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ABSTRACT 

PREDICTING SPATIAL DISTRIBUTIONS OF DEMERSAL FISHES OFF CENTRAL CALIFORNIA  

Anne Tagini 

Seafloor maps are often used in species distribution modeling (SDM), where maps 

are paired with fish observations to create models predicting habitat suitability, species 

density, or species biomass. Problems with the current use of SDM include limited 

understanding of species relationships with benthic morphology, lack of practical model 

testing, and deficiency of information on the effects of map resolution on population 

estimates. A drop camera was used to gather observations of fishes along Central 

California and paired with remotely sensed bathymetry to create predictive models and 

maps of species density and biomass. I found that relationships with remotely sensed 

habitat variables are strong enough to create robust models. However, predictive maps 

at 10m resolution only gave a broad-scale picture of density distributions. Predictive 

maps consistently overpredicted species density, but often underpredicted peaks in 

density. Map resolution had a large effect on biomass predictions, where total predicted 

biomass was found to increase with increasing resolution. In conclusion, predictive 

maps seem to capture general patterns of species distributions; however, often peaks or 

hot spots in density are not captured. Predictive maps are very useful for understanding 

general patterns of species distributions, but one should be cautious when using them 

to obtain density of biomass estimates, especially when using estimates to inform 

management. 
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Introduction 

Background 

In 1996, the Magnusson Stevens Fishery Conservation and Management Act (MSA) 

was amended to promote the protection of essential fish habitat (EFH) (Sustainable 

Fisheries Act, 1996). The MSA requires that regional fishery management councils 

describe EFH in their fishery management plans and minimize impacts on EFH from 

fishing activities.  Since the passage of the MSA, state and federal fishery scientists have 

been working to define and map EFH. In California, to assist with mapping of EFH and to 

help in the planning and design of marine protected areas (MPAs), the California Ocean 

Protection Council (COPC) provided funding for a collaboration that created the 

California Seafloor Mapping Program (CSMP). The mission of the CSMP is to create high-

resolution maps of benthic features on the seafloor that can be used as habitat base 

maps for demersal marine species. 

Benthic features provide important habitat to many demersal fishes (Carr, 1991; 

Choat et al., 1988; Friedlander and Parrish, 1998; Sale, 1991). Relationships with benthic 

habitat are strong and predictable and are used to determine where we might find 

particular species.  Large seafloor features such as the continental shelf and submarine 

canyons and general physical characteristics (i.e., substrate type-hard or soft) influence 

where fish can be found. However, within these broad-scale patterns are more detailed 

species distributions. Small-scale geomorphological features and seafloor sediment 

types such as mud, sand, cobbles, boulders, etc., influence mesoscale (10-100 m) and 
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macroscale (1-10 m) species distribution patterns (Gratwicke and Speight, 2005; Greene 

et al., 2000; Pearcy et al., 1989; Stein et al., 1992).  Benthic habitat features have been 

used to obtain biomass estimates of fish species (Friedlander and Parrish 1998), and 

remotely-sensed benthic maps and derived habitat characteristics are being used more 

and more to describe and predict and map species distributions (Iampietro et al., 2008; 

Valavanis et al., 2008; Young et al., 2010) .  

Using species distribution modeling (SDM) software, species observations can be 

overlaid onto benthic maps to predictively model species-specific distributions. SDM 

software incorporates the habitat characteristics of an area where there is a known 

occurrence of an organism to predict habitat suitability of other unsurveyed areas. 

Habitat suitability maps can be created using georeferenced environmental data layers 

and species observations. Species distribution modeling can be used to 1) estimate 

habitat suitability, 2) predict distributions in unsurveyed areas, 3) improve survey 

design, 4) inform management decisions regarding locations for area closures, and 5) 

obtain density and biomass estimates.  Benthic habitat mapping has been used to 

predict the distribution of demersal fish both in tropical (Pittman and Brown, 2011) and 

temperate ecosystems (Young et al., 2010). In Alaska, habitat area and biomass 

estimates derived from SDMs have even been used in stock assessments (O’Connell et 

al., 2004). 

There has been limited investigation into the effect of map resolution on estimates 

of predicted biomass or density (Kendall et al., 2011; Pittman and Brown, 2011). 
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Bathymetry resolution refers to the size of each cell, comprising the grid which is the 

bathymetry layer. A bathymetry layer, or digital elevation model (DEM), is made up of a 

grid of cells, like how a photo is made of a grid of pixels. The resolution, or cell size, 

determines how much detail is shown on a map. Bathymetry DEMs are available at 

different resolutions for different areas. Fine scale (high resolution) maps are more 

widely available for nearshore waters, but the resolution of bathymetry available usually 

decreases as depth increases due to difficulties associated with fine scale seafloor 

mapping at deeper depths. The resolution of a map used in predictive mapping could 

potentially affect resulting predictive estimates of organism density and/or biomass.  

The first goal of this study was to understand benthic habitat associations of several 

demersal fish species along the California central coast. The second goal was to use 

spatial modeling of benthic habitat associations to predict demersal fish densities along 

the central California coast. Predictive species models and maps were created to help 

understand and visualize species density distributions.  The final goal of this study was 

to understand the effect of map resolution on species biomass estimates. This 

information is important to understand when assessing biomass estimates derived from 

any predictive map, especially if fisheries managers are using biomass estimates to 

regulate a fishery.  
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California Groundfish  

More than 90 species of demersal fish species are managed by the Pacific Fishery 

Management Council (PFMC) in the federal Groundfish Fishery Management Plan 

(GFMC). These fish are important in commercial and recreational fisheries and provide 

an attraction for scuba divers. California groundfish include sharks, skates, roundfish 

(lingcod, cabezon, etc), rockfish, and flatfish.  

Rockfish (Sebastes spp.) are a genus of fish characterized by long life spans, late 

maturity, and vivipary (Love et al., 2002; Love, 2011). There are over 65 species of 

rockfish in the Northeast Pacific (Lea et al., 1999), many of which are important in 

commercial and recreational fisheries (Starr et al., 2002). Rockfish dominate fish 

assemblages in California, making up 90.2% of species richness in depths of 20-365 m in 

southern California (Love et al., 2009). In Central California, rockfish encompass 77% of 

species richness in depths of 70-250 m and 93% of species richness in depths of 90-350 

m (Anderson and Yoklavich, 2007; Yoklavich et al., 2000). The benthic habitats found at 

these depths include bedrock outcrops, boulder and cobble fields, and sand and mud 

flats. In addition, submarine canyons cut into the continental shelf and provide unique 

habitats for fish. Many rockfish live in deep waters (>30 m) and these features and 

characteristics provide habitat for a suite of species.  

Species-Habitat Associations: Observed Habitat Features 

Associations with specific sediment types and other observed habitat features are 

known for many deep water demersal fish (Anderson and Yoklavich, 2007; Love et al., 
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2009; Pearcy et al., 1989; Stein et al., 1992). Fish habitat is often described in terms of 

sediment or bottom type (i.e., rock, boulders, cobble, sand, mud), relief (height of 

substrate), and rugosity (complexity of substrate). This habitat information is observed 

using visual surveys either via scuba or underwater camera systems.  

Many large demersal rockfish species, such as Yelloweye Rockfish (S. ruberrimus) 

and Bocaccio (S. paucispinis), occupy areas with rock ridge and boulders, often 

accompanied by smaller species such as Pygmy (S. wilsonii) and Squarespot rockfish (S. 

hopkinsi) (Anderson and Yoklavich, 2007; Love et al., 2009; Yoklavich et al., 2002). 

Combinations of cobble and mud are habitat for other species such as Greenspotted (S. 

chlorostictus), Greenstriped (S. elongatus), and Halfbanded Rockfish (S. semicinctus) 

(Anderson and Yoklavich, 2007; Pearcy et al., 1989). Many non-rockfish species such as 

poachers, zoarcids, and Spotted Ratfish are found in deep mud habitats (Stein et al., 

1992; Yoklavich et al., 2000), along with Stripetail and Splitnose Rockfish (Anderson et 

al., 2009; Pearcy et al., 1989).   

Habitat associations and spatial distributions of Canary Rockfish (S. pinniger), Copper 

Rockfish (S. caurinus), Greenspotted Rockfish (S. chloristictus), Greenstriped Rockfish (S. 

elongatus), Vermilion Rockfish (S. miniatus), and Pacific Sanddab (C. sordidus) are 

investigated in this study. These fish represent a group of demersal fish species that 

occur over a range of different habitat types. Pacific Sanddab are found in low structure 

soft bottom habitat (Anderson et al., 2009, Yoklavich et al., 2002). Greenstriped Rockfish 

are often observed over mixed and soft substrate and are grouped as cobble-mud 
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associates (Anderson and Yoklavich, 2007). Greenspotted Rockfish are often found in 

areas of mixed sediments (Anderson et al., 2009), consisting of a combination of mud, 

cobble, and rock (Anderson and Yoklavich, 2007). Canary Rockfish have been observed 

in high abundance over boulder habitat (Laidig et al., 2009), but also have been 

recorded on cobble fields and mud bottoms (Stein et al., 1992). Copper Rockfish have 

often been observed in areas with hard bottom and vegetative structure (kelp) (Johnson 

et al., 2003, Matthews, 1990a; Matthews, 1990b). Vermilion Rockfish associate with 

rock and boulder habitats (Anderson et al., 2009; Laidig et al., 2009; Yoklavich et al., 

2002). 

Species-Habitat Associations: Remotely Sensed Habitat  

Multibeam echo sounders (MBES) are remote sensing tools used to collect seafloor 

data used in many SDMs because they collect both acoustic backscatter and bathymetry 

(depth) data (Brown et al., 2011). An MBES collects bottom data in swaths, which are 

mosaicked together, resulting in seafloor maps. Seafloor maps can be imported into a 

geographic information system (GIS) and paired with observations of species to create 

SDMs.  Morphological characteristics derived from MBES bathymetry include slope, 

curvature, aspect, vector ruggedness measure (VRM), and topographic position index 

(TPI). Slope of the seafloor is thought to be a factor influencing fish distributions 

(Iampietro et al., 2008).  Higher densities of deep water demersal fish have been found 

in areas of high slope (McClatchie, 1997; Young et al., 2010), and distributions of Rosy 

Rockfish have been reported to be influenced by slope (Young et al., 2010). Curvature is 
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the slope of the slope, or the rate of change of the seafloor slope. Aspect refers to the 

compass direction, or orientation of the seafloor. Currents transport suspended 

nutrients and zooplankton through the water column, which are important food for 

many fish species. In theory, fish should be found on rocks facing the oncoming current 

because these sides receive more nutrients. Aspect has been reported to be a significant 

predictor in determining the distributions of Rosy Rockfish at Cordell Bank (Iampietro et 

al., 2008). Rugosity is often referred to as a measure of the combination of two 

parameters, structural complexity and relief (Smith, 2014). Rugosity has been positively 

correlated with fish species richness and abundance (Kuffner et al., 2007; Luckhurst and 

Luckhurst, 1978). The vector ruggedness measure (VRM) in ArcGIS calculates rugosity 

through measurement of the dispersion of vectors. Previous studies have shown that 

this metric can influence the spatial distributions of Greenstriped Rockfish (S. elongatus) 

and Rosy Rockfish (S. rosaceas) (Young et al., 2010). Topographic position index (TPI) is 

the measure of the elevation of any given point relative to surrounding areas. TPI can be 

used to identify peaks, flat plains, and valleys on the seafloor. Greenstriped Rockfish (S. 

elongatus) have been found in areas with low broad-scale TPI values (large flat areas), 

while Yellowtail Rockfish (S. flavidus) have been found in high relief areas with high fine-

scale TPI values (Young et al., 2010).  

Additionally, there are larger scale features such as the shoreline or continental shelf 

edge which may affect fish distribution patterns. Distance to shoreline and distance to 

shelf edge were the most influential predictors in models predicting reef fish 
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distributions for four species in a study by Pittman et al. (2011). Submarine canyons are 

large features found along the central coast, which can provide unique habitat for 

demersal fish species (Yoklavich et al., 2000). Distance to canyon heads could be 

important in describing some species distributions.  

Species Distribution Modeling 

Predictive modeling can be used to inform fisheries as well as fisheries management. 

SDMs can be used to estimate habitat suitability or likeliness of species occurrence over 

any given habitat. Predictive maps of habitat suitability can be used to physically locate 

areas where species occurrence is highly likely, which can be used by both fishers and 

fisheries managers to target specific species. Fishers might use this information to more 

precisely target their fishing efforts to catch desired species while avoiding non-desired 

species, whereas managers might use this information to inform their decisions 

regarding locations for area closures. This information can also be used by fisheries 

scientists to improve sampling design, by targeting survey efforts in areas of suitable 

habitat. Because it is quite difficult and expensive to do extensive deep-water visual 

surveys, these SDMs can be used to predict fish distributions and densities in 

unsurveyed areas, which can contribute to improving our understanding of the current 

status of fish populations over broader spatial scales. Models predicting population 

biomass can also be used to help understand stock size, and this information can be 

incorporated into stock assessments.  
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With the increased use of SDMs to predict fish distributions, it is important to 

empirically evaluate the species-habitat associations on which these predictive models 

are based. SDMs are based on relationships with remotely sensed habitat features. By 

quantitatively assessing species relationships with different categorizations of benthic 

habitat (i.e., observed habitat features vs. remotely sensed habitat features), we can 

evaluate how much of the spatial variability in fish distributions are explained by each 

set of habitat variables and look at the potential overlap in variation described by each 

set of variables.  Additionally, it is important to understand the effect of map resolution 

on resulting predictions. Before these models are used to inform management, rigorous 

model testing is required. Testing the predictive capabilities of SDMs will help determine 

how useful these models are in estimating habitat suitability and predicting distributions 

outside of surveyed areas. 

My first objective was to identify species relationships with observed habitat 

features and assess if my findings are consistent with the literature. The second 

objective was to identify species relationships with remotely sensed habitat features. 

The third objective was compare estimates of species relationships with observed and 

remotely sensed habitat features by comparing their collective ability to describe 

variation in species distributions. The fourth objective was to create predictive models 

and maps of species density in ArcGIS for Monterey Bay. The fifth objective was to test 

the predictive power of the models by comparing the densities observed in 2014 with 
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the densities predicted from a model using 2013 data. Finally, the last objective was to 

assess the effect of map resolution on predicted biomass estimates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 
 

 

Materials and Methods 

Site Selection 

The study area spans 270 km of the central California coast from San Francisco to 

San Simeon (Figure 1).  Visual surveys were conducted on the seafloor in depths of 70–

250 m along the outer continental shelf and upper continental slope. The surveys were 

conducted over a large area and covered a large range of habitat types.  The outer 

continental shelf is composed mostly of flat, soft-bottom habitats and sparsely scattered 

rocky outcrops and pinnacles. The shelf ends abruptly at depths of about 100–120 m 

and becomes a steep continental slope incised with submarine canyons such as 

Ascension Canyon, Monterey Bay Canyon, and Carmel Canyon. Many different habitat 

types occur on the continental slope, including soft sediments, rock outcrops, pinnacles, 

boulder fields, cobble fields, and brachiopod beds. Rocky bottoms were often targeted 

during visual surveys; however, all bottom types were sampled.  

The study area was separated into three zones: North, Central, and South. This 

stratification was established based on spatial gaps in video observations within the 

study site. The North zone is situated offshore off San Francisco, the Central zone 

extends the entire Monterey Bay, and the South zone covers Big Sur, ranging from Cape 

San Martin to Lopez Point (Figure 1). Portuguese Ledge is a site used in this study to 

determine the effect of map resolution on biomass estimates. Portuguese Ledge is a 

State Marine Conservation Area (SMCA) in Monterey Bay (Central zone) lying in 80-100 



12 
 

 

feet deep, consisting of rock, boulders, cobble, and mud extending into the Monterey 

Bay Submarine Canyon. 

