
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Extreme and Highly Heterogeneous Microclimates in Selectively
Logged Tropical Forests

Citation for published version:
Blonder, B, Both, S, Coomes, DA, Elias, D, Jucker, T, Kvasnica, J, Majalap, N, Malhi, YS, Milodowski, D,
Riutta, T & Svátek, M 2018, 'Extreme and Highly Heterogeneous Microclimates in Selectively Logged
Tropical Forests', Frontiers in Forests and Global Change, vol. 1. https://doi.org/10.3389/ffgc.2018.00005

Digital Object Identifier (DOI):
10.3389/ffgc.2018.00005

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Frontiers in Forests and Global Change

Publisher Rights Statement:
Copyright © 2018 Blonder, Both, Coomes, Elias, Jucker, Kvasnica, Majalap, Malhi, Milodowski, Riutta and
Svátek. This is an open-access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and
the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with
accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these
terms.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 12. Sep. 2019

https://doi.org/10.3389/ffgc.2018.00005
https://www.research.ed.ac.uk/portal/en/publications/extreme-and-highly-heterogeneous-microclimates-in-selectively-logged-tropical-forests(38f00d09-aae2-48c9-bc10-1720cf57eedf).html


ORIGINAL RESEARCH
published: 26 October 2018

doi: 10.3389/ffgc.2018.00005

Frontiers in Forests and Global Change | www.frontiersin.org 1 October 2018 | Volume 1 | Article 5

Edited by:

Trevor F. Keenan,

University of California, Berkeley,

United States

Reviewed by:

Sophie Fauset,

Plymouth University, United Kingdom

Marion Pfeifer,

Newcastle University, United Kingdom

*Correspondence:

Benjamin Blonder

bblonder@gmail.com

Specialty section:

This article was submitted to

Tropical Forests,

a section of the journal

Frontiers in Forests and Global

Change

Received: 25 May 2018

Accepted: 25 September 2018

Published: 26 October 2018

Citation:

Blonder B, Both S, Coomes DA,

Elias D, Jucker T, Kvasnica J,

Majalap N, Malhi YS, Milodowski D,

Riutta T and Svátek M (2018) Extreme

and Highly Heterogeneous

Microclimates in Selectively Logged

Tropical Forests.

Front. For. Glob. Change 1:5.

doi: 10.3389/ffgc.2018.00005

Extreme and Highly Heterogeneous
Microclimates in Selectively Logged
Tropical Forests
Benjamin Blonder 1,2*, Sabine Both 3,4, David A. Coomes 5, Dafydd Elias 6,

Tommaso Jucker 5,7, Jakub Kvasnica 8, Noreen Majalap 9, Yadvinder Singh Malhi 1,

David Milodowski 10, Terhi Riutta 1,11 and Martin Svátek 8

1 Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, United Kingdom,
2 School of Life Sciences, Arizona State University, Tempe, AZ, United States, 3 Institute of Biological and Environmental

Sciences, University of Aberdeen, Aberdeen, United Kingdom, 4 Environmental and Rural Science, University of New

England, Armidale, NSW, Australia, 5Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom,
6Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, United Kingdom, 7CSIRO Land and Water,

Floreat, WA, Australia, 8Department of Forest Botany, Dendrology, and Geobiocoenology, Mendel University in Brno, Brno,

Czechia, 9 Sabah Forestry Department, Forest Research Centre, Sandakan, Malaysia, 10 School of Geosciences, University of

Edinburgh, Edinburgh, United Kingdom, 11Department of Life Sciences, Imperial College London, Ascot, United Kingdom

Microclimate within forests influences ecosystem fluxes and demographic rates.

Anthropogenic disturbances, such as selective logging can affect within-forest

microclimate through effects on forest structure, leading to indirect effects on forests

beyond the immediate impact of logging. However, the scope and predictability of these

effects remains poorly understood. Here we use a microclimate thermal proxy (sensitive

to radiative, convective, and conductive heat fluxes) measured at the forest floor in three

1-ha forest plots spanning a logging intensity gradient in Malaysian Borneo. We show (1)

that thermal proxy ranges and spatiotemporal heterogeneity are doubled between old

growth and heavily logged forests, with extremes often exceeding 45◦C, (2) that nearby

weather station air temperatures provide estimates of maximum thermal proxy values that

are biased down by 5–10◦C, and (3) that lower canopy density, higher canopy height,

and higher biomass removal are associated with higher maximum temperatures. Thus,

logged forests are less buffered from regional climate change than old growth forests,

and experience much higher microclimate extremes and heterogeneity. Better predicting

the linkages between regional climate and its effects on within-forest microclimate will be

critical for understanding the wide range of conditions experienced within tropical forests.

Keywords: Borneo, logging, disturbance, forest structure, environmental heterogeneity, microclimate

INTRODUCTION

Tropical forests host the majority of terrestrial species diversity, and generate the majority of
terrestrial nutrient and water fluxes (Malhi et al., 1999). They also are being increasingly affected
by fire, clearance, selective logging, and urbanization (Chazdon, 2003; Newbold et al., 2015) which
all contribute to a highly heterogeneous mosaic of disturbed patches. Understanding microclimate
variation in these systems will be critical for predicting how the organisms that comprise them
will respond to large-scale global change, e.g., for recruitment dynamics of tree seedlings (Brokaw,
1985), for behavior of ground-dwelling animals (Vitt et al., 1998), or for spatial dynamics of soil
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respiration (Raich and Tufekciogul, 2000). Specifically,
knowledge of microclimate can improve estimates of species
richness (Stein et al., 2014), functional diversity (Bergholz
et al., 2017; Stark et al., 2017), demography (Baraloto and
Couteron, 2010; Uriarte et al., 2018), and carbon fluxes (Raich
and Schlesinger, 1992). Microclimate is also especially important
in predicting species’ responses to climate change because
the existence of microrefugia provide conditions suitable for
persistence without requiring rapid dispersal (Klein et al., 2009;
Meineri and Hylander, 2017).

