193 research outputs found

    New records of desmids from Ropar wetland (a Ramsar Site) of Punjab, India

    Get PDF
    This study deals with exploration of freshwater desmids for the first time from Ropar wetland (Ramsar site) of Punjab (India) to assess their taxonomic aspects and bio-geographical distribution. During this study, samples of planktonic, epiphytic and epilithic desmids were collected from littoral zone and were observed under light microscope for their morphometric characteristics based identification. Total 21 desmids species belonging to 4 genera of 2 families (Closteriaceae and Desmidiaceae) were identified from the collected samples. Among them, Cosmarium with 11 species (C. awadhense, C. bioculatum, C. trilobatum, C. divergens, C. granatum, C. moniliforme, C. nitidulum, C. subtumidum, C. reniforme, C. undulatum and C. obtusatum) was found to be most abundant followed by Closterium with 7 species (C. acerosum, C. dianae, C. incurvum, C. leibleinii, C. lunula, C. pritchardianum and C. aciculare), Euastrum with 2 species (E. spinulosum and E. platycerum) and Staurastrum with 1 species (S. crenulatum). The geographic distribution of identified desmid taxa in India has been also recorded. All the desmid taxa identified during this study are new record for the Punjab state of India. The results of this study provide significant baseline data for the future taxonomic and ecological studies from the similar habitats

    Evaluating land use and aboveground biomass dynamics in an oil palm–dominated landscape in Borneo using optical remote sensing

    Get PDF
    The focus of this study is to assess the efficacy of using optical remote sensing (RS) in evaluating disparities in forest composition and aboveground biomass (AGB). The research was carried out in the East Sabah region, Malaysia, which constitutes a disturbance gradient ranging from pristine old growth forests to forests that have experienced varying levels of disturbances. Additionally, a significant proportion of the area consists of oil palm plantations. In accordance with local laws, riparian forest (RF) zones have been retained within oil palm plantations and other forest types. The RS imagery was used to assess forest stand structure and AGB. Band reflectance, vegetation indicators, and gray-level co-occurrence matrix (GLCM) consistency features were used as predictor variables in regression analysis. Results indicate that the spectral variables were limited in their effectiveness in differentiating between forest types and in calculating biomass. However, GLCM based variables illustrated strong correlations with the forest stand structures as well as with the biomass of the various forest types in the study area. The present study provides new insights into the efficacy of texture examination methods in differentiating between various land-use types (including small, isolated forest zones such as RFs) as well as their AGB stocks

    Phosphorus fertilizing potential of biomass ashes and their effect on bioavailability of micronutrients in wheat (Triticum aestivum. L)

    Get PDF
    Ashes from agricultural biomass in agro-based industries have been found to have most of the plant nutrients except nitrogen and sulphur but are treated as waste material. The present study was conducted to evaluate the potential of biomass ashes as source of P and their effect on bioavailability of micronutrients in wheat crop. We conducted the pot experiment at glass house of the Department of Soil Science, Punjab Agricultural University, Ludhiana, India. The experiment consisted of combinations of four P sources [bagasse ash (BA), rice husk ash (RHA), rice straw ash (RSA), fertilizer P (Fert-P)] supplying P at three levels (10, 20 and 30 µg g-1) along with one zero-P control. This experiment was laid out in completely randomized design (CRD) having three replications. Application of P through RSA produced significantly higher grain yield (14.3 g pot-1) than BA (12.8 g pot-1) and RHA (12.9 g pot-1) but statistically at par with Fert-P (13.5 g pot-1). Grain Zn content decreased maximum than other micronutrients with application of P from all sources, hence maximum increased P/Zn ratio. Phosphorus applied from all the biomass ashes significantly increased biomass and yield over control. With increase in P application, micronutrients content in grain was significantly decreased, hence decreased bioavailability of micronutrients in wheat grain

    A framework for refining soil microbial indices as bioindicators during decomposition of various organic residues in a sandy loam soil