     

Figure 1. Map of study area and subdivisions of study area. 
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Data Collection 

The Video Lander (Figure 2) is a remote camera system used to observe fishes on the 

continental shelf and upper slope of central California. The Lander was built by Marine 

Applied Research & Exploration (MARE) and was utilized by The Nature Conservancy 

and Moss Landing Marine Laboratories (MLML) on a joint project aiming to locate and 

quantify overfished species. The Video Lander is a stationary camera system equipped 

with two stereo-video cameras rotating 360° on a motor.  

 

Figure 2. The Video Lander.  
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The Video Lander was utilized from 2012-2016 to assess overfished rockfish 

populations in Central California. During that time, over 1500 underwater visual surveys 

were conducted. I used video observations collected from 2013-2014 for data analysis. 

The 700 visual surveys used for this thesis were collected aboard the F/V Donna 

Kathleen from May 2013 to October 2014. Data collection took place during spring, 

summer, and fall seasons, with rough seas preventing data collection during winter 

months (November - February). A live video feed came through an umbilical cable and 

was recorded onboard and watched by two science crew members while two others 

were on deck assisting in deploying, moving, and retrieving the Lander. 

Once deployed, The Video Lander was slowly lowered to the bottom, taking 8-10 

minutes to reach the seafloor depending on depth. Once securely on the bottom, lights 

were adjusted, and the motor was activated to begin rotation. We waited 1–3 minutes 

to allow sediment to settle before initiating data collection. During this interim period, 

the data recorders, captain, and crane operator communicated to ensure the Video 

Lander was sitting upright and secure and that there were no obstructions to camera 

rotation. Once this was complete and sediment had settled, video data recording and 

onboard data collection commenced.  

The video cameras rotated a full 360°, and once they reach the end of the rotation, 

the motor switched direction and began the rotation in the opposite direction. Each full 

rotation lasted approximately one minute. Video was recorded for eight full rotations 
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(about eight minutes) based on species accumulation analyses showing a substantial 

decrease in the rate of influx of new fish after eight minutes (Denney 2017).  

In each survey, the Video Lander was baited with two plastic jars containing about 

450 g of chopped squid. Bait was used to bring fish closer to the camera for ease of 

identification. Often fish were disturbed when the Lander settled on the benthos, and 

bait helped to attract those fish back into the video frame. Many studies aiming to 

quantify demersal fish abundances have used baited video cameras (Brooks et al., 2011; 

Murphy and Jenkins, 2010; Stoner et al., 2008). Denney (2017) found no significant 

difference in the mean number of observed species or total mean number of fish 

observed between baited and un-baited Video Lander surveys in our study region. 

Video Analysis 
 

All video files were exported daily from 64 GB Compact Flash cards on the Video 

Lander cameras to a hard drive after the completion of data collection. Video data were 

later analyzed in the lab using EventMeasure software in SeaGIS (SeaGIS Inc.). The video 

analyst referred to field datasheets for quality control to verify that all information 

matched between datasheets and videos by confirming data collection start and end 

times and reviewing notes.  

Initially, all visible fish were counted and identified to the lowest taxonomic level by 

three people trained in west coast fish identification. Final fish counts were determined 

using the rotation in which the highest count of that species (MaxN) was recorded. 

MaxN is defined as the maximum number of fish in a single frame during a video 
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recording. MaxN is a commonly used metric to count fish with stationary drop-cameras 

because it provides a conservative estimate by eliminating the possibility of counting a 

fish twice (Harvey et al., 2007).  Here because we have a rotating camera system, we 

define MaxN as the maximum number of fish in a 360° rotation. With stationary 

cameras, fish situated next to and behind non-rotating drop cameras are not recorded 

because they are out of the field of view. Because the Video Lander has cameras on a 

rotating motor, using MaxN of the 360˚ rotation includes these fish that would have 

otherwise been excluded.  Additionally, the number of identified fish would often differ 

from rotation to rotation, due to a fish having moved closer or farther away from the 

camera between rotations. Using MaxN of a rotation allows us to obtain the highest, 

most accurate count possible while still minimizing the chance of double-counting fish.  

Paired calibrated stereo cameras determine precise 3D locations of fish, allowing for 

estimates of the distance of detection, area sampled, and thus density calculations. 

Paired calibrated cameras also provide accurate and precise fish length measurements 

(Harvey et al. 2004). We measured the total length (TL) of all fish to the nearest cm that 

were included in the MaxN statistic. Sometimes fish lengths could not be determined 

because either a) the entire fish was not captured by both cameras or b) the fish was 

too far from the cameras to get an accurate measurement. An annulus, or donut shaped 

area, was used to obtain density estimates. The inner radius was set by the closest point 

on the bottom that was recorded by the Lander cameras and the outer radius was set by 
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determining the distance that encompassed 95% of all observations for a given species 

(Figure 3). 

         

Figure 3. Diagram depicting how area figures were obtained for each species. 
 

Observed habitat variables were recorded during video analysis using set protocols. 

Substrate was used to determine hard, mixed, and soft bottoms. Bottom type was 

classified as hard bottom if ≥50% of the bottom substrate was rock ridge or boulder, 

mixed bottom if it was ≥50% cobbles or pebbles, and soft bottom if it was ≥50% soft 

sediment (sand or mud). Relief categories included high, medium, and low, and were 

determined using measurements of local relief of substrates using EventMeasure. Relief 

was determined as low if substrate height was between 0-25 cm, medium if it was 

between 25-150 cm, and high if the substrate height was >150 cm. Rugosity was 
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classified as low if the bottom was flat and had no structure that fish could use as a 

refuge. Rugosity was classified as medium if there were small depressions or holes in 

the substrate (< 25 cm at largest point of diameter) that small fish such as Pygmy 

Rockfish could use as refuge. Rugosity was classified as high if there were depressions or 

holes in the substrate that larger fish, such as Vermilion Rockfish or Lingcod, could use 

as refuge (>25 cm at largest point of diameter).  

Data Preparation in ArcGIS 

Bathymetric data collected from multibeam echosounders were used to create 

precise Digital Elevation Models (DEMs) of the seafloor. The 1 m, 5 m, and 10 m 

resolution DEMs used for analyses were made available through the Monterey Bay 

Aquarium Research Institute (MBARI), California State University Monterey Bay Seafloor 

Mapping Lab (CSUMB SFML) and NOAA’s National Centers for Environmental 

Information (NCEI, formerly National Geophysical Data Center [NGDC]).  The DEMs for 

large regions of the central coast were obtained from NCEI at 10 m resolutions 

(https://maps.ngdc.noaa.gov/viewers/bathymetry/). The DEMs for Portuguese Ledge 

used in this research were created at 1 m, 5 m, and 10 m resolutions by MBARI, SFML 

(https://walrus.wr.usgs.gov/mapping/csmp/gis.html), and NOAA’s NCEI, respectively. All 

data in ArcGIS were projected to WGS 84/UTM zone 10N with bounds at -126.0000, 

34.4000, -120.0000, and 77.0000. 

I used various tools within ArcGIS to create the slope, aspect, rugosity, and TPI DEMs 

from the base bathymetry DEMs. Slope was calculated with the “slope” tool, which gives 
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each cell a value by determining the steepest slope between the cell and its 8 nearest 

neighbors. Aspect was calculated with the “aspect” tool, which works by identifying the 

down-slope direction of the maximum rate of change between a cell and its neighbors. 

Rugosity was calculated using the Vector Ruggedness Measure (VRM) tool. VRM 

determines rugosity by measuring the variation in the three-dimensional (3D) 

orientation of a cell compared to its neighbors. VRM uses vector analysis and measures 

the dispersion of vectors to determine relative differences in 3D orientation. Values can 

range from 0 (no terrain variability) to 1 (complete terrain variability), however values 

typically fall between 0 - 0.4 for most terrain. Rugosity measurements are often 

calculated using the surface area to planar area ratio, however these estimates are 

strongly affected by slope. VRM does a good job at teasing out the effects of slope, and 

thus is a more accurate representation of terrain ruggedness (Sappington et al. 2007). 

Topographic Position Index (TPI) and Benthic Position Index (BPI) both refer to the 

relative elevation of any given cell in comparison to its neighboring cells. BPI can be 

calculated at various scales, but I divided data into fine-scale and broad-scale BPIs. The 

fine-scale BPI was calculated by comparing the elevation of any given cell to nearby cells 

and determining differences in local elevation. Broad-scale BPI compares a cell’s 

elevation to the elevation of cells farther away, using a larger neighborhood to 

determine relative elevation.  In both cases, raw BPI at any given point was calculated as 

elevation – neighborhood mean elevation. High BPI values indicate higher elevation, low 

BPI values indicate low elevation, and a value of 0 means either the terrain is the same 
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elevation as the neighborhood, or that the cell in question is on a slope. Several large-

scale seascape variables were also calculated. Distance to shoreline, distance to shelf 

edge, and distance to canyon heads were calculated using Euclidean Distance (i.e., 

straight-line distance).  

Georeferenced 2013-2014 species observation data collected by the Video Lander 

were imported into ArcGIS. Species observations were overlaid onto the raster layers of 

the remotely sensed variables, and the value of each variable at each survey location 

was extracted onto the species observation file. In this way, remotely sensed variable 

information for each survey location could be obtained and used in analysis of species-

habitat relationships.  

Data Analysis 

 Species associations with observed habitat. The Kruskal-Wallis Test was used to 

analyze the relationship between species density and bottom type, relief, and rugosity. 

The Kruskal-Wallis Test is a nonparametric test that can be used in lieu of an analysis of 

variance (ANOVA) when data do not meet the assumption of normal distribution. 

Additionally, Kruskal-Wallis tests can be used when determining differences in means of 

count and density data because these data are often skewed and contain many zeros.  

The Wilcoxon-Mann-Whitney post hoc test was used to analyze differences in 

densities of each species over hard, mixed, and soft bottom habitats and areas of low, 

medium, and high relief and rugosity. The statistical software program JMP was used to 

run Kruskal-Wallis and Wilcoxon-Mann-Whitney post hoc tests.  
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Species associations with remotely sensed habitat. I used linear regressions to 

understand species associations with remotely sensed habitat variables. Simple linear 

regressions enabled an analysis of individual species relationships with each remotely 

sensed habitat variable. A principal component analysis (PCA) was also used to group 

remotely sensed variables based on the variation they describe. Additional linear 

regressions were performed using principal components as habitat variables. Data used 

in the PCA were log transformed. Linear regressions and PCA were performed using the 

statistical software program JMP. 

Comparison of species associations with observed vs. remotely sensed habitat. To 

assess whether geomorphology is a good indicator of substrate type, I ran a canonical 

correspondence analysis (CCA) with both observed and remotely sensed variables. I 

conducted the CCA to visualize species relationships based on densities over both 

observed and remotely sensed habitat. The R statistical software package was used to 

run the CCA. Data used in the CCA were log transformed.  

To evaluate each set of variables as a group, two sets of generalized linear models 

(GLMs) were run for each species: one using observed habitat variables as predictors 

and the other using remotely sensed habitat variables as predictors. GLMs are often 

used in predictive modeling of species distributions. GLMs do not force the data into 

unnatural scales, can handle data from several probability distributions (Guisan et al., 

2002), and are recommended when abundance estimates are derived from counts 

(Guisan and Zimmerman, 2000).  The amount of deviance explained by each model as 
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well as R-squared values can assist in understanding which habitat characteristics are 

better at explaining species density distributions.  

Several metrics were used to compare model performance. Deviance is a direct 

measure of likelihood and a universal measure of a model’s fit. The lower the deviance, 

the better the fit of the model. Akaike’s information criterion (AIC) is another measure 

of deviance or model fit. AIC penalizes each additional predictor in the model, which 

helps discourage model overfitting. AIC is defined as deviance + 2K, where K is the 

number of predictor variables. As with deviance, a lower AIC value indicates a better fit. 

R-squared values describe the proportion of the variance in the response variable that is 

explained by the predictor variables, which provides another indicator of model fit used 

to assess model performance. An R-squared value of 0 indicates that the regression line 

does not fit the data and an R-squared of 1 indicates that the regression line fits the 

data perfectly.  

Model selection depends on several factors. The variance inflation factor (VIF) values 

indicate variable co-linearity. If VIF values were >7, the variable was removed to prevent 

co-linearity among predictors and the model was run again with the smaller set of 

variables. Stepwise backward selection was used in which all variables were included in 

each model to start with, and variables were removed until the best model with the 

lowest AIC was detected. Using model output summaries, I could assess which models 

explain more deviance in species densities, and which models had better model fit and 

lower error rates. In this way we can evaluate the strength of each predictor group.  
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Creating predictive maps using MGET in ArcGIS 10.2. The Marine Geospatial 

Ecology Toolbox (MGET) was used to create predictive models of species density and 

biomass. MGET is an open-source geoprocessing toolbox used in predictive modeling of 

species distributions.  The statistical software package, R, is integrated within MGET and 

which allows it to be used in multivariate species distributions modeling (Roberts et al., 

2010). MGET has been used in modeling leatherback turtle movements (Schick et al., 

2013), Bluefin tuna larval distributions (Muhling et al., 2013), and albatross bycatch 

(Žydelis et al., 2011). MGET has also been used in predictive modeling studies to 

evaluate rockfish species distributions in central California (Bolton, 2014; Iampietro et 

al., 2008; Young et al., 2010). The MGET package allows for use of GLMs in predictive 

modeling. MGET is implemented on the ArcGIS platform to display species distribution 

models in the form of habitat suitability maps. 

I ran Poisson GLMs to predict density for each species using the “Fit GLM” tool 

within MGET. Poisson GLMs assume the response variable has a Poisson distribution 

and are often used with count data, which are often zero-inflated. The stepwise 

backward function was used to determine which habitat variables were important, 

starting with all the predictor variables and taking them out one by one if non-significant 

(p-value >0.05). Data were not transformed for preparation for the GLMs. The log-link 

function was used within the model. 

I then used the “Predict GLM from Table” tool to test the model. This tool predicts 

the response variable for every survey point and uses statistics such as error rates and 
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R-squared values to assess how well the model’s predictions match the actual observed 

values in those same locations. Twenty percent of the data were set aside to test the 

performance of the model. The rate at which predicted density values match the actual 

presence and absence values and the degree to which they differ determine model 

performance and accuracy.  

The “Predict GLM from Rasters Predictive mapping of species biomass at 1 m, 5 m, 

and 10 m    ” tool is then used to create a habitat suitability layer indicating predicted 

density of each species. This habitat layer is based on the combined strength of the 

relationships between the density of fish and each predictor variable resulting from the 

GLM. This tool will output a continuous prediction map with a predicted density value 

for each pixel of the map.  

Model testing. To conduct practical model testing, I created a model with species 

observations from one year and compared density predictions to actual densities 

observed the following year. A Poisson GLM predicting species density was created for 

each species using 2013 species observation data. Predictive maps of species density 

were made, and predictions were compared to 2014 observations at 2014 survey 

locations. If the models have high predictive power, the models l created from 2013 

data should accurately predict 2014 fish densities.  

Influence of map resolution on predictions. To test the effect of map resolution on 

species-habitat associations, I ran a biomass model for each species using data from the 

entire study area and created predictive maps of species biomass at Portuguese Ledge 
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using 1 m, 5 m, and 10 m resolution bathymetry maps. One model used for each species 

was applied to three levels of map resolution to assess the differences in predictions 

resulting from using maps of different cell size. Poisson GLMs were used in MGET 

predicting species biomass using 2013 and 2014 species biomass observations.  

I used published length/weight relationship indices for each species (Arora, 1951; 

Keller et al., 2012; Lea et al., 1999) to calculate biomass of each species at Portuguese 

Ledge. First, I calculated the average length of each species over all drops. Then I 

calculated the weight of each individual at the average length using the length-weight 

indices for each species. Finally, species biomass of each video survey was calculated by 

multiplying the average fish weight by the number of fish seen in the video survey.  

Using biomass estimates from the predictive maps, biomass was summed over the 

entire predictive map using 1 m, 5 m, and 10 m resolution predictor raster layers. 