Disturbances can affect tropical forests’ ability to buffer
changes in their microclimate from changes in broader-scale
climate (Ewers and Banks-Leite, 2013; De Frenne and Verheyen,
2016). For example, selective logging may cause reductions in
canopy closure that in turn drive increased radiation and airflow,
which then lead to decreased broad-scale climate buffering and
higher variation in microclimate (Fauset et al., 2017). The extent
of these effects remains controversial (Senior et al., 2017b). On
the one hand, a recent study has suggested that selective logging
in Borneo leads to very small changes in thermal microclimate
(Senior et al., 2017a). On the other hand, a different Bornean
study of selective logging and forest conversion to oil palm show
that disturbance increases mean air temperatures and reduce
relative humidity and soil moisture (Hardwick et al., 2015). Other
studies have shown that fire (Didham and Lawton, 1999) and
logging (Fetcher et al., 1985; Senior et al., 2017b) have similar
effects on reducing buffering of forest microclimate from broad-
scale climate variation.

Regardless, variation in microclimate within forests remains
poorly empirically quantified relative to variation in broad-scale
climate across forests [but see (Scheffers et al., 2017; Senior
et al., 2017b)]. The effects of anthropogenic disturbance (Foley
et al., 2005) may occur primarily at much smaller spatial and
temporal scales (Bellard et al., 2012). There is a need to better
predict how large-scale climate variation translates to small-
scale microclimate variation (De Frenne and Verheyen, 2016).
Microclimates have been difficult to predict at small temporal and
spatial scales. Most weather station data come from open rather
than forested areas. Weather stations placed in open clearings are
limited in their utility for predicting microclimate within forests
or other complex environments.

Additionally, the microclimate experienced by organisms
or patches within forests may differ strongly from the
air temperatures measured by nearby weather stations. The
temperature of an object is determined not only by air
temperature, but also by other heat fluxes comprising the energy
balance. These fluxes include radiation (from shortwave sources,
e.g., sunlight, and longwave sources, e.g., blackbody radiation
dependent on the emissivity and albedo of the object), convection
(including evaporation), and conduction. Air temperature can
play a role in all of these fluxes but may not always be the primary
factor driving temperature. Predicting how air temperature
transfers to organismal temperature remains challenging, but
important for understanding how disturbance affects organismal
performance across space and time.

To address recent calls to better measure within-forest
microclimate (De Frenne and Verheyen, 2016), and to

better assess the impact of disturbance, we posed three
questions:

1) Does selective logging drive increased heterogeneity and
extremes in forest microclimate, and if so by how much?

2) To what extent can on-plot or off-plot weather station data be
used to predict forest microclimate?

3) Can forest structure and topography predict forest
microclimate across time and space?

We focused our empirical measurements in Sabah, Borneo
Severely degraded forests (withmultiple recent road construction
events) represent 32% of logged forest area in Sabah (Bryan
et al., 2013), with some logging affecting over 70% (Potapov
et al., 2017). In contrast to previous studies that measured
air temperature, we measured a microclimate thermal proxy
sensitive to radiative, convective, and conductive heat fluxes. This
thermal proxy is relevant to a range of organismal processes
including plant regeneration, animal behavior, and soil nutrient
fluxes. Measurements were made across space and time within
three 1-ha plots comprising a gradient from old growth to heavy
selective logging. We then combined these data with nearby
weather station air temperature data, as well as measurements of
topography and canopy structure derived from detailed ground
surveys and airborne LIDAR.

MATERIALS AND METHODS

Study Location
We identified three sites along a logging intensity gradient in the
Malaysian state of Sabah in Borneo. Sites each contain a 1-ha
plot in lowland mixed dipterocarp forest, and are part of a long-
term investigation into the effects of forest fragmentation (Ewers
et al., 2011). These sites are managed by the Global Ecosystem
Monitoring network and are given standardized names in the
ForestPlots database (https://www.forestplots.net).

The plots are chosen to contrast an unlogged old growth
forest with a moderately logged forest and a heavily logged
forest (Riutta et al., 2018). Locations and details are given in
Table 1. The first plot, MLA-01, is representative of old-growth
forest conditions, and is referred to as “old growth” (Figure 1C).
The plot is located within the Maliau Basin Conservation Area,
is characterized by topography with several hills and a stream
drainage and contains mature forest with an open understory.
The logged plots are located within the Stability of Altered Forest
Ecosystems (SAFE) Project (Ewers et al., 2011) in Kalabakan
Forest Reserve. The area has been selectively logged for the
first time in the mid 1970s, followed by one to three rounds
of logging between 1990 and 2008. The cumulative extracted
biomass in the area ranged from 46 to 54Mg C ha−1, and
the total biomass loss, including collateral damage, increased
post-logging mortality and abandonment of some of the felled
stems was estimated to be 94–128Mg C ha−1 (Struebig et al.,
2013; Pfeifer et al., 2016; Riutta et al., 2018). Mean extraction
volumes are estimated to be 150–179 m3 ha−1, compared to
152 m3 ha−1 across all of Sabah (Fisher et al., 2011). The SAF-
03 plot (within SAFE Project Fragment E), is representative
of moderate selective logging (current biomass equals 47% of
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TABLE 1 | Summary information for each plot including datalogger deployment statistics.

Disturbance

category

ForestPlots

plot name

Longitude (◦) Latitude (◦) Elevation

(m)

Mean annual

temperature

(◦C)

Mean annual

precipitation

(mm)

Basal area

(m2 ha−1)

Biomass

(Mg C ha−1)

Number of

dataloggers installed

(number recovered)

Heavily logged SAF-01 117.6185 4.7318 415 22.7 3,628 7 31 79 (72)

Moderately logged SAF-03 117.5878 4.6921 434 22.7 3,628 20 97 81 (79)

Old growth MLA-01 116.9700 4.7474 334 21.7 3,774 43 278 79 (63)

Temperature and precipitation are estimated from the CHELSA climatology at ∼1 km resolution (Karger et al., 2016).

FIGURE 1 | Representative conditions within (A) the heavily logged plot, (B) the moderately logged plot, and (C) the old growth plot.

pre-logging biomass) and is referred to as “moderately logged”
(Figure 1B). The plot is characterized by a sloped topography
and contains a mature forest with several gaps caused by logging
of large trees. The SAF-01 plot (within SAFE Project Fragment
B), is representative of heavy selective logging (current biomass
equals 14% of pre-logging biomass), and is referred to as “heavily
logged” (Figure 1A). The plot is characterized by an undulating
topography and a stream, with some mature trees and several
large logging gaps.