    Get PDF
    Assessment of soil quality is an invaluable tool in determining the sustainability and environmental impact of agricultural ecosystems. Soil microbial indices like microbial biomass and microbial activity are important criteria for the determination of soil quality. Laboratory incubation study was undertaken to examine the influence of eight crop residues widely varying in biochemical composition on the periodic changes in important soil microbial indices {(microbial (Cmic: Corg), metabolic (qCO2), carbon mineralization (qC) and microbial biomass change rate (qM) quotients)} at 28 days and 63 days after incubation (DAI) in a sandy loam soil. A. sativa amended soil showed maximum soil respiration rate (14.23 mg CO2-C g-1 soil day-1) whereas T. aestivum amended soil showed maximum microbial biomass C (790 µg/g). The metabolic quotient among different crop residues ranged from 11.1 to 19.8 ?g CO2-C ?g-biomass-C-1 h-1 at 63 DAI. The results indicate that incorporation of different crop residues has positive effect on microbial flora and their activity. Microbial quotient (Cmic:Corg) was significantly positively correlated with microbial biomass carbon (MBC), qC and qM. The study suggests that the biochemical composition of different crop residues seems to be of better option for long term sustainable crop production with maintenance of soil quality in a sandy loam soil

    Multi-objective optimization of kerf-taper and surface-roughness quality characteristics for cutting-operation on coir and carbon fibre reinforced epoxy hybrid polymeric composites during CO2-pulsed laser-cutting using RSM

    Get PDF
    Current research focuses on optimizing various quality characteristics for kerf geometry generated through laser cutting of Coir fibre/carbon fibre/epoxy resin hybrid composite adjacent to straight cut profile employing pulsed CO2 laser system. The Kerf taper (KT) and the Surface roughness (SR) are the main quality parameters discussed. Dependent on significant process parameters, namely gas pressure, cutting speed, pulse frequency and pulse width predictive models were developed. In accordance with Taguchi's L9 orthogonal array (OA), the cutting trials are designed. Process-parametric optimization was performed using Response Surface Methodology (RSM). Furthermore, experiments were performed to obtain experimental data for the analysis of cut quality features. The impact of the input variables on the response characteristics is also explored. The morphological characterizations have been performed to analysis the effect of machining-variables and cut-quality for the top and bottom kerf widths with various laser cutting variables in the pulse laser-cutting of Coir-fibre/carbon-fibre/epoxy-resin hybrid composite. For SR and KT, the developed second order surface response model was found very successful. The optimal levels of cutting variables for KT are established at Gas pressure-6N/mm2, pulse width-2.04ms, cutting speed-8.01mm/s, pulse frequency-15 Hz, for sample A1, Gas pressure-5.47N/mm2, pulse width-2.5ms, cutting speed-8.81mm/s, pulse frequency-8.43 Hz, for sample A2, Gas pressure-3.85N/mm2, pulse width-1.5ms, cutting speed-9.06 mm/s, pulse frequency-5 Hz, for sample A3 additionally for SR Gas pressure-2N/mm2, pulse width-1.5ms, cutting speed-7mm/s, pulse frequency-5 Hz, for sample A1, Gaspressure-2.36 N/mm2, pulse width-1.5ms, cutting speed-7mm/s, pulse frequency-15 Hz, for sample A2, Gaspressure-6N/mm2, pulse width-1.5ms, cutting speed-11 mm/s, pulse frequency-8.73 Hz, for sample A3. Regression results and linear and square impact of laser cutting variables have been revealed to be important to validate the model

    Influence of residue type and method of placement on dynamics of decomposition and nitrogen release in maize-wheat-mungbean cropping on permanent raised beds: a litterbag study

    Get PDF
    Decomposition influences carbon and nutrient cycling from crop residues. The nylon-mesh-bag technique was implied to study the decomposition and N-release dynamics from different crop residues under field conditions. The four types of residues were: maize (lower than 50% below the cob), wheat (lower than 25% of wheat stubbles), a whole mung bean residue, and a mixture of wheat + mung bean residue (1:1 ratio) put on the soil surface and in below the sub-surface. Decomposition and N release from both at-surface- and below-surface-placed residues were accurately described by a single-pool first-order exponential decay function as a function of thermal time (based on the accumulative daily mean temperature). The simple first-order exponential model met the criteria of goodness of fit. Throughout the decomposition cycle (one thermal year), the rate of decomposition as measured by a decrease in residue mass and the release of total N were statistically higher from the sub-surface compared to the surface-placed residue, irrespective of the residue type. At the end of the 150-day decomposition cycle, the release of total N was highest in mung bean (32.0 kg N ha−1), followed by maize (31.5 kg N ha−1) > wheat + mung bean (16.1 kg N ha−1), and the minimum (6.54 kg N ha−1) in wheat residue. Crop residues with a wider C/N ratio such as maize and wheat, when applied on the soil surface in conservation agriculture, caused the decomposition to occur at slower rates, thereby providing long-term beneficial effects on the soil thermal regime, soil moisture conservation, and C sequestration in North-West India