Biomass estimates for each map were compared for each species to assess differences 

in total biomass estimates that are caused by map resolution changes. There is a larger 

area mapped at 5 m and 10 m resolutions, so these maps were scaled down to the size 

of the 1 m resolution map (~900 km²) so that biomass estimates could be compared 

over the same area. Total biomass over hard bottom was calculated for each species at 

each map resolution.  Hard and soft bottom were delineated on the map, and species 

biomass was predicted over the area of hard bottom to produce an estimate of biomass 

over hard bottom.  
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Results 

Field Sampling  

Visual surveys occurred in in May, July, September, and October of 2013 and 2014.  

The Video Lander was deployed 700 times from the FV Donna Kathleen, over a total of 

91 days in 2013-2014. In total, 4,618 fish were identified from the visual surveys (Table 

1). Vermilion Rockfish were the most abundant fish species observed in the visual 

surveys, making up 27% (1,261 fish) of all identified fishes, followed by Greenspotted 

Rockfish (1,101 fish) and Canary Rockfish (1,063 fish). Copper Rockfish were the least 

abundant species observed in the visual surveys (238 fish), comprising only 5% of 

observed fishes. Greenstriped Rockfish comprised ~8% of identified fish of the six 

species (364 fish) and Sanddab made up ~11% (495 fish) of identified fish. 

Table 1   
                                                                                                                                                  
Number of Study Species Identified in Visual Surveys 
 

Scientific Name Common name Number seen 

Sebastes pinniger Canary Rockfish 1,063 
Sebastes caurinus Copper Rockfish 238 

Sebastes chlorostictus Greenspotted Rockfish 1,101 
Sebastes elongatus Greenstriped Rockfish 364 

Sebastes miniatus Vermilion Rockfish 1,261 
Citharichthys sordidus Pacific Sanddab 495 

Total Fish  4,618 

 
Visual surveys with the Video Lander were conducted throughout the central coast. 

The northern end of the survey area was just north of San Francisco and the southern 

end was near Cape San Martin (Figure 1).  Video surveys were distributed along the 
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length of the central coast but were concentrated on rocky habitats on the deeper 

continental shelf and around the shelf edge.  Each video survey serves as an 

independent replicate.  

Sampling effort was spread somewhat evenly over the categories of observed 

habitats (Figure 4). A total of 298 surveys were conducted over hard bottom, 168 over 

mixed bottom, and 233 over soft bottom habitats. Of the 699 video surveys, 194 surveys 

were conducted in areas of high relief, 212 in areas of intermediate relief, and 293 over 

low relief areas. Rugosity was the most unevenly sampled (given the current 

classification for high, medium, and low relief) observed habitat characteristic, with 62% 

of surveys (436 surveys) occurring in low rugosity habitat and only 10% (72 surveys) 

occurring in high rugosity habitat. 

 

Figure 4. The distribution of sampling effort over observed habitat.  
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Species Associations with Observed Habitat 

  Kruskal-Wallis tests. Data used in the Kruskal-Wallis tests were not transformed and 

zeros were not removed. P-values, R-squared values, and F-ratios were used to assess 

the strength of associations with each observed habitat variable and each species. 

Standard error was also calculated.  

Canary Rockfish. The highest mean densities of Canary Rockfish occurred over hard 

bottom, low relief, and high rugosity habitats. Kruskal-Wallis tests found significant 

differences in Canary Rockfish densities with bottom type (X²2 = 31.2, p< 0.0001), relief 

(X²2 = 21.3, p< 0.0001), and rugosity (X²2 = 23.0, p< 0.0001). Canary Rockfish were seen 

in similar densities over hard (5.37 fish/100 m², SE ± 0.65) and soft bottoms (5.35 

fish/100 m², SE ± 1.76), and in only slightly lower densities on mixed bottom habitats 

(3.88 fish/100 m², SE ± 0.72). A Wilcoxon post hoc test found a significant difference in 

Canary densities between hard and mixed bottoms (p= 0.0151), and mixed and soft 

bottoms (p=0.0081).  

Canary Rockfish mean densities were similar over low (5.33 fish/100 m², SE ± 0.80) 

and medium (5.27 fish/100 m², SE ± 1.57) relief habitats, and only slightly lower over 

high relief habitats (4.23 fish/100 m², SE ± 0.72) (Figure 5a). Significant differences were 

seen between Canary densities on high and low relief areas (p<0.0001) and medium and 

low relief areas (p< 0.0001). There was a small difference in mean densities of Canary 

Rockfish over varying levels of rugosity. Mean density of Canary Rockfish was highest 

over high rugosity bottoms (6.15 fish/100 m², SE ± 1.50), and slightly lower over medium 
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(4.99 fish/100 m², SE ± 0.99) and low rugosity bottoms (4.82 fish/100 m², SE ± 0.79) 

(Figure 5). Densities in high rugosity areas were significantly higher than those over low 

rugosity habitats (p<0.0001) and medium rugosity habitats (p=0.0003) based on a 

Kruskal-Wallis Wilcoxon post hoc test.   

Copper Rockfish. The mean density of Copper Rockfish was high over hard and 

mixed bottoms, areas of high and medium relief, and high and medium rugosity 

habitats. Using Kruskal-Wallis tests, significant differences in Copper Rockfish densities 

were found with bottom type (X²2 = 20.6, p< 0.0001), relief (X²2 = 15.4, p= 0.0004), and 

rugosity (X²2 = 23.8, p< 0.0001). Copper Rockfish mean densities followed a linear trend 

with bottom type such that densities increased with bottom hardness.  Highest mean 

density occurred over hard bottom (2.04 fish/100 m², SE ± 0.27) and lowest mean 

density over soft bottoms (0.84 fish/100 m², SE ± 0.19) (Figure 5b). Densities were found 

to be significantly higher over hard bottoms than over soft sediments (p< 0.0001) or 

mixed bottoms (p = 0.0237) based on the Wilcoxon post hoc test.  Mean density of 

Copper Rockfish was highest over medium relief habitat (2.06 fish/100 m², SE ± 0.19), 

slightly lower over high relief habitat (1.54 fish/100 m², SE ± 0.26), and lowest over low 

relief habitat (0.96 fish/100 m², SE ± 0.32). Densities were significantly higher over 

medium relief than over low relief habitats (p = 0.0002) and significantly higher over 

high relief than low relief habitats (p = 0.0020).  Copper Rockfish densities followed a 

similar linear trend with rugosity as with bottom type, such that highest densities 
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occurred over highly rugose bottoms (2.55 fish/100 m², SE ± 0.44) and lowest densities 

occurred over areas of low rugosity (1.22 fish/100 m², SE ± 0.28) (Figure 5b).  

Greenspotted Rockfish. Kruskal-Wallis tests showed significant differences in 

Greenspotted Rockfish densities for bottom type (X²2 = 18.0, p< 0.0001), relief (X²2 = 

17.2, p= 0.0002), and rugosity (X²2 = 16.0, p< 0.0003). Mean density of Greenspotted 

Rockfish was highest over hard bottoms (7.31 fish/100 m², SE ± 1.13) and only slightly 

lower over mixed bottoms (7.21 fish/100 m², SE ± 1.24). Greenspotted Rockfish were 

observed in unusually high densities on a few occasions, over both hard and mixed 

bottoms (142.4 fish/100 m² and 138.7 fish/100 m², respectively). In contrast, the mean 

density of Greenspotted Rockfish observed over soft bottoms was much lower (0.71 

fish/100 m², SE ± 0.67) (Figure 5c). Greenspotted Rockfish densities were significantly 

higher over hard bottom than soft bottom (p= 0.0046) and significantly higher over 

mixed bottom and soft bottom (p< 0.0001).  

Highest mean density was observed over intermediate levels of relief (9.32 fish/100 

m², SE ± 0.87).  Mean density over high and low relief areas (3.57 fish/100 m², SE ± 0.82 

and 4.97 fish/100 m², SE ± 1.53, respectively) were about half of mean density over 

intermediate relief. Densities over medium relief areas were significantly higher than 

densities over high relief habitat (p = 0.0001) and those over low relief habitat (p = 

0.0015) based on a Wilcoxon post hoc test. Patterns of density distribution of 

Greenspotted Rockfish were similar with rugosity as relief. Mean density of 

Greenspotted Rockfish was highest over intermediate levels of rugosity (8.41 fish/100 
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m², SE ± 0.75), lower over low rugosity habitat (5.52 fish/100 m², SE ± 1.44), and lowest 

in high rugosity habitat (1.5 fish/100 m², SE ± 0.59) (Figure 5c). Densities were 

significantly higher with medium rugosity than with high rugosity (p = 0.0002) or low 

rugosity (p = 0.0065). Densities were also significantly higher over low relief areas than 

high relief areas (p= 0.0209). 

Greenstriped Rockfish. Using Kruskal-Wallis tests, significant differences in 

Greenstriped Rockfish densities were found for bottom type (X²2 = 57.5, p< 0.0001), 

relief (X²2 = 49.8, p= 0.0001), and rugosity (X²2 = 29.8, p< 0.0001). Greenstriped Rockfish 

mean densities were highest over mixed bottoms, low relief, and low rugosity. Mean 

density of Greenstriped Rockfish was highest over mixed bottoms (3.52 fish/100 m², SE 

± 0.68), and lower over soft (1.24 fish/100 m², SE ± 0.61) and hard (0.74 fish/100 m², SE 

± 0.22) bottoms. Densities over mixed bottoms were significantly higher than densities 

over hard and soft bottom according to a Wilcoxon post hoc test (p< 0.0001). A linear 

relationship was observed between Greenstriped densities and relief and rugosity such 

that densities increased with decreasing relief and rugosity. Mean density of 

Greenstriped Rockfish was highest over low relief, low rugosity habitat ((3.50 fish/100 

m², SE ± 0.49), (2.74 fish/100 m², SE ± 0.48)), lower over medium relief, medium rugosity 

habitat ((2.01 fish/100 m², SE ± 0.60), (1.62 fish/100 m², SE ± 0.39)), and lowest over 

high relief, high rugosity habitat ((0.30 fish/100 m², SE ± 0.12), (0.09 fish/100 m², SE ± 

0.06)) (Figure 5d). In both cases, Greenstriped Rockfish densities over low rugosity and 
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low relief were significantly higher than densities over high relief and high rugosity 

(p<0.0001) (Figure 5d). 

Vermilion Rockfish. Vermilion Rockfish densities followed the expected trend of 

being higher in hard bottom, high relief and highly rugose habitats. Using Kruskal-Wallis 

tests, significant differences in Vermilion Rockfish densities were found with bottom 

type (X²2= 100.6, p< 0.0001), relief (X²2= 78.0, p= 0.0001), and rugosity (X²2= 91.8, p< 

0.0001). Mean density of Vermilion Rockfish was highest over hard bottom habitat 

(12.01 fish/100 m² SE ± 2.00) followed by soft bottom (6.13 fish/100 m², SE ± 0.60) and 

was lowest over mixed bottom habitats (1.82 fish/100 m², SE ± 0.55) (Figure 5e). There 

was a significant difference in densities between soft and mixed bottoms (p= 0.0002), 

mixed and hard bottoms (p< 0.0001), and soft and hard bottoms (p< 0.0001) found 

using a Wilcoxon post hoc test. Mean density of Vermilion Rockfish was highest in high 

relief habitats (10.25 fish/100 m², SE ± 2.22), slightly lower in mixed relief habitats (7.39 

fish/100 m², SE ± 0.90), and lowest in low relief habitats (1.89 fish/100 m², SE ± 1.85). 

There was a significant difference in densities between high and low relief areas (p< 

0.0001) and medium and low relief areas. Mean density of Vermilion Rockfish was 

highest over high rugosity habitats (13.04 fish/100 m², SE ± 3.53), followed by 

intermediate rugosity habitats (6.18 fish/100 m², SE ± 1.18), and lowest over low 

rugosity habitats (4.57 fish/100 m², SE ± 1.41) (Figure 5e). Significant differences in 

densities were found between high and low rugosity areas (p< 0.0001), high and 

medium rugosity areas (p= 0.0018) and medium and low rugosity areas (p< 0.0001).  
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Pacific Sanddab. Pacific Sanddab occurred almost solely on soft bottom, low relief, 

and low rugosity habitats. Using Kruskal-Wallis tests, significant differences in Pacific 

Sanddab densities were found with bottom type (X²2= 93.7, p< 0.0001), relief (X²2= 73.5, 

p= 0.0001), and rugosity (X²2= 38.1, p< 0.0001). No Sanddab were seen on hard bottom, 

and mean density was also very low over mixed bottoms (0.28 fish/100 m², SE ± 0.11) 

(Figure 5). Densities on soft bottom habitat were significantly higher than those on hard 

bottom (p< 0.0001) and mixed bottom (p< 0.0001) using a Wilcoxon post hoc test. Mean 

Sanddab density was also very low in high (0.04 fish/100 m², SE ± 0.04) and medium 

relief (0.08 fish/100 m², SE ± 2.01) habitat and nonexistent in high and medium rugosity 

habitat (Figure 5f). Densities were significantly higher in low relief habitat than either 

medium or high relief habitat (p<0.0001), and significantly higher in low rugosity habitat 

than either medium or high rugosity habitat (p< 0.0001 and p= 0.0011). 
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Figure 5. Mean densities of all species over observed habitat with standard error. 
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Species Associations with Remotely Sensed Habitat  

 Linear regressions. Data used in the linear regressions were not transformed. 

Surveys where the species did not occur (zeros) were removed to examine species-

habitat relationships with remotely sensed habitat characteristics where species did 

occur. Metrics such as p-values were used to assess the significance of the linear 

relationship, while R-squared values were used to evaluate how well the data fit the 

linear model. 

Canary Rockfish. Canary Rockfish densities showed little variation with respect to 

remotely sensed habitat variables. P-values showed that density distributions did not 

show dependence on fluctuations in these explanatory variables. All R-squared values 

were very low, showing that little variance in densities is explained by each of these 

variables individually (Table 2).  

Table 2 
 
Linear regression analysis of Canary Rockfish Densities and Remotely Sensed Variables 
  

RS Variable Relationship p-value R-squared RMSE F value (F1,699 ) 

Depth N/A 0.153 0.010 0.298 2.052 

Slope N/A 0.262 0.006 0.298 1.268 

Curvature N/A 0.371 0.004 0.299 0.803 

FS BPI N/A 0.927 0.00004 0.299 0.009 

BS BPI N/A 0.595 0.001 0.299 0.284 

VRM N/A 0.810 0.0002 0.299 0.066 

Dist. to Shore N/A 0.120 0.012 0.298 2.435 

Dist. to shelf edge N/A 0.184 0.00002 0.298 1.780 

Dist. to canyon  N/A 0.3018 0.00009 0.1777 3.1496 
 

Note. RMSE is Root Mean Square Error. Values were rounded to three significant digits. 
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Copper Rockfish. Copper Rockfish densities did not show significant linear variation 

with most of the remotely sensed habitat variables. This is evidenced by high p-values 

and low R-squared and F-statistic values. The only remotely sensed habitat variable that 

was significant in determining Copper Rockfish densities was VRM (linear regression, 

F1,699 = 4.55, R²= 0.03, p = 0.035). Although the p-value indicates significance, the R-

squared value means that it only explains 3% of the variation in Copper Rockfish 

densities (Table 3).  

Table 3 
 
Linear Regression Analysis of Copper Rockfish Densities and Remotely Sensed Variables 
  

RS Variable Relationship p-value R-squared RMSE F value (F1,699)  

Depth N/A 0.540 0.003 0.054 0.378 

Slope N/A 0.398 0.005 0.053 0.719 

Curvature N/A 0.207 0.012 0.053 1.612 

FS BPI N/A 0.325 0.007 0.053 0.975 

BS BPI N/A 0.125 0.017 0.053 2.384 

VRM Positive 0.035 0.032 0.053 4.559 

Dist. to Shore N/A 0.968 0.00001 0.054 0.002 

Dist. to shelf edge N/A 0.203 0.012 0.053 1.634 

Dist. to canyon  N/A 0.559 0.003 0.054 0.342 
 

Note. P-values indicating significant relationships are indicated in red. Values were 
rounded to three significant digits. 
 