Microclimate
To map the microclimate thermal proxy in each plot, we
installed dataloggers on a semi-regular grid pattern varying in
minimum distance from 1 to 14 meters. Each datalogger was
a Thermochron iButton (DS1921G, Maxim), capable of logging
up to 2048 temperature values between −30 and 70◦C. Each

datalogger was waterproofed by wrapping in plastic paraffin film
(Parafilm, Bemis) and then in light yellow duct tape (Figure S1).
Dataloggers were attached using plastic zip-ties onto PVC stakes
at a height of 1–3 cm immediately above the forest floor. The tape
color was chosen to approximate the albedo of vegetation/soil,
and the size of the sensor package was chosen to have a similar
boundary layer to many small organisms (e.g., tree seedlings,
fallen branches, large insects). The sensor packages intentionally
did not include a radiation shield, as the intent was not to
measure air temperature. Temperatures recorded by the loggers
therefore reflect a combination of conductive, convective, and
radiative heat fluxes, and can be considered a rough proxy for
those experienced by small organisms.

Each plot contains 25 20 × 20 m2 subplots, demarcated by
1 m-high PVC stakes embedded in the soil. Each subplot also
contains at its center a mesh litter trap suspended on PVC stakes
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at 1-m height. Exact locations for all subplot corner and center
stakes were determined using ground-based Field-Map software
[IFER, Jílové u Prahy, Czech Republic (Hédl et al., 2009)]. Spatial
positions were recorded in three-dimensional space (local x, y,
z-coordinates) using an Impulse 200 Standard laser rangefinder
and MapStar Module II electronic compass (Laser Technology,
Colorado, USA).

We installed a datalogger on these stakes at the corner of each
subplot and the center of each subplot. We also chose at random
three focal subplots in each plot for higher-resolution sampling.
Within these subplots we established a cross-type design, with six
additional dataloggers deployed at 1–5m distance on additional
PVC stakes located near each litter trap (Figure S2). A total of
239 dataloggers were installed.

Dataloggers were deployed during the end of the dry
season in late 2015. Each recorded 28 days of data at 20-min
intervals (Data Sheet S1). Start times were synchronized among
dataloggers within plots. The exact date of deployment was 1
November for the heavily logged plot and 9 November for the
moderately logged and old growth plot. Weather conditions
during November–December 2015 were consistently dry and hot,
so we do not anticipate any biases from the differing start dates.
In nearly all cases dataloggers were recovered in their original
location, except for a small number that were transported 1–2
meters down slopes. We treated data from these as though they
were in their original position. A small number of dataloggers
also failed due to being lost or punctured by animal bites.
90% of dataloggers (214/239) were successfully recovered and
downloaded (Table S1). Missing data was random across space
and plots (Figure S3).

Air Temperature Data
To compare the microclimate thermal proxy to other
temperature metrics, we obtained off-plot (open site) and
on-plot (below canopy) weather station data (Data Sheet S3).
To represent off-plot data for both the moderately and heavily
logged plots, a weather station was located in a cleared area
at the SAFE base camp (4.724341◦N, 117.601449◦E), at a
distance of 2.0 km from the heavily logged plot and 3.9 km from
the moderately logged plot. Data were logged continuously
(Datahog, Skye Instruments, UK). Measurements included air
temperature (◦C) and photosynthetically active radiation (W
m−2). Data were available for all of the study period. To represent
off-plot data for the old growth plot, another weather station
was located in a cleared area at the Maliau Basin Studies Center
(4.736263◦N, 116.97662◦E), at a distance of 1.4 km from the plot.
Available data only included photosynthetically active radiation
(W m−2). Data were available for ∼25% of the study period. We
predicted air temperature values at this plot for these dates by
calibrating a LOESS regression model of air temperature based
on time of day (seconds after midnight) and photosynthetically
active radiation, calibrated with weather station data from an
open clearing at the SAFE base camp (78 km distance, 184m
lower elevation). Because of the small elevation change we did
not include a further lapse rate correction for temperature. The
fitted model, which had a residual standard error of 0.9◦C, was

used to predict off-plot air temperature at the old growth plot
(Figure S4).

To represent on-plot air temperature, we located air
temperature sensors (HOBO, U23-002) within radiation shields
at 1.5m height in a subplot within each plot (corresponding
to a focal subplot with a higher density of microclimate
dataloggers: old growth, subplot 18; moderately logged, subplot
24; heavily logged, subplot 25). Temperature was measured
hourly. Locations of subplots are indicated in Figure S3.

LiDAR Data
Discrete airborne LiDAR data were acquired by NERC’s Airborne
Research Facility (ARF) in November of 2014 using a Leica
ALS50-II LiDAR sensor flown on a Dornier 228-20 at 41
points m−2 density, with up to four returns recorded per pulse.
Georeferencing of the point cloud was ensured by incorporating
data from a Leica base station in the study area. LiDAR point
clouds were classified into ground and non-ground points, and
used to produce a 1m resolution canopy height model by
averaging the first returns (Data Sheet S2). Gaps in the canopy
height model were filled by averaging neighboring cells.

Topography
The ground-mapped coordinates of the subplot corners, subplot
centers, and all stems were used to construct a digital elevation
model (DEM) for the plot. Elevation was interpolated onto a 1m
grid using ordinary kriging with a minimum of 4 points and
search radius of 30 meters. This grid was then aligned to the
LIDAR-determined location and elevation of the plot corners.
The DEM was then used to estimate slope (in degrees) and
cosine of aspect (with higher values indicating more southerly
exposures) for each location (Data Sheet S2).

Forest Structure
Forest structure was determined from field surveys and from
airborne laser scanning (Data Sheet S2). For the field survey, all
trees≥10 cm diameter at 1.3m height were censused in each plot
in 2016. The census followed the RAINFOR protocol (Phillips
et al., 2016). Diameter wasmeasured at 1.3mwith a tapemeasure,
height with laser rangefinders, and x-y position of each stem
were determined using the same system as the subplot corners.
The horizontal crown projection of every tree was mapped by
measuring spatial positions (x and y-coordinates) of 5–30 points
(depending on the size of the crown) at the boundary of a
crown projected to the horizontal plane and then smoothed using
Field-Map software.