    Conservation Agriculture and Scale of Appropriate Agricultural Mechanization in Smallholder Systems

    Get PDF
    This manual has focused on the need to amplify and accelerate adoption of conservation agriculture (CA) practices that enable productivity increases on a sustainable basis. The development of the training manual on ‘Conservation Agriculture and Scale Appropriate Agricultural Mechanization in Smallholder Systems’ is an outcome of the series of advanced training programs on Conservation Agriculture over past one decade. The objectives of this training manual are; (1) To foster capacity building of researchers, extension workers, farmers and machinery manufacturers to promote CA in Asia and Africa; and (2) To raise the awareness of policy planners and decision makers to develop a strategic plan for the development of CA and agricultural mechanization in the developing world. There are several initiatives in South Asia and Africa to promote CA practices as environment-friendly and alternative to conventional agriculture. However, little has been done to document the CA practices or even lessons learnt from these initiatives. Farmers today still lack access to information on CA practices. This is a comprehensive manual that explains in a step by step easy to follow manner on how to implement CA by smallholders in Asia and Africa. It explains what CA is, and why it is important, how to use CA principles in the field and highlights the issues and challenges that researchers, farmers, machinery manufacturers and service providers may encounter when they adopt and adapt CA practices. This manual aims to be a valuable reference and is intended for use by researchers, agricultural extension officers/workers, farmers, machinery manufacturers and service providers to promote CA in Asia and Africa for increasing productivity and reducing poverty. It is written in clear, easy-to-understand language, and is illustrated with numerous figures and tables. It is not intended to cover the subject of conservation agriculture comprehensively but to provide an overview of the principles and practices. Indeed, as the training draws from many distinct disciplines, it is unlikely that any one person will have the necessary technical skills to cover the complete course content. Manual also focuses on two crucial aspects: the provision of farm mechanization services as a viable business opportunity for entrepreneurs, and the essential criteria of raising productivity in an environmentally sensitive and responsible way. This manual is also designed to serve as source of information for custom hire service providers – whether already in the business or intending to start their own hire service business – with skills and competencies in both the technical and the management aspects of the small-scale mechanization business. CA to reach smallholder farmers needed the publication of simplified technical manual. This manual contains useful technical information on CA practices that offer practical answers to questions normally asked by farmers of what, why, how

    Extreme and Highly Heterogeneous Microclimates in Selectively Logged Tropical Forests

    Get PDF
    Microclimate within forests influences ecosystem fluxes and demographic rates. Anthropogenic disturbances, such as selective logging can affect within-forest microclimate through effects on forest structure, leading to indirect effects on forests beyond the immediate impact of logging. However, the scope and predictability of these effects remains poorly understood. Here we use a microclimate thermal proxy (sensitive to radiative, convective, and conductive heat fluxes) measured at the forest floor in three 1-ha forest plots spanning a logging intensity gradient in Malaysian Borneo. We show (1) that thermal proxy ranges and spatiotemporal heterogeneity are doubled between old growth and heavily logged forests, with extremes often exceeding 45°C, (2) that nearby weather station air temperatures provide estimates of maximum thermal proxy values that are biased down by 5–10°C, and (3) that lower canopy density, higher canopy height, and higher biomass removal are associated with higher maximum temperatures. Thus, logged forests are less buffered from regional climate change than old growth forests, and experience much higher microclimate extremes and heterogeneity. Better predicting the linkages between regional climate and its effects on within-forest microclimate will be critical for understanding the wide range of conditions experienced within tropical forests

    Soil conservation issues in India

    Get PDF
    Despite years of study and substantial investment in remediation and prevention, soil erosion continues to be a major environmental problem with regard to land use in India and elsewhere around the world. Furthermore, changing climate and/or weather patterns are exacerbating the problem. Our objective was to review past and current soil conservation programmes in India to better understand how production-, environmental-, social-, economic- and policy-related issues have affected soil and water conservation and the incentives needed to address the most critical problems. We found that to achieve success in soil and water conservation policies, institutions and operations must be co-ordinated using a holistic approach. Watershed programmes have been shown to be one of the most effective strategies for bringing socio-economic change to different parts of India. Within both dryland and rainfed areas, watershed management has quietly revolutionized agriculture by aligning various sectors through technological soil and water conservation interventions and land-use diversification. Significant results associated with various watershed-scale soil and water conservation programmes and interventions that were effective for reducing land degradation and improving productivity in different parts of the country are discussed
    • …
    corecore