Greenspotted Rockfish. Greenspotted Rockfish densities showed significant 

variation with slope (linear regression, F1,699 = 15.28, R² = 0.063, p <0.0001), broad-scale 

BPI (linear regression, F1,699 =6.36, R² = 0.027, p <0.0123), and distance to shoreline 

(linear regression, F1,699 = 50.86, R² = 0.1, p <0.0001) (Table 4). Although these 
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explanatory variables show significant influence on Greenspotted Rockfish density 

distributions, the R-squared values are very low. This shows that these variables each 

only explain a very small proportion of the variance in densities. High F-statistic values 

for slope and distance to shoreline support the low p-value and the rejection of the null 

hypothesis that these two variables are not related. Greenspotted Rockfish densities 

increased with distance to shoreline and decreased with increasing slope and broad-

scale BPI. 

Table 4 
 
Linear Regression Analysis of Greenspotted Rockfish Densities and Remotely Sensed 
Variables  
 

RS Variable Relationship p-value R-squared RMSE F value (F1,699) 

Depth N/A 0.832 0.0002 0.244 0.045 

Slope Negative < 0.0001 0.063 0.236 15.288 

Curvature N/A 0.982 0.0001 0.244 0.0005 

FS BPI N/A 0.240 0.006 0.243 1.388 

BS BPI Negative 0.012 0.027 0.241 6.365 

VRM N/A 0.257 0.006 0.244 1.289 

Dist. to shoreline Positive < 0.0001 0.182 0.221 50.866 

Dist. to shelf edge N/A 0.827 0.0002 0.244 0.048 

Dist. to canyon  N/A 0.090 0.013 0.243 2.905 
 

Note. P-values indicating significant relationships are indicated in red. Values were 
rounded to three significant digits. 
 

Greenstriped Rockfish. Almost all the remotely sensed variables were not significant 

in describing Greenstriped Rockfish densities. The only variable which had a significant 

influence on Greenstriped densities is distance to shoreline, where densities increased 

with increasing distance from the shoreline (linear regression, F1,699 = 34.12, R² = 0.21, p< 
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0.0001) (Table 5).  A highly significant p-value, moderate R-squared value, and high F-

statistic value indicate that fluctuations in densities are dependent on the distance to 

the shoreline.  

Table 5            
  
Linear Regression Analysis of Greenstriped Rockfish Densities and Remotely Sensed 
Variables  
 

RS Variable Relationship  p-value R-squared RMSE F value (F1,699) 

Depth N/A 0.301 0.008 0.073 1.079 

Slope N/A 0.228 0.011 0.135 1.466 

Curvature N/A 0.189 0.013 0.135 1.743 

FS BPI N/A 0.374 0.006 0.135 0.797 

BS BPI N/A 0.078 0.024 0.134 3.152 

VRM N/A 0.331 0.007 0.135 0.951 

Dist. to Shore Positive < 0.0001 0.208 0.121 34.128 

Dist. to shelf edge N/A 0.698 0.001 0.135 0.151 

Dist. to canyon  N/A 0.344 0.007 0.135 0.904 
 

Note. P-values indicating significant relationships are indicated in red. Values were 
rounded to three significant digits. 
 

Vermilion Rockfish. Vermilion Rockfish densities show significant variation with 

respect to distance to shelf edge (linear regression, F1,699 = 4.47, R²= 0.026, p= 0.036) and 

distance to canyon heads (linear regression, F1,699 = 22.23, R²= 0.12, p<0.0001). Vermilion 

Rockfish densities were found to decrease with increasing distance from the shelf edge 

and increase with increasing distance from a canyon head. Although Vermilion density 

distributions were influenced by several of the explanatory variables, low R-squared 

values indicate that these variables explain a small proportion of the variance in 
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densities. Distance to shelf edge explained 2.6% of variation in densities and distance to 

canyon head explained 11.75% (Table 6).  

Table 6 
 
Linear Regression Analysis of Vermilion Rockfish Densities and Remotely Sensed 
Variables  
 

RS Variable Relationship p-value R-squared RMSE F value (F1,699) 

Depth N/A 0.182 0.011 0.442 1.799 

Slope N/A 0.119 0.015 0.441 2.461 

Curvature N/A 0.774 0.0005 0.444 0.083 

FS BPI N/A 0.555 0.002 0.444 0.349 

BS BPI N/A 0.317 0.006 0.443 1.007 

VRM N/A 0.098 0.016 0.441 2.770 

Dist. to Shore N/A 0.210 0.009 0.442 1.583 

Dist. to shelf edge Negative 0.036 0.026 0.241 4.471 

Dist. to canyon  Positive <0.0001 0.118 0.418 22.238 
 

Note. P-values indicating significant relationships are indicated in red. Values were 
rounded to three significant digits. 
 

Pacific Sanddab. Pacific Sanddab densities did not show any significant linear 

variation with respect to any remotely sensed habitat variables. The variables showing 

slight, but insignificant influence on Sanddab densities were slope (linear regression, 

F1,699 = 2.57, R² = 0.044, p = 0.114) and broad-scale BPI (linear regression, F1,699 = 2.75, R² = 

0.046, p= 0.102,). Also, low R-squared values show the small amount of variability in 

Sanddab densities that each variable explained (Table 7).  
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Table 7 
 
Linear Regression Analysis of Pacific Sanddab Densities and Remotely Sensed Variables  
 

RS Variable Relationship p-value R-squared RMSE F value F1,699 

Depth N/A 0.963 0.0001 0.564 0.002 

Slope N/A 0.115 0.044 0.552 2.571 

Curvature N/A 0.720 0.002 0.563 0.130 

FS BPI N/A 0.732 0.002 0.563 0.119 

BS BPI N/A 0.103 0.047 0.551 2.751 

VRM N/A 0.882 0.0004 0.564 0.022 

Dist. to Shore N/A 0.757 0.002 0.564 0.757 

Dist. to shelf edge N/A 0.543 0.007 0.562 0.375 

Dist. to canyon N/A 0.254 0.023 0.557 1.326 
 

Note. Values were rounded to three significant digits. 
 

Summary. The results of the linear regressions show that, in general, individual 

remotely sensed habitat characteristics do a poor job of describing species densities. 

While individual species relationships with some of the remotely sensed habitat 

characteristics displayed significant p-values, low R-squared values indicate that only 

small proportions of the spatial variation in density are explained by remotely sensed 

habitat variables. Greenspotted Rockfish densities showed more significant dependent 

relationships with remotely sensed habitat variables than any of the other species 

(Table 8). 
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Table 8                                                                                                                                             
 
Summary of Linear Regression Analysis 
 

 Canary Copper Greenspotted Greenstriped Vermilion Sanddab 
Depth         
Slope            -  ***              

Curvature       
FS BPI       
BS BPI      - *    

VRM     + *     
Dist. 

shoreline 
         + ***         +  ***         

Dist. shelf     - *  
Dist. canyon                +  ***   

 

Note. A “+” indicates a positive relationship and a “-” indicates a negative relationship. 
Significant relationships are determined by p-values indicated in asterisks. If p ≤ 0.05 (*), 
if p ≤ 0.001 (**). If p ≤ 0.0001 (***). 
 

 Principal component analysis. PCA was used to group remotely sensed variables 

and assess the variation in the data described by these groupings. The PCA takes 

potentially correlated variables and assembles them into principal components based 

on the variability they describe. These principal components can be used as variables 

themselves to reduce the number of variables in a model and reduce them to the ones 

that explain the most variation. I used the principal components as new habitat 

variables in linear regressions. The principal component scores represented 

combinations of the remotely sensed habitat variables.  

  The first two principal components accounted for a large portion of the variability 

in the data (46.9%). Principal component 1 (PC 1) accounted for 25.2% of the variability 

in the remotely sensed variables while principal component 2 (PC 2) accounted for the 
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other 21.7% of the variability in the remotely sensed data (Table 9). The first four 

principal components cumulatively describe over 72% of variability. The remaining 

principal components each describe less than 10% of variability in remotely sensed data. 

Table 9 
 
Table of Eigenvalues Associated with each Principal Component  
 

   Eigenvalue Percent  Cum Percent 

  1 2.2686 25.206  25.206 
  1.9529 21.699  46.905 

  3 1.3446 14.940  61.844 
  4 0.9372 10.414  72.258 
  5 0.7116 7.907  80.165 
  6 0.6301 7.001  87.166 
  7 0.4633 5.148  92.314 
  8 0.3885 4.317  96.631 
  9 0.3032 3.369  100.000 

 

Note. Percent = the percent of variability explained by each principle component.  
Cum Percent = cumulative percent of variability explained with each additional principle 
component. 
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Figure 6. PCA plot.  

 

A loading matrix and eigenvalue outputs were used to interpret the PCA plot (Figure 

6). The loading values not only have directional eigenvector information but also 

combine magnitude and variance. PC 1 accounted for 25.2% of the variability in 

remotely sensed variables.  Slope, depth, VRM, and distance to shelf edge, which 

loading values lie on the end of the range (either highest or lowest), described more 

variation than any other combinations of other variables (Table 10). PC 2 accounted for 

21.7% of variability in the variables. The most important variables in PC 2 were fine and 

broad-scale BPI, distance to shoreline, depth, and distance to canyon heads. Distance to 

canyon head and depth appeared to be inversely related when looking at the plot 

(Figure 6), where drops further from canyon head were also shallower. Similarly, visual 

surveys conducted further from the shoreline had lower broad scale BPI values. This is 
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because as distance from the shoreline increases, the seafloor starts to slope down into 

submarine canyons, which would have low (negative) BPI values. Visual surveys 

conducted further away from the shelf edge had low slope values. These are probably 

areas along the continental shelf, which are flatter. Slope increases with proximity to 

the shelf edge and upper continental slope. 

Table 10                                                                                                                                                  
 
Table of Loadings (Eigenvectors * √Eigenvalues) for each Principal Component 
 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 

Depth 0.64  -0.52 0.20 0.07 0.25 0.09  -0.03 0.44 0.13 
Slope 0.76 0.16  -0.28 0.13 0.21  -0.10 0.43  -0.07  -0.22 
Curvature 0.03 0.41 0.41 0.15 0.004  -0.37 0.19  -0.05 0.21 
BPI10_30 0.31 0.65 0.52 0.11 0.01 0.21  -0.26 0.07  -0.30 
BPI50_150  -0.02 0.59  -0.01  -0.72  -0.05 0.23 0.21 0.15 0.09 
VRM3m 0.71 0.38  -0.22 0.23  -0.04 0.32  -0.13  -0.23 0.29 
Dist. Shore 0.05  -0.62 0.50  -0.30 0.31 0.26 0.05  -0.32  -0.04 
Dist. Shelf  -0.67 0.03 0.11 0.47  -0.03 0.45 0.31 0.09 0.01 
Dist. Canyon  -0.47 0.44  -0.23 0.05 0.71  -0.07  -0.11 0.01 0.06 

 

Note. The value is the contribution of each variable to each principle component and 

includes variance and magnitude. Values were rounded to two significant digits. 

 

 Linear regressions conducted using principal components as habitat variables 

showed that the grouping of remotely sensed variables into principal components 

described more variation in densities and had stronger relationships with species 

densities than individual remotely sensed variables on their own. Canary Rockfish 

densities showed significant linear variation with principal component 4 (PC 4) (linear 

regression, F1,699 = 6.71, R² = 0.01, p = 0.0098), PC 7 (linear regression, F1,699 = 4.13, R² = 

0.006, p = 0.043), and PC 8 (linear regression, F1,699 = 19.77, R² = 0.027, p < 0.0001). The 
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strongest relationship occurred with PC 8, indicated by a large F statistic value, a higher 

R-square value, and a highly significant p-value. The low R-squared values are indicating 

that only a small amount of variation is being explained by these variables.  

 Copper Rockfish densities displayed significant variation with respect to PC 1 (linear 

regression, F1,699 = 17.53, R² = 0.024, p < 0.0001), PC 2 (linear regression, F1,699 = 15.95,  

R² = 0.022, p < 0.0001), and PC 8 (linear regression, F1,699 = 57.48, R² = 0.076, p < 0.0001).  

P-values were all highly significant, however the F-statistic and R-squared value were 

highest in the linear regression with PC 8. This indicates that PC 8 explains more 

variation in Copper Rockfish densities than the other principal components.  

 Greenspotted Rockfish densities showed significant variation over PC 1 (linear 

regression, F1,699 = 35.79, R² = 0.049, p < 0.0001), PC 2 (linear regression, F1,699 = 26.50, R² 

= 0.037, p < 0.0001), PC 3 (linear regression, F1,699 = 31.96, R² = 0.044, p < 0.0001), PC 4 

(linear regression, F1,699 = 11.72, R² = 0.017, p = 0.0007), and PC 6 (linear regression, F1,699 

= 7.46, R² = 0.01, p = 0.0065). PC 1 and PC 3 appeared to be the most influential 

variables for Greenspotted Rockfish. Although F values were high for many of these 

relationships and p-values indicated significant relationships, all R-squared values were 

low.  Less than 5% of variation in densities was explained by any one principal 

component.  

 Greenstriped Rockfish densities showed significant variation over PC 2 (linear 

regression, F1,699 = 40.54, R² = 0.055, p < 0.0001), PC 3 (linear regression, F1,699 = 25.75, R² 

= 0.036, p < 0.0001), PC 4 (linear regression, F1,699 = 18.06, R² = 0.025, p < 0.0001), PC 5 
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(linear regression, F1,699 = 11.02, R² = 0.016, p = 0.001), and PC 6 (linear regression, F1,699 = 

5.03, R² = 0.007, p = 0.025). High F values and low p-values indicated significant 

dependent relationships. However, low R-squared values indicated that the variables 

did not explain much variation in Greenstriped Rockfish densities.  

 Vermilion Rockfish densities showed significant variation with PC 1 (linear 

regression, F1,699 = 10.28, R² = 0.015, p = 0.0014), PC 2 (linear regression, F1,699 = 4.32, R² = 

0.006, p = 0.038), PC 5 (linear regression, F1,699 = 12.38, R² = 0.017, p = 0.0005), PC 6 

(linear regression, F1,699 = 7.64, R² = 0.011, p = 0.0059), and PC 8 (linear regression, F1,699 = 

5.38, R² = 0.008, p = 0.021). Relationships between Vermilion Rockfish and principal 

components appeared weaker than those with other species, evidenced by lower F 

values and R-squared values and higher p-values.  

 Pacific Sanddab densities showed significant relationships with PC 2 (Linear 

regression, F1,699 = 6.56, R² = 0.009, p = 0.011), PC 3 (linear regression, F1,699 = 5.53, R² = 

0.008, p = 0.019), PC 4 (linear regression, F1,699 = 4.32, R² = 0.006, p = 0.038), and PC 7 

(linear regression, F1,699 = 5.39, R² = 0.007, p = 0.021). PC 2 was the most influential 

principal component in determining Sanddab density distributions.  

 Overall, linear regressions with remotely sensed habitat features did a better job at 

describing fish density distributions when grouped as principal components. Species 

densities showed significant variation with more variables when using principal 

components over individual remotely sensed features (Table 11). Generally, though, R-
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squared values remained low, showing that the principal components still did a poor job 

or explaining variation in density distributions.  

Table 11                                                                                                                                           
 
Summary of Species Relationships with Principal Components  
 

 Canary Copper Greenspotted Greenstriped Vermilion Sanddab 

PC 1      - *** - ***  - *  
PC 2      + ***  -  *** - *** + * - * 
PC 3   + *** + ***  + * 
PC 4 - *  - *** - ***  - * 
PC 5           + **   + **  
PC 6           +*        + * - *  
PC 7 - *     - * 
PC 8     - ***      - ***   + *  
PC 9       

 

Note. Significant relationships are determined by p-values indicated in asterisks. If p ≤ 
0.05 (*), if p ≤ 0.001 (**). If p ≤ 0.0001 (***). 
 
Comparison of Species Associations with Observed vs. Remotely Sensed Habitat  

Canonical correspondence analysis. The CCA showed the relationships between 

species based on their densities over remotely sensed habitat variables. The vectors 

represent the directionality of the variables. Longer vectors signify a greater range of 

variability in values. 