Field stem maps were then converted into raster grids of
stem basal area density (smoothed with 2-m Gaussian kernel,
and then rasterized to 1m resolution), canopy density (number
of overlying canopies per unit area; 1m resolution), and plant
area index (PAI) (10m native resolution, interpolated to 1m
resolution). Spatial variation in PAI was mapped from the LiDAR
point cloud using the MacArthur-Horn method (MacArthur
and Horn, 1969). The method assumes that the leaves are
randomly distributed within the laterally homogeneous canopy
layers, so the PAI is proportional to the logarithm of the
fraction of LiDAR pulses, β , penetrating through the canopy:
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PAI = − 1
κ
ln (β), where κ is a correction factor that accounts

for canopy features, such as clumping and the distribution of leaf
angles. We assumed a constant value of κ = 0.7, which is within
the range reported by Stark et al. (2012). Only the first returns,
representing the first interaction of each LiDAR pulse with the
canopy, are considered. We employed a lower cutoff of 2m to
avoid confusing ground returns with low-lying vegetation. PAI
was estimated for point locations along a 1m regular grid using
circular sampling neighborhood of 10m. This sampling window
size is used to capture a sufficient number of LiDAR returns to
avoid saturation effects in the more densely vegetated parts of
the plots. This approach for calculating canopy closure may be
biased, as clumping of vegetation, variation in leaf angle, and
canopy edges (i.e., at gaps) should lead to spatial variation in the κ

coefficient. It was not possible with our data to constrain κ using
hemispherical photos due to saturation effects. While clumping
can be estimated from terrestrial LiDAR data (Jupp et al., 2009),
the high pulse densities required preclude this approach from
being used with airborne LiDAR data. Other approaches for
using airborne data to estimate clumping in airborne LiDAR data
have led to significant negative biases in PAI estimates in our
trial analyses (Detto et al., 2015). We therefore acknowledge that
the constant-clumping approach may introduce some unknown
spatial biases into our PAI estimates, but believe that the chosen
approach is reasonable given currently available methods.

Statistical Analysis
To summarize variation in microclimate data across time, we
computed spatial minima, means, maxima, and ranges at each
time, combining information across all dataloggers. Variograms
across all dataloggers within each plot also were estimated to
assess spatial autocorrelation at each time. We also summarized
the commonality of extreme heat events at each datalogger by
calculating a time series of the presence of temperature spikes
above 35◦C that persisted for at least 20min. Point estimates are
reported with standard deviations.

To summarize variation across space, we computed temporal
minima, means, maxima, and ranges at each datalogger,
combining information across all times. To compare the
similarity of time series of microclimate data to the weather
station air temperatures, we merged datasets at the frequency of
the weather station data. Microclimate time series included
spatial minimum, mean, and maximum values of the
microclimate thermal proxy at each time point. We then
calculated the Pearson correlation and absolute deviations
between each microclimate and off-plot/on-plot weather station
air temperature time series. For visualization purposes (Figure 5;
Movies S1–S3) we also spatially interpolated the spatial
microclimate datasets using cubic splines to 1m resolution.
These interpolations were not used in quantitative analyses.

To determine which factors predicted variation in
microclimate over space, we obtained minimum, mean,
and maximum values of the microclimate thermal proxy at
each location (n = 214). We then extracted values of a set of
spatial predictors at each location as the mean value in a 10m
buffer region. Predictors comprised elevation (after subtracting
plot mean values for each plot to provide a relative index of

height), slope, cosine aspect, basal area density, canopy height,
canopy density, plant area index, and biomass fraction removed
(calculated at plot level). Pearson correlation coefficients between
any pair of predictor variables took a mean value of 0.38 and
never exceeded 0.78 (for canopy height and PAI). Subsequently
we fit linear mixed models using each of minimum, mean, or
maximum microclimate thermal proxy values as the dependent
variable. Each model included the spatial predictors as fixed
effects, plus a random intercept for plot, and a Gaussian spatial
correlation structure, with parameters fit from the data. All
predictors were scaled (z-transformed) before analysis to enable
interpretation of fixed effect estimates as effect sizes. The
model therefore treats the plots as independent samples along a
selective logging gradient, while simultaneously accounting for
the hierarchical structure of the data (some variables measured
between plots, others within), and for spatial autocorrelation
among data loggers. Explained variation for fixed and fixed
plus random effects for each model was summarized using
Nakagawa’s pseudo-R2 statistic (Nakagawa and Schielzeth, 2013).

All statistical analyses were conducted in R version 3.3.3.
Summary statistic distributions are reported as mean± standard
deviation. Spline smoothing was carried out with the akima
package; GIS analyses with the rgdal, sp, maptools, and raster
packages; LiDAR data processing with the lidR package; linear
mixed models with the nlme and MuMIn packages.

RESULTS

We obtained a total of 444,416 temperature measurements at 214
locations representing a total of 30,000 m2 of forest, with 63–
79 loggers successfully recording data within each plot (Table 1).
Animations of the spatio-temporal variation of the microclimate
within each plot over the study period are provided as supporting
filesMovies S1–S3.

Question 1: Does selective logging drive increased
heterogeneity and extremes in forest microclimate, and if
so by how much?

Spatial microclimate patterns at the forest floor, calculated
by averaging all time points, differed between plots and were
consistent with more variation and higher extremes in more
heavily logged plots (Figure 2). The distribution of mean
microclimate thermal proxy values was lowest in the heavily
logged and higher in the moderately logged and old growth
plots. Mean minimum microclimate thermal proxy values were
statistically different (but small; <1◦C) between moderately
logged and old growth plots (21.5 vs. 21.3◦C; t-test p < 10−3,
df = 140) and between old growth and heavily logged plots
(20.5 vs. 21.3◦C; t-test p < 10−15, df = 132). Mean maximum
microclimate thermal proxy values at each location were
statistically different in both moderately logged (32.8 vs. 28.6◦C;
t-test p < 10−15, df = 122) and heavily logged (31.6 vs. 28.6◦C;
t-test p < 10−3, df = 118) plots relative to old growth. Some
locations in both logged plots experienced much higher maxima
(50◦C in moderately logged and 52◦C in heavily logged vs.
44◦C in old growth). Consistent with this finding, microclimate
thermal proxy ranges were statistically different in moderately
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FIGURE 2 | Spatial distributions of microclimate thermal proxy values at each plot over the 1-month study period for (A) minimum, (B) mean, and (C) maximum

values. Note y-axis scale varies between panels.

logged (11.3 vs. 7.3◦C; t-test p < 10−5, df = 124) and heavily
logged (11.1 vs. 7.3◦C; t-test p < 10−5, df = 118) plots relative
to old growth.

