92 research outputs found

    MicroRNAs regulate human brain endothelial cell-barrier function in inflammation: implications for multiple sclerosis.

    Get PDF
    Blood-brain barrier (BBB) dysfunction is a major hallmark of many neurological diseases, including multiple sclerosis (MS). Using a genomics approach, we defined a microRNA signature that is diminished at the BBB of MS patients. In particular, miR-125a-5p is a key regulator of brain endothelial tightness and immune cell efflux. Our findings suggest that repair of a disturbed BBB through microRNAs may represent a novel avenue for effective treatment of MS

    Validation Study of Existing Gene Expression Signatures for Anti-TNF Treatment in Patients with Rheumatoid Arthritis

    Get PDF
    So far, there are no means of identifying rheumatoid arthritis (RA) patients who will fail to respond to tumour necrosis factor blocking agents (anti-TNF), prior to treatment. We set out to validate eight previously reported gene expression signatures predicting therapy outcome. Genome-wide expression profiling using Affymetrix GeneChip Exon 1.0 ST arrays was performed on RNA isolated from whole blood of 42 RA patients starting treatment with infliximab or adalimumab. Clinical response according to EULAR criteria was determined at week 14 of therapy. Genes that have been reported to be associated with anti-TNF treatment were extracted from our dataset. K-means partition clustering was performed to assess the predictive value of the gene-sets. We performed a hypothesis-driven analysis of the dataset using eight existing gene sets predictive of anti-TNF treatment outcome. The set that performed best reached a sensitivity of 71% and a specificity of 61%, for classifying the patients in the current study. We successfully validated one of eight previously reported predictive expression profile. This replicated expression signature is a good starting point for developing a prediction model for anti-TNF treatment outcome that can be used in a daily clinical setting. Our results confirm that gene expression profiling prior to treatment is a useful tool to predict anti-TNF (non) response

    The gene encoding interleukin-13: a susceptibility locus for asthma and related traits

    Get PDF
    Asthma is a complex inflammatory disorder controlled by both genetic and environmental influences. Multiple genetic analyses have identified the T helper type 2 (Th2) cytokine gene cluster on chromosome 5q as a susceptibility locus for asthma. Recently, the Th2 cytokine interleukin-13 has been shown to be a critical mediator of the asthma phenotype in murine models. In this commentary we discuss several recent studies that have identified polymorphisms in the gene encoding interleukin-13. The consistent genetic associations of interleukin-13 with asthma and related traits across diverse ethnic populations in these studies provides strong support for the candidacy of this cytokine as a susceptibility locus for asthma and atopy on chromosome 5q31

    Type I IFN and TNFĪ± cross-regulation in immune-mediated inflammatory disease: basic concepts and clinical relevance

    Get PDF
    A cross-regulation between type I IFN and TNFĪ± has been proposed recently, where both cytokines are hypothesized to counteract each other. According to this model, different autoimmune diseases can be viewed as disequilibrium between both cytokines. As this model may have important clinical implications, the present review summarizes and discusses the currently available clinical evidence arguing for or against the proposed cross-regulation between TNFĪ± and type I IFN. In addition, we review how this cross-regulation works at the cellular and molecular levels. Finally, we discuss the clinical relevance of this proposed cross-regulation for biological therapies such as type I IFN or anti-TNFĪ± treatment

    Association of the Gene Polymorphisms IFN-Ī³ +874, IL-13 āˆ’1055 and IL-4 āˆ’590 with Patterns of Reinfection with Schistosoma mansoni

    Get PDF
    Approximately 200 million people have schistosomiasis in parts of Africa, South America, the Middle East, the Caribbean and Asia. Several studies of multiple treatments and reinfections indicate that some people develop resistance to reinfection. Of all the immunologic findings associated with such studies, the most consistent observation is that resistance (usually defined as lower levels of infection upon reinfection) correlates with high IgE and low IgG4 antibodies against schistosome antigens. Our studies test whether single nucleotide polymorphisms residing in the gene or promoter regions of cytokines pivotal in controlling production of these antibody isotypes are different amongst those that develop resistance to reinfection as opposed to those that do not. Through genotyping of these polymorphisms in a cohort of occupationally exposed car washers, we found that men with certain genotypic patterns of polymorphisms in IL-4, IFN-Ī³, and IL-13 were significantly more likely to be resistant to reinfection than those with different patterns. These data provide initial insights into the potential genetic foundation of propensities of people to develop resistance to reinfection by schistosomes, and offer a basis for further molecular studies of how these polymorphisms might work at the transcriptional and gene product level in cells stimulated by schistosome antigens

    Cyclooxygenase-2 and prostaglandin E<inf>2</inf> signaling through prostaglandin receptor EP- 2 favor the development of myocarditis during acute trypanosoma cruzi infection