Pacific Sanddab and Greenstriped Rockfish fell in the upper left and lower left 

quadrants of the plot, in the direction of deep water that is further from shore and has 

low relief and soft bottoms. Copper and Vermilion Rockfish lay in the upper right and 

lower right of quadrat of the plot in the direction of high rugosity, high BPI areas (both 

fine-scale and broad-scale) that are further away from canyon heads. Based on the plot, 
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Copper and Canary Rockfish look to be in shallower areas of higher VRM and BPI that 

are far away from the continental shelf edge. Greenspotted Rockfish fell in the lower 

half of the plot and slightly into the bottom left quadrant, occurring further from the 

shoreline (Figure 7).   

 
Figure 7. CCA plot.  
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Table 12                                                                                                                                                   
 
Table of Canonical Correspondence Analysis Results  
 

 CCA1 CCA2 CCA3 CCA4 CCA5 

Eigenvalue 0.516 0.266 0.23 0.029 0.016 
Proportion Explained 0.488 0.252 0.217 0.027 0.015 
Cumulative Proportion Explained 0.488 0.740 0.957 0.985 1 

 

Note. Proportion explained is the proportion of variance explained by each axis in the 

CCA. Cumulative Proportion explained is the cumulative proportion of variance 

explained as axes are compiled. 

 

About 35% of the variance in log-transformed species densities is explainable by the 

synthetic gradients created by the CCA. The first axis (CCA1) accounted for 48.8% of 

explained variance and the second axis (CCA2) accounted for 25.2% of the explained 

variance.  The eigenvalue for CCA1 was fairly high (0.516), indicating that the first axis 

represents a strong gradient. The eigenvalues on the second and third axes indicated 

that these axes are much weaker, and the fourth and fifth axes much weaker still (Table 

12). 

Generalized Linear Models. To further understand similarities and differences 

between species relationships with observed versus remotely sensed habitat features, I 

ran GLMs to understand how using different habitat variables affected model outputs 

and measures of model fit. Models were run using observed habitat features as 

predictors and using remotely sensed habitat features as predictors. The best models 

using each set of predictors were selected for each species. Model summary outputs 

and test diagnostics provide metrics with which to compare model performance (e.g., 

percent deviance explained, AIC, R-squared values, and error rates) 
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Canary Rockfish. Bottom type, relief, and rugosity were all significant in the Canary 

Rockfish predictive model using observed habitat characteristics. Densities show 

positive relationships with low and medium relief habitat (p< 0.0001), and negative 

relationships with low and medium rugosity habitats (p< 0.0001) and soft and mixed 

bottoms (p = 0.018 and p= 0.008, respectively). In the Canary Rockfish model using 

remotely sensed habitat characteristics, Canary Rockfish densities showed negative 

relationships with depth (p< 0.0001), slope (p< 0.0001), VRM (p= 0.058), distance to 

shelf edge (p< 0.0001), and distance to canyon heads (p< 0.0001). Canary densities 

showed positive relationships with eastness (p< 0.0001), northness (p< 0.0001), broad-

scale BPI (p< 0.0001), and distance to shoreline (p< 0.0001) (Table 13). 
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Table 13                                                                                                                                             

Variables Included in Final Models Predicting Canary Rockfish Densities 

Observed Habitat Remotely Sensed Habitat 

Relief (Low) + *** Depth _ *** 

Relief (Med) + *** Slope _ *** 

Rugosity (Low) _ *** Eastness + *** 

Rugosity (Med) _ *** Northness + *** 

Bottom (Soft) _ * BS BPI + *** 

Bottom (Mixed) _ * VRM _ . 

   Dist. to shoreline + *** 

   Dist. to shelf edge _ *** 

   Dist. to canyon head _ *** 

Note. Plus and minus signs indicate the direction of the relationship and asterisks 
indicate p-values. If p≤ 0.1 (.), p≤ 0.05 (*), if p≤ 0.001 (**), if p ≤ 0.0001 (***). 
 

The Canary Rockfish model using observed habitat characteristics performed poorly, 

explaining 2.5% of deviance with a high AIC value (3095.5) and unbalanced deviance 

residuals. There was a low normalized root mean square error (NRMSE) (9.03%) in a 

model performance test but also a very low R-squared value of 0.002.  The Canary 

Rockfish model using remotely sensed characteristics explained 25.5% deviance in 

densities (Figure 8). The R-squared value is slightly higher (0.027) than the R-squared 

value of the observed habitat model and the NRMSE remains low (9.08%) (Table 14).  
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Figure 8. Proportion of deviance explained in the species’ models using observed habitat 
characteristics (top) and remotely sensed habitat characteristics (bottom). 

 
Table 14                                                                                                                                        
 
Model Performance Summary Statistics for Species Models  
 

 Deviance 
Explained 

 
AIC 

 
R-squared 

 
NRMSE 

 OBS RS OBS RS OBS RS OBS RS 

Canary 2.5% 25.5% 3095.5 2491.6 0.002 0.001 9.03% 9.08% 
Copper 6.0% 23.9% 884.14 508.22 0.016 0.100 13.98% 13.37% 

Greenspotted 11.6% 54.3% 3429.3 2301 0.030 0.119 15.79% 19.61% 
Greenstriped 14.4%  51.0% 1649.4 1080.9 0.040 0.121 12.83%. 12.59% 
Vermilion 19.9% 48.3% 3909.1 2665.8 0.045 0.074 11.66% 11.54% 
Sanddab 39% 24.4%  1569.8 1915.3 0.067 0.002 9.42% 9.96%  

Note. “OBS” stands for “observed models,” or models made using observed habitat 
predictors. “RS” stands for “remotely sensed models.”  
 

Copper Rockfish. Relief, rugosity, and bottom type were all significant predictors in 

the Copper Rockfish predictive model using observed habitat features (Table 15). 

Copper densities showed a positive relationship with areas of medium relief (p= 0.0008), 
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and negative relationships with medium and low rugosity areas (p= 0.0008 and p= 

0.015), and soft and mixed bottoms (p= 0.004 and p= 0.007). In the predictive model 

using remotely sensed habitat characteristics, depth, eastness, northness, distance to 

shoreline and distance to canyon head were included in the final model. Copper 

Rockfish densities had negative relationships with depth and distance to shoreline (p< 

0.0001 and p= 0.058) and positive relationships with eastness (p= 0.048), northness (p= 

0.003), and distance to canyon head (p= 0.023) (Table 15). 

Table 15                                                                                                                                                    
 
Variables Included in Final Models Predicting Copper Rockfish Densities 
 

Observed Habitat  Remotely Sensed Habitat 

Relief (Med) + ** Depth _ *** 

  _ * Eastness + * 

Rugosity (Med) _ ** Northness + * 

Bottom (Soft) _ * Dist. to shoreline _ . 

Bottom (Mixed) _ * Dist. to canyon head + * 

 

Note. Plus and minus signs indicate the direction of the relationship and asterisks 
indicate p-values. If p≤ 0.1 (.), p≤ 0.05 (*), if p≤ 0.001 (**), if p ≤ 0.0001 (***). 
 

The predictive model for Copper Rockfish using observed habitat characteristics 

performed relatively poorly, explaining 6.0% of the deviance in Copper Rockfish 

densities (Figure 8). A moderate AIC (884.14) and somewhat balanced deviance 

residuals indicate a moderate model fit and performance. In a model performance test 
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there was a low R-squared value (0.016) and a NRMSE of 13.98% (Table 14). The Copper 

Rockfish predictive model using remotely sensed habitat characteristics explained 23.9% 

of deviance (Figure 8). Deviance residuals were mostly balanced and the R-squared 

value was high (R² = 0.1) in comparison to the Copper Rockfish model using observed 

habitat, as well as many of the other species models. NRMSE was 13.37% (Table 14). 

Greenspotted Rockfish. Relief, rugosity, and bottom type were all significant 

predictors in the Greenspotted Rockfish model using observed habitat characteristics 

(Table 16). Greenspotted Rockfish densities showed positive relationships with low and 

medium relief areas (p< 0.0001) and low and medium rugosity areas (p< 0.0001). 

Greenspotted Rockfish densities had negative relationships with soft and mixed bottoms 

(p< 0.0001). In the Greenspotted Rockfish model using remotely sensed habitat 

features, Greenspotted Rockfish densities show positive relationships with curvature (p= 

0.0001), northness (p< 0.0001), and distance to shoreline (p< 0.0001). Greenspotted 

Rockfish densities exhibited negative relationships with depth (p< 0.0001), slope (p< 

0.0001), eastness (p< 0.0001), fine-scale BPI (p< 0.0001), broad-scale BPI (p< 0.0001), 

distance to shelf edge (p< 0.0001), and distance to canyon heads (p< 0.0001) (Table 16). 
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Table 16                                                                                                                                                   
 
Variables Included in Final Models Predicting Greenspotted Rockfish Densities 
 

Observed Habitat Remotely Sensed Habitat 

Relief (Low) + *** Depth _ *** 

Relief (Med) + *** Slope _ *** 

Rugosity (Low) + *** Curvature + *** 

Rugosity (Med) + *** Eastness _ *** 

Bottom (Soft) _ *** Northness + *** 

Bottom (Mixed) _ *** FS BPI _ ** 

   BS BPI _ * 

   Dist. to shoreline + *** 

   Dist. to shelf edge _ *** 

   Dist. to canyon head _ *** 

 

Note. Plus and minus signs indicate the direction of the relationship and asterisks 
indicate p-values. If p≤ 0.1 (.), p≤ 0.05 (*), if p≤ 0.001 (**), if p ≤ 0.0001 (***). 
 

The Greenspotted Rockfish model using observed habitat characteristics as 

predictors explained 11.6% deviance in distributions (Figure 8). Residual deviance 

(2865.9) and AIC (3429.3) were high and deviance residuals were slightly unbalanced. 

The model performance summary reported a low R-squared value (0.03) and a NRMSE 

of 15.79% (Table 14). The Greenspotted Rockfish model using remotely sensed habitat 

characteristics as predictors did a better job at explaining deviance in densities. This 
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model explained over 50% deviance (54.3%), explaining more deviance than any of the 

other species models. While residual deviance was high (1729.6). indicating a poor fit, 

the deviance residuals were balanced. The R-squared value is (R²= 0.119) and the 

NRMSE was 19.61% (Table 14). 

Greenstriped Rockfish. Relief, rugosity, and bottom type were all significant in the 

Greenstriped Rockfish predictive model using observed habitat features. Greenstriped 

Rockfish densities showed positive relationships with low and medium relief areas (p< 

0.0001), low and medium rugosity areas (p= 0.056 and p= 0.01) and soft and mixed 

bottoms (p= 0.0007 and p< 0.0001). There were also several significant relationships in 

the model using remotely sensed habitat features as predictors. Greenstriped Rockfish 

densities showed positive relationships with curvature (p= 0.02), northness (p=0.08), 

VRM (p= 0.02), and distance to shoreline (p< 0.0001). Densities showed negative 

relationships with depth (p= 0.08), slope (p= 0.001), fine-scale BPI (p= 0.0009), distance 

to shelf edge (p= 0.003), and distance to canyon heads (p< 0.0001) (Table 17). 
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Table 17                                                                                                                                           
 
Variables Included in Final Models Predicting Greenstriped Rockfish Densities 
 

Observed Habitat Remotely Sensed Habitat 

Relief (Low) + *** Depth _ . 

Relief (Med) + *** Slope _ ** 

Rugosity (Low) + . Curvature + * 

Rugosity (Med) + * Northness + . 

Bottom (Soft) + ** FS BPI _ ** 

Bottom (Mixed) + *** VRM + * 

   Dist. to shoreline + *** 

   Dist. to shelf edge _ * 

   Dist. to canyon head _ *** 

 

Note. Plus and minus signs indicate the direction of the relationship and asterisks 
indicate p-values. If p≤ 0.1 (.), p≤ 0.05 (*), if p≤ 0.001 (**), if p ≤ 0.0001 (***). 
 

A GLM using observed habitat features as predictors explained 14.4% of the variance 

in Greenstriped Rockfish densities (Figure 8). Residual deviance was high (1341) and 

deviance residuals were slightly unbalanced. The R-squared value was low (0.038) and 

the NRMSE (12.59%) was comparable to error rates seen in the other models. The 

Greenstriped Rockfish model using remotely sensed habitat characteristics explained 

just over half (51%) of the deviance in densities. Residual deviance and AIC were 

moderately high (766.56 and 1080.9) and deviance residuals were somewhat balanced. 
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The model performance summary reported an R-square value of 0.121 and an NRMSE of 

12.83% (Table 14). 

Vermilion Rockfish. Relief, rugosity, and bottom type were all significant predictors 

in the Vermilion Rockfish predictive model using observed habitat features. Vermilion 

densities were higher in low relief areas (p= 0.02), and lower in medium relief areas (p= 

0.0001), areas of medium rugosity (p< 0.0001), and soft and mixed bottoms (p< 0.0001). 

The final model predicting Vermilion Rockfish densities using remotely sensed habitat 

features includes depth, slope, northness, distance to shoreline, distance to shelf edge, 

and distance to canyon heads. Vermilion Rockfish densities have a positive relationship 

with distance to canyon heads (p< 0.0001) and negative relationships with depth (p< 

0.0001), slope (p= 0.01), northness (p< 0.0001), distance to shoreline (p< 0.0001), and 

distance to shelf edge (p< 0.0001) (Table 18). 
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Table 18                                                                                                                                           
 
Variables Included in Final Models Predicting Vermilion Rockfish Densities 
 

Observed Habitat Remotely Sensed Habitat 

Relief (Low) + * Depth _ *** 

Relief (Med) _ *** Slope _ * 

Rugosity (Med) _ *** Northness _ .*** 

Bottom (Soft) _ *** Dist. to shoreline _ *** 

Bottom (Mixed) _ *** Dist. to shelf edge _ *** 

   Dist. to canyon head + *** 

 

Note. Plus and minus signs indicate the direction of the relationship and asterisks 
indicate p-values. If p≤ 0.1 (.), p≤ 0.05 (*), if p≤ 0.001 (**), if p ≤ 0.0001 (***). 
 

The GLM using observed habitat features to predict Vermilion Rockfish densities 

explained 19.9% of the deviance in Vermilion densities (Figure 8). Deviance residuals 

were unbalanced, and AIC was high (3499.5). The R-square value was low (0.045) 

indicating poor model fit, and NRMSE was 11.6%. The GLM using remotely sensed 

habitat features to predict Vermilion Rockfish densities performed better on almost all 

metrics. The model explained a larger amount of deviance in densities (48.4%) and had a 

lower AIC (2671.8). Additionally, deviance residuals were more balanced. The model 

performance summary reported a similar R-squared value (0.073) and NRMSE (11.54%) 

as the model using observed habitat characteristics (Table 14).  
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Pacific Sanddab. Sanddab densities exhibited a significant positive relationship with 

areas of low relief (p= 0.008). In the predictive model using remotely sensed habitat 

features, Sanddab densities had positive relationships with depth (p< 0.0001), eastness 

(p= 0.03), northness (p< 0.0001), and fine-scale BPI (p= 0.0006). Sanddab densities 

showed negative relationships with slope (p< 0.0001), broad-scale BPI (p< 0.0001), 

distance to shoreline (p= 0.008), and distance to shelf edge (p< 0.0001) (Table 19). 

Table 19                                                                                                                                              
 
Variables Included in Final Models Predicting Pacific Sanddab Densities 
 

Observed Habitat Remotely Sensed Habitat 

Relief (Low) + * Depth + *** 

Relief (Med) _  Slope _ *** 

Bottom (Soft) +  Eastness + * 

Bottom (Mixed) +  Northness + *** 

   FS BPI + ** 

   BS BPI _ *** 

   Dist. to shoreline _ * 

   Dist. to shelf edge _ *** 

   Dist. to canyon head _ *** 

 

Note. Plus and minus signs indicate the direction of the relationship and asterisks 
indicate p-values. If p≤ 0.1 (.), p≤ 0.05 (*), if p≤ 0.001 (**), if p ≤ 0.0001 (***). 
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The GLM using relationships with observed habitat to predict Pacific Sanddab 

densities explained 39% of the deviance in Sanddab densities, explaining more deviance 

in distributions than any of the other species models using observed habitat features as 

predictors (Figure 8). Deviance residuals were unbalanced, and the AIC was moderately 

high (1569.8). The model performance summary reported a low R-squared value (0.067) 

and a low NRMSE (9.42%). The GLM predicting Sanddab densities using remotely sensed 

habitat characteristics was the only model using remotely sensed habitat characteristics 

to explain less deviance than its observed habitat model counterpart, explaining 24.4% 

of deviance.  AIC was high (1915.3) and deviance residuals were not balanced. The R-

squared value was very low (0.002) and NRMSE (9.96%) was similar to NRMSE of the 

observed habitat model (9.42%) (Table 14). 