Temporal microclimate patterns, calculated by averaging data
from all dataloggers within a plot, were also consistent with more
variation and higher extremes in the logged plots (Figure 3A).
Over diurnal cycles, spatial minimum and mean temperature
peaks occurred at ∼11 a.m., with all temperature excursions
constrained between 20 and 30◦C. However, differing patterns
occurred for maximum temperatures over diurnal cycles: in both
logged plots, maximum temperatures reached upper values close
to 10 a.m. (typically the brightest part of the day before clouds
set in), with many temperature excursions exceeding 45◦C, while
in the old growth plot the upper value was obtained closer to
11 a.m., with values never exceeding 45◦C.

Heterogeneity in microclimate thermal proxy values also
varied temporally across plots (Figure 3B). The semivariogram
range (the distance at which spatial correlation between samples
first flattens, providing a metric of spatial heterogeneity) in each
plot changed over the course of the day at each plot. The lowest
values occurred at nighttime in all plots, consistent with uniform
plot cooling. Daytime patterns varied strongly between plots.
Across all times, the moderately logged plot was not statistically
different from the old growth plot (3.5 vs. 3.6m, t-test p = 0.6,
df = 2484). However, the heavily logged plot was statistically
different from the old growth plot (7.3 vs. 3.6m, t-test p < 10−15,
df = 4036). Additionally, these time-series all had distinct peaks
at certain times of day that were consistent across days, indicating
consistent localized heating patterns. The peaks in heterogeneity
occurred primarily in the morning in the heavily logged plot, and
in the mid-afternoon in the old growth plot.

Logged plots experienced more and longer extreme thermal
events than the old growth plot (Figure 3C). The heavily logged
plot experienced more than 20 events in which a datalogger
recorded a temperature exceeding 35◦C for more than 20min,
and several events lasting more than an hour. The old growth
plot never experienced any such events.

Question 2: To what extent can on-plot or off-plot weather
station data be used to predict forest microclimate?

Off-plot air temperature time series poorly predicted
microclimate thermal proxy time series (Figures 4A,C). Mean
minimum microclimate thermal proxy values were biased
at all plots, with off-plot weather stations estimating values
that were 2 ± 4◦C higher than recorded by the dataloggers
(Pearson’s ρ, 0.70–0.88). Average mean microclimate thermal
proxy temperatures were also biased across all plots, with
off-plot weather station values 1 ± 4◦C higher than recorded
by the dataloggers (Pearson’s ρ, 0.75–0.93). Mean maximum
microclimate thermal proxy values were biased in the old growth
plot by 1 ± 5◦C (Pearson’s ρ, 0.65) and were more strongly
biased in the two logged plots, with off-plot weather station
values 4–7 ± 8◦C lower than recorded by dataloggers (Pearson’s
ρ, 0.30–0.75).

On-plot air weather station air temperature data better
predicted microclimate thermal proxy values (Figures 4B,D).
Across plots, mean minimum on-plot air temperature values
were biased by 1 ± 1–2◦C higher than observed by dataloggers
(Pearson’s ρ, 0.87–0.94). Mean on-plot air temperature values
were unbiased across plots (0 ± 1◦C; Pearson’s ρ, 0.94–0.98)
whilemaximumon-plot air temperature values were biased lower
than those recorded by dataloggers in the old growth by 2± 3◦C
(Pearson’s ρ, 0.64), by 6 ± 7◦C in the moderately logged plot
(Pearson’s ρ, 0.58), and by 4 ± 4◦C (Pearson’s ρ, 0.79) in the
heavily logged plot.

Question 3: Can forest structure and topography predict
forest microclimate across time and space?

Forest structure was highly variable across and within the
three plots, with maximum canopy height varying from 0 to
77m, basal area density from 0 to 0.04 m2 m−2, canopy density
from 0 to 6 tree crowns m−2, and PAI from 0 to 13 m2 m−2.
Similarly, plot topography was also variable, with elevation from
324 to 475m, with both north and south aspects, and with slope
variation from 0 to 58◦. Details of ranges within each disturbance
type are visualized in Figure 5 and summarized in Table 2.
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FIGURE 3 | Temporal patterns in microclimate thermal proxy values. (A) Diurnal traces of minimum, mean, and maximum temperature (across dataloggers) for each

plot. (B) Diurnal traces of variogram range (higher values indicate higher spatial heterogeneity), for each plot. Traces are colored by day, with earlier dates in orange

and later dates in purple. (C) Frequency of extreme thermal events where microclimate thermal proxy values exceeded 35◦C for a duration of time.
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FIGURE 4 | Coordination between microclimate thermal proxy values and air temperature measured either (A,C) by off-plot weather station in open clearing or (B,D)

on-plot weather station. (A,B) indicate correlations between air temperature and each of minimum, mean, or maximum microclimate thermal proxy values (across

dataloggers) at each time. The 1:1 line is shown in black. (C,D) indicate the distributions of deviations between microclimate thermal proxy values and air temperature.

Both forest structure and topography contributed to spatial
distributions of the microclimate thermal proxy, though the
effects of each predictor depended on the type of temperature
(Figure 6). Most standardized coefficient estimates in eachmodel
were small (absolute magnitudes of <0.1 sd sd−1), though there
were several notable exceptions (Figure 7A). For the model
of minimum microclimate thermal proxy values, there was a
negative effect of biomass removal (−0.1). For the model of mean
microclimate thermal proxy values, there was a positive effect of
canopy height (+0.3) and a negative effect of plant area index
(−0.2). For the model of maximum microclimate thermal proxy
values, effects were much stronger. There was a positive effect
of relative elevation (+0.2), canopy height (+3.1), tree density
(0.3), and biomass removal (+2.6), as well as a negative effect
of slope (−0.6), cosine aspect (−0.5), basal area (−0.1), and PAI
(−2.7).