    Get PDF
    Inflammation plays an important role in the pathophysiology of Chagas disease, caused by Trypanosoma cruzi. Prostanoids are regulators of homeostasis and inflammation and are produced mainly by myeloid cells, being cyclooxygenases, COX-1 and COX-2, the key enzymes in their biosynthesis from arachidonic acid (AA). Here, we have investigated the expression of enzymes involved in AA metabolism during T. cruzi infection. Our results show an increase in the expression of several of these enzymes in acute T. cruzi infected heart. Interestingly, COX-2 was expressed by CD68+ myeloid heart-infiltrating cells. In addition, infiltrating myeloid CD11b+Ly6G- cells purified from infected heart tissue express COX-2 and produce prostaglandin E2 (PGE2) ex vivo. T. cruzi infections in COX-2 or PGE2- dependent prostaglandin receptor EP-2 deficient mice indicate that both, COX-2 and EP-2 signaling contribute significantly to the heart leukocyte infiltration and to the release of chemokines and inflammatory cytokines in the heart of T. cruzi infected mice. In conclusion, COX-2 plays a detrimental role in acute Chagas disease myocarditis and points to COX-2 as a potential target for immune intervention.This work was supported by (NG) grants from ā€œFondo de Investigaciones Sanitariasā€ (PS09/00538 and PI12/00289); ā€œUniversidad AutĆ³noma de Madridā€ and ā€œComunidad de Madridā€ (CC08-UAM/SAL-4440/08); by (MF) grants from ā€œMinisterio de Ciencia e InnovaciĆ³nā€ (SAF2010-17833); ā€œRed de InvestigaciĆ³n de Centros de Enfermedades Tropicalesā€ (RICET RD12/0018/0004); European Union (HEALTH-FE-2008-22303, ChagasEpiNet); AECID Cooperation with Argentine (A/025417/09 and A/031735/10), Comunidad de Madrid (S-2010/BMD- 2332) and ā€œFundaciĆ³n RamĆ³n Arecesā€. NAG was recipient of a ISCIII Ph.D. fellowship financed by the Spanish ā€œMinisterio de Sanidadā€. CCM and HC were recipients of contracts from SAF2010-17833 and PI060388, respectively.Peer Reviewe

    Potential immunological consequences of pharmacological suppression of gastric acid production in patients with multiple sclerosis

    Get PDF
    Corticosteroids are standard treatment for patients with multiple sclerosis experiencing acute relapse. Because dyspeptic pain is a common side effect of this intervention, patients can be given a histamine receptor-2 antagonist, proton pump inhibitor or antacid to prevent or ameliorate this disturbance. Additionally, patients with multiple sclerosis may be taking these medications independent of corticosteroid treatment. Interventions for gastric disturbances can influence the activation state of the immune system, a principal mediator of pathology in multiple sclerosis. Although histamine release promotes inflammation, activation of the histamine receptor-2 can suppress a proinflammatory immune response, and blocking histamine receptor-2 with an antagonist could shift the balance more towards immune stimulation. Studies utilizing an animal model of multiple sclerosis indicate that histamine receptor-2 antagonists potentially augment disease activity in patients with multiple sclerosis. In contrast, proton pump inhibitors appear to favor immune suppression, but have not been studied in models of multiple sclerosis. Antacids, histamine receptor-2 antagonists and proton pump inhibitors also could alter the intestinal microflora, which may indirectly lead to immune stimulation. Additionally, elevated gastric pH can promote the vitamin B12 deficiency that patients with multiple sclerosis are at risk of developing. Here, we review possible roles of gastric acid inhibitors on immunopathogenic mechanisms associated with multiple sclerosis

    Assessing the human immune system through blood transcriptomics

    Get PDF
    Blood is the pipeline of the immune system. Assessing changes in transcript abundance in blood on a genome-wide scale affords a comprehensive view of the status of the immune system in health and disease. This review summarizes the work that has used this approach to identify therapeutic targets and biomarker signatures in the field of autoimmunity and infectious disease. Recent technological and methodological advances that will carry the blood transcriptome research field forward are also discussed

    Phosphodiesterase 4 inhibition in the treatment of psoriasis, psoriatic arthritis and other chronic inflammatory diseases

    Get PDF
    Agents which increase intracellular cyclic adenosine monophosphate (cAMP) may have an antagonistic effect on pro-inflammatory molecule production so that inhibitors of the cAMP degrading phosphodiesterases have been identified as promising drugs in chronic inflammatory disorders. Although many such inhibitors have been developed, their introduction in the clinic has been hampered by their narrow therapeutic window with side effects such as nausea and emesis occurring at sub-therapeutic levels. The latest generation of inhibitors selective for phosphodiesterase 4 (PDE4), such as apremilast and roflumilast, seems to have an improved therapeutic index. While roflumilast has been approved for the treatment of exacerbated chronic obstructive pulmonary disease (COPD), apremilast shows promising activity in dermatological and rheumatological conditions. Studies in psoriasis and psoriatic arthritis have demonstrated clinical activity of apremilast. Efficacy in psoriasis is probably equivalent to methotrexate but less than that of monoclonal antibody inhibitors of tumour necrosis factor (TNFi). Similarly, in psoriatic arthritis efficacy is less than that of TNF inhibitors. PDE4 inhibitors hold the promise to broaden the portfolio of anti-inflammatory therapeutic approaches in a range of chronic inflammatory diseases which may include granulomatous skin diseases, some subtypes of chronic eczema and probably cutaneous lupus erythematosus. In this review, the authors highlight the mode of action of PDE4 inhibitors on skin and joint inflammatory responses and discuss their future role in clinical practice. Current developments in the field including the development of topical applications and the development of PDE4 inhibitors which specifically target the subform PDE4B will be discussed
    • ā€¦
    corecore