Creating Predictive Maps using MGET in ArcGIS 10.2 

Maps predicting species density. Predictive maps of species density were created 

with predictive models using species relationships with remotely sensed habitat 

features. Maps were made for each section of the study site: North, Central, and South. 

Using species densities observed in each survey, A Hot Spot Analysis (Getis-Ord Gi*) was 

performed to identify “hot” and “cold” spots of high or low densities. Statistically, these 

spots are determined hot or cold if the differences in densities to adjacent areas are 

larger than you would find by random chance. A z-score is reported which represents 

statistical significance based on the Randomization Null Hypothesis computation.  A 



62 
 

 

visual comparison can be made of where actual hot spots occurred versus where high 

densities are predicted to occur on the predictive map. 

Canary Rockfish. The Canary Rockfish predictive model showed that Canary Rockfish 

density distributions were dependent on several of the predictor variables. Canary 

Rockfish densities were seen to increase with predictor variables eastness, northness, 

broad-scale BPI, and distance to shoreline, and decrease with increasing depth, slope, 

distance to shelf edge and distance to canyon heads. Canary predictive maps showed 

higher predicted densities around canyon heads and the continental shelf edge. When 

looking at the predictive map, high density locations appeared to occur solely on the 

continental shelf, while the continental slope showed low predicted densities (Figure 9). 

The negative relationship with depth and slope could be driving this result. The positive 

relationship with northness and eastness causes higher predictive values on northeast 

facing facies.  Many observed cold spots occurred in areas with low predicted densities, 

however predicted hot spots did not always coincide with observed hot spots (Figure 9).  
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Figure 9. Map showing Canary Rockfish predicted densities in the Central location 

(Monterey Bay) from depths of 70-150 m overlaid with a hot spot analysis of observed 

densities. Predicted density is reported as fish/100 m². 
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Copper Rockfish. The Copper Rockfish predictive model determined that Copper 

Rockfish densities displayed negative relationships with predictor variables depth and 

distance to shoreline, and positive relationships with northness, eastness, and distance 

to canyon heads. As depth and distance to shoreline increased, densities became 

smaller, and densities were greater further from canyon heads and on northeast facing 

facies. These results drove the distribution of predicted densities values on the 

predictive map. Highest predicted densities can be seen around the shoreline, in the 

shallower areas of the study sites. The predicted densities on the map appeared to 

fluctuate directly with depth. Depth explained a much larger proportion of the variance 

than any of the other predictors, which is probably driving this result (Figure 10). The 

hot spot analysis consistently matched up with locations of predicted densities. Low 

observed densities occurred in areas where densities were predicted to be low.  Two 

hot spots indicating high densities can be seen on the predictive map. One hot spot 

occurred at Portuguese Ledge and the second occurred a little closer to the shelf edge. 

Densities are predicted to be higher at Portuguese Ledge (up to 1.6 fish/m²), which is 

consistent with the observed hotspot. However, model predicted densities predicted 

were low where the other hot spot occurred (Figure 10).  
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Figure 10. Map showing Copper Rockfish predicted densities in the Central location 

(Monterey Bay) overlaid with a hot spot analysis of observed densities. Predicted 

density is reported as fish/100 m².  
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Greenspotted Rockfish. The Greenspotted Rockfish predictive model showed that 

Greenspotted Rockfish density distributions were dependent on several of the predictor 

variables. Greenspotted Rockfish densities were seen to increase with incremental 

increases in predictor variables curvature, northness, and distance to shoreline and 

decrease with depth, slope, eastness, fine and broad scale TPI, distance to shelf edge 

and distance to shoreline. Most of the areas predicting higher densities occurred on the 

northern half of Monterey Bay. These high predicted densities fell north of the 

Monterey Canyon on the deeper areas of the continental shelf, the shelf edge, and 

upper slope (Figure 11). However, the negative relationship with slope was most likely 

preventing the model from predicting high densities at the boundary of the predicted 

map, where slope and depth start increasing rapidly.  
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Figure 11. Map showing Greenspotted Rockfish predicted densities in the Central 

location (Monterey Bay) from depths of 70-150 m overlaid with a hot spot analysis of 

observed densities. Predicted density is reported as fish/100 m². 
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Greenstriped Rockfish. The Greenstriped Rockfish predictive model showed that 

Greenstriped Rockfish density distributions were dependent on several of the predictor 

variables. Greenstriped Rockfish densities showed positive relationships with predictor 

variables curvature, northness, VRM, and distance to shoreline, and negative 

relationships with depth, slope, broad scale BPI, distance to shelf edge, and distance to 

canyon heads. When looking at the map of predicted densities, highest densities of 

Greenstriped Rockfish were predicted to occur in the northern section of Monterey Bay 

along the continental shelf edge and upper continental slope (Figure 12). The positive 

relationship with distance to shoreline and negative relationships with distance to shelf 

edge and canyon heads could be driving this result on the predictive map, despite the 

negative relationships with depth and slope. The p-values reported from the 

relationships with the seascape ecology variables (distance to shoreline, shelf edge, and 

canyon heads) indicated higher significance than relationships with depth or slope. 

Additionally, distance to shoreline explained five times the amount of deviance than did 

slope, which was the factor explaining the second highest amount of deviance.   
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Figure 12. Map showing Greenstriped Rockfish predicted densities in the Central 

location (Monterey Bay) overlaid with a hot spot analysis of observed densities. 

Predicted density is reported as fish/100 m². 
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Vermilion Rockfish. Vermilion Rockfish densities increased with distance to canyon 

heads and decreased with increasing depth, slope, northness, distance to shorelines, 

and distance to shelf edge. Almost all density predictions above zero occurred in the 

southern half of Monterey Bay, south of the Monterey Canyon. The light blue area 

corresponds to intermediate density predictions and is occurring along the deeper areas 

of the continental shelf. There is one area with high predicted density (7-9 fish/m²) 

occurring in the southern part of the predictive map closer to the shoreline. Hot spots of 

high density occured relatively near the area of high predicted density and low densities 

occurred in areas of low predicted density (Figure 13). 
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Figure 13. Map showing Vermilion Rockfish predicted densities in the Central location 

(Monterey Bay) overlaid with a hot spot analysis of observed densities. Predicted 

density is reported as fish/100 m².  

Hot-Spot Analysis 

                    -1.2 – -0.9 
                    -0.9 – -0.5 
                    -0.5 – 0.4 
                     0.4 – 2.1 
                     2.1 – 9.7 
 

Z-score 

Predicted Density 

High: 9.22 

 
Low: 0 



72 
 

 

Pacific Sanddab. The Pacific Sanddab predictive model showed that Sanddab had 

positive relationships with predictor variables depth, eastness, northness, fine-scale BPI, 

and negative relationships with slope, curvature, broad-scale BPI, VRM, distance to 

shoreline, distance to shelf edge, and distance to canyon heads. Most of the area on the 

Sanddab predictive map is dark blue, showing low predicted densities. Higher densities 

are predicted along the deepest edges of the predictive map, occurring in 150 m of 

water. These are the deeper areas of the continental shelf and shelf edge and 

descending into the upper continental slope. When looking at the predictive map, the 

hot spots of high density occurred mostly in these areas, however some occurred 

shallower on the continental shelf. All but one of the Sanddab hot spots occurred in the 

northern part of Monterey Bay, north of Monterey Canyon (Figure 14).  
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Figure 14. Map showing Pacific Sanddab predicted densities in the Central location 

(Monterey Bay) overlaid with a hot spot analysis of observed densities. Predicted 

density is reported as fish/100 m². 
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Model Testing 

The data were separated by year and species models and maps were made 

predicting density using observations collected in 2013. I then overlaid the 2014 species 

observations onto the predictive map made with 2013 species observation data. In this 

way, 2013 predicted values could be compared with 2014 observed values. Predictive 

maps were not made for Greenstriped Rockfish and Pacific Sanddab. Due to the low 

number of observations of these species in 2013, the models were poor and output 

predictive maps were comprised solely of “No Data” values. Therefore, the model 

testing using comparisons of observed vs. predicted densities could not be done for 

Greenstriped Rockfish and Pacific Sanddab. For all other species, observed vs. predicted 

densities were plotted. A histogram was created of the proportion of 2014 observed 

density to 2013 predicted density for each species. 

The relationship between observed and predicted densities of Canary Rockfish was 

nonsignificant with a weak fit (Linear regression, F1,x = 0.1342, R²= 0.0005, p= 0.7). The 

equation of the linear fit of Canary Rockfish observed vs. predicted densities is:  

Observed density= 0.07 + 0.006 x Predicted densities. 

When assessing the equation of linear fit, densities predicted in 2013 are greater than 

densities observed in 2014. Additionally, by looking at the plot we can see the data 

points oriented along the x-axis. This shows that in most surveys, predicted densities 

were higher than observed densities. (Figure 15a).  
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Copper Rockfish observed densities displayed a significant positive linear 

relationship with predicted densities but a poor linear fit (Linear regression, F1,x = 14.29, 

p< 0.0002, R²= 0.05). The equation of the linear fit of Copper Rockfish observed vs. 

predicted densities is:  

Observed density= 0.015 + 0.04 x Predicted densities. 

When assessing the equation of linear fit, 2013 predicted densities are greater than 

2014 observed densities. The data points are oriented along the x-axis, further showing 

us that predicted densities were almost always higher than observed densities (Figure 

15b).  

Greenspotted Rockfish observed densities showed a significant positive linear 

relationship with predicted densities (Linear regression, F1,x = 49.49, R²= 0.15, p< 0.0001). 

The equation of the linear fit of Greenspotted Rockfish observed vs. predicted densities 

is:  

Observed density= -0.02 + 0.08 x Predicted densities. 

When assessing the equation of linear fit, predicted densities are greater than observed 

densities. The slope of the line (0.08) shows us that there is not a 1:1 relationship 

between observed and predicted densities. The linear fit of this relationship was better 

than others seen in other models, as indicated by a higher R-squared value (R²= 0.16) 

and the high F-statistic (F=49.49). This helps us further reject the null hypothesis that 

there is a strong relationship between observed and predicted fish densities (Figure 

15c). Following the same pattern as Canary Rockfish and Copper Rockfish, we can see by 
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looking at the plot when Greenspotted Rockfish were observed to occur, they occurred 

in lower densities than were predicted. (Figure 15c).  

Vermilion Rockfish observed densities showed a significant positive linear 

relationship with predicted densities, however a low R-squared value indicates poor 

linear fit (Linear regression, F1,x = 3.97, R²= 0.015, p< 0.047) (Figure 15d). The equation of 

the linear fit of Vermilion Rockfish observed vs. predicted densities is:  

Observed density= 0.011 + 0.019 x Predicted densities. 

When assessing the equation of linear fit, predicted densities are greater than observed 

densities. Again, the points oriented along the x-axis indicate 2013 predicted values are 

higher than 2014 predicted values. However, there are several points that fall above the 

blue dotted line, showing that observed densities were higher than predicted densities 

in these surveys. 
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Figure 15. Multi-panel scatterplots of 2014 observed densities vs. 2013 predicted 

densities in each survey location.  

 

Eighty seven percent of 2014 observations were within 10-20% of their predicted 

value (Figure 16). Predicted densities were often three to four times the observed value. 

Most of these instances occurred when the model predicted fish to occur when no fish 

were observed. A breakdown of the data showed that fish did not occur in 65 - 82% of 

video surveys. In the surveys which they did not occur, predicted densities were greater 

than zero 100% of the time. However, often when fish did occur, predicted densities 

were lower than observed densities. (Figure 16). These results indicate that the model is 
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consistently overpredicting or predicting higher densities than are occurring, especially 

when fish were not observed. However, there are instances where high densities of fish 

were observed but not predicted by the model. The models overall are overpredicting 

observed densities but also seem to be smoothing out peaks in densities by 

underpredicting peaks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Multi-panel of histograms showing 2014 observed densities as a proportion of 

2013 predicted densities.  
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Influence of Map Resolution on Predictions 

 Predictive mapping of species biomass at 1 m, 5 m, and 10 m resolutions. Poisson 

GLMs predicting species biomass were run for every species using all data from the 

entire study site. Predictive maps were created at Portuguese Ledge for each species 

using maps of 1 m, 5 m, and 10 m resolution. 

Canary Rockfish. The Canary Rockfish predictive model showed positive species 

associations with eastness, northness, broad-scale bpi, and distance to shoreline, and 

negative associations with depth, slope, distance to shelf edge and distance to canyon 

heads. On the 5 m and 10 m resolution maps at Portuguese Ledge, this translated to 

high biomass predictions on the high rocky points, and north-east facing facies and 

lower biomass predictions in the flatter areas surrounding the rock outcrop. However, 

the 1 m resolution map (Figure 17) displayed high biomass predictions over the flat 

areas surrounding the rocky outcrop as well. This may be due to artifacts in the 

bathymetry map that were being picked up as artificial bottom variation. 

Although the maps were mostly similar in appearance, biomass predictions 

differed between predictive maps at 1 m, 5 m, and 10 m scales. The range of biomass 

values predicted at each point on the map differed slightly, but not too much between 

maps of different scale. The highest predicted biomass was predicted at Portuguese 

Ledge at the 5 m level of resolution, however total biomass predicted at Portuguese 

Ledge was much higher using 1 m resolution maps. Even without scaling down the 5 m 



80 
 

 

and 10 m biomass estimates to the smaller area, the total biomass estimates at 1 m 

resolution (279 tons, Figure 20) was more than double either of the biomass estimates 

at either the 5 m or 10 m resolutions, and the (102 and 35 tons, respectively). When the 

biomass estimates were all scaled to the same area (900 km²) the difference between 

the 1 m and the 5 and 10 m estimates increased. 279 tons of Canary Rockfish are 

predicted to occur when using the 1 m resolution map, 56 tons when using the 5 m 

resolution map, and 18 tons when using the 10 m resolution map. For Canary Rockfish, 

the biomass estimate decreased with increasing scale.  
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Figure 17. Predictive maps of Canary Rockfish biomass distribution at Portuguese Ledge 

using maps of 1 m, 5 m, and 10 m resolution. B1 is predicted biomass over the smaller 

area mapped at 1 m resolution bathymetry (~900 km²). B2 is biomass calculated over 

the larger area mapped at 5 m and 10 m resolutions (~2000 km²). Predicted biomass is 

scaled to kg/100 km² for all maps and total biomass is reported in tons. 
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Copper Rockfish. The Copper Rockfish predictive model showed that Copper 

Rockfish biomass distributions were dependent on several of the predictor variables. 

Copper densities decreased with increasing depth and distance to shoreline, and 

increased with increasing northness, eastness, and distance to canyon heads. The rocky 

areas at Portuguese Ledge contained high predicted biomass, while the adjacent sandy 

areas showed low predicted densities.  