Fixed effects explained 16% of minimum values, 6%
of mean values, and 16% of maximum values of the
microclimate thermal proxy (Figure 7B). Fixed effects and
the site random effect together explained between 40 and
76% of the variance, suggesting that unmeasured factors
were also important drivers of microclimate thermal proxy
values.

DISCUSSION

We found that selectively logged forests experienced more
heterogeneous, hotter, and consistently extreme microclimate
thermal proxy values than old growth forest. We found
consistent differences of >10◦C occurring at 1–5 meter

spatial scales. These ranges of variation are consistent with
prior studies of air temperature heterogeneity within forests
(Scheffers et al., 2017) and have broad implications for
climate change responses: the environments experienced by
organisms may potentially expose individuals (especially for
sessile organisms) to extreme conditions not predicted in
fine-scale air temperature data or in broader-scale climate
data (Baraloto and Couteron, 2010; Scherrer and Körner,
2010; Stark et al., 2017). Unlike in alpine systems where
environmental heterogeneity provides thermal refugia that buffer
climate change (Scherrer and Körner, 2010), heterogeneity
in this warm forest is likely to exacerbate it. Our findings
at fine spatial scales and biologically relevant temperatures
thus build on other studies that have argued for disturbance
driving strong warming and less buffering of climate change
(De Frenne et al., 2013; Hardwick et al., 2015; Senior et al.,
2017b).

The temperatures characterized by our microclimate thermal
proxy were more heterogeneous and extreme than the air
temperatures measured by weather stations. This finding is in
line with another study of within-forest surface temperature
heterogeneity that used thermal imaging methods (Scheffers
et al., 2017). This outcome challenges the possibility of
downscaling weather data from stations in open clearings to
predict climate impacts at fine scale within forests. Our study
echoes recent calls to better measure thermal environments at
scales and locations that are relevant to the organisms of interest
(Körner and Hiltbrunner, 2017), and provides one of very few
high resolution records of such variation (Scheffers et al., 2017;
Senior et al., 2017a).
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FIGURE 5 | Spatial patterns of microclimate thermal proxy values,

topography, and forest structure. For each plot, data for minimum, mean, and

maximum microclimate thermal proxy values are shown, as well as site

elevation, plot slope, cosine aspect, basal area density, canopy height, canopy

density, and plant area index. Color scales are consistent within each variable

(column). Each pixel represents 1m. Ranges are given in Table 2.

We found that forest structure was a stronger driver of
maximum microclimate thermal proxy values than of minimum
or mean values. Maximum microclimate thermal proxy values
increased with several variables but primarily increased with
taller canopies (i.e., with more variation allowing oblique light
transfer), lower plant area index, and higher biomass fraction
removed. Mean microclimate thermal proxy values showed
similar trends and increased with canopy height and decreased
with higher plant area index. In contrast, minimummicroclimate
thermal proxy values increased with higher canopies and lower
biomass fraction removed but was largely similar within and
across plots. This latter finding is consistent with uniform night-
time cooling of air masses, with limited variation in wind
or sky exposure (i.e., convective and radiative heat fluxes),
as primarily determined by regional processes. In all cases,
other unmeasured site-level factors (reflected by random effects
variances) not related to forest structure, biomass removal, or
topography explained large fractions of the remaining variation.
Our results therefore suggest that fine-scale variation in thermal
environment remains difficult to predict even with detailed
knowledge of forest structure and topography.

The drivers of maximum andmean values of the microclimate
thermal proxy are consistent with selective logging primarily
affecting canopy structure, leading to to higher radiation
loading and ultimately driving more extreme and heterogeneous
maximum temperatures (Chazdon and Pearcy, 1991). Diurnal
cycles of temperature change indicated that specific locations
were consistently warmer than others, and that these peaks in
temperature also occurred at consistent times of day. While the
canopy height and PAI data capture the broad distribution of
logging-caused light gaps, it was not possible to use the airborne
LiDAR data to propagate light transfer through the lower canopy
due to lack of data for understory vegetation structure [but
see (Webster et al., 2017)]. The understory vegetation likely
determines the conditions experienced at the forest surface, and
thus determines the spatial variation in microclimate thermal
proxy values that was captured by the large random effects
variances in our models. Terrestrial LiDAR surveys could
potentially resolve this issue, but at greatly increased effort.

Our results are broadly supportive of those previously
reported by Hardwick et al. (2015), in that they confirm a
role for land use and canopy structure in influencing mean
and maximum temperatures within forests. However, our
results complement this prior study. First, our study provides
further insights into the consequences of selective logging,
whereas Hardwick et al., focused on the consequences of oil
palm conversion. Second, our study identifies topographic and
structural drivers of microclimate beyond leaf or plant area index,
the variable focused on by Hardwick et al. Third, our study,
measures an index of microclimate rather than measuring air
temperature, and finds extreme thermal maxima and ranges that
have not been previously reported.

Our results strongly differ from those reported by Senior
et al. (2017a), who showed strong buffering of microclimate
with limited thermal extremes in selectively logged Bornean
forests. The studies may have sampled different phenomena.
Our study also had longer temporal extent (1 month per plot

Frontiers in Forests and Global Change | www.frontiersin.org 9 October 2018 | Volume 1 | Article 5

https://www.frontiersin.org/journals/forests-and-global-change
https://www.frontiersin.org
https://www.frontiersin.org/journals/forests-and-global-change#articles


