental Shelf ecosystems of the Northeastern United States

    Get PDF
    From the mid-1950's to the mid-1960's a series of quantitative surveys of the macrobenthic invertebrate fauna were conducted in the offshore New England region (Maine to Long Island, New York). The surveys were designed to 1) obtain measures of macrobenthic standing crop expressed in terms of density and biomass; 2) determine the taxonomic composition of the fauna (ca. 567 species); 3) map the general features of macrobenthic distribution; and 4) evaluate the fauna's relationships to water depth, bottom type, temperature range, and sediment organic carbon content. A total of 1,076 samples, ranging from 3 to 3,974 m in depth, were obtained and analyzed. The aggregate macrobenthic fauna consists of 44 major taxonomic groups (phyla, classes, orders). A striking fact is that only five of those groups (belonging to four phyla) account for over 80% of both total biomass and number of individuals of the macrobenthos. The five dominant groups are Bivalvia, Annelida, Amphipoda, Echninoidea, and Holothuroidea. Other salient features pertaining to the macrobenthos of the region are the following: substantial differences in quantity exist among different geographic subareas within the region, but with a general trend that both density and biomass increase from northeast to southwest; both density and biomass decrease with increasing depth; the composition of the bottom sediments significantly influences both the kind and quantity of macrobenthic invertebrates, the largest quantities of both measures of abundance occurring in the coarser grained sediments and diminishing with decreasing particle size; areas with marked seasonal changes in water temperature support an abundant and diverse fauna, whereas a uniform temperature regime is associated with a sparse, less diverse fauna; and no detectable trends are evident in the quantitative composition of the macrobenthos in relation to sediment organic carbon content. (PDF file contains 246 pages.

    The Responses of the Quantitative Characteristics of a Ramet Population of the Ephemeroid Rhizomatous Sedge Carex physodes

    Get PDF
    In this study, the soil moisture content was measured, and the quantitative characteristics of this sedge species were compared. The phenotypic plasticity of each parameter and the linear regression relationships were analyzed. The results showed that the soil moisture content was significantly affected by location, soil depth, and sampling date. The aboveground biomass, underground biomass, biomass density, and population density at the peak were significantly higher than elsewhere on the dune. However, the morphological plasticity index of the quantitative characteristics was higher at the base and middle of the dune. When the soil moisture content decreased, the underground biomass and ramet biomass density increased. The aboveground and underground biomasses were strongly negatively correlated, but the ramet height and aboveground biomass were strongly positively correlated. These results indicated that the soil water content significantly affected the clonal growth of C. physodes. The responsiveness of C. physodes may be adaptive when the soil resource supply is low. The strong morphological plasticity of the species appears to be ecologically important for the maintenance and dominance of this species in the dune habitat

    Predicting Whole Forest Structure, Primary Productivity, and Biomass Density From Maximum Tree Size and Resource Limitations

    Get PDF
    In the face of uncertain biological response to climate change and the many critiques concerning model complexity it is increasingly important to develop predictive mechanistic frameworks that capture the dominant features of ecological communities and their dependencies on environmental factors. This is particularly important for critical global processes such as biomass changes, carbon export, and biogenic climate feedback. Past efforts have successfully understood a broad spectrum of plant and community traits across a range of biological diversity and body size, including tree size distributions and maximum tree height, from mechanical, hydrodynamic, and resource constraints. Recently it was shown that global scaling relationships for net primary productivity are correlated with local meteorology and the overall biomass density within a forest. Along with previous efforts, this highlights the connection between widely observed allometric relationships and predictive ecology. An emerging goal of ecological theory is to gain maximum predictive power with the least number of parameters. Here we show that the explicit dependence of such critical quantities can be systematically predicted knowing just the size of the largest tree. This is supported by data showing that forests converge to our predictions as they mature. Since maximum tree size can be calculated from local meteorology this provides a general framework for predicting the generic structure of forests from local environmental parameters thereby addressing a range of critical Earth-system questions.Comment: 26 pages, 4 figures, 1 Tabl

    Linking structural and functional characteristics of restored oyster reefs : A Restoration Project in the Virginia Coast Reserve