The predictive maps at each scale displayed similar patterns in predicted biomass, 

but biomass estimates differed greatly depending on the resolution of the map. The 1 m 

resolution habitat map had the highest individual biomass prediction (1,145 kg/100 m² 

(~716 fish/100 m²)) and the highest total biomass predicted of the different maps 

(1315.3 tons). The highest individual biomass estimate on the 5 m resolution map was 

15.68 kg/100 m² (~10 fish/100 m²) and the highest individual biomass estimate on the 

10 m resolution map was 3.29 kg/100 m² (~2 fish/100 m²). When scaled over the same 

area, the total biomass estimate at the 1 m scale was over 30 times higher than the total 

biomass estimate of the same area at the 5 m or 10 m scales (42.5 tons and 20.2 tons 

respectively) (Figure 18).  
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Figure 18. Predictive maps of Copper Rockfish biomass distribution at Portuguese Ledge 

using maps of 1 m, 5 m, and 10 m resolution. B1 is predicted biomass over the smaller 

area mapped at 1 m resolution bathymetry (~900 km²). B2 is biomass calculated over 

the larger area mapped at 5 m and 10 m resolutions (~2000 km²). Predicted biomass is 

scaled to kg/100 km² for all maps and total biomass is reported in tons. 
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Greenspotted Rockfish. The Greenspotted Rockfish predictive model showed that 

Greenspotted Rockfish biomass distributions were dependent on several of the 

predictor variables. Greenspotted Rockfish densities showed positive relationships with 

curvature, northness, and distance to shoreline and negative relationships with depth, 

slope, eastness, fine and broad scale TPI, distance to shelf edge and distance to 

shoreline. The higher elevation areas have lower predicted values, while the adjacent 

flat areas adjacent display high predicted densities on the 5 m and 10 m maps. This 

result could be due to the negative relationship with TPI. However, while the predictive 

maps made at 5 m and 10 m scales both have intermediate biomass predictions over 

the larger, flatter portion of Portuguese Ledge, while the 1 m map shows very low 

predicted densities in this same area (Figure 19). Additionally, the whole rock outcrop 

appears to have high biomass predictions on the 1 m resolution map, while on the 5 m 

resolution map the areas immediately around the base of the rock have the highest 

predicted biomass. This detail cannot be distinguished on the 10 m resolution map; we 

can only see low predicted biomass on the rock outcrop and higher predicted biomass in 

the flatter areas. 

The high biomass predictions were higher on the 1 m scale map than the other maps 

in the same areas. The 1 m resolution habitat map contained the highest biomass 

individual biomass prediction (1.27E+06 kg/100 m² (~3 million fish/100 m²)) and the 

highest total biomass (145,316 tons). These estimates are orders of magnitude higher 

than total biomass estimates from either the 5 m or 10 m predictive maps (17.8 and 4.9 
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tons, respectfully). The highest individual biomass predictions are also much lower on 

the 5 m resolution map (4.8 kg/m² (~11.5 fish/100 m²)) and the 10 m resolution map 

(0.83 kg/m² (~2 fish/100 m²)). Greenspotted Rockfish predicted biomass followed the 

pattern of decreasing with increasing resolution (Figure 19).  
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Figure 19. Predictive maps of Greenspotted Rockfish biomass distribution at Portuguese 

Ledge using maps of 1 m, 5 m, and 10 m resolution. B1 is predicted biomass over the 

smaller area mapped at 1 m resolution bathymetry (~900 km²). B2 is biomass calculated 

over the larger area mapped at 5 m and 10 m resolutions (~2000 km²). Predicted 

biomass is scaled to kg/100 km² for all maps and total biomass is reported in tons. 
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Greenstriped Rockfish. The Greenstriped Rockfish predictive model showed that 

Greenstriped Rockfish biomass distributions were dependent on several of the predictor 

variables. Greenstriped Rockfish densities showed positive relationships with curvature, 

northness, VRM, and distance to shoreline, and negative relationships with depth, slope, 

broad scale BPI, distance to shelf edge, and distance to canyon heads. Greenstriped 

Rockfish are predicted to occur in lower densities than the other species at Portuguese 

Ledge. Greenstriped Rockfish relationships are similar to those of Greenspotted 

Rockfish, and the resulting predictive maps at 5 m and 10 m resolutions also show 

similar patterns in predicted biomass. The areas of rock have low predicted biomass. 

This could be because these areas have high elevation in comparison to adjacent areas, 

and so the negative relationship with TPI could be driving this result. Higher predicted 

biomass occurs immediately adjacent to these high elevation spots on the 5 m 

resolution map (Figure 20). Again, the 10 m resolution predictive map does not capture 

this, however the pattern of high predicted biomass on lower lying areas and lower 

predicted biomass on areas over areas of high elevation can be seen. The 1 m map 

shows almost the opposite predictions, where the areas of rock have high predicted 

biomass values and the lower lying areas have very low predicted biomass. 

As with the other species, differences in biomass estimates were most marked 

between the 1 m resolution maps and the 5 m and 10 m resolution maps. Total 

predicted biomass at Portuguese Ledge using the 1 m resolution map was almost 2000 

tons (1899 tons), while total predicted biomass for that same area on both the 5 m and 
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10 m resolution maps was less than 1 ton. Individual predictions using 1 m resolution 

are also higher, with the highest predicted biomass being 7,027 kg/100 m² for an 

individual cell. In comparison, the highest biomass estimate at the 5 m resolution scale 

was 0.3 kg/100 m², and the highest biomass estimate for individual cell at the 10 m 

resolution scale was 0.036 kg/100 m². Biomass predictions increased with decreasing 

resolution (Figure 20). 
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Figure 20. Predictive maps of Greenstriped Rockfish biomass distribution at Portuguese 

Ledge using maps of 1 m, 5 m, and 10 m resolution. B1 is predicted biomass over the 

smaller area mapped at 1 m resolution bathymetry (~900 km²). B2 is biomass calculated 

over the larger area mapped at 5 m and 10 m resolutions (~2000 km²). Predicted 

biomass is scaled to kg/100 km² for all maps and total biomass is reported in tons. 
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Vermilion Rockfish. The Vermilion Rockfish predictive model showed that Vermilion 

Rockfish biomass distributions were dependent on some of the predictor variables. 

Vermilion Rockfish densities increased with distance to canyon heads and decreased 

with increasing depth, slope, northness, distance to shorelines, and distance to shelf 

edge. The hard bottom, southern facing facies contained the high predicted biomass 

values, while lower lying flat areas and northern facing facies displayed lower predicted 

biomass. The patterns of predicted biomass are consistent among all maps. 

Again, the highest individual biomass estimate was found at the 1 m resolution and 

this estimate decreases with decreasing resolution. The highest individual biomass 

estimate on the 1 m resolution map was 269 kg/m2 (~140 fish/100m2), 15.3 kg/25 m2 

(~8 fish/100m2) on the 5 m resolution map, and 3.58 kg/100 m2 (~0.3 fish/100m2) on the 

10 m resolution map. Biomass predicted for the entire area are 7x higher when using 

the 1 m resolution map than they are over the same area on the 5 m or 10 m resolution 

map (Figure 21).  
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Figure 21. Predictive maps of Vermilion Rockfish biomass distribution at Portuguese 

Ledge using maps of 1 m, 5 m, and 10 m resolution. B1 is predicted biomass over the 

smaller area mapped at 1 m resolution bathymetry (~900 km²). B2 is biomass calculated 

over the larger area mapped at 5 m and 10 m resolutions (~2000 km²). Predicted 

biomass is scaled to kg/100 km² for all maps and total biomass is reported in tons. 
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Pacific Sanddab. The Pacific Sanddab predictive model showed that Sanddab 

densities had positive relationships with depth, eastness, northness, fine-scale BPI, and 

negative relationships with slope, curvature, broad-scale BPI, VRM, distance to 

shoreline, distance to shelf edge, and distance to canyon heads. Low to intermediate 

predicted biomass values occur over most of the area. The rocky areas displayed low 

predicted biomass on all maps except for the 5 m resolution map. There were high 

predicted values on the top of the rocks on the 5 m resolution map (Figure 22). This 

could be a result of map scale. There can be only one value per pixel, and even if the top 

parts of the rock are not 5 m wide, there will be one value to represent that area. It 

could be that at the 5 m scale these rocks may appear to have a flat surface while the 1 

m resolution will pick up more detail and it will not appear flat. Conversely the 10 m 

surface may pick up the high value as it averages everything in the 100 m² cell.  

Biomass predictions were lower for Sanddab than for many of the other species at 

Portuguese Ledge. Total Sanddab biomass predicted at Portuguese Ledge at the 1 m 

resolution (83.7 tons) was much higher than biomass predicted for the same area using 

either the 5 m or 10 m resolution maps (3.1 and 0.8 tons, respectively) (Figure 22).  
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Figure 22. Predictive maps of Pacific Sanddab biomass distribution at Portuguese Ledge 

using maps of 1 m, 5 m, and 10 m resolution. B1 is predicted biomass over the smaller 

area mapped at 1 m resolution bathymetry (~900 km²). B2 is biomass calculated over 

the larger area mapped at 5 m and 10 m resolutions (~2000 km²). Predicted biomass is 

scaled to kg/100 km² for all maps and total biomass is reported in tons. 
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Total biomass predicted at Portuguese Ledge. Total predicted biomass at 

Portuguese Ledge increased with decreasing pixel size. In general, unrealistically high 

biomass estimates were calculated using the 1 m map. However, biomass values were 

much smaller and more in range of what we might expect when using the 5 m and 10 m 

bathymetry maps. For example, the model predicted over 145,000 tons of Greenspotted 

Rockfish to occur on Portuguese Ledge when plotted on the 1 m resolution maps while 

the same model predicted just over 17 tons when using 5 m resolution bathymetry, and 

less than 5 tons when using 10 m bathymetry for the same area. The closest estimate of 

biomass between the 1 m and 5 m resolution occurred for Canary Rockfish. The 

estimate for Canary Rockfish biomass was 5 times larger using a 1 m resolution map 

than a 5 m resolution map. The largest difference in the biomass estimates between 1 m 

and 5 m bathymetric maps was for Greenspotted Rockfish. The biomass estimate using 

a 1 m map was 8,500 times the biomass estimate using a 5 m map. Biomass estimates 

using 1 m bathymetry were consistently much higher than estimates using 5 m 

bathymetry, and estimates using 5 m bathymetry were usually about 3 times larger than 

those using 10 m bathymetry (Table 20).  
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Table 20                                                                                                                                                   

 

Total Biomass Predicted for Portuguese Ledge at 1 m, 5 m, and 10 m Resolutions 

 

 1 m (900km²) 5 m (900km²) 10 m (900km²) 

Canary Rockfish 279 56 18 
Copper Rockfish 1,315 43 14 

Greenspotted RF 145,316 18 5 
Greenstriped RF 1,899 1 0.2 

Vermilion Rockfish 732 55 14 
Pacific Sanddab 84 3 0.8 

Note. Total biomass is reported in tons and rounded to the nearest whole number. 

Total biomass over hard bottom habitat at Portuguese Ledge. Estimates of the area 

of hard bottom differed with map size and map resolution. To make biomass estimates 

over hard bottoms comparable, the 5 m and 10 m maps were scaled down to the size of 

the 1 m map. In this way, we can compare estimates of hard bottom over the same 

area. However, even scaled to size, the amount of area designated as hard bottom area 

was different using maps of different resolution. The area designated as hard bottom 

was a smaller when using the 1 m map than using the other maps. For each species, 

highest predicted biomass occurred on the 1 m resolution maps. These estimates were 

larger despite being predicted over a smaller area (Table 21). 

The difference between total biomass estimates between maps of different 

resolution decreased when scaled down to hard bottom only (Table 21). For example, 

23 tons of Canary Rockfish were predicted over hard bottom habitat at Portuguese 

Ledge using a 1 m resolution map and 18 tons were predicted using a 5 m map (5-ton 

difference).   
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Mean observed biomass was calculated for all species over all resolutions and 

multiplied over the area of hard bottom on each map, which gave an estimate of total 

observed biomass over hard bottom. For all species, the largest differences between 

total observed biomass and total predicted biomass occurred on the 1 m resolution 

map. For example, no Greenspotted or Greenstriped Rockfish were seen on the area of 

hard bottom covered by the 1 m resolution map, and therefore total observed biomass 

was zero for both species. However, total predicted biomass for Greenspotted Rockfish 

was over 81,000 tons and for Greenstriped Rockfish was over 1000 tons. At the 5 m 

resolution, total predicted biomass and total observed biomass were similar for some 

species. Observed and predicted total biomass were very similar for Greenspotted 

Rockfish; 2.1 tons of Greenspotted were observed for hard bottom area at Portuguese 

Ledge and 2 tons were predicted over the same area. Total predicted biomass exceeded 

total observed biomass for all species except Copper Rockfish and Greenspotted 

Rockfish. Total predicted biomass was closest to total observed biomass at the 10 m 

resolution for all species except for Copper Rockfish and Greenspotted Rockfish. At the 

10 m resolution, total observed biomass exceeded total predicted biomass for all 

species except Greenstriped Rockfish and Pacific Sanddab (Table 21). 
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Table 21    

 

 Total Observed Biomass and Total Predicted Biomass over Hard Bottom Area on 1 m, 

5 m, and 10 m Resolution Predictive Maps 

 

  1 m (180km²) 5 m (300km²) 10 m (300km²) 
  Observed Predicted Observed Predicted Observed Predicted 

Canary Rockfish 10 23 11.4 18 11.5 6 

Copper Rockfish 18 446 23.5 16 23.6 5 

Greenspotted RF 0 81,084 2.1 2 2.1 1 

Greenstriped RF 0 1,160 0.03 0.2 0.03 0.06 

Vermilion RF 4 103 9 18 9.1 5 

Pacific Sanddab 1 9 0.003 1 0.003 0.1 

Note. Total biomass sums are over slightly different sized areas. Total biomass is 

reported in tons. Rockfish is abbreviated to “RF” for some species 

 
Total predicted biomass over North, Central, and South zones of the study site. 

Biomass was summed over the whole area to get an idea of the biomass estimations of 

these six species in 70-150 m depth along the central coast at the 10 m resolution (Table 

22). Canary biomass estimates were high for the North and Central regions (20,000 and 

18,000 tons) but were much lower for the South region (1200 tons). The area for which 

biomass predicted differs for each region. We could be seeing lower predicted biomass 

in the southern region because the area of the southern predicted region is much 

smaller than the north or central regions. Conversely though, the highest biomass 

estimates for Vermilion occur in the southern region (20,000 tons). These results show 

there is some spatial variation in predicted distributions across regions. In total, 

Vermilion had the highest predicted biomass on the Central coast between 70-150 m of 

water. More than 47,000 tons of Vermilion were predicted in this area, with half of this 
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biomass predicted in the small southern region between Cape San Martin and Lopez 

Point. 

Table 22                                                                                                                                   

 

Biomass Summations over Larger Areas Using a 10 m Resolution Map  

 

 North Central South TOTAL 
Canary Rockfish 20,512 18,342 1,214 40,068 
Copper Rockfish 9,341 7,331 1,653 18,325 

Greenspotted RF 22,520 10,651 291 33,462 
Greenstriped RF 2,071 673 20 2,764 

Vermilion Rockfish 19,519 6,740 20,194 46,453 
Pacific Sanddab 951 2,184 159 3,294 

Note. Biomass is reported in tons. 
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Discussion 

Species Relationships with Observed Habitat  

Using a video lander, I described species-habitat relationships with observed habitat 

features (bottom type, relief, and rugosity) for six fish species off central California. My 

results showed relationships consistent with results described by other U.S. West Coast 

researchers (e.g., Stein et al., 1992; Tissot et al., 2007; Yoklavich et al., 2002). Vermilion 

and Copper Rockfish were observed more frequently in hard bottom habitats, and areas 

with medium-high relief and rugosity. Greenstriped Rockfish were observed mostly over 

soft and mixed bottoms of low relief and rugosity. Greenspotted Rockfish distributions 

overlapped with the hard bottom species but are also observed on mixed bottoms of 

medium and low relief and rugosity. Pacific Sanddab were encountered almost 

exclusively in soft bottoms of low relief and rugosity. Canary Rockfish distributions 

followed less of a pattern than the other species with respect to observed habitat 

characteristics; they were found in similar densities over all bottom types, relief, and 

rugosity.  

Species-habitat relationships were strong for all species and observed habitat 

variables that I evaluated. There were significant differences in densities for every 

species and every observed habitat variable. I expected this to occur because I chose to 

study species that are known to occur on a variety of habitats, from soft to hard 

bottoms. For example, Pacific Sanddabs were found almost exclusively on soft bottom, 

low relief, low rugosity habitats. Pacific Sanddab displayed the strongest relationship 
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with observed habitat features, and no Sanddabs were observed over hard bottom 

habitat, or high and medium rugosity habitats. Conversely, Vermilion Rockfish showed a 

clear, strong relationship with hard bottom, high relief, and high rugosity habitats and 

were rarely seen over soft sediments. 