Blonder et al. Extreme Microclimate in Logged Forests

� � �Heavily logged Moderately logged Old growth

�

�� � �

� �

�

� �

�

�

�

�

��� �

�

�

�

�

�

�

�� � ��

��

� � �

��

�

� �

� � ��

� ��

�

�� ����

��

�

�

�

� �

� �

�� � ��� ��

� �

�� � �� �

�

��

�

�� ��� � � � � ������ � �

20

−20 0 20

Relative elevation

M
in

im
u

m
m

ic
ro

c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

A

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

� �

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

�

�

�

�
�

��
�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�
�

��

�
�

�

�
�
�
�

�
�

�

�

�

�
�

�
�

�

�

�

�

�

−20 0 20

Relative elevation

M
e

a
n

m
ic

ro
c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

B

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

� �� �

�

�

�

�

�

30

40

50

−20 0 20

Relative elevation

M
a

x
im

u
m

m
ic

ro
c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

C

� �� �

��

�

� �

�

�

�

� �

�� � �

�

�

�

�

�

�

�� � ��

��

� � �

�

�

� �� �

� � �

�

�� ���

�� �

� �

� �

�

�

� � �

��

�� �

��

�

�

��

��

�

�

�

������ �

�

��

�

�

� ��

� �

���� ��� ��� �

�

� ��

20

10 20 30 40

Slope (°)

M
in

im
u

m
m

ic
ro

c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

��
�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

��

�

�

�
�

�

�

� �

�

�

�

�

�
�

�
�

�
��

�

�

�
�

�
�

�
�

�

�

�

�

�

10 20 30 40

Slope (°)

M
e

a
n

m
ic

ro
c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

� ��

�

�

�

��

�

�

30

40

50

10 20 30 40

Slope (°)

M
a

x
im

u
m

m
ic

ro
c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

� � ��

��

�

� �

�

�

�

��

��� �

�

�

�

�

�

�

�� � ��

� �

� � �

�

�

� �

� ���

� ��

�

�� � � ���

� �

�

�

�

� �

� �

�

�

�

�

� � �

�

�� �

� �

�

�

����

�

�

�

�

�

�

� �

�

��

�

�

� ��

�

����

�

��� � �� �

�

� � ��

20

−1.0 −0.5 0.0 0.5 1.0

cos(Aspect)

M
in

im
u

m
m

ic
ro

c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�
�

� ��

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

� �

�

�

�
�

�

�
�

�

�

�

�

�

�

�
��

�

�

�
�

�

�

�

�

−1.0 −0.5 0.0 0.5 1.0

cos(Aspect)

M
e

a
n

m
ic

ro
c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

� �

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

� �

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

� �

��

� �

�

�

�

��

�

30

40

50

−1.0 −0.5 0.0 0.5 1.0

cos(Aspect)

M
a

x
im

u
m

m
ic

ro
c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

� � � �

��

�

�

�

�

�

��

�� � �

�

��

�

�

�� ��

� �

��

�

��

� �� �

� ��

�

�

� �� �

�

�

��

�

�

�

��

�

��

�

�� �� ����

��

�� � �� ��

�

��

�

��� �� � ��� �� ��� � �

20

0.000 0.002 0.004 0.006

Basal area

M
in

im
u

m
m

ic
ro

c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

��
�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

� �

�

�

�

�
�

�

�

�
�

�
�

��

�

�

�
�

�
�

�
�

�

�

�

�

�

0.000 0.002 0.004 0.006

Basal area

M
e

a
n

m
ic

ro
c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

��

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

��

���

�

�

� �

�

30

40

50

0.000 0.002 0.004 0.006

Basal area

M
a

x
im

u
m

m
ic

ro
c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

�

�� ��

�

�

��

�

�

�

�

����

�

�

�

�

�

�

� ���

� �

���

�

�

��

� �� �

� ��

�

�� ��� �

�

�

�

��

�

�

�����

�

��

��

�

�

�

�

�

�

��

��

��� ��

� �

���� ��� � �� ��

20

0 20 40 60

Canopy height

M
in

im
u

m
m

ic
ro

c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

��

�

� �

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�

�

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�
� �

�

�
�

��

�

�

�

�

�
�

�

�

�

�

�

�

0 20 40 60

Canopy height

M
e

a
n

m
ic

ro
c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

��

�

�

�

�

�

�

�

� �

�

�

� �

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

� �

��

�

�

�

�

� �

�

30

40

50

0 20 40 60

Canopy height

M
a

x
im

u
m

m
ic

ro
c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

�� � �

��

�

��

�

�

�

� �

�� ��

�

�

�

�

�

�

�� ���

� �

���

�

��

� �� �

� ��

�

�� � �� ��

��

�

�

�

��

��

� ��� � �� �

��

�

�

�� �� � �

�

��

�

�� ��� � ���

�

� �� �� �� � �

20

0.0 0.5 1.0 1.5 2.0

Tree density

M
in

im
u

m
m

ic
ro

c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�
�

�

�

�

�

�

�
��

�

�
�

�

�

�

�

�

�

0.0 0.5 1.0 1.5 2.0

Tree density

M
e

a
n

m
ic

ro
c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� ��

�

�

�

�

�

��

�

�

�

�

�

�

�

� �

�

30

40

50

0.0 0.5 1.0 1.5 2.0

Tree density

M
a

x
im

u
m

m
ic

ro
c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

�� ��

� �

�

��

�

�

�

��

�� ��

�

�

�

�

�

�

� �� ��

� �

���

�

� �

� �� �

� ��

�

�� ����

� �

�

�� ����

�

��

��

�

�

�� � �

� ��

���

��

�� ��

�

�

�

�

�

�

�����

�

�

��

�

�� � �

�

��� �� �� ��

20

5 10

Plant area index

M
in

im
u

m
m

ic
ro

c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�
�

�

��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

� �

�

�

�

�
�
�

�

��
�

�

�

�
�

�

�

�

�

5 10

Plant area index

M
e

a
n

m
ic

ro
c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

��

�

� �

�

�

�

�

�

�

�

�

�

�

30

40

50

5 10

Plant area index

M
a

x
im

u
m

m
ic

ro
c
lim

a
te

 t
h

e
rm

a
l 
p

ro
x
y

FIGURE 6 | Pairwise relationships between plot topography and forest structure and (A) minimum microclimate thermal proxy values, (B) mean values, and (C)

maximum values. Points represent locations of individual data loggers, colored by plot.
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FIGURE 7 | Summary of regression models of microclimate thermal proxy values. (A) Standardized estimates of fixed effects (points) and 50% confidence intervals