    Get PDF
    Eighteen native oyster reefs (16-m2 each) were restored using six oyster densities (0, 10, 25, 50, 100 and 250 adult oysters m-2) with three replicates of each density at an intertidal site in The Nature Conservancy’s Virginia Coast Reserve. Reef construction was successful and continues to provide a range of oyster biomass densities useful for exploring relationships between oyster reef structural and functional parameters. Between April 2012 and July 2013, a science-based monitoring program explored quantitative relationships between structural and functional characteristics of these restored reefs. Structural parameters examined included oyster abundance, oyster size/biomass, surface shell volume, reef topographic complexity and sediment characteristics. Functional parameters included denitrification rates and macrofaunal abundance and biomass. Relationships between reef structural parameters and functional parameters were complex and variable. As of July 2014, these reefs continue to serves as a platform for continued studies of the relationships between reef structural and functional characteristics

    Size structure and inequality in a commercial stand of the seaweed gelidium-sesquipedale

    Get PDF
    The temporal dynamics of the frequency distributions of 2 measures of Gelidium sesquipedale frond size, length and weight, was investigated in a subtidal stand under commercial exploitation. Frond weight/length allometry was highly variable, both seasonally and between years, showing that in this species weight and length cannot be used interchangeably as a measure of frond size. Physical disturbances played a fundamental role in allometric variability. The loss of branches due to commercial harvest and storms reduced the slope of the log weight/log length relationship. During spring the slope increased, indicating the production and growth of lateral branches. Size differences among individuals in the population (inequality) were quantified by 3 statistics: the skewness coefficient (g(1)), the coefficient of variation (CV), and the Gini coefficient (G). Highly significant changes in frond length inequality, but not weight, were shown. These correspond to periods when G. sesquipedale length structure varied due to the combined effects of the demographic parameters that regulate the population (frond recruitment, survival, breakage and growth). Graphical analysis of significantly different length structures revealed that a recruitment peak of vegetatively developed fronds occurred during winter, following periods of high frond mortality and breakage caused by both human (summer harvesting) and natural (late fall storms) disturbances. During late spring and summer, the density of smaller fronds decreased due to mortality and growth into higher size classes. To assess density-dependent regulation processes, such as suppressed growth of smaller fronds and self-thinning, the time variation of both relationships, inequality/mean frond weight and biomass/density, was analysed. Inequality/mean frond weight and biomass/density values decreased from summer to winter and increased to the following summer. The increase of inequality while mean frond weight is increasing is consistent with the asymmetric competition theory on the development of crowded plant stands, and supports the hypothesis that the slower growth of smaller fronds during this period (Santos 1994; Mar. Ecol. Prog. Ser. 107: 295-305) is due to intraspecific competition. The time trajectory of the biomass/density relationship is perpendicular to and lies above the theoretical self-thinning line. Evidence for self-thinning was thus not detected. A conceptual model for the functioning of this population is proposed. Thinning and frond breakage caused by disturbances might be keeping intraspecific competition in these G. sesquipedale crowded stands (up to 18 000 fronds m(-2)) at low levels.info:eu-repo/semantics/publishedVersio

    Above ground woody community attributes, biomass and carbon stocks along a rainfall gradient in the savannas of the central lowveld, South Africa

    Get PDF
    Enumeration of carbon stocks at benchmark sites is a necessary activity in assessing the potential carbon sequestration and possible generation of credits through restoration of intensively impacted sites. However, there is a lack of empirical studies throughout much of the savannas of sub-Saharan Africa, including South Africa. We report an estimation of species specific and site biomass and carbon stocks, and general vegetation structural attributes from three protected areas along a rainfall gradient in the central lowveld, South Africa. Estimates of biomass and carbon stocks were effected through destructive sampling to establish locally derived allometric equations. There was a gradient of increasing woody density, height of the canopy, number of species, density of regenerative stems and a greater proportion of stems in small size classes from the arid locality to the mesic locality, with the semi-arid locality being intermediate. The proportion of spinescent species decreased with increasing rainfall. The mesic locality was significantly more woody than either the arid or semi-arid sites, having double the biomass, four times the density and 40% higher basal area. Above ground carbon pools were also higher; carbon stocks were approximately 9 t/ha for the arid and semi-arid sites and 18 t/ha for the mesic site.
    corecore