Although the relationships among species densities and observed habitat features 

were strong for most species, they were not always clearly defined. Preferences of 

observed habitats were shown by almost all species, yet often the difference in mean 

densities among different types of habitat was small. Many species occupied a variety of 

observed habitat types, with an affinity to a particular type. Greenspotted Rockfish were 

observed in similar densities over hard and mixed bottoms and appeared to prefer 

seafloors of mixed relief and rugosity but were also found in areas of both low and high 

relief and rugosity. Canary Rockfish density distributions did not follow clear patterns 

regarding bottom type, relief, or rugosity. Mean density of Canary Rockfish was almost 

identical over both hard and soft habitats. This might be an indication of utilization of 

ecotones, as Canary Rockfish are known to use the interface between habitats (Hunter-

Thompson, 2011).  

My work suggests that relationships with observed habitat alone do not perfectly 

describe species density distributions. While observed habitat features provide insight 

into preferred habitat types, these habitat features alone do not describe the variation 

in species distributions. Alternate classification systems of benthic habitat may be useful 

in explaining distributions of species whose distributions are not tightly tied to sediment 
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type. For example, seascape patterns might be useful in describing the variation in 

benthic fish distributions. Densities of rockfish have been found to be disproportionately 

higher at the edge of rock patches. Hunter-Thompson (2011) found densities of 

Vermilion, Canary, and Bocaccio Rockfish were positively correlated with proximity to 

rocky patches. Hunter-Thompson (2011) also reported positive effects on population 

size with increased patch size.  

Species Relationships with Remotely Sensed Habitat  

After the State of California invested heavily in mapping nearshore habitats, there 

has been interest in using remotely sensed variables instead of observed bottom types 

to evaluate species distributions. This is partly because a) species such as Canary 

Rockfish might be less tied to a particular bottom type and more to a habitat patch or 

seafloor feature (e.g., reef), and b) using remotely sensed variables allows for broad 

scale mapping of seafloor characteristics. Because observed habitat data are only 

available at surveyed locations, they cannot be used to create maps of habitat suitability 

in other locations. However, remotely sensed data are available for large swaths of the 

seafloor, and thus can be used to create maps predicting habitat suitability and to 

obtain density and biomass estimates for larger areas. 

My results showed that many of the individual remotely sensed habitat variables 

had little to no influence on species density distribution. R-squared values showed that 

individually these variables explain little variation in species distributions. Canary 

Rockfish and Pacific Sanddab density distributions showed no significant dependence on 
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variation of the remotely sensed variables. Linear regression analyses for all the other 

species provided significant relationships with one to three of the nine remotely sensed 

variables.  When remotely sensed variables were grouped as principal components, all 

species density distributions showed dependence on fluctuations in the explanatory 

variables. Even so, R- squared values remained low.  

Copper Rockfish densities were found to increase with VRM. I did not find any 

studies that have described the relationship between Copper Rockfish and VRM, but 

VRM has been reported to be a significant predictor in Rosy Rockfish and Greenstriped 

Rockfish predictive models (Young et al., 2010). In my work, Greenspotted Rockfish 

displayed a negative significant relationship with broad-scale BPI in the predictive GLMs. 

These results are consistent with results from Young et al. (2010) who also found broad-

scale TPI to be a significant predictor in a GLM predicting Greenstriped Rockfish 

distributions.   

 Distance to shoreline has not been widely used as a variable in habitat association 

studies. The results from my research suggest distance to shoreline is an important 

predictor in determining fish density distribution patterns. My results were similar to 

Pittman et al. (2011), who reported distance to shoreline to be the most influential 

predictor in spatial models for two coral reef fish species and important for other 

species as well.  

The positions of samples on the seafloor relative to the distance to shoreline and 

distance to canyon head are often inversely related. This could be why we always saw a 
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positive relationship with one and a negative relationship with the other. Pitman et al. 

(2011) observed distance to shelf edge to be a powerful predictor in spatial models 

predicting reef fish distributions. Similarly, I found distance to shelf edge to influence 

Vermilion Rockfish densities.  

Comparison of Species Associations with Observed vs. Remotely Sensed Habitat  

The CCA results indicated that a) the remotely sensed variables as a group explain 

more variance in species densities than did relationships between species and observed 

habitats, and b) the variation explained by the observed habitat variables was generally 

also explained by a number of the remotely sensed habitat variables. Species locations 

on the plot also corresponded with remotely sensed variable vectors.  

To complete the assessment of observed and remotely sensed habitat 

characteristics as variables to describe species distribution patterns, I compared the 

collective power of each group of variables to describe the variation in species densities. 

Two models predicting species densities were created for all species. One model was 

created using observed habitat variables as predictors, and another was made using 

remotely sensed habitat characteristics as predictors.  

The models using remotely sensed variables did a better job at explaining species 

distributions than observed habitat variables. Some remotely sensed model predictors 

were significant in the model even though they were not significant in linear 

regressions. Models using remotely sensed habitat variables described a higher 

proportion of deviance in species densities than models using observed habitat 
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characteristics for all species except Pacific Sanddab. Additionally, model fits were 

better using remotely sensed habitat variables for all species except Pacific Sanddab.  

In summary, the variation explained by observed habitat characteristics was also 

explained by the remotely sensed habitat characteristics and seascape variables that 

were included in this study. Additionally, predictive models using remotely sensed data 

explained more deviance and performed better for almost all species. These results 

indicate that remotely sensed variables might be more appropriate to use when 

modeling species distributions. Also, it is a good idea to use a large array of predictors to 

describe fish distributions. As more variables are included, more variation is explained 

even when penalizing for each variable using measures like AIC. This indicates that it is 

not just one or two benthic features driving distributions but rather the collective 

influence of a large number of smaller drivers.  

Creating Predictive Maps using MGET in ArcGIS 10.2 

I created maps of predicted species densities using the models of species 

relationships with remotely sensed habitat features. The maps created in Monterey Bay 

using 10 m resolution bathymetry provided a broad indication of where to find fish in 

the area. The resulting maps offer reasonable descriptions of species density 

distributions. However, patterns in species densities followed broad scale patterns and 

appeared to be primarily driven by relationships with one or two variables.  

There are several potential causes of the broad scale density patterns seen on the 

maps and the poor predictive power of models. One explanation is that there could be 



105 
 

 

important environmental drivers missing in the model. Oceanographic variables such as 

temperature, salinity, chlorophyll level, etc. can also influence fish distributions and 

were not included in the models.  Although some seascape variables were included in 

these models, perhaps integration of variables such as habitat patch size and distance to 

patch edge would have described more variation in densities and could have yielded 

maps with more detailed patterns and higher predictive power.  

Investigators studying seascape ecology in California have noted effects on fish 

distributions. Stripetail Rockfish (S. saxicola) and Splitnose Rockfish (S. diploproa) have 

been found to occur more often in larger habitat patches (Anderson et al. 2009), 

whereas the biomass of Squarespot Rockfish (S. semicinctus) and Starry Rockfish (S. 

constellatus) were found to be positively correlated with habitat patch size (Hunter-

Thompson, 2011). Also, Blackeye Goby (Rhinogobiops nicholsii) density and biomass 

were found to be correlated with distance to the ecotone boundary (Hunter-Thompson, 

2011). Acoustic tracking of Ocean Whitefish (Caulolatilus princeps) showed movement 

along a rock-sand ecotone, where the Ocean Whitefish utilized the sand side during the 

day and the rock side at night (Bellquist et al., 2008).  

I originally wanted to include additional seascape variables such as patch size and 

distance to patch edge in the models. To understand how habitat patch size and 

distance to patch edge affected the density distributions of each species, I planned to 

subdivide the study area into patches of hard and soft substrate.  However, I was unable 

to delineate habitat patches of hard and soft substrate for the entire study area due to 
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the limitations of using 10 m resolution data.  Substrate was going to be calculated by 

reclassifying the VRM raster to distinguish between hard and soft substrate. Several cut-

off values were evaluated and the substrate map which best-represented reality would 

have been chosen. However, the coarse data did not provide enough variation in VRM 

to enable a demarcation of hard and soft substrate. Attempts were made to delineate 

habitat patches using NOAA Habitat Maps and observed habitat at each survey location, 

but often these data contradicted each other and therefore this strategy was 

abandoned.  Because habitat patches could not be delineated for the study area, 

distance to patch edge could not be calculated. 

Using the fine-scale data at Portuguese Ledge, I was able to delineate habitat 

patches. A substrate DEM at 5 m resolution was available for Portuguese from CSUMB 

SFML (http://seafloor.otterlabs.org/SFMLwebDATA_mb.htm#CMB) and I was able to 

create a substrate layer for the 1 m resolution map. These data were used to delineate 

habitat patches, where patch boundaries were set at hard and soft substrate interfaces. 

The issue with using habitat patch size as a predictor was that the sandy areas were all 

interconnected and appeared as one large “soft” patch instead of several small patches. 

There was no way to separate the patches without being arbitrary, and the large sand 

patch would affect the results if trying to determine relationship to patch size. I was able 

to create layers showing distance to patch edge and distance to rock which I could be 

more confident represented reality. Unfortunately, these variables could only be 
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created for a small area (Portuguese Ledge) and therefore were not included in the 

model.  

Model Testing 

The bivariate fitting of 2014 observed densities vs. 2013 predicted densities showed 

that the model consistently predicted higher densities than were observed and most of 

observed densities were ~ 10-20% of the predicted densities. One explanation for the 

discrepancy between 2013 predicted values and 2014 observed values could be that 

there was a large decline in the populations of these fish between the two years. But 

when looking at 2013 observed densities in comparison to 2014 observed densities, we 

see this is not the case. Another possible explanation is that we failed to capture fish in 

our surveys in 2014 due to small-scale temporal changes in spatial distributions. Peaks in 

Copper Rockfish densities in fall and winter seasons and significant decline in summer 

months have been observed by Matthews (1986). However, visual surveys used in my 

study occurred over many months and throughout different seasons. Because of this, I 

think it is unlikely we missed peaks in densities for all species because of temporal 

variation in spatial distributions.  

These results indicate that the predictive maps are not capturing peaks or hotspots 

in species densities using remotely sensed features alone. While the predictive maps 

capture general patterns in density distribution patterns, they are greatly overpredicting 

densities at a large scale and underpredicting observed peaks. This suggests that there 

are other factors that have not been included in the model that might make one benthic 
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habitat more likely to harbor fishes than another.  Fish are not homogenously 

distributed, even over habitats that are structurally similar. Not all rock is created equal, 

and there are other factors such as oceanographic variation which can make one rock 

outcrop favorable than the next. These results might suggest that predictive maps of 

species density may be more useful when gathering information on general areas where 

there is a higher chance of encountering species, which can help when targeting a 

species either for commercial reasons, for sampling, or to protect habitat in specific 

areas. However, based on the consistent discrepancy between observed and predicted 

values, I would be cautious when using these maps to obtain estimates of fish 

abundance, density, or biomass.  

Influence of Map Resolution on Predictions 

The effect of map resolution on model estimates is another reason to be cautious 

about using predictive maps to estimate biomass of a species. To evaluate the influence 

of map resolution on predicted biomass estimates, I calculated biomass of each study 

species at Portuguese Ledge using maps of 1 m, 5 m, and 10 m resolutions. One model 

was used to evaluate the difference in biomass estimates when map resolution was the 

only variable to change. This is an important question because the map resolution of 

available bathymetry varies along different parts of the California coast. For example, 

there are 2 m resolution data for the nearshore central coast, but only within state 

waters. Outside of that, 10 m resolution data are available for some areas, and 30m 

resolution data for others. Along the entire state, the resolution of bathymetry maps 
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can be somewhat arbitrary, and people making species distribution maps must make do 

with what is available. Fish density estimates have been multiplied over rocky habitat to 

estimate regional population abundance for stock assessments (O’Connell and Carlile, 

1993). It is important to understand the effect of map resolution on these estimates and 

the range of biomass estimates that might be generated for each map resolution. 

Biomass estimates were found to decrease with map resolution. Predictive maps 

using 10 m resolution maps had the lowest biomass estimates, followed by 5 m maps, 

with 1 m resolution maps predicting the highest biomass. The 1 m resolution maps 

resulted in biomass estimates that were unrealistically high. The 5 m and 10 m 

resolution maps provide more realistic estimations of biomass over Portuguese Ledge, 

however, they still appeared to overestimate biomass. When looking at biomass 

estimates over hard bottom alone, the same pattern was seen of large differences 

between biomass estimates. The 1 m resolution maps predicted higher biomass 

estimates than either the 5 m or 10 m resolution maps. However, the difference in 

biomass estimates between the 1 m and the 5 and 10 m maps for some species 

decreased.  

There could be a couple reasons for this. First, there were a large number of artifacts 

in the 1 m bathymetry. Artifacts are artificial variations in bathymetric maps caused by 

rolling of the ship during seafloor mapping. Although artifacts can be minimized by 

mapping on calm days, they cannot be avoided altogether. There were many more 

artifacts in the fine-scale data, showing up as ribbing along the sandy areas, which add 
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false variation in the seafloor topography. There were high predicted densities in these 

areas caused by this false variation. The reduction in the discrepancy between biomass 

estimates made using 1 m maps and those using 5 m and 10 m maps over hard bottom 

is probably due to the removal of the artifacts occurring over the soft bottom areas.  

Another reason for the higher biomass estimates in the 1 m resolution maps is the 

increased extrapolation of data over many pixels. The finer scale the map, the more 

pixels are in it. The observed vs. predicted densities plots show us that when fish do 

occur, the model is generally predicting lower densities than observed. However, the 

species used in this study did not occur in 67-91% of surveys, and in these instances 

when a fish did not occur, the models predicted values higher than those observed 68-

99% of the time. If the models are consistently over-predicting at each pixel or cell 

where no fish are observed, when total biomass is summed over all pixels, the biomass 

prediction will be greater for maps with more pixels. These small overestimations in 

aggregate can lead to a large overestimation in biomass summations over a larger area.  

Total predicted biomass estimates over hard bottom at Portuguese Ledge were most 

similar to total observed biomass using the 10 m resolution map. The last stock 

assessment of Vermilion in 2005 (MacCall, A.D., 2005) estimated abundances of age 1+ 

Vermilion Rockfish to be between 2,584- 5,423 tons in Northern California and between 

2,237-12,205 tons in Southern California. In comparison, the models (using a 10 m 

resolution map) predicted over 47,000 tons in Central California. It is worth noting that  

map predictions and stock assessment estimates are for slightly different locations in 
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California. However, the difference between my model estimates and stock assessment 

estimates is quite large and not likely due to real differences in biomass between these 

areas.  While there is error and uncertainty in stock assessments, the discrepancy 

between the model estimates and stock assessment estimates is not likely due to 

uncertainty in stock assessments. Furthermore, biomass sums from my predictive 

models over the larger regions of the study site were made with 10 m resolution 

bathymetry. When comparing biomass estimates obtained using maps of 1 m, 5 m, and 

10 m resolutions, 10 m resolution maps were seen to garner the lowest biomass 

estimates. If biomass estimates were obtained from predictive maps using 5 m or 1 m 

resolution bathymetry, there would be a larger discrepancy between my map 

predictions and stock assessment estimates. Additionally, the large biomass predictions 

from the model are only over the small area between 70-150 m in Northern, Central, 

and Southern California regions. If biomass was predicted across these entire regions 

using the predictive models, the discrepancy between stock assessment biomass 

estimates and predictive spatial model biomass estimates would be even larger.  

My results show that map resolution has a large influence on resulting biomass 

estimates. These results indicate that one should be cautious when mapping to obtain 

biomass estimates and be cognizant that map resolution can have a large effect on 

resulting biomass summations. Predictive modelling and mapping are great tools to help 

better understand species distribution patterns. They can give us a better idea of where 
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we can find certain species and predict distributions onto unsurveyed areas. However, 

density or biomass estimates derived from the maps might be less reliable.  
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