(vertical lines) in each model. Note different y-axis scales on each facet. (B) R2 values for models of minimum, mean, and maximum microclimate thermal proxy values.

vs. 2 days per plot) and resolution (20-min resolution 24
h/day vs. 5 times/day during morning/afternoon only). Both
studies examined equivalent total areas (30,000 m2), though
with low site-level replication (n = 3 plots of 10,000 m2

area in our study; n = 12 plots of 2,500 m2 area in theirs).
Differing results could also be explained by variation in forest
structure. Their study suggested that light penetration to the
forest floor was similar in logged and old growth forests due
to secondary regrowth, leading to equivalent levels of heat
transfer in disturbed and undisturbed forests. However, forest
regrowth may have proceeded differently in our sites. While
we do not have quantitative light measurements available, we
visually observed that the selectively logged sites had higher light

transfer than the old growth site. Last, we measured temperature
differently. Senior et al. measured temperatures inside deadwood
tree holes and leaf litter, and also measured surface temperatures.
In contrast, we measured an index of thermal microclimate
via dataloggers exposed to ambient radiation and wind a few
centimeters above the surface. These temperature metrics may
each provide different but complementary sources of information
(Körner and Hiltbrunner, 2017). Moreover, we presented strong
evidence that our microclimate thermal proxy systematically
increases in extremity and heterogeneity in more disturbed
forests—an effect not found by Senior et al. We therefore suggest
that while some aspects of microclimate may be buffered in
disturbed forests (e.g., minimum microclimate thermal proxy
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TABLE 2 | Ranges of variation in microclimate thermal proxy values and key

topographic and forest structure variables.

Variable Unit Old growth Moderately

logged

Heavily logged

Minimum proxy

value

◦C (20.73, 22.04) (20.03, 22.50) (19.36, 21.02)

Mean proxy value ◦C (23.28, 24.26) (23.55, 26.08) (22.59, 24.30)

Maximum proxy

value

◦C (25.00, 44.75) (25.46, 54.93) (25.49, 53.87)

Elevation m (324.70, 351.34) (403.64, 475.95) (400.87, 436.32)

Slope ◦ (0.02, 53.31) (0.42, 63.89) (0.04, 57.54)

cos (Aspect) – (−1.00, 1.00) (−1.00, 1.00) (−1.00, 1.00)

Basal area density m2 m−2 (0.00, 0.03) (0.00, 0.04) (0.00, 0.02)

Canopy height m (0.42, 77.29) (0.36, 64.85) (0.82, 34.14)

Canopy density # m−2 (0.00, 6.00) (0.00, 5.00) (0.00, 5.00)

Plant area index m2 m−2 (3.77, 13.51) (1.11, 12.97) (1.12, 11.67)

Compare to Figure 5.

values, as in our study, or the cavity temperatures, as in
their study), others (e.g., maximum microclimate thermal proxy
values) may not be.

Our study may be limited by the scope of data collection,
because we only characterized three 1 ha forest plots. While
these sites were chosen to represent a logging intensity gradient,
measurements at each treatment level are not replicated within
the overall landscape. This is not a statistical problem for the
regression analysis as we were able to treat biomass removed as a
fixed effect, and to account for pseudoreplication of dataloggers
within plots via the use of random effects. Nevertheless, further
replication would be instructive.

Our study may also be limited by the 1-month duration of
measurements. The work was conducted in November of 2015,
when southeast Asia experienced a strong El Niño event with
strong and persistent drought (Kogan and Guo, 2017). Our data
provide a record that is both unique in capturing the thermal
extremes experienced during this interval, but also potentially
atypical. Longer datalogger deployments (capturing seasonal and
annual trends) would also be instructive but were not feasible
from a logistical or cost perspective for us. Nevertheless, given
that regional climate models predict increased drought and heat
for this region (Thirumalai et al., 2017), our measurements may
be representative of average near-future conditions.

Fine-scale microclimate may have large effects on
demographic and ecosystem processes (e.g., seedling dynamics,
herbivore behavior, soil respiration) that are not captured by
broader scale models. The magnitude of microclimate variation
is high, but the consequences for these biotic processes still
remains poorly known. A better understanding of the feedbacks
between logging, microclimate change, and forest dynamics is
a key priority for tropical areas increasingly challenged by land
degradation and disturbance.
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Figure S1 | Example images of dataloggers wrapped in yellow duct tape

packages and fastened to plastic stakes.

Figure S2 | Location of dataloggers in a focal subplot (illustrated as 20 × 20m

gray rectangle). In each focal subplot, the six additional dataloggers are placed in

a cross pattern, two “up, N” from the central litterfall trap by 1 and 3m, two

“down, S” from the litter trap by 1 and 3m, one “left, W” of the litter trap by 3m,

and one “right, E” of the litter trap by 3m. Each of these dataloggers is named as

if “up” corresponds to north. In some cases, “up” does not correspond to

magnetic north, even though the dataloggers are labeled as such (e.g., in the old

growth plot, “up” and the vector from N1 to N3 corresponds to a magnetic

bearing of 315◦). The underscore is replaced by the number of the focal subplot,

e.g., F24N3 for subplot 24, datalogger 3m up from the litter trap.
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Figure S3 | Location of microclimate datalogger placements for temperature

measurements. Coordinates have been translated in each panel so that (0,0)

indicates the center of each plot. All maps are oriented with north at the top. Top

row, blue + symbols indicate dataloggers that were successfully recovered; red ×

symbols, dataloggers that were lost. Bottom row, Cxy indicates subplot corner

x,y, and Lz indicates litterfall trap at the center of subplot z. Notation for other

markers is explained in Figure S2.

Figure S4 | Partial regression plots of LOESS multiple regression model used to

predict air temperature from light and time of day.

Movie S1 | Animation of temperature variation over space and time at the heavily

logged plot.

Movie S2 | Animation of temperature variation over space and time at the

moderately logged plot.

Movie S3 | Animation of temperature variation over space and time at the old

growth plot.

Data Sheet S1 | Raw temperature measurements for all microclimate

dataloggers.

Data Sheet S2 | Spatial datasets for microclimate, topography, and canopy

structure.

Data Sheet S3 | Raw off-plot and on-plot weather station air temperature